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Crossing points of nodal lines in topological semimetals and the Fermi surface of ZrSiS
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We investigate the electron spectra, Fermi surfaces, and their characteristics near crossing points of two
band-contact lines in nodal-line semimetals. In particular, the extremal cross-sectional areas and the appropriate
cyclotron masses are calculated. We also find the phase of the quantum oscillations associated with the
electron orbits near the crossing point. The analysis of all these quantities is carried out both without and with
consideration of the spin-orbit interaction. To illustrate the obtained results, we apply them to ZrSiS, in which
the crossing of the nodal lines occurs.
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I. INTRODUCTION

Band-contact lines (nodal lines) along which two electron
energy bands touch in a Brillouin zone are widespread in
crystals [1–4]. For example, such contacts of the bands occur
in Bernal graphite [5], beryllium [6,7], magnesium [7], alu-
minium [8], LaRhIn5 [9], and the bulk Rashba semiconductors
BiTeI and BiTeCl (see, e.g., Ref. [10]). The band-contact lines
also exist in all the topological nodal-line semimetals, which
have attracted a lot of attention in recent years [10–15]. It
is necessary to emphasize that the band-degeneracy energy
εd at which the bands touch generally is not constant, and
εd changes along a band-contact line in the interval between
its minimum εmin and maximum εmax values. The distinctive
feature of the nodal-line semimetals is that the difference
εmax − εmin is small as compared to the characteristic scale
ε0 ∼ 1–10 eV of the electron band structure in crystals, and
the chemical potential ζ of the charge carriers does not lie far
away from the mean energy ε0

d ≡ (εmax + εmin)/2 of the line.
In a plane perpendicular to an isolated band-contact line,

the gap between the two contacting bands is proportional to
the deviation of the quasimomentum p from the line, i.e., near
such lines the spectrum has the Dirac form [16,17]. However,
the band-contact lines can cross each other at some points in
symmetry axes of crystals, and in the vicinity of the crossing
point the electron spectrum essentially changes. Below we
consider the simplest situation when only two band-contact
lines cross. Such crossings can occur in twofold or fourfold
symmetry axes. In particular, the crossing of this type takes
place in Mackay-Terrones crystals [18], ZrB2 [19,20], V3Si
[21,22], and the ZrSiS family of the nodal-line semimetals
[23–30]. In this paper, to illustrate the obtained general results,
we shall apply them to ZrSiS in which the energies εi

cr of the
crossing points lie near the chemical potential ζ (the index i
marks these points).

In the Brillouin zone of ZrSiS, the nodal lines form a
“cage” with four nonequivalent crossing points �, �, U , and
S lying in the axes �-X, �-M, Z-R, and Z-A, respectively;
see Fig. 1. The Fermi surface of ZrSiS can be qualitatively
described as a connected net of electron and hole tubelike
surfaces, and of self-intersecting surfaces composed of elec-

tron and hole parts. Each of these surfaces encloses a portion
of the nodal line between two crossing points (see Fig. 1).
When the chemical potential changes and passes one of the
energies εi

cr, a part of the electron (hole) “tubes” evolves
into the self-intersecting surfaces or vice versa. Since the
energies ε�

cr and ε�
cr are close to each other, the Fermi sur-

face is very sensitive to the Fermi-level position relative to
these energies. In particular, a small doping can noticeably
change a part of the Fermi surface. This sensitivity also
leads to somewhat different Fermi surfaces obtained in the
band-structure calculations for ZrSiS [24,25]. As a result, it is
difficult to identify the extremal cross sections associated with
the small frequency oscillations observed in the resistivity,
magnetization, and thermoelectric power of the ZrSiS family
of the nodal-line semimetals [29–40].

In Ref. [22], a k · p model was suggested that describes
the electron energy spectrum in the vicinity of a crossing
point of two band-contact lines. Using this general model,
in Sec. II we classify the Fermi surfaces and calculate the
extremal cross-sectional areas and the cyclotron masses near
the crossing points in the nodal-line semimetals. In Sec. III
we consider the effect of the weak spin-orbit interaction on
the quantities considered in Sec. II. We also calculate the
phase φ of the quantum oscillations for the electron orbits near
the crossing points. Without the spin-orbit coupling, this φ is
determined by the Berry phase and has a unique value [41].
However, the spin-orbit interaction together with proximity of
the orbit to the crossing point can noticeably change the phase
of the oscillations. All these results can be useful in analyzing
experimental data of various oscillation experiments. Relying
on the findings of Secs. II and III, we discuss the case of ZrSiS
in Sec. IV. Conclusions are presented in Sec. V.

II. FERMI SURFACE AND ITS CHARACTERISTICS NEAR
CROSSING POINTS

A. Spectrum of electrons and types of Fermi surface

Neglecting the spin-orbit interaction, the electron energy
spectrum for the two bands “c” and “v” in the vicinity of the
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FIG. 1. (a) The Brillouin zone (the dashed lines), the symme-
try directions (the dotted lines), the band-contact lines represented
schematically (the solid lines), and the nonequivalent crossing points
�, �, U , S in ZrSiS. (b) The part of the Fermi surface in ZrSiS
shown schematically at εU

cr > ε�
cr > ζ > ε�

cr > εS
cr. The crosses mark

the points �, �, U , S, and the extremal orbits on the necks of this
surface are sketched by the white dashed circles. The realistic Fermi
surface is depicted in Fig. 1 of Ref. [24].

crossing point with the energy εcr has the form [22]

εc,v (p) = εcr + ap1 + B2 p2
2 + B3 p2

3 + Ec,v (p), (1)

Ec,v (p) = ±[(
a′ p1 + B′

2 p2
2 + B′

3 p2
3

)2 + β2 p2
2 p2

3

]1/2
, (2)

where the p1 axis coincides with the symmetry axis in which
the crossing point is located; the axes p2 and p3 are along
the tangents to the band-contact lines at their crossing point;
all the quasimomenta p1, p2, and p3 are measured from this
point; a, a′, Bi, B′

i, and β are constant parameters of the
spectrum [42]; see Fig. 2. In particular, in the case of ZrSiS the
p3 axis is parallel to the �-Z direction, whereas the coordinate
p1 is measured along the symmetry axes �-X, �-M, Z-R,
and Z-A for the points �, �, U , and S, respectively. The
spectrum described by Eqs. (1) and (2) is valid when the
energy of the charge carriers is close to εcr, |ζ − εcr| � ε0. In
the nodal-line semimetals this restriction becomes more rigid,
|ζ − εcr| � εmax − εmin.

The nodal lines are determined by the condition Ec,v (p) =
0 which yields the two crossing lines: p2 = 0, p1 = −B′

3 p2
3/a′

and p3 = 0, p1 = −B′
2 p2

2/a′. Although the parameters B′
2 and

B′
3 may be sufficiently large, nonzero values of B′

2 and B′
3 have

no effect on the cross-sectional areas and cyclotron masses
given below and on the topology of the Fermi surface near a
crossing point. For this reason, we set B′

2 = B′
3 = 0 in our sub-

sequent analysis. To imagine the situation with nonzero values

FIG. 2. The dispersion laws εc,v (p2) of the two electron energy
bands, described by Eqs. (1) and (2), at p1 = 0 and various fixed val-
ues of p3. The band-contact line (p3 = 0) gradually evolves into the
Dirac spectrum when p3 increases, i.e., when the plane perpendicular
to the other band-contact line (p2 = 0) moves away from the crossing
point (p2 = p3 = 0) of these lines. For definiteness, B2 < 0, B3 > 0,
and B′

2 = B′
3 = 0 here.

of B′
2 and B′

3, one should “bend” the plane p2-p3 in Figs. 3–5.
As to the parameter a, it determines the tilt of the spectrum
along the appropriate symmetry axis. Since there is no visible
tilt for the ZrSiS family of the semimetals [23–30], we assume
below that a ≡ 0. This assumption simplifies the subsequent
formulas while not imposing fundamental restrictions on the
results. It is also worth noting that according to Eq. (2) the
band degeneracy at the crossing point is lifted linearly in
p1 and quadratically for all directions in the p2 − p3 plane
except the band-contact lines. This unusual dispersion law is
due to the fact that the familiar Dirac spectrum in the planes
perpendicular to a band-contact line is not compatible with
the crossing. However, formula (2) shows that as the plane
perpendicular to one of the crossing lines moves away from
the crossing point the Dirac spectrum is gradually restored
(Fig. 2).

