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Angle-resolved photoemission spectroscopy (ARPES) is one powerful experimental technique to study
the electronic structure of materials. As many electron materials show unusual many-body correlations, the
technique to detect directly these many-body correlations will play important roles in the study of their
many-body physics. In this article we propose a technique to detect directly the two-particle correlations, a
coincidence ARPES (cARPES) where two incident photons excite two respective photoelectrons which are
detected in coincidence. While the one-photon-absorption and one-photoelectron-emission ARPES provides the
single-particle spectrum function, the proposed cARPES with two-photon absorption and two-photoelectron
emission is relevant to a two-particle Bethe-Salpeter wave function. Examples of the coincidence detection
probability of the cARPES for a free Fermi gas and a Bardeen-Cooper-Schrieffer (BCS) superconducting
state are studied in detail. We also propose another two experimental techniques, a coincidence angle-resolved
photoemission and inverse-photoemission spectroscopy (cARP/IPES) and a coincidence angle-resolved inverse-
photoemission spectroscopy (cARIPES). As all of these proposed coincidence techniques can provide the
two-particle frequency Bethe-Salpeter wave functions, they can show the momentum and energy dependent
two-particle dynamical physics of the material electrons in the particle-particle or particle-hole channel. Thus,
they can be introduced to study the Cooper-pair physics in the superconductor, the itinerant magnetism in the
metallic ferromagnet/antiferromagnet, and the particle-hole pair physics in the metallic nematic state. Moreover,
as the two-particle Bethe-Salpeter wave functions also involve the inner-pair dynamical physics, these proposed
coincidence techniques can be used to study the inner-pair time-retarded physics.
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I. INTRODUCTION

The most dramatic features of the strongly correlated elec-
tron materials, such as the unconventional superconductors
of cuprates [1], iron-based superconductors [2,3], and heavy
fermions [4,5], are the many-body correlations beyond the
Landau Fermi liquid physics. These include the physics of
the Cooper pairs in the superconductor, the itinerant mag-
netism in the metallic ferromagnet/antiferromagnet, and the
particle-hole pair physics in the metallic Pomeranchuk or
bond nematic state of the iron-based superconductors [6–8].
The non-Fermi liquid physics, such as the strange metallic
state or the quantum criticality, are ubiquitous in strongly
correlated electron materials [6,9–11].

Various different experimental techniques have been intro-
duced to study the novel many-body physics in these electron
materials. The charge resistivity, the Hall conductivity, and
the dynamical optical conductivity show charge current re-
sponses. The static magnetic susceptibility, the inelastic neu-
tron scattering, and the nuclear magnetic resonance provide
magnetic responses. The ARPES and the scanning tunneling
microscope present the electronic single-particle spectrum
function and the local density of states, respectively. In all of
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these experimental techniques in the study of the supercon-
ducting Cooper pairs, the itinerant magnetic moments and the
nematic charge particle-hole pairs, the inner-pair two-particle
correlations of the material electrons can only be inferred
indirectly.

In this article we will propose a cARPES to detect directly
the two-particle correlations. The experimental installation of
a cARPES has two photon sources and two photoelectron
detectors with an additional coincidence detector. When two
photons are incident on a sample material, two electrons can
absorb these two photons and can emit outside the sample
material as photoelectrons if their energies are high enough to
overcome the material work function. The two photoelectrons
are then detected in coincidence by the coincidence detector
with the coincidence counting probability relevant to a two-
particle Bethe-Salpeter wave function.

The two-particle Bethe-Salpeter wave function for the
cARPES is defined as 〈�s

β |Tt ck2σ2 (t2)ck1σ1 (t1)|�s
α〉, where

|�s
α〉 and |�s

β〉 are the eigenstates of the sample electrons,
ckσ is the annihilation operator with momentum k and spin
σ , and Tt is a time-ordering operator. This Bethe-Salpeter
wave function describes the physics of the sample elec-
trons when two electrons are annihilated in time ordering.
Therefore, it describes the dynamical physics of the sample
electrons with one particle-particle pair (more exactly, hole-
hole pair). The cARPES can provide directly the frequency
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Fourier-transformed Bethe-Salpeter wave function, which
shows the momentum and energy resolved particle-particle
pair dynamical physics of the sample electrons, including the
center-of-mass and inner-pair relative dynamics. Thus, it can
be introduced to study the two-particle correlations in the
particle-particle channel, such as the Cooper-pair physics in
the superconductor.

We will also propose another two experimental techniques
to detect directly the two-particle correlations, a cARP/IPES
and a cARIPES. In a cARP/IPES there are one photon
source and one electron source. While an incident photon
is absorbed by a sample electron which can emit into vac-
uum to be a photoelectron, an incident electron with high
energy can transit into a low-energy state of the sample
material with a photon emitting simultaneously. A coinci-
dence detector then counts the coincidence probability of
the photoelectron and the emitting photon, which involves
a particle-hole Bethe-Salpeter wave function of the sample
electrons, 〈�s

β |Tt c
†
k2σ2

(t2)ck1σ1 (t1)|�s
α〉. Thus, the cARP/IPES

can provide the dynamical physics of the sample electrons
with one particle-hole pair. In the spin channel, it can show the
information on the itinerant magnetic moments in the metallic
ferromagnet/antiferromagnet, and in the charge channel, it
can present the information on the particle-hole pairs in the
metallic nematic state. In a cARIPES, there are two electrons
which are incident on the sample material. They can transit
into the low-energy states of the sample electrons with two
photons emitting simultaneously. There is a coincidence de-
tector which records the two emitting photons in coincidence
with the counting probability being relevant to a two-particle
Bethe-Salpeter wave function in the particle-particle chan-
nel 〈�s

β |Tt c
†
k2σ2

(t2)c†k1σ1
(t1)|�s

α〉. As this two-particle Bethe-
Salpeter wave function involves mainly the electronic states
above the Fermi energy, the cARIPES can show the particle-
particle pair dynamical physics of the sample electrons, such
as the Cooper pairs in the superconductor, with the electron
energies mainly above the Fermi level.

One special remark is that all of the above three proposed
coincidence detection techniques can provide the inner-pair
dynamical physics of the sample electrons. Thus, they can
be introduced to study the time-retarded dynamics of the
two-particle correlations in the particle-particle or particle-
hole channel. They may play unusual roles in the study
of the dynamical formation of the Cooper pair due to the
retarded electron-electron attraction, or the microscopic for-
mation of the itinerant magnetic moment in the metallic
ferromagnet/antiferromagnet.