Possible types of the Fermi surface near the crossing points
in the nodal-line semimetals are specified by the signs of the
product B2B3 and of ζ − εcr. These types are presented in
Figs. 3–5. They differ in the number of “necks” of the Fermi
surface in the vicinity of the crossing point. In Figs. 3 and 4 we
show the case B2B3 > 0. If B3(ζ − εcr) > 0 (see Fig. 3), the
necks are absent, and four self-intersecting surfaces “emerge
from” the central region containing the crossing point. At the
points of the self-intersection, the hole and electron pockets
touch. However, if one takes into account the weak spin-orbit
interaction (see Sec. III), a small gap appears between the
pockets. This means that at the magnetic field H directed
along the p3 (or p2) axis the only extremal cross section passes
through the crossing point, and it is the maximal cross section
of the central pocket. At B3(ζ − εcr) < 0 (see Fig. 4), there
is a neck in each “tube” emerging from the cental region.
In other words, among the cross sections produced by the
planes p3 = const (or p2 = const), the minimal one exists in
each tube, and this cross section does not pass through the
crossing point. When B2B3 < 0, only one type of the Fermi
surfaces is possible. In this case the number of the necks is
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FIG. 3. The Fermi surface near a crossing point for 1 > λ > 0
and (ζ − εcr )B3 > 0 where λ ≡ 4B2B3/β

2, Eq. (7). For clarity, only
a half of the Fermi surface (at p1 > 0) is shown. There are no necks
on the Fermi surface. The orbit corresponding to S3,max is shown by
the dashed line.

equal to 2 (Fig. 5). If B3(ζ − εcr) < 0, these two necks occur
in the Fermi-surface tubes enclosing the p3 axis, whereas at
B3(ζ − εcr) > 0 the necks belong to the tubes enclosing the
p2 axis. In other words, to imagine the case B3(ζ − εcr) > 0,
the Fermi surface shown in Fig. 5 has to be rotated by π/2,
with electrons being replaced by holes and holes by electrons.
Figure 5 also shows that there is a maximal cross section
in the plane p3 = 0. Finally, it should be noted that at λ ≡
4B2B3/β

2 > 1 additional two types of the Fermi surface are
possible. However, we do not analyze these types here since in
the nodal-line semimetals the parameter λ is generally small.
This is due to the condition εmax − εmin � ε0 mentioned in the
Introduction (see also Sec. IV).

Appearance (disappearance) of self-intersecting Fermi sur-
faces in nodal-line semimetals with changing ζ is the electron
topological 3 1

2 -order transition that takes place near the criti-
cal energies εmax and εmin [2,43]. According to Figs. 3–5, such
transformations of the Fermi surface can also occur near the

FIG. 4. The Fermi surface (at p1 > 0) near a crossing point for
1 > λ > 0, but at B3(ζ − εcr ) < 0. There are four necks on the Fermi
surface. The extremal orbit on one of the necks is shown by the solid
line while the self-intersecting orbit is marked by the dotted line.

FIG. 5. The Fermi surface (at p1 > 0) near a crossing point in
the case of λ < 0. There are two necks on this surface near one of
the two band-contact lines which coincide with the p2 and p3 axes
[for definiteness, the case B3(ζ − εcr ) < 0 is shown here]. If the sign
of (ζ − εcr ) changes, the necks occur near the other band-contact
line. The extremal orbit in one of the necks is shown by the solid
line, while the orbit corresponding to the maximum cross section is
marked by the dashed line.

crossing points of the nodal lines when the chemical potential
passes the appropriate energy εcr (e.g., the surface in Fig. 4
transforms into that shown in Fig. 3). However, the special
p dependence of the energy bands εc,v (p) near the crossing
point [Eqs. (1) and (2)] leads to the fact that this transition is
of the 3rd kind according to the classification of Lifshitz [44].
This transition is characterized by a specific dependence of
the magnetic susceptibility on the chemical potential ζ [22].
Below, analyzing the Fermi surfaces near the crossing points,
we study their characteristics that are measured in oscillation
experiments.

B. Cross-sectional areas

Using Eqs. (1) and (2), one can calculate areas S3 of the
cross sections of the Fermi surface by the planes perpendicular
to the axis p3:

S3(ζ , p3) = 4|ζ − εcr|3/2

3a′|B2|1/2
F3( p̃3), (3)

F3( p̃3) = xb
[(

x2
a + x2

b

)
E (t ) − (

x2
b − x2

a

)
K (t )

]
, (4)

where t = xa/xb is the modulus of the complete elliptic in-
tegrals E (t ) and K (t ) [45], p̃3 ≡ |B3|1/2 p3/|ζ − εcr|1/2 is the
dimensionless quasimomentum,

xa =
∣∣∣∣∣∣
√

ξ2ξζ − ξλ p̃2
3 + p̃2

3

|λ| − | p̃3|√|λ|

∣∣∣∣∣∣, (5)

xb =
√

ξ2ξζ − ξλ p̃2
3 + p̃2

3

|λ| + | p̃3|√|λ| , (6)

λ ≡ 4B2B3

β2
, (7)
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FIG. 6. The function F3( p̃3), Eq. (4), at B3(ζ − εcr ) < 0 for
different negative values of the parameter λ: −0.01 (∇), −0.1 (�),
−0.3 (�), −0.5 (©). Here p̃3 ≡ |B3|1/2 p3/|ζ − εcr|1/2.

and ξζ ≡ sign(ζ − εcr) is equal to +1 at (ζ − εcr) > 0 and
−1 at (ζ − εcr) < 0; similarly, ξ2, ξ3, and ξλ are signs of
B2, B3, and λ, respectively. The function F3( p̃3) describes the
dimensionless cross-sectional areas.

The dependences of the cross-sectional area S3 on p3 are
shown in Figs. 6 and 7 for negative and positive values of λ

and under the condition B3(ζ − εcr) < 0 ensuring existence
of the necks on the Fermi-surface part enclosing the p3 axis.
The minimum S3,min of the function S3(p3) just corresponds to
the extremal orbit on such a neck. As was mentioned above,
the nodal-line semimetals are characterized by small values of
|λ|. In this situation formulas (4)–(6) can be simplified in the
vicinity of the neck (i.e., at p̃3 ∼ 1) as follows:

xa ≈ |λ|1/2

2

1 + p̃2
3

| p̃3| , xb ≈ 2| p̃3|
|λ|1/2

, t = xa

xb
� 1,

E (t ) ≈ π

2

(
1 − t2

4

)
, K (t ) ≈ π

2

(
1 + t2

4

)
,

F3( p̃3) ≈ 3π

4
xbx2

a ≈ 3π |λ|1/2

8

(
1 + p̃2

3

)2

| p̃3| . (8)

The minimum of the function F3( p̃3) described by Eq. (8) is
reached at p̃3,min = 1/

√
3 and is equal to

F3( p̃3,min) = 2√
3
π |λ|1/2. (9)

For λ < 0 (Figs. 5 and 6), apart from S3,min, there is also
a maximal cross section at p̃3 = 0, and formulas (4)–(6) give
F3(0) = 2 for this S3,max. It also follows from these formulas
that the ratio S3,min/S3,max is a function of λ only, and therefore
the parameter λ can be found if the oscillation frequencies
corresponding to both these cross sections are detected. Our
analysis shows that the formula

S3,min

S3,max
= F3( p̃3,min)

2
≈ 1 − exp(−π |λ|1/2/

√
3)

1 + 2.32|λ| (10)

sufficiently well describes the ratio at all negative λ with |λ| �
3.