Our article will be arranged as below. In the following
Sec. II, the theoretical formalism for the cARPES will be
established. In Sec. III the cARPES spectra of a free Fermi
gas and a BCS superconducting state will be presented. The
theoretical formalisms for the cARP/IPES and cARIPES will
be provided in Sec. IV, where the coincidence probability
in a contour-time ordering formalism will also be simply
discussed. A summary will be presented in Sec. V.

II. THEORETICAL FORMALISM FOR cARPES

In this section we will establish the theoretical formalism
for the cARPES which detects the two-particle correlations

in the particle-particle channel. First, we will review the
electron-photon interaction in Sec. II A and the ARPES in
Sec. II B. We will then provide the theoretical formalism for
the cARPES in Sec. II C.

A. Electron-photon interaction

The lattice model with an external electromagnetic vector
potential A has a kinetic Hamiltonian

H (A) = −
∑
i jσ

ti je
i e

h̄ Ai j ·(R j−Ri )c†iσ c jσ , (1)

where the electron charge qe = −e and the vector potential is
defined on-bond Ai j = A[ 1

2 (Ri + R j )]. For one single photon

mode with Ai j = A(q)ei 1
2 q·(Ri+R j ), the electron-photon inter-

action is obtained by a linear-A expansion of H (A),

V = −
∑
kσ

v(k, q) · A(q)c†k+qσ
ckσ , (2)

where the charged velocity v is given by

v(k, q) =
∑

δ

ie

h̄
ti,i+δδei(k+ q

2 )·δ. (3)

In the above definitions, k and q are momenta and σ denotes
the electron spin. This electron-photon interaction has only a
linear-A expansion of H (A), which involves only one-photon
emission or absorption in the electron-photon interaction ver-
tex. The quadratic expansion of H (A) with a form as |A|2c†c
involves two-photon emission or absorption in the electron-
photon interaction vertex. It can be ignored in our study since
it plays little role in our proposed experimental techniques.

We introduce the second quantization of the electromag-
netic vector potential A as follows [12]:

A(q) =
∑
λ=1,2

√
h̄

2ε0ωqV
eλ(q)(aqλ + a†

−qλ), (4)

where ε0 is the permittivity of vacuum, ωq is the photon
frequency, V is the volume for A to be enclosed, eλ is the
λth polarization unit vector, and aqλ is the photon annihila-
tion operator. The electron-photon interaction Eq. (2) can be
expressed as

V =
∑
kσqλ

g(k; qλ)c†k+qσ
ckσ (aqλ + a†

−qλ), (5)

where the interaction factor g is defined by

g(k; qλ) = −
√

h̄

2ε0ωqV
eλ(q) · v(k, q). (6)

It is noted that g is a real number.

B. Review of theoretical formalism for ARPES

The physical principle for the ARPES is the photoelectric
effect. When an incident photon is absorbed by an electron in
the sample material, this electron can be excited from a low-
energy state into a high-energy state. If the excited electron
has a high enough energy to overcome the material work func-
tion, it can escape from the sample material and emit outside
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to be a photoelectron. A fully defined theoretical formalism
for the photon absorption and photoelectron emission in the
ARPES is too complex, and in most cases, an approximate
three-step model is taken [13–15]. In this approximate model,
the whole photoelectric process can be subdivided into three
independent and sequential steps: the excitation of an electron
in the sample bulk by the incident photon, the travel of the
excited electron to the sample surface, and the emission of the
photoelectron from the sample surface into vacuum.

With an additional sudden approximation, i.e., the excited
electron is removed instantaneously with no post-collisional
interaction with the sample material left behind [13], we can
introduce the following Hamiltonian to describe the photo-
electric process in the ARPES:

H = H0 + V (1), H0 = Hs + Hd + Hp, (7)

where Hs is the Hamiltonian of the sample electrons, Hd

describes the photoelectrons under the sudden approximation,
and Hp is the photon Hamiltonian. The electron-photon inter-
action V (1) is defined as

V (1) = g(k; qλ)d†
k+qσ

ckσ aqλ, (8)

where ckσ and dkσ are the respective annihilation operators of
the sample electrons and the vacuum photoelectrons.

The emitting photoelectrons are detected by a detector,
where the counting probability of this photoelectric process
can be defined by


(1) = 1

Z

∑
αβ

e−βEα |〈�β |S(1)(+∞,−∞)|�α〉|2, (9)

where |�α〉 = |�s
α〉 ⊗ |1qλ〉p ⊗ |0〉d and |�β〉 = |�s

β〉 ⊗
|0〉p ⊗ |1k+qσ 〉d , with the superscripts and subscripts s, p,
and d defined for the sample electrons, the incident photons,
and the photoelectrons in vacuum, respectively. The S-matrix
S(1)(+∞,−∞), which describes the time evolution under the
electron-photon interaction, is defined by

S(1)(+∞,−∞) = − i

h̄

∫ +∞

−∞
V (1)

I (t )F (t )dt, (10)

where V (1)
I (t ) = eiH0t/h̄V (1)e−iH0t/h̄. The time function F (t ) is

defined as

F (t ) = θ (t + T/2) − θ (t − T/2), (11)

where θ (t ) is the step function, and T defines the perturba-
tion time for the electron-photon interaction.

It can be shown that the photoelectron counting rate P(1) ≡

(1)

T in the ARPES follows

P(1) = 2πg2

h̄

1

Z

∑
αβ

e−βEα
∣∣〈�s

β

∣∣ckσ

∣∣�s
α

〉∣∣2
δ(E (1) + Eβ − Eα ),

(12)

where g ≡ g(k; qλ), and Eα and Eβ are the eigenvalues of the
eigenstates |�s

α〉 and |�s
β〉, respectively. Here the energy E (1)

is defined as

E (1) = ε
(d )
k+qσ

+ � − h̄ωq, (13)

where ε(d ) is the energy of the photoelectrons in vacuum, and
� is the sample material work function. It should be noted that

the energy of the sample electrons is defined with respect to
the Fermi energy or chemical potential. During the derivation,
we have made an assumption that the time interval T is large
and an approximation sin2(ax)

x2 → πaδ(x) when a → +∞ is
used.

We introduce the single-particle spectrum function
as A(kσ, E ) = −2 Im G(kσ, iωn → E + iδ+), where
G(kσ, iωn) is the Fourier transformation of an imaginary-time
Green’s function G(kσ, τ ) = −〈Tτ ckσ (τ )c†kσ (0)〉 and δ+ is a
positive infinitesimal, we can show that

P(1) = g2

h̄
A(kσ, E (1) )nF (E (1) ), (14)

where nF (E ) is the Fermi distribution function, and the single-
particle spectrum function A(kσ, E ) follows

A(kσ, E ) = 2π

Z

∑
αβ

(e−βEα + e−βEβ )
∣∣〈�s

β

∣∣ckσ

∣∣�s
α

〉∣∣2

× δ(E + Eβ − Eα ). (15)

The photoelectron counting rate in the ARPES, Eq. (14), is
the same as the Fermi’s golden-rule formula [13]. It shows
that the detection of the angle-resolved emission of the pho-
toelectrons can provide the momentum and energy dependent
single-particle spectrum function of the sample electrons. The
interaction-driven physics can then be partially investigated
by the ARPES from the detected single-particle spectrum
function [13].

It should be noted that in the definition of the photoelectron
counting probability 
(1) in Eq. (9), the photon states in
|�α〉 and |�β〉 are assumed to be single-photon and phonon-
vacuum states, respectively. This is one approximation just
for the discussion to be simple. For the realistic experimental
ARPES, the photon state can be in the macroscopic coherent
state or other multiphoton states. In this case, all of the above
results can be similarly obtained with one additional factor to
account for the redefined photon states. This approximation
will be introduced in the following discussions on the photo-
electric physical processes without any special notice.

C. Proposal of cARPES

A cARPES is shown schematically in Fig. 1. There are
two photon sources which emit two photons on the sample
material. These two incident photons can be absorbed by
two sample electrons which are then excited into high-energy
states. If their energies are high enough to overcome the
material work function, the two excited electrons can escape
from the sample material and emit into vacuum as two photo-
electrons. A coincidence detector detects the emission of the
two photoelectrons in coincidence, as schematically shown in
Fig. 2.

Following the discussion on the ARPES, let us establish
the theoretical formalism for the coincidence detection in the
cARPES. Suppose the two incident photons have momenta
and polarizations (q1, λ1) and (q2, λ2). They will be absorbed
by two sample electrons with (k1, σ1) and (k2, σ2), which will
be excited into high-energy states and then escape into vac-
uum as photoelectrons with (k1 + q1, σ1) and (k2 + q2, σ2).
Similar to the three-step model with the sudden approximation
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FIG. 1. Schematic diagrams of the cARPES. In (a), the two
red dashed lines represent two incident photons and the two green
solid lines represent two photoelectrons. (b) The energetics of the
cARPES, where the two upper blue lines with “vacuum” denote the
vacuum electron states, and the two lower blue lines with “sample”
denote the sample electron states. μF is the chemical potential and �

is the work function. The line with μF + � is the vacuum state near
the sample surface with the surface effects involved.

[13–15], the electron-photon interaction vertices for the two
photoelectric physical processes can be defined by

V (2)
1 = g(k1; q1λ1)d†

k1+q1σ1
ck1σ1 aq1λ1 ,

V (2)
2 = g(k2; q2λ2)d†

k2+q2σ2
ck2σ2 aq2λ2 .

The coincidence probability recorded by the coincidence
detector in the cARPES is defined by


(2) = 1

Z

∑
αβ

e−βEα |〈�β |S(2)(+∞,−∞)|�α〉|2, (16)

where |�α〉 = |�s
α〉 ⊗ |1q1λ1 1q2λ2〉p ⊗ |0〉d and |�β〉 =

|�s
β〉 ⊗ |0〉p ⊗ |1k1+q1σ1 1k2+q2σ2〉d . The relevant S matrix is

defined as

S(2)(+∞,−∞)

=
(

− i

h̄

)2 ∫∫ +∞

−∞
Tt

[
V (2)

2,I (t2)V (2)
1,I (t1)

]
F (t2)F (t1)dt2dt1,

(17)

where V (2)
i,I (t ) = eiH0t/h̄V (2)

i e−iH0t/h̄ with H0 defined in Eq. (7)
and Tt is the time ordering operator. The time function F (t ) is
given in Eq. (11). It is shown that the coincidence probability

FIG. 2. Coincidence detection of the two photoelectrons in the
cARPES. D1 and D2 are two single-electron detectors for the
photoelectrons, and D12 is a coincidence detector which records
one counting only when D1 and D2 each detect one photoelectron
simultaneously.

of the cARPES follows


(2) = (g1g2)2

h̄4

1

Z

∑
αβ

e−βEα

∣∣∣∣
∫∫ +∞

−∞
φ

(2)
αβ (k1σ1t1; k2σ2t2)

× ei(E (2)
1 t1+E (2)

2 t2 )/h̄F (t2)F (t1)dt2dt1

∣∣∣∣
2

, (18)

where φ
(2)
αβ (k1σ1t1; k2σ2t2) is a Bethe-Salpeter wave function

[16,17] defined in the particle-particle channel as

φ
(2)
αβ

(k1σ1t1; k2σ2t2) = 〈
�s

β

∣∣Tt ck2σ2 (t2)ck1σ1 (t1)
∣∣�s

α

〉
. (19)

In Eq. (18), g1 ≡ g(k1; q1λ1) and g2 ≡ g(k2; q2λ2), and the
transfer energies E (2)

1 and E (2)
2 are defined as

E (2)
1 = ε

(d )
k1+q1σ1

+ � − h̄ωq1 ,

E (2)
2 = ε

(d )
k2+q2σ2

+ � − h̄ωq2 . (20)

The time integrals in the coincidence probability 
(2) show
that it involves a Fourier-transformation-like structure of the
Bethe-Salpeter wave function. This can be explicitly shown
in the limit T → +∞, where the coincidence probability of
the cARPES in Eq. (18) becomes


(2) = (g1g2)2

h̄4

1

Z

∑
αβ

e−βEα
∣∣φ(2)

αβ (k1σ1, k2σ2; �c, ωr )
∣∣2

.