FIG. 7. The function F3( p̃3), Eq. (4), at B3(ζ − εcr ) < 0 for
different positive values of the parameter λ: 0.01 (∇), 0.1 (�),
0.3 (�), 0.5 (©). Here p̃3 ≡ |B3|1/2 p3/|ζ − εcr|1/2. The solid lines
terminate when the closed orbit on the neck transforms into the
self-intersecting orbit shown in Fig. 4.

For the case λ > 0, finite cross-sectional areas S3 exist
only at p̃2

3 � λ/(1 − λ) (Figs. 4 and 7). At p̃3,s−i = √
λ/(1 −

λ)1/2 the self-intersecting trajectory occurs, and F3( p̃3,s−i ) =
2/(1 − λ)3/2. Interestingly, for 1/2 � λ < 1, p̃3,min and
F3( p̃3,min) are close to p̃3,s−i and F3( p̃3,s−i ), respectively.

It is also worth noting that according to Figs. 6 and 7
the function S3(p3) is sufficiently “flat” near p3,min at small
λ. Hence, if the magnetic field is directed at not-too-large
angle θ to the p3 axis, the minimal cross-sectional area
corresponding to the extremal orbit on the neck has the form
S3,min(θ ) ≈ S3,min(0)/ cos θ characteristic of two-dimensional
Fermi surfaces.

The minimum of the function S3(p3) disappears when
B3(ζ − εcr) > 0. At λ > 0, the only extremal cross section is
the central one with F3(0) = 2 (Fig. 3), whereas at λ < 0 the
extremal points of S3(p3) are absent whatever (this conclusion
is clear from Fig. 5 if one considers the cross sections by the
planes p2 = const).

C. Cyclotron masses

Using formula (3) and taking into account that
∂S(ζ , p3)/∂ p3 = 0 at p3 = p3,ex where p3,ex corresponds
to an extremal cross section (i.e., p3,ex = p3,min or 0), we
find the cyclotron masses m∗ = (1/2π )∂S(ζ , p3)/∂ζ for the
extremal cross sections:

|m∗,ex| = 3S3(ζ , p3,ex)

4π |ζ − εcr| . (11)

Formula (11) enables one to find ζ − εcr if S3,ex = S3(ζ , p3,ex)
and m∗,ex are known from an experiment.

D. Phase of quantum oscillations

It is known [41] that a band-contact line can lead to the
phase shift of the quantum oscillation as compared to the fa-
miliar case [46]. Consider, e.g., the oscillating part of the
electron magnetization, M, at zero temperature. In general
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case it has the following form [10,47]:

M = H1/2G

(
F

H
− φ

)

∝ −H1/2
∞∑

n=1

1

n3/2
sin

(
2πn

[
F

H
− φ

]
± π

4

)
, (12)

where G(x) is the oscillating function with the period that is
equal to unity, F = Sexc/2π h̄e is the frequency determined by
the extremal cross-sectional area Sex of the Fermi surface, the
phase φ coincides with the constant γ ,

γ = 1

2
− �B

2π
, (13)

that appears in the semiclassical quantization rule specifying
the Landau subbands εl (p‖) in the magnetic field H [41,46],

S(εl , p‖) = 2π h̄eH

c
(l + γ ), (14)

�B is the Berry phase of the electron orbit, p‖ is the quasi-
momentum along the magnetic field, and l is a non-negative
integer. The additional offsets ±π/4 in Eq. (12) refer to the
minimal and maximal Sex, respectively, and they result from
the expansion of the function G(x) in the Fourier series.
The above-mentioned phase shift of the oscillations is due
to the Berry phase ±π for the orbits surrounding a band-
contact line whereas �B = 0 for the orbits which do not link
to the line [41]. It is important that near the crossing point
the orbits in the planes p3 = const > 0 and p3 = const < 0
have the Berry phases of opposite signs, i.e., π and −π . This
follows from formulas (19)–(26) of Ref. [48]. Thus, the Berry
phase has to change abruptly in the plane p3 = 0, and one
may expect to obtain �B = 0 for the orbit in this plane in
spite of existence of the nodal line enclosed by the orbit. To
investigate the situation in detail, one should take into account
the spin-orbit interaction.

III. EFFECT OF SPIN-ORBIT INTERACTION

A. Electron spectrum and Fermi surface

When the weak spin-obit interaction is taken into account,
the Hamiltonian of the electron states near the crossing point
takes the form [48]

Ĥ =
(

Ẽc,c Ẽc,v

Ẽ+
c,v Ẽv,v

)
, (15)

where

Ẽc,c = (
εcr + �SO + ap1 + B2 p2

2 + B3 p2
3

)
σ0,

Ẽv,v = (
εcr − �SO + ap1 + B2 p2

2 + B3 p2
3

)
σ0, (16)

Ẽc,v = βp2 p3σ0 + i
(
a′ p1 + B′

2 p2
2 + B′

3 p2
3

)
σ3,

2�SO is the gap induced by the spin-orbit interaction in the
spectrum at the crossing point p = 0, the energy εcr lies
in the middle of this gap, σ0 is the unit matrix, and σ3 is
the Pauli matrix. The energy spectrum corresponding to the

Hamiltonian described by Eqs. (15) and (16) looks like

εc,v (p) = εcr + ap1 + B2 p2
2 + B3 p2

3 + Ec,v (p), (17)

Ec,v (p) = ±[
�2

SO + (
a′ p1 + B′

2 p2
2 + B′

3 p2
3

)2 + β2 p2
2 p2

3

]1/2
.

(18)

These formulas generalize Eqs. (1) and (2) and differ from
them only by the presence of �SO. As in Sec. II, we shall set
B′

2 = B′
3 = a = 0 below. In this case the band-contact lines

are the lines along which the energy gap between the electron
bands “c” and “v” reaches its minimal value 2�SO. With the
weak spin-orbit interaction, the Fermi surfaces remain quali-
tatively identical to those shown in Figs. 3–5. However, at the
points of their self-intersection, gaps between the electron and
hole pockets of the surfaces appear along the p2 and p3 axes.
These gaps �p2 and �p3 are found from the relation �pi ≈
�SO/|(ζ − εcr)Bi|1/2 where i = 2, 3. Due to these gaps, with
changing ζ , the transformations of the Fermi surfaces shown
in Figs. 3–5 occur in the interval εcr − �SO � ζ � εcr + �SO

rather than at the point ζ = εcr.

B. Cross-sectional areas

With nonzero �SO, formulas (3) and (4) for the cross-
sectional areas remain true, but expressions (5) and (6) are
modified as follows:

x2
a,b = ξ2ξζ − ξλ p̃2

3

(
1 − 2

λ

)

∓
√

4 p̃2
3

λ

[
ξ3ξζ − p̃2

3

(
1 − 1

λ

)]
+ �̃2

SO, (19)

where p̃3 ≡ |B3|1/2 p3/|ζ − εcr|1/2, �̃SO ≡ �SO/|ζ − εcr| are
the dimensionless quasimomentum and spin-orbit gap, and
the signs minus and plus refer to xa and xb, respectively. At
�̃SO → 0, formula (19) reduces to Eqs. (5) and (6), and hence
at small �̃SO the function F3( p̃3, �̃SO) defined by the formulas
(4) and (19) practically coincides with F3( p̃3) calculated in the
preceding section.