(21)

Here we have introduced the Fourier transformations,

φ
(2)
αβ (k1σ1, k2σ2; tc, tr )

= 1

(2π )2

∫∫ +∞

−∞
φ

(2)
αβ (k1σ1, k2σ2; �,ω)e−i�tc−iωtr d�dω,

φ
(2)
αβ (k1σ1, k2σ2; �,ω)

=
∫∫ +∞

−∞
φ

(2)
αβ (k1σ1, k2σ2; tc, tr )ei�tc+iωtr dtcdtr,

where φ
(2)
αβ (k1σ1, k2σ2; tc, tr ) = φ

(2)
αβ (k1σ1t1; k2σ2t2) with the

center-of-mass time tc and the relative time tr defined by

tc = 1
2 (t1 + t2), tr = t2 − t1. (22)

The center-of-mass frequency �c and the inner-pair relative
frequency ωr in Eq. (21) are set as

�c = E (2)/h̄, ωr = E (2)/h̄, (23)

with the transfer energies E (2) and E (2) defined as

E (2) = E (2)
1 + E (2)

2 , E (2) = 1
2

(
E (2)

2 − E (2)
1

)
. (24)

The coincidence probability of the cARPES in the ap-
proximate limit T → +∞, Eq. (21), shows that it provides
directly the information on the frequency Bethe-Salpeter wave
function. The frequency Bethe-Salpeter wave function has a
general form:

φ
(2)
αβ (k1σ1, k2σ2; �,ω) = 2πδ[� + (Eβ − Eα )/h̄]

×φ
(2)
αβ (k1σ1, k2σ2; ω), (25)
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where φ
(2)
αβ (k1σ1, k2σ2; ω) follows

φ
(2)
αβ (k1σ1, k2σ2; ω) =

∑
γ

[
i
〈
�s

β

∣∣ck2σ2

∣∣�s
γ

〉〈
�s

γ

∣∣ck1σ1

∣∣�s
α

〉
ω + iδ+ + (Eα + Eβ − 2Eγ )/2h̄

+ i
〈
�s

β

∣∣ck1σ1

∣∣�s
γ

〉〈
�s

γ

∣∣ck2σ2

∣∣�s
α

〉
ω − iδ+ − (Eα + Eβ − 2Eγ )/2h̄

]
.

(26)

The two-particle Bethe-Salpeter wave function for the
cARPES describes the physics of the sample electrons when
two electrons are annihilated in time ordering, thus it de-
scribes the particle-particle pair dynamical physics of the sam-
ple electrons (more exactly, hole-hole pair). The frequency
Bethe-Salpeter wave function involves the following physics:
(1) The pair center-of-mass dynamical physics of the sample
electrons described by the δ function, δ[� + (Eβ − Eα )/h̄],
which shows the energy transfer conservation for the pair
center-of-mass degrees of freedom. (2) The inner-pair dy-
namical physics of the sample electrons described by
φ

(2)
αβ (k1σ1, k2σ2; ω), which shows the propagatorlike res-

onance structures, peaked at ω = ±(Eα + Eβ − 2Eγ )/2h̄
with the weights defined by 〈�s

β |ck2σ2 |�s
γ 〉〈�s

γ |ck1σ1 |�s
α〉

and 〈�s
β |ck1σ1 |�s

γ 〉〈�s
γ |ck2σ2 |�s

α〉. When the two elec-

trons annihilated are independent without correlations
such as in the free Fermi gas, φ

(2)
αβ (k1σ1, k2σ2; ω) has

a behavior of the two-particle spectrum function as
2π〈�s

β |ck2σ2 ck1σ1 |�s
α〉δ[ω − (εk2 − εk1 )/2h̄], where εk1 and

εk2 are the energies of the two free electrons.
For the one particle-particle pair with (k1σ1, k2σ2), when

we scan the energies E (2)
1 and E (2)

2 and thus E (2) and E (2),
the momentum and energy dependent Bethe-Salpeter wave
function in its absolute value can be obtained by the cARPES,
as shown by Eq. (21). Therefore, the cARPES can provide
the momentum and energy dependent particle-particle pair dy-
namical physics of the sample electrons. Moreover, the center-
of-mass and the inner-pair relative dynamics of the sample
electrons can also be resolved by the cARPES. One more
interesting thing is that if the spin configurations of the pho-
toelectrons can be detected, the spin magnetic properties can
also be studied by the cARPES. In this case, the cARPES can
provide the momentum-energy-spin resolved Bethe-Salpeter
wave function and the relevant two-particle correlations in
the particle-particle channel. These discussions show that the
cARPES is one potential technique to study the Cooper-pair
physics in the unconventional superconductors, especially the
time-retarded dynamical physics which is deeply relevant to
the microscopic pairing mechanism.

For the finite but large T , the coincidence probability of
the cARPES can be expressed as


(2) = (g1g2)2

(2π h̄)4

1

Z

∑
αβ

e−βEα

∣∣∣∣
∫∫ +∞

−∞
d�dωφ

(2)
αβ

(k1σ1, k2σ2; �,ω)Y (�,ω)

∣∣∣∣
2

, (27)

where Y (�,ω) is defined by

Y (�,ω) = 2 sin[(� − E (2)/h̄)T/2]

� − E (2)/h̄

2 sin[(ω − E (2)/h̄)T/2]

ω − E (2)/h̄
. (28)

The coincidence probability of the cARPES, Eq. (27), can be regarded to be relevant to one finite-T restricted Fourier trans-
formation of the Bethe-Salpeter wave function. Here we have used the large T approximation that

∫ T/2
−T/2 dt2

∫ T/2
−T/2 dt1 →∫ T/2

−T/2 dtc
∫ T/2
−T/2 dtr . Since the frequency Bethe-Salpeter wave function has the general form as Eq. (25), the coincidence

probability of the cARPES can be calculated from the following expression:


(2) = (g1g2)2T

2π h̄3

1

Z

∑
αβ

e−βEα δ(E (2) + Eβ − Eα )I (2)
αβ

(k1σ1, k2σ2), (29)

where I (2)
αβ (k1σ1, k2σ2) is defined by

I (2)
αβ

(k1σ1, k2σ2) =
∣∣∣∣
∫ +∞

−∞
dωφ

(2)
αβ

(k1σ1, k2σ2; ω)
2 sin[(ω − E (2)/h̄)T/2]

ω − E (2)/h̄

∣∣∣∣
2

. (30)

Let us now give a remark on the experimental installation
of the cARPES. In our above proposal for the cARPES,
the two incident photons are assumed to come from two
photon sources. Since each beam from one source will lead
to the photoelectron emission in all of the different angles,
to distinguish correctly which is the corresponding emitting
photoelectron from one given incident beam needs more
experimental tricks. In a realistic experimental installation,
one single photon source can emit two photons which can
lead to the following photoelectric effects for the cARPES.

In this single-source cARPES, the two electron-photon
interaction vertices can be similarly defined with the two
incident photons having the same momentum and polarization
(q, λ). All of the above results on the coincidence proba-
bility of the two-source cARPES can be similarly derived
for the single-source cARPES, with only the substitution
of (q1, λ1) = (q2, λ2) = (q, λ). Thus, a simple experimen-
tal installation of the cARPES can be built upon an in-
stallation of the ARPES with one additional coincidence
detector.
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Recently, one photoemission technique, double photoe-
mission spectroscopy, has been developed to study the
electron correlations [18–20]. In this double photoemission
spectroscopy, one photon is absorbed which excites the sam-
ple electrons into high-energy states. The disturbed sample
electrons emit two electrons which are detected in coinci-
dence. As microscopically one single photon can only excite
one single electron, the one-photon-absorption double photoe-
mission spectroscopy will involve subsequential intermediate
excited states which contribute to the two-electron emission.
It is different in principle to the proposed cARPES in the study
of the two-particle correlations.

III. cARPES FOR FREE FERMI GAS AND
SUPERCONDUCTING STATE

We will study the cARPES spectra of a free Fermi gas and
a BCS superconducting state in this section.

A. Free Fermi gas

A free Fermi gas has a Hamiltonian

H =
∑
kσ

εkc†kσ ckσ , (31)

where the chemical potential has been included in εk. It can
be easily shown that the two-particle Bethe-Salpeter wave
function of the free Fermi gas follows

φ
(2)
αβ (k1σ1, k2σ2; �,ω)

= 2πδ
[
� − (

εk1 + εk2

)
/h̄

]
φ

(2)
αβ (k1σ1, k2σ2; ω), (32)

where φ
(2)
αβ (k1σ1, k2σ2; ω) follows

φ
(2)
αβ (k1σ1, k2σ2; ω)

= 2πδ
[
ω − (

εk2 − εk1

)
/2h̄

]
δ
(
nk1σ1 − 1

)
δ
(
nk2σ2 − 1

)
(33)

when |�s
β〉 = ck2σ2 ck1σ1 |�s

α〉, and it is zero for the other cases.
Here nk1σ1 , nk2σ2 = 0, 1, which define the occupation of the
free Fermi particles in the state |�s

α〉. The coincidence proba-
bility of the cARPES for the free Fermi gas is calculated from
Eq. (27) or (29) as


(2) = 4π2(g1g2)2T 2

h̄2 δ
(
E (2) − εk1 − εk2

)
×δ

[
E (2) − (

εk2 − εk1

)
/2

]
nF

(
εk1

)
nF

(
εk2

)
. (34)

Obviously the coincidence probability of the cARPES
shows the information of the dynamical frequency Bethe-
Salpeter wave function φ

(2)
αβ (k1σ1, k2σ2; �,ω). At zero

temperature, the coincidence probability of the cARPES

behaves as


(2) = 4π2(g1g2)2T 2

h̄2 δ
(
E (2) − εk1 − εk2

)
× δ

[
E (2) − (

εk2 − εk1

)
/2

]
θ
( − εk1

)
θ
( − εk2

)
. (35)

Since the single-particle ARPES spectrum of the free
Fermi gas follows 
(1) = 2πg2T

h̄ δ(E (1) − εk )nF (εk ), we have
the following relation:


(2) = 
(1)(g1)
(1)(g2), (36)

where 
(1)(g1) and 
(1)(g2) are the two respective single-
particle ARPES counting probabilities of the two photoelec-
tric processes in the cARPES. This relation shows that the
coincidence probability of the cARPES for the Fermi free
gas is trivial with product contribution from two independent
photoelectric processes. This is consistent with the fact that
the free Fermi gas has only single-particle physics without
two-particle correlations.

B. Superconducting state

Let us consider a superconducting state with spin singlet
pairing. In a mean-field approximation, the superconducting
state can be described by a BCS mean-field Hamiltonian

HBCS =
∑
kσ

εkc†kσ
ckσ +

∑
k

(∗
kc−k↓ck↑ + kc†k↑c†−k↓),

(37)

where k = |k|eiθk is a k-dependent gap function. We intro-
duce the Bogoliubov transformations(

αk↑
α
†
−k↓

)
=

(
uk vk

−v∗
k uk

)(
ck↑

c†−k↓

)
, (38)

where uk and vk are defined by

uk =
√

1

2

(
1 + εk

Ek

)
, vk = eiθk

√
1

2

(
1 − εk

Ek

)
, (39)

the BCS Hamiltonian can be diagonalized into the form

HBCS =
∑

k

Ek(α†
k↑αk↑ + α

†
−k↓α−k↓), (40)

with Ek =
√

ε2
k + |k|2 .

Let us study the particle-particle Bethe-Salpeter wave func-
tion φ

(2)
αβ for a Cooper pair with (k ↑,−k ↓). Defining k1 =

k, σ1 =↑, k2 = −k, σ2 =↓, φ
(2)
αβ is shown to follow

φ
(2)
αβ

(k ↑,−k ↓; �,ω) =
3∑

i=1

φ
(2)
αβ,i(k ↑,−k ↓; �,ω), (41)

where

φ
(2)
αβ,1(k ↑,−k ↓; �,ω) = 2πδ(�)φ(2)

αβ,1(k ↑,−k ↓; ω),

φ
(2)
αβ,2(k ↑,−k ↓; �,ω) = 2πδ(� + 2Ek )φ(2)

αβ,2(k ↑,−k ↓; ω),

φ
(2)
αβ,3(k ↑,−k ↓; �,ω) = 2πδ(� − 2Ek )φ(2)

αβ,3(k ↑,−k ↓; ω).
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The three Bethe-Salpether wave functions with only relative time dynamics follow

φ
(2)
αβ,1(k ↑,−k ↓; ω) = i(ukvk )

(
nα

k↑
ω + Ek/h̄ + iδ+ + 1 − nα

k↑
ω + Ek/h̄ − iδ+ − 1 − nα

−k↓
ω − Ek/h̄ + iδ+ − nα

−k↓
ω − Ek/h̄ − iδ+

)
,

φ
(2)
αβ,2(k ↑,−k ↓; ω) = −2πδ(ω)v2

kδ
(
nα

k↑
)
δ
(
nα

−k↓
)
, (42)

φ
(2)
αβ,3(k ↑,−k ↓; ω) = 2πδ(ω)u2

kδ
(
nα

k↑ − 1
)
δ
(
nα

−k↓ − 1
)
,

where nα
kσ = 0, 1 which describe the occupation of the Bogoliubov quasiparticles in the state |�s

α〉, and |�s
β〉 = |�s

α〉 in φ
(2)
αβ,1,

|�s
β〉 = α

†
k↑α

†
−k↓|�s

α〉 in φ
(2)
αβ,2, |�s

β〉 = α−k↓αk↑|�s
α〉 in φ

(2)
αβ,3.