Consider now the case when �̃SO is not small (�̃SO � 1).
As in Sec. II, in the vicinity of the neck ( p̃3 ∼ 1, ξ3ξζ = −1),
formulas (4) and (19) can be simplified at small values of |λ|:

x2
a ≈ |λ|

4 p̃2
3

[(
1 + p̃2

3

)2 − �̃2
SO

]
, xb ≈ 2| p̃3|

|λ|1/2
,

F3( p̃3, �̃SO) ≈ 3π

4
xbx2

a ≈ 3π |λ|1/2
[(

1 + p̃2
3

)2 − �̃2
SO

]
8| p̃3| .

(20)

The minimization of the function F3( p̃3, �̃SO) in Eq. (20) over
p̃3 gives the position of the minimal cross section on the neck,
p̃3,min:

p̃2
3,min = −1

3
+

√
4

9
− �̃2

SO

3
. (21)

The neck exists when p̃2
3,min > 0. Therefore, in the case of

small |λ|, the neck occurs at �̃SO < 1, i.e., if |ζ − εcr| > �SO.
Inserting Eq. (21) into Eq. (20), one finds the dependence of
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FIG. 8. The �̃SO dependence of the ratio S3,min/S3,max normalized
to its value (S3,min/S3,max)0 at �̃SO = 0. The dotted lines correspond
to different negative values of λ: −0.01 (∇), −0.1 (�), −0.3 (�),
−0.5 (©). The function f (�̃SO) described in the text is shown by
the solid line. The (S3,min/S3,max)0 is well approximated by Eq. (10).

the minimal cross-sectional area S3,min on the strength of the
spin-orbit interaction.

For λ < 0, apart from S3,min, the maximal cross section
S3,max exists at p̃3 = 0. Since, according to Eq. (19), x2

a,b =
1 ∓ �̃SO for p̃3 = 0, formula (4) gives F3(0, �̃SO), which
differs from its value F3(0) = 2 at �̃SO = 0:

F3(0, �̃SO) = 2(1 + �̃SO)1/2[E (t ) − �̃SOK (t )], (22)

where t = (1 − �̃SO)1/2/(1 + �̃SO)1/2, and E (t ) and K (t ) are
the complete elliptic integrals. Hence, the ratio S3,min/S3,max

for negative λ can be represented in the form

S3,min

S3,max
= F3( p̃3,min, �̃SO)

F3(0, �̃SO)
= π |λ|1/2

√
3

f (�̃SO), (23)

where π |λ|1/2/
√

3 is the value of this ratio without spin-orbit
interaction (i.e., at �̃SO = 0), and the function f (�̃SO) follows
from formulas (20)–(22). This function is shown in Fig. 8. In
this figure we also present the �̃SO dependences of the ratio
S3,min/S3,max normalized to its value at �̃SO = 0 for not-too-
small values of |λ|. Note that the appropriate curves terminate
at certain values of �̃SO < 1 since at these critical �̃c the cross
sections with areas S3,min and S3,max merge, i.e., p̃3,min reaches
zero and S3,min = S3,max. The values of �̃c(λ) are determined
from the relationship

|λ| = 2[K (t ) − E (t )](1 + �̃c)

(1 + �̃c)E (t ) − �̃cK (t )
, (24)

where t =
√

(1 − �̃c)/(1 + �̃c). For small |λ|, we obtain
from this relationship that �̃c ≈ 1 − |λ|, and �̃c decreases
with increasing |λ|. When �̃c < �̃SO < 1, i.e., when the
chemical potential lies in the interval �SO < |ζ − εcr| <

�SO/�̃c, the extremal cross section exists only at p̃3 = 0, and
the area of this cross section is still described by Eq. (22).
However, this area is minimal in p3 now.

FIG. 9. The �̃SO dependences of the inverse dimensionless
masses [m̃∗,min]−1 and [m̃∗,max]−1. The [m̃∗,min(�̃SO)]−1 at |λ| �
1 (the dashed line) and [m̃∗,max(�̃SO)]−1 (the solid line) are de-
fined by Eqs. (25) and (26), respectively. These equations at small
�̃SO give [m̃∗,min(�̃SO)]−1 ≈ 1 − 0.75�̃2

SO and [m̃∗,max(�̃SO)]−1 ≈
1 − �̃2

SO ln(4/
√

2�̃SO). The dash-dotted line depicts [m̃∗,min(�̃SO)]−1

for λ = −0.3. The dotted line shows the left-hand side of Eq. (37) for
κ = 1.62, and the circle marks the solution of this equation.

C. Cyclotron masses

Consider now the cyclotron masses corresponding to the
orbits with the areas S3,min and S3,max. In the case of S3,min we
obtain for small |λ|

|m∗,min| = 3S3,min

4π |ζ − εcr| m̃∗,min,

m̃∗,min =
(
1 + p̃2

3,min

)2 + 1
3�̃2

SO(
1 + p̃2

3,min

)2 − �̃2
SO

, (25)

where p̃2
3,min is given by Eq. (21). For not-too-small λ, the

function m̃∗,min(�̃SO) has a complicated form, and it can be
calculated with Eqs. (4) and (19). In the case of S3,max we
arrive at

|m∗,max| = 3S3,max

4π |ζ − εcr| m̃∗,max,

m̃∗,max = [E (t )(1 + �̃SO) − �̃SOK (t )]

[E (t ) − �̃SOK (t )](1 + �̃SO)
, (26)

where t =
√

(1 − �̃SO)/(1 + �̃SO). The �̃SO dependences of
1/m̃∗,min and 1/m̃∗,max are shown in Fig. 9. At a given value
of the spin-orbit gap 2�SO, these dependences enable one to
determine |ζ − εcr| if the appropriate area and the cyclotron
mass are known from an experiment (see the next section).

D. Phase of quantum oscillations

We now discuss the phase of the oscillations. With the spin-
orbit interaction, the quantization rule (14) transforms into the
form [46]

S(εl , p‖) = 2π h̄eH

c

(
l + 1

2
± gm∗

4m

)
, (27)

where g is the electron g factor; m and m∗ are the electron
and cyclotron masses, respectively; and the other quantities
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are defined as in formula (14). The phases φ [Eq. (12)] for
the electrons with the oppositely directed spins are now given
by φ = (1/2) ± δ where δ ≡ (gm∗/4m). It is clear that the
semiclassical spectrum specified by Eq. (27) and the phase
φ of the oscillations are, in fact, determined by the fractional
part of δ since any integer can be added to δ and φ. Moreover,
the spectrum and the phase remain unchanged under the
replacement δ by 1 − δ, and this further reduces the range
of nonequivalent values of δ. It is also worth noting that
the contribution of (gm∗/4m) ≡ δ into the harmonics of the
oscillating magnetization M [Eq. (12)] can be rewritten as the
well-known spin factor cos(2πnδ) [46]:

M ∝ −H1/2
∞∑

n=1

cos(2πnδ)

n3/2
sin

(
2πn

[
F

H
− 1

2

]
± π

4

)
.

The theory of the g factor for itinerant electrons was elab-
orated in Refs. [48,49]. At the weak spin-orbit interaction, the
g factor comprises the two terms, g = g1 + g2. The first term
g1 is large for the orbits surrounding a band-contact line and is
determined by their Berry phase, while the second one, g2, is
specified by an interband part L of the electron orbital moment
(if one considers a semiclassical electron as a wave packet,
this L can be interpreted as the orbital moment associated with
self-rotation of the wave packet around its center of mass).
Neglecting the Zeeman term describing the direct interaction
of the electron spin s with the magnetic field, eh̄s · H/mc, it
was shown [48,49] that the total g factor, g = g1 + g2, has the
universal value g = 2m/m∗, for any electron orbit surrounding
an isolated band-contact line in a crystal with the weak spin-
orbit interaction. Insertion of this universal value into formula
(27) reproduces Eq. (14) with γ = 0, and leads to φ = 0. This
means that when the weak spin-orbit interaction is “turned
on” in a crystal the quantum oscillations can gradually vary in
their frequency and magnitude, but their phase, which serves
as the topological characteristic of the band-contact lines in
the absence of the interaction, remains unchanged. It is this
result that justifies the use of the concept of the band-contact
line in the presence of the weak spin-orbit interaction, which
generally lifts the accidental contact of the bands along the
lines.