The coincidence probability of the cARPES for the BCS superconducting state can be calculated from Eq. (27) or (29), which
follows


(2) = 

(2)
1 + 


(2)
2 + 


(2)
3 , (43)

where the three contributions are defined as



(2)
1 = 2π2(g1g2)2T 2

h̄2 |ukvk|2δ(E (2) )[δ(E (2) + Ek ) + δ(E (2) − Ek )],



(2)
2 = 4π2(g1g2)2T 2

h̄2 |vk|4δ(E (2) + 2Ek )δ(E (2) )n2
F (−Ek ), (44)



(2)
3 = 4π2(g1g2)2T 2

h̄2 |uk|4δ(E (2) − 2Ek )δ(E (2) )n2
F (Ek ).

The first term 

(2)
1 comes from the contribution of

φ
(2)
αβ,1, which is the well-known anomalous Green’s

function and describes the propagators of the single
Bogoliubov quasiparticles 〈�s

α|Ttα
†
k↑(t2)αk↑(t1)|�s

α〉 and

〈�s
α|Ttα−k↓(t2)α†

−k↓(t1)|�s
α〉 with additional factors ±ukvk.

It has two resonance peak structures at ωr = ±Ek in the
inner-pair channel with the center-of-mass transfer energy
�c = 0. The second term 


(2)
2 comes from the contribution

of φ
(2)
αβ,2. It has a wave function weight factor |vk|4n2

F (−Ek )

which comes from v2
k〈�s

β |α†
k↑α

†
−k↓|�s

α〉, and shows the
transfer energy of the center-of-mass of the Cooper pair
finite �c = −2Ek and the inner-pair relative dynamics with a
resonance peak at ωr = 0. The third term 


(2)
3 has a similar

behavior to 

(2)
2 . It involves a wave function distribution factor

|uk|4n2
F (Ek ) which comes from u2

k〈�s
β |α−k↓αk↑|�s

α〉, and
shows a resonance peak at ωr = 0 in the inner-pair channel
with the center-of-mass transfer energy finite �c = 2Ek.
The first term 


(2)
1 is intrinsic to the macroscopic coherent

superconducting state and proportional to the square of the
gap function as ukvk = k

2Ek
. It reduces to zero in the normal

state with zero superconducting gap, where the coincidence
probability 
(2) shows the behavior of two free electrons the
same as the formula [Eq. (34)] of the free Fermi gas.

The coherent superconducting ground state |�BCS〉 =
Ce

∑
k ψkc†−k↓c†k↑ |0〉 = ∏

k(uk + vkc†−k↓c†k↑)|0〉, where ψk is the

inner-Cooper-pair wave function, uk = 1√
1+|ψk|2 defines the

Cooper-pair unoccupied probability, and vk = ψk√
1+|ψk|2 de-

scribes the occupied probability. Thus the inner-pair wave
function can be defined by vk

uk
, whose absolute value can be

obtained by the factors |ukvk|2, |vk|4, and |uk|4 in the three
contributions to 
(2).

At low temperature, 

(2)
3 has little contribution to the

cARPES due to the opening of the superconducting gap. In
this case, the coincidence probability with a finite center-of-
mass energy transfer is defined by 


(2)
2 , which has a simple

relation to the single-particle ARPES counting probabilities:



(2)
2 = 
(1)(g1)
(1)(g2), (45)

where 
(1)(g1) and 
(1)(g2) are the two independent ARPES
counting probabilities defined at low temperature as 
(1)(g) =
2πg2T

h̄ |vk|2δ(E (1) + Ek )nF (−Ek ). As 

(2)
2 comes from the

propagation of two Bogoliubov quasiparticles, this relation
is consistent with the fact that the Bogoliubov quasiparticles
are free in the BCS superconducting state defined by the
mean-field Hamiltonian Eq. (37).

IV. cARP/IPES, cARIPES, AND CONTOUR-TIME
ORDERING FORMALISM

In Sec. II we have proposed a cARPES, which can provide
the two-particle Bethe-Salpeter wave function in the particle-
particle channel. In this section we will propose another
two experimental techniques, a cARP/IPES and a cARIPES.
A cARP/IPES shows the two-particle Bethe-Salpeter wave
function in the particle-hole channel and a cARIPES in-
volves the two-particle Bethe-Salpeter wave function in the
particle-particle channel with the electronic states mainly
above the Fermi energy. We will also give a simple discussion
on a contour-time ordering formalism for the coincidence
detections.

A. cARP/IPES

Figure 3 shows the schematic diagram and energetics of a
cARP/IPES. There are two sources in a cARP/IPES, one for
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FIG. 3. Schematic figures of the cARP/IPES. In (a), the red
dashed line with the arrow to the sample represents the incident
photon and the green solid line with the arrow to the sample denotes
the incident electron. The red dashed line and the green solid line
with the arrows outside the sample represent the emitting photon and
photoelectron, respectively. (b) The energetics of the cARP/IPES.
The symbols are the same as those in Fig. 1.

the photon and the other one for the electron. The incident
photon can be absorbed by a sample electron which can then
be excited into a high-energy state and escape into vacuum
to be a photoelectron. The incident electron can transit into
a low-energy state of the sample electrons with an additional
photon emitting outside into vacuum. The two relevant phys-
ical processes can be described by the following electron-
photon interaction vertices:

V (3)
1 = g(k1; q1λ1)d†

k1+q1σ1
ck1σ1 aq1λ1 ,

V (3)
2 = g(k2; q2λ2)c†k2σ2

a†
q2λ2

dk2+q2σ2 ,

where V (3)
1 describes the photoelectric process of photon

absorption and photoelectron emission, and V (3)
2 describes the

transition of the incident electron into a sample electron and
the corresponding photon emission. Here we have made a
similar approximation to the three-step model with the sudden
approximation [13–15] for the photoelectric effect described
by V (3)

1 . For the physical process of V (3)
2 , we have also made

a similar approximation, where the incident electron tunnels
into the sample surface and then moves into the sample bulk
without interaction with the sample material.

In a cARP/IPES, the emitting photoelectron and photon
are detected by a coincidence detector which records a finite
counting when both the emitting photoelectron and photon are
detected simultaneously. The coincidence detection probabil-
ity is defined by


(3) = 1

Z

∑
αβ

e−βEα |〈�β |S(3)(+∞,−∞)|�α〉|2, (46)

where |�α〉 = |�s
α〉 ⊗ |1q1λ1〉p ⊗ |1k2+q2σ2〉d and |�β〉 =

|�s
β〉 ⊗ |1q2λ2〉p ⊗ |1k1+q1σ1〉d . The relevant S matrix is

defined as

S(3)(+∞,−∞)

=
(

− i

h̄

)2 ∫∫ +∞

−∞
Tt

[
V (3)

2,I (t2)V (3)
1,I (t1)

]
F (t2)F (t1)dt2dt1,

(47)

where V (3)
i,I (t ) = eiH0t/h̄V (3)

i e−iH0t/h̄.
Following a similar procedure to study the cARPES, we

introduce a Bethe-Salpeter wave function defined in the

particle-hole channel:

φ
(3)
αβ

(k1σ1t1; k2σ2t2) = 〈
�s

β

∣∣Tt c
†
k2σ2

(t2)ck1σ1 (t1)
∣∣�s

α

〉
. (48)

It describes the physics of the sample electrons when one
particle and one hole are created in time ordering, thus it
describes the particle-hole pair dynamical physics of the
sample electrons. For the case with a finite but large T , the
coincidence probability of the cARP/IPES can be given by


(3) = (g1g2)2

(2π h̄)4

1

Z

∑
αβ

e−βEα

×
∣∣∣∣
∫∫ +∞

−∞
d�dωφ

(3)
αβ

(k1σ1, k2σ2; �,ω)Y (�,ω)

∣∣∣∣
2

,

(49)

where φ
(3)
αβ (k1σ1, k2σ2; �,ω) is the frequency Fourier trans-

formation of the Bethe-Salpeter function with the center-of-
mass and the inner-pair relative time variables. Y (�,ω) is
similarly defined in Eq. (28) with the transfer energies E (2)

and E (2) substituted by E (3) and E (3) which are defined as

E (3) = E (3)
1 + E (3)

2 , E (3) = 1
2

(
E (3)

2 − E (3)
1

)
. (50)

Here the transfer energies E (3)
1 and E (3)

2 are given by

E (3)
1 = ε

(d )
k1+q1σ1

+ � − h̄ωq1 , E (3)
2 = h̄ωq2 + � − ε

(d )
k2+q2σ2

.

(51)

The frequency Bethe-Salpeter wave function for the
cARP/IPES also has a general form:

φ
(3)
αβ (k1σ1, k2σ2; �,ω)

= 2πδ[� + (Eβ − Eα )/h̄]φ(3)
αβ (k1σ1, k2σ2; ω), (52)

where φ
(3)
αβ (k1σ1, k2σ2; ω) follows

φ
(3)
αβ

(k1σ1, k2σ2; ω) =
∑

γ

[
i
〈
�s

β

∣∣c†k2σ2

∣∣�s
γ

〉〈
�s

γ

∣∣ck1σ1

∣∣�s
α

〉
ω + iδ+ + (Eα + Eβ − 2Eγ )/2h̄

+ i
〈
�s

β

∣∣ck1σ1

∣∣�s
γ

〉〈
�s

γ

∣∣c†k2σ2

∣∣�s
α

〉
ω − iδ+ − (Eα + Eβ − 2Eγ )/2h̄

]
.

(53)

Now the coincidence probability of the cARP/IPES can be
calculated from the following expression:


(3) = (g1g2)2T

2π h̄3

1

Z

∑
αβ

e−βEα δ(E (3) + Eβ − Eα )

× I (3)
αβ (k1σ1, k2σ2), (54)

where I (3)
αβ (k1σ1, k2σ2) is defined by

I (3)
αβ (k1σ1, k2σ2) =

∣∣∣∣
∫ +∞

−∞
dωφ

(3)
αβ (k1σ1, k2σ2; ω)

× 2 sin[(ω − E (3)/h̄)T/2]

ω − E (3)/h̄

∣∣∣∣
2

. (55)
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FIG. 4. Schematic figures of the cARIPES. In (a), the two green
solid lines represent two incident electrons and the two red dashed
lines denote two emitting photons. (b) The relevant energetics with
the symbols defined the same as those in Fig. 1.

In the limit T → +∞, the coincidence probability of the
cARP/IPES has a simple form:


(3) = (g1g2)2

h̄4

1

Z

∑
αβ

e−βEα
∣∣φ(3)

αβ (k1σ1, k2σ2; �c, ωr )
∣∣2

,

(56)

where the frequencies �c and ωr are set by the transfer
energies as

�c = E (3)/h̄, ωr = E (3)/h̄. (57)

Obviously the coincidence probability of the cARP/IPES
provides the information on the frequency Bethe-Salpeter
wave function in the particle-hole channel. Similarly to
the cARPES, the Bethe-Salpeter wave function in the
cARP/IPES involves the following particle-hole pair physics
of the sample electrons: (1) the pair center-of-mass dy-
namical physics described by δ[� + (Eβ − Eα )/h̄], and (2)
the inner-pair relative dynamical physics which has the
resonancelike peak structures at ω = ±(Eα + Eβ − 2Eγ )/2h̄
with the weights defined by 〈�s

β |c†k2σ2
|�s

γ 〉〈�s
γ |ck1σ1 |�s

α〉 and

〈�s
β |ck1σ1 |�s

γ 〉〈�s
γ |c†k2σ2

|�s
α〉. Therefore, the cARP/IPES is

one momentum and energy resolved technique to study
the two-particle correlations in the particle-hole chan-
nel with both the center-of-mass and inner-pair relative
dynamics. As the itinerant magnetism in the metallic
ferromagnet/antiferromagnet can be regarded as the physics
of the particle-hole pairs in the spin channel and the metallic
nematic state [6–8] is dominated by the particle-hole pairs in
the charge channel, the cARP/IPES will play vital roles in the

study of the particle-hole pair correlations in these metallic
ferromagnet/antiferromagnet and nematic state.

B. cARIPES

In Fig. 4 we propose another experimental coincidence
technique, a cARIPES. In this technique, two electrons are
incident on the sample material and transit into the low-energy
states of the sample electrons with two additional photons
emitting into vacuum. These two emitting photons are then
detected in coincidence by a coincidence detector.