Let us now calculate the g factor for the orbits near the
crossing point, i.e., in the region where the dispersion law
given by Eqs. (17) and (18) noticeably differs from the Dirac
spectrum. When the spin-orbit interaction is weak, formula
(19) of Ref. [49] is applicable for the calculation of δ ≡
gm∗/4m:

δ = − 1

2π

∮
�

dp⊥
v⊥

μ0,11(p) = − 1

2π

∮
�

d p2

|v1| μ0,11(p), (28)

where v⊥ is the absolute value of projection of electron
velocity v on the plane of the orbit � defined here by the
condition p3 = const, dp⊥ is the infinitesimal element of the
orbit,

μ0,11 = −v1βp3

2a′ p1

(
ζ − εcr + �SO + B2 p2

2 − B3 p2
3

)
(
ζ − εcr + �SO − B2 p2

2 − B3 p2
3

) , (29)

v1 = a′ 2 p1(
ζ − εcr − B2 p2

2 − B3 p2
3

) . (30)

Here the component v1 of the velocity has been found with
Eqs. (17) and (18) at a = 0, and the quantity μ0,11 has been
calculated with the formulas of the Appendix of Ref. [49]. The
orbit �, i.e., the function p1(p2), is obtained from the equation

p̃2
1 = (

x2
a − p̃2

2

)(
x2

b − p̃2
2

)
, (31)

where p̃1 ≡ a′ p1/|ζ − εcr|, p̃2,3 ≡ |B2,3|1/2 p2,3/|ζ − εcr|1/2

are the dimensionless quasimomenta, p̃2
2 � x2

a , and x2
a and

x2
b are determined by Eq. (19). Inserting Eqs. (29)–(31) into

formula (28), we eventually arrive at

δ = ± 2 p̃3

π |λ|1/2xb
[−K (t ) + 2�(ν; t )], (32)

where the signs plus and minus refer to the electron and hole
orbits, respectively; t = xa/xb;

ν = ξ2ξζ

(
1 − ξζ �̃SO − ξ3ξζ p̃2

3

)
x2

b

;

ξ2, ξ3, and ξζ are the signs of B2, B3, and ζ − εcr; and

K (t ) =
∫ 1

0

du

(1 − u2)1/2(1 − t2u2)1/2
,

�(ν; t ) =
∫ 1

0

du

(1 − u2)1/2(1 − t2u2)1/2(1 − νu2)

are the complete elliptic integrals of the first and the third
kinds. Below we shall be mainly interested in {δ}, the frac-
tional part of δ, since this part actually determines the phase
of the quantum oscillations.

Dependences of {δ} on the coordinate p̃3 of the orbit
at �̃SO = 0.5 and λ = ±0.1 are shown in Fig. 10. As was
supposed in the preceding section, the p̃3 dependence of {δ}
does pass through zero at p̃3 = 0. However, our analysis
shows that the width of the p̃3 region where {δ} deviates from
1/2 decreases with decreasing |λ| and �̃SO. The termination
of the lines in Fig. 10 at the finite nonzero p̃3 is caused by the
absence of the closed orbits at small p̃3 in the cases λ < 0,
(ζ − εcr)B3 > 0 and λ > 0, (ζ − εcr)B3 < 0 (see Figs. 4 and
5). On the other hand, the interruption of the solid lines is due
to the disappearance of the self-intersection and appearance
of the gap between the electron and hole pockets of the Fermi
surface at nonzero spin-orbit interaction.

For the extremal orbits lying on the necks of the Fermi
surface, the quantity δ is the function of �̃SO and λ only. For
such orbits, in Fig. 11, we show the dependences of {δ} on
�̃SO at various negative values of λ and the dependence of {δ}
on λ at fixed �̃SO. It is seen that at small |λ| the values of
{δ} are close to 1/2 practically for all �̃SO, and in this case
formula (32) for p̃3 > 0 yields

δ ≈ ±
(

1

2
− ξ3

λ�̃SO

8p̃2
3,min

)
,

(33)

{δ} ≈ 1

2
+ λ�̃SO

8p̃2
3,min

,

where p̃2
3,min is given by Eq. (21), and we have taken into

account that ξ3 = −1 for the electron Fermi-surface neck and
ξ3 = 1 for the hole one. The essential deviation of {δ} from
1/2 occurs only when �̃SO tends to its critical value �̃c
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FIG. 10. Dependences of {δ}, the fractional part of δ, on the
coordinate p̃3 of the orbit at λ = −0.1, B2 < 0, B3 > 0 (a) and
at λ = 0.1, B2 > 0, B3 > 0 (b); �̃SO = 0.5; the magnetic field is
directed along the p3 axis. The solid and dashed lines correspond to
the cases ζ − εcr > 0 and ζ − εcr < 0, respectively. The dotted line
shows the case �̃SO = 0. Values of {δ} at B3 < 0 can be found, using
the invariance of the fractional part of δ under the transformation:
B2,3 → −B2,3, ζ − εcr → −(ζ − εcr ).

determined by Eq. (24), i.e., when the neck approaches the
crossing point.

When {δ} tends to zero or 1/2, the phases φ = 1/2 + δ

and 1/2 − δ of the quantum oscillations coincide with each
other and are equal to 1/2 or 0, respectively. Therefore, to
distinguish between the orbits on the necks of the Fermi

FIG. 11. The �̃SO dependences of {δ} (the dotted lines) for the
extremal orbits lying on the Fermi-surface necks at λ = −0.01 (∇),
−0.1 (�), −0.3 (�), −0.5 (©). The value of {δ} reaches zero at
�̃SO = �̃c described by Eq. (24). Inset: The solid line shows the
dependence of (1/2) − {δ} on |λ| at �̃SO = 0.5; the dashed line
corresponds to Eq. (33) with the same �̃SO.

surface ({δ} ≈ 1/2, φ ≈ 0) and the orbits lying in the planes
passing through the crossing point ({δ} = 0, φ = 1/2), it is
sufficient to measure the first harmonic of the oscillations and
to find its phase φ. However, when the magnetic fields are
sufficiently strong, many harmonics contribute to the oscilla-
tions which are now not sinusoidal, and in this situation the
phase φ is usually found with the Landau-level fan diagram
[46]. In particular, the oscillating magnetization at strong
magnetic fields exhibits sharp minima or sharp maxima when
the edges of the Landau subbands cross the Fermi level, i.e.,
when (F/H ) − φ is equal to integer numbers [47]. The sharp
minima in the oscillations are produced by a minimal cross
section whereas the sharp maxima correspond to a maximal
cross section (see, e.g., Fig. 1 in Ref. [9]). Thus, not only φ

but also this feature of the oscillating magnetization can be
useful in distinguishing between the two types of the orbits.
However, it should be noted that the Landau-level fan diagram
can lead to a discrepancy between the measured phase φ and
its theoretical value if this diagram is plotted in a magnetic-
field range in which the shape of the oscillations changes. This
is clear from the following considerations: At low magnetic
fields when the first harmonic gives the main contribution to
the oscillations, the Landau-level fan diagram plotted with
the minima of the magnetization is described by the equation
resulting from formula (12):

2π

(
F

Hn
− φ + 1

8

)
= 2π

(
n + 1

4

)
,

where n is the Landau-level index, the fields Hn correspond
to the minima of the magnetization, and, for definiteness, we
have used the offset π/4 characteristic of the orbits on the
Fermi-surface necks. In this equation the minima correspond
to n + 1/4, and the extrapolation of the linear dependence
of F/Hn on n to the value F/Hn = 0 leads to the following
intercept n0 in the n axis:

n0 = − 1
8 − φ.

On the other hand, at strong magnetic fields when many
harmonics contribute to the oscillating magnetization, and its
shape differs from the sinusoid, the oscillations exhibit sharp
minima at integer n, and one has

F

Hn
− φ = n,

i.e., the Landau-level fan diagram plotted with Hn from the
strong-field region gives the intercept, n0 = −φ. In other
words, the change in the shape of the oscillations gradually
varies the correspondence between the Landau index n and
the minima in the magnetization, and this variation can lead
to a spurious value of φ found with the diagram. Note that in
Ref. [37] the change in the intercept n0 was really observed
when the magnetic-field range of the Landau-level fan dia-
gram was extended.

If the fractional part of δ noticeably differs from 0 and 1/2,
the sharp minima (maxima) of the oscillations tend to split at
strong magnetic fields. In this case, it is preferable to measure
the g factor rather than φ. A measurement of the g factor (the
quantity δ) requires either an analysis of both the first and the
second harmonics of the oscillations or a direct detection of
the quantum-oscillation splitting [46]. In the latter case, this
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TABLE I. The frequencies Fi, the cyclotron masses m∗,i, and
phases φi (i = 1, 2) of the quantum oscillations measured in ZrSiS
at H ‖ c. The values of φi have been found from the experimental
data of Refs. [32,33,37,39], using the definition of the phase φ

as in Eq. (12). The quantities |ζ − εcr|i,0 and m2(a′)2|B2|/|λ| are
calculated with Eqs. (11) and (36), respectively, neglecting the spin-
orbit coupling.

Reference [31] [32] [33] [37] [39]

F1(T) 8.4 8.5
m∗,1/m 0.025 0.07
φ1 0.53a − 1

4 or 1
4|ζ − εcr|1,0 (meV) 58 21

m2 (a′ )2 |B2 |
|λ| (eV) 122 5.7

F2(T) 23 18.9 14 15.3
m∗,2/m 0.11 0.12 0.1 0.14
φ2 0 ± 0.14 0 ± 0.2
|ζ − εcr|2,0 (meV) 36 27 24 19
m2 (a′ )2 |B2 |

|λ| (eV) 3.9 2.4 3.1 1.3

aThis value corresponds to the offset π/4 in Eq. (12); see the text.

splitting (F/H+) − (F/H−) is equal to 2δ or 1 − 2δ where
the fields H+ and H− mark the split sharp minima (maxima).
Measurements of δ can, in principle, provide additional infor-
mation on the parameters of the spectrum �̃SO and λ [see, e.g.,
formula (33)].

IV. EXAMPLE: ZrSiS

We now apply the obtained results to ZrSiS. According to
the band-structure calculations [24], the following sequence
of the crossing-point energies occurs in this semimetal: εU

cr >

ε�
cr > ζ > ε�

cr > εS
cr, with the energies ε�

cr and ε�
cr and and

the chemical potential ζ being very close to one another.
The Fermi surface consists of the hole and electron “tubes”
enclosing the nodal lines U-� and �-S, respectively, and of
the self-intersecting parts penetrated by the lines �-� and
U-S (Fig. 1). The results of Secs. II and III can be useful in
analyzing an extremal orbit if it is close to one of the crossing
points and is small as compared to the distances between this
point and the neighboring ones. For ZrSiS, this condition is
fulfilled for the orbits on the tubes’ necks located near the
points � and �. The Fermi surface near these points refers to
the type shown in Fig. 5 (λ < 0), and these orbits can reveal
themselves in the quantum oscillation of various physical
quantities when the direction of the magnetic field is close to
the �-Z axis (i.e., to the c axis of the crystal). As to the point
S, in the vicinity of which the Fermi surface refers to the type
presented in Fig. 3 (λ > 0, ζ − εS

cr > 0) [50], there is no neck
near this point, whereas the extremal orbits in the reflection
planes of the crystal are large, and hence the results of Secs. II
and III are not appropriate for calculating their characteristics.
It should be also noted that Eqs. (1) and (2) hardly describes
the spectrum near the crossing point U since near the crossing
energy εU

cr one more energy band exists in ZrSiS [23–25].
The cross-sectional areas corresponding to low-frequency

quantum oscillations, the appropriate cyclotron masses, and
the phases of the oscillations were measured in ZrSiS for the
magnetic fields parallel to the c axis [31–33,37,39] (Table I).

Let us now analyze various possible interpretations of these
experimental data, pointing out evidences for and against each
interpretation.

A. Extremal cross sections are on two different necks

The frequency F1 ≈ 8.5 T observed in the de Haas–van
Alphen [37] and thermoelectric-power [39] oscillations ap-
pears to correspond to the minimal cross-sectional area Smin

associated with one of the two above-mentioned necks. This
hypothesis is supported by the following experimental results.

(1) If the magnetic field is tilted away from the c axis at
a little angle θ , one has Smin(θ ) ≈ Smin(0)/ cos θ [37] (see
Sec. II).

(2) At low temperatures and high magnetic fields, when
many harmonics contribute to the oscillations, the magneti-
zation reveals sharp minima [compare Figs. 1(b) and 1(c) in
Ref. [37] with Fig. 1 in Ref. [9]].

As was mentioned in the preceding section, this feature of
the magnetization is just inherent in the case of a neck on
the Fermi surface [47]. The value of the phase φ1 testifying
against this hypothesis will be discussed below. Another
frequency F2 ∼ 14 ÷ 23 T was detected in the oscillations of
the resistivity [31–33] and of the thermoelectric power [39].
It is important that in Ref. [39] the frequencies F1 and F2

were found in one and the same sample. This means that the
difference between F1 and F2 cannot be ascribed to dissimilar
doping in the different samples, and hence these frequencies
correspond to different cross sections. The values of φ2 (see
Table I) and the absence of a noticeable angular dependence of
F2 at angles θ � 20◦ [33] indicate that the frequency F2 seems
to correspond to the second neck mentioned above.

Using formula (11), in which S3(ζ , p3,ex) = 2π h̄eFi/c,
and the cyclotron masses m∗,i, we calculate the position of
the chemical potential relative to the energy of the crossing
point, |ζ − εcr|i,0 (see Table I). The subscript zero means
that this quantity is calculated without considering the spin-
orbit interaction. The large difference in |ζ − εcr|1,0 for the
data of Refs. [37,39] is due to the essential difference in m∗
at practically coinciding frequencies in these papers. This
discrepancy in the cyclotron masses, which were obtained
from the oscillations of the magnetization [37] and of the
thermoelectric power [39], cannot be explained by dissimilar
doping in the samples and requires an additional experimental
investigation.

According to the last column in Table I, the difference
ε�

cr − ε�
cr ≈ 40 meV, and the chemical potential lies practically

in the middle of the interval from ε�
cr to ε�

cr . Using this
ε�

cr − ε�
cr , and also εU

cr − ε�
cr ∼ 0.3 eV and ε�

cr − εS
cr ∼ 0.1 eV

derived from Fig. 1 in Ref. [24], one can roughly estimate
B2, B3, and λ for the points � and �, assuming that Bi

n p2
i j ∼

ε
j
cr − εi

cr where j is the adjacent (along the axis n = 2 or 3)
crossing point to the point i, and pi j is the distance between
these points in the Brillouin zone. We take (1/

√
2)π h̄/a as

the distance between the points � and �, and π h̄/c as the
distances U-� and �-S where c = 8.07 Å and a = 3.55 Å
are the crystal-lattice parameters of the ZrSiS [32]. Then, we
arrive at the estimates −B�

2 ∼ B�
2 ∼ 0.015/m, B�

3 ∼ 0.3/m,
and B�

3 ∼ −0.1/m where m is the electron mass [51]. Hence,
if β ∼ 1/m, we obtain λ� ∼ −0.018 and λ� ∼ −0.006. A
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somewhat more accurate estimate gives [52]

−B�
2 ∼ B�

2 ∼ 0.037

m
, B�

3 ∼ 0.74

m
, B�

3 ∼ −0.25

m
,

λ� ∼ − 0.11

(mβ�)2
, λ� ∼ − 0.037

(mβ� )2
, (34)

a′
� ∼ 7.7 × 105 m/s, a′

� ∼ 4.3 × 105 m/s,

where for completeness we have also presented the values of
a′

� and a′
� that follow from the electron-band structure shown

in Fig. 1 of Ref. [24]. Of course, reliable values of all these
parameters can be obtained by a fitting of the spectrum de-
scribed with Eqs. (17) and (19) to results of the band-structure
calculations near the point � and �. However, the small
magnitudes of λi found here are actually due to the fact that
ε0 ∼ p2

i j/m � |ε j
cr − εi

cr| = εmax − εmin, and hence this small-
ness of |λ| is the typical feature of the nodal-line semimetals.

Assuming that the parameter |λ| is sufficiently small, one
can find the value of the following combination of the param-
eters:

m2(a′)2|B2|
|λ| = (a′)2m2β2

4|B3| , (35)

using Eqs. (3) and (9) rewritten in the form

μBF = |ζ − εcr|3/2
0

3πma′|B2|1/2
F3( p̃3,min)

= 2

3
√

3

|λ|1/2|ζ − εcr|3/2
0

ma′|B2|1/2
, (36)

where μB is the Bohr magneton, F = cS3,min/(2πeh̄) is the
frequency of the oscillations, m is the electron mass, and
the appropriate difference |ζ − εcr|0 is given in Table I. On the
other hand, one can estimate this combination for the points
� and �, using Eqs. (34):

m2(a′
� )2|B�

2 |
|λ�| ∼ 3.3(mβ� )2 (eV),

m2(a′
�)2|B�

2 |
|λ�| ∼ 0.35(mβ�)2 (eV).

Comparing these estimates with the data of Table I, we may
conjuncture that the frequency F1 corresponds to the extremal
orbit on the neck located near the point �, whereas the
frequency F2 is produced by the orbit on the neck near the
crossing point �. In this case we obtain the reasonable values
of the parameter β:

mβ� ∼ 1.3, mβ� ∼ 1.9 ÷ 3.3

[the value m2(a′
� )2|B�

2 |/|λ�| ∼ 122 eV seems too large, and
we exclude it from the consideration]. With these β, we
eventually arrive at the estimates

λ� ∼ −0.022, λ� ∼ −(0.01 ÷ 0.03),

which justify the assumption of small λ.
Recently, the spin-orbit gap in ZrSiS, 2�SO = 26 meV, was

measured with magneto-optical spectroscopy [53]. Although
this value gives the gap averaged along the lines S-U and �-�,
we shall use it below in the estimates near the points � and
�. To take into account the effect of the spin-orbit coupling

TABLE II. Solutions of Eq. (37) for the values of |ζ − εcr|i,0 from
Table I. The quantity |ζ − εcr| = �SO/�̃SO is calculated considering
the spin-orbit interaction; �SO = 13 meV. The coordinate p̃3,min of
the extremal orbit and m2(a′)2|B2|/|λ| are calculated with Eqs. (21)
and (38), respectively. The values of the parameters β� , λ� and β�,
λ� are found, taking into account Eqs. (34).

|ζ − εcr|i,0 (meV) 19 21 24 27 36 58

κ 1.46 1.62 1.85 2.08 2.77 4.5
�̃SO 0.53 0.50 0.45 0.42 0.33 0.21
|ζ − εcr|i (meV) 24.5 26 28.9 31 39.4 62
p̃3,min 0.51 0.52 0.53 0.54 0.55 0.57
Frequency F (T) 15.3 8.5 14 18.9 23 8.4
m2(a′ )2 |B2 |

|λ| (eV) 1.9 7.8 4.2 3 4.8 80
Crossing point � � � � � �

mβ 2.3 1.5 3 2.9 3.7 4.9
−λ × 103 21 16 12 13 8 1.5

on the extremal orbit associated with a frequency F , we solve
the following equation in �̃SO ≡ �SO/|ζ − εcr|:

κ�̃SO = 1

m̃∗,min(�̃SO)
, (37)

where ζ − εcr is the chemical potential measured from the
middle of the spin-orbit gap, and κ is the constant:

κ = 3S3,min

4πm∗,min�SO
= 3eh̄F

2cm∗,min�SO
= |ζ − εcr|0

�SO
.

Equation (37) immediately follows from formulas (25), and
Fig. 9 shows a graphic solution of this equation. The solutions
of Eq. (37) for different |ζ − εcr|i,0 from Table I are presented
in Table II. Knowing �̃SO, we find the position of the chemical
potential relative to the middle of the gap at the crossing point,
|ζ − εcr|i = �SO/�̃SO (and hence the position of ζ relative
to the edge of the electron or hole band at this point, |ζ −
εcr|i − �SO). The coordinate p̃3,min of the extremal orbit on the
neck of the Fermi surface is calculated with Eq. (21), and the
value of the combination (35) follows from the equation that
generalizes formula (36) to the case of the nonzero spin-orbit
interaction:

μBF = |ζ − εcr|3/2

3πma′|B2|1/2
F3( p̃3,min, �̃SO)

= |λ|1/2|ζ − εcr|3/2

ma′|B2|1/2

[(
1 + p̃2

3,min

)2 − �̃2
SO

]
8| p̃3,min| , (38)

where we have used Eq. (20). Similarly to the case without the
spin-orbit coupling, we obtain the values of the parameters β

and λ:

mβ� ∼ 1.5, mβ� ∼ 2.3 ÷ 3.7,

λ� ∼ −0.016, λ� ∼ −(0.008 ÷ 0.021).

It is seen that the analysis of the experimental data with
consideration for the spin-orbit interaction leads to the mod-
ification of the values of the parameters and of |ζ − εcr|.
However, this modification does not change the order of the
magnitude of these quantities, even though �SO ∼ |ζ − εcr|0.
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If �SO were essentially less than |ζ − εcr|0, the modification
would be small.

We now discuss the phases φi of the oscillations. Formula
(33) enables one to estimate the expected δ for the extremal
orbits on the necks of the Fermi surface. With the values of
|λ|, p̃3,min, and �̃SO from Table II, we find that |δ| is very
close to 1/2, and the difference 1/2 − |δ| does not exceed
0.005. In other words, the effect of the spin-orbit interaction
on the phase of the oscillations in ZrSiS is expected to be
small, φ ≈ 0 for the extremal orbits near the points � and �,
and the splitting of the oscillations should not be detected in
this semimetal. The measured phases φ2 do lie in the vicinity
of zero (Table I). However, φ1 essentially differs from this
zero value. Moreover, the value φ1 ≈ 0.53 in Table I can
hardly be attributed to the discussed change in the shape of the
oscillations since this value is obtained with the low-field data
(these data [37] give n0 ≈ 0.34, and so φ1 ≈ −n0 − 1/8 =
−0.47 or φ1 ≈ 0.53). In addition, a tendency to the splitting of
the oscillations was clearly observed in Refs. [37,39], and the
data of these papers lead to δ ≈ 0.24 (or 0.26) and δ ≈ 0.1 (or
0.4), respectively. However, if 0 < δ < 1/2, the sharp minima
or maxima of the quantum oscillations have to split, whereas
the magnetization measurements [37] reveal the splitting of
its flat maxima rather than its sharp minima. This fact and
hence the obtained values of δ remain puzzling and require an
additional experimental investigation.

B. Extremal cross-section passes through the point �

The value φ1 ≈ 0.53 and a deviation of δ from zero or 1/2
can be explained if we assume that �̃SO is close to its critical
value �̃c determined by Eq. (24) (see Fig. 11). In this case,
the Fermi-surface neck is located either at the point � (if 1 >

�̃SO � �̃c) or very close to it (if �̃SO � �̃c). To evaluate the
possibility of this situation, let us assume that �̃SO = �̃c, and
hence the minimal cross section passes through the point �.

At �̃SO = �̃c, the function m∗,min(�̃SO) in the right-hand
side of Eq. (37) is replaced by the function (26) with �̃SO =
�̃c, whereas the left-hand side of this equation can be rewrit-
ten as |ζ − εcr|0/|ζ − εcr| by definition of κ and �̃SO. Hence,
with this equation, |ζ − εcr| is expressible in terms of |ζ −
εcr|0 and �̃c. In Eq. (38), the factor F3( p̃3,min, �̃SO) is now
replaced by the function F3(0, �̃c) defined by formula (22),
and the estimate ma′

�|B�
2 |1/2 ≈ 350 (meV)1/2 follows from

Eqs. (34). Thus, at a given value of |ζ − εcr|0, formula (38)
becomes the equation in �̃c:

3πma′|B2|1/2μBF

2|ζ − εcr|3/2
0

= [(1 + �̃c)E (t ) − �̃cK (t )]3/2

(1 + �̃c)[E (t ) − �̃cK (t )]1/2
, (39)

where t = (1 − �̃c)1/2/(1 + �̃c)1/2. If |ζ − εcr|0 = 58 meV
(see Table I), we eventually obtain the following values of the
parameters:

�̃�
c ≈ 0.75,

∣∣ζ − ε�
cr

∣∣ ≈ 165 meV,

λ� ∼ −0.29, mβ� ∼ 0.36,

where λ� and mβ� have been calculated with formulas (24)
and (34), respectively. Note that for these values of the param-
eters to occur, the spin-orbit gap 2��

SO at the point � has to

be sufficiently large:

2��
SO = 2��

c = 2�̃�
c

∣∣ζ − ε�
cr

∣∣ ≈ 248 meV.

This gap is much larger than the measured one [53] and than
the gap ≈20 meV obtained in the band-structure calculations
[23]. As to the chemical potential measured from the edge of
the electron energy band, it retains the modest value∣∣ζ − ε�

cr

∣∣ − ��
SO ≈ 41 meV.

With decreasing |ζ − εcr|0, the required spin-orbit gap 2��
SO

increases, and at |ζ − εcr|0 = 21 meV we find the unrealistic
value 2��

SO ∼ 2.25 eV although λ� ≈ 0.12 and |ζ − ε�
cr | −

��
SO ≈ 14 meV. Thus, the obtained estimates of 2��

SO argue
against the assumption that �̃SO ≈ �̃c. However, it is worth
noting that the exact values of the cyclotron mass m∗,1 deter-
mining |ζ − εcr|1,0 and of ma′

�|B�
2 |1/2 are crucial in verifying

this assumption.

C. Both extremal cross sections are near the point �

The data of Ref. [39] lead to the close values of |ζ − εcr|i,0
for the frequencies F1 and F2 (see Table I). This might indicate
that the appropriate cross sections correspond to one and
the same crossing point, i.e., the frequency F1 refers to the
extremal orbit on the neck of the Fermi surface near the
point � whereas F2 is produced by the central cross section
containing this point. Although this interpretation, as was
mentioned above, contradicts the results of Refs. [32,33], we
consider it here to demonstrate how formulas (10) and (23)
can work. Under this interpretation, the ratio F1/F2 ≈ 0.56
enables one to find the parameter λ. Neglecting the spin-orbit
interaction, we find from Eq. (10)

|λ�| ≈ 3

π2

F 2
1

F 2
2

≈ 0.095.

If one takes into account the spin-orbit interaction, the right-
hand side of this formula, according to Eq. (23), has to be di-
vided by [ f (�̃SO)]2 where �̃SO ≈ 0.5 ÷ 0.53 and f (�̃SO) ≈
1.25 (see Fig. 8). In other words, with the spin-orbit coupling,
we find λ� ≈ −0.061. However, this value of λ essentially
differs from the estimate λ� ≈ −0.016 obtained above for the
same crossing point. This discrepancy is an added reason for
ascribing the frequencies F1 and F2 to the different crossing
points.

Recently a fresh interpretation of the oscillation frequen-
cies was presented by Müller et al. [40]. They measured the
de Haas–van Alphen oscillation in ZrSiS and, apart from the
frequency F1 ≈ 8 T, detected the two frequencies F2a ≈ 16 T
and F2b ≈ 22 T instead of the single frequency F2. Müller et al.
ascribed the frequency F1 to the extremal orbit on the neck
near the point �, F2a to the central cross section containing
this point, and F2b to the extremal orbit on the neck near the
point �. Note that the existence of the two frequencies F2a and
F2b permits one to avoid the above-mentioned contradiction
with the results of the papers [32,33], assuming that the
phase of the oscillations in these papers was measured for
the frequency corresponding to the orbit on the neck. Inter-
estingly, with Eq. (11) and the values of the cyclotron masses
measured in Ref. [40], we find that |ζ − εcr|0 ≈ 19.9, 23.2,
and 20.1 meV for the cases of the frequencies F1, F2a, and F2b,
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respectively. Since |ζ − εcr|0 for F1 and F2b are very close to
each other, we assume here that just the frequency F2b (rather
than F2a) corresponds to the central cross section. Then, using
Eq. (10) with F1/F2b ≈ 0.36 and taking into account the spin-
orbit interaction, we arrive at the estimate λ� ≈ −0.26, which
is in reasonable agreement with λ� ≈ −0.16, considering the
approximate character of the values in formulas (34).

V. CONCLUSIONS

We analyze a crossing of two band-contact lines in the
Brillouin zones of crystals. In the vicinity of the crossing
point of such lines, the electron spectrum essentially differs
from the Dirac spectrum occurring in the planes perpendicular
to an isolated band-contact line. Taking into account this
difference, we theoretically investigate the possible types of
the Fermi surface and its characteristics near the crossing
point. We calculate the quantities commonly measured in
the quantum-oscillation experiments, viz., the extremal cross-
sectional areas Sex, the cyclotron masses m∗, and the phase of
the oscillations φ. Special emphasis in our analysis is given to
the case of the nodal-line semimetals, for which the dispersion
of the contacting bands along the nodal lines is small as
compared to the ordinary scale of the electron band struc-
ture. In this situation the appropriate formulas are essentially

simplified. We calculate the Fermi-surface characteristics both
without and with considering the weak spin-orbit interaction.
This interaction introduces only quantitative corrections to the
cross-sectional areas and cyclotron masses found in neglect of
the interaction. For the orbits the planes of which are suffi-
ciently far from the crossing point, the spin-orbit interaction
has no effect on the phase of the oscillations φ that is still
equal to zero and is specified by the Berry phase (�B = π )
in the absence of this interaction. However, for the extremal
orbits near the crossing point, the spin-orbit interaction can
noticeably change the phase φ.

To illustrate the obtained results, we apply them to ZrSiS,
in which the crossing of the nodal lines occurs. We analyze
several possible interpretations of the experimental data ob-
tained in Refs. [31–33,37,39] and, within these interpreta-
tions, estimate the parameters of the spectrum and specif-
ically the position of the chemical potential relative to the
crossing-point energies. Our analysis shows that the quantum
oscillations with the low frequencies F1 and F2 (Table I) seem
to be produced by the extremal orbits lying on the necks of the
Fermi surface near the points � and � (see Fig. 1). However,
this analysis does not permit us to interpret all the experi-
mental data unambiguously since the certain data concerning
the quantum oscillations of the frequency F1 remain puzzling.
These oscillations require further experimental investigations.
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