Following the similar approximate three-step model with
the sudden approximation [13–15] introduced for the ARPES,
the cARPES, and the cARP/IPES, the electron-photon inter-
action vertices for the two respective physical processes in the
cARIPES are defined by

V (4)
1 = g(k1; q1λ1)c†k1σ1

a†
q1λ1

dk1+q1σ1 ,

V (4)
2 = g(k2; q2λ2)c†k2σ2

a†
q2λ2

dk2+q2σ2 .

The coincidence detection probability of the two emitting
photons in the cARIPES is defined by


(4) = 1

Z

∑
αβ

e−βEα |〈�β |S(4)(+∞,−∞)|�α〉|2, (58)

where |�α〉 = |�s
α〉 ⊗ |0〉p ⊗ |1k1+q1σ1 1k2+q1σ2〉d and |�β〉 =

|�s
β〉 ⊗ |1q1λ1 1q2λ2〉p ⊗ |0〉d . The S matrix is given by

S(4)(+∞,−∞)

=
(

− i

h̄

)2 ∫∫ +∞

−∞
Tt

[
V (4)

2,I (t2)V (4)
1,I (t1)

]
F (t2)F (t1)dt2dt1,

(59)

where V (4)
i,I (t ) = eiH0t/h̄V (4)

i e−iH0t/h̄.
With a similar study to the cARPES and the cARP/IPES,

we introduce a Bethe-Salpeter wave function defined in the
particle-particle channel:

φ
(4)
αβ

(k1σ1t1; k2σ2t2) = 〈
�s

β

∣∣Tt c
†
k2σ2

(t2)c†k1σ1
(t1)

∣∣�s
α

〉
. (60)

It describes the physics of the sample electrons when two
particles are created in time ordering. Therefore, it describes
the particle-particle pair dynamical physics of the sample
electrons. The corresponding frequency Bethe-Salpeter wave
function is denoted by φ

(4)
αβ (k1σ1, k2σ2; �,ω) with the center-

of-mass and the inner-pair relative frequency variables. It
follows

φ
(4)
αβ (k1σ1, k2σ2; �,ω) = 2πδ[� + (Eβ − Eα )/h̄]φ(4)

αβ (k1σ1, k2σ2; ω), (61)

where φ
(4)
αβ (k1σ1, k2σ2; ω) has a general form:

φ
(4)
αβ (k1σ1, k2σ2; ω) =

∑
γ

[
i
〈
�s

β

∣∣c†k2σ2

∣∣�s
γ

〉〈
�s

γ

∣∣c†k1σ1

∣∣�s
α

〉
ω + iδ+ + (Eα + Eβ − 2Eγ )/2h̄

+ i
〈
�s

β

∣∣c†k1σ1

∣∣�s
γ

〉〈
�s

γ

∣∣c†k2σ2

∣∣�s
α

〉
ω − iδ+ − (Eα + Eβ − 2Eγ )/2h̄

]
. (62)

With a finite but large T , the coincidence probability of the cARIPES is shown to follow


(4) = (g1g2)2T

2π h̄3

1

Z

∑
αβ

e−βEα δ(E (4) + Eβ − Eα )I (4)
αβ (k1σ1, k2σ2), (63)
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where I (4)
αβ (k1σ1, k2σ2) is given by

I (4)
αβ (k1σ1, k2σ2) =

∣∣∣∣
∫ +∞

−∞
dωφ

(4)
αβ (k1σ1, k2σ2; ω)

2 sin[(ω − E (4)/h̄)T/2]

ω − E (4)/h̄

∣∣∣∣
2

. (64)

Here the energies E (4) and E (4) are defined by

E (4) = E (4)
1 + E (4)

2 , E (4) = 1
2

(
E (4)

2 − E (4)
1

)
, (65)

with E (4)
1 and E (4)

2 given by

E (4)
1 = h̄ωq1 + � − ε

(d )
k1+q1σ1

, E (4)
2 = h̄ωq2 + � − ε

(d )
k2+q2σ2

.

(66)

Let us consider the case with the limit T → +∞. In this
case, the coincidence probability of the cARIPES has a simple
behavior as


(4) = (g1g2)2

h̄4

1

Z

∑
αβ

e−βEα
∣∣φ(4)

αβ (k1σ1, k2σ2; �c, ωr )
∣∣2

,

(67)

where the transfer energies define the frequencies as

�c = E (4)/h̄, ωr = E (4)/h̄. (68)

It is obvious that the coincidence probability of the cARIPES
shows the information on the frequency Bethe-Salpeter
wave function in the particle-particle channel. In contrast
to the coincidence probability of the cARPES, the rel-
evant particle-particle channel in the cARIPES involves
mainly the electronic states above the Fermi energy. This
can be easily shown from the definition of the Bethe-
Salpeter wave function, Eq. (60). Therefore, the cARIPES

can provide the particle-particle correlations with the parti-
cles mainly in the states above the Fermi energy. Similar
to the cARPES and the cARP/IPES, the particle-particle
correlations in the cARIPES involve the pair center-of-
mass dynamical physics defined by δ[� + (Eβ − Eα )/h̄],
and the inner-pair dynamical physics with the resonance-
like peak structures at ω = ±(Eα + Eβ − 2Eγ )/2h̄ which
have weights defined by 〈�s

β |c†k2σ2
|�s

γ 〉〈�s
γ |c†k1σ1

|�s
α〉 and

〈�s
β |c†k1σ1

|�s
γ 〉〈�s

γ |c†k2σ2
|�s

α〉. If the spin states of the incident
electrons can be defined definitely, the cARIPES will be
one momentum-energy-spin resolved technique to study the
particle-particle correlations of the sample electrons with the
electron energies mainly above the Fermi level.

C. Contour-time ordering formalism

In the above three coincidence techniques to detect the two-
particle correlations, the coincidence probabilities involve the
Bethe-Salpeter wave functions which show the momentum
and energy dependent physics of the sample electrons in the
particle-particle or particle-hole channel. In this section we
will show that the coincidence probability can be reexpressed
into a contour-time ordering formalism.

Consider the coincidence probability of the cARPES,
Eq. (16). This coincidence probability can be reexpressed as
following:


(2) = 1

Z

∑
αβ

e−βEα 〈�α|S(2)(−∞,+∞)|�β〉〈�β |S(2)(+∞,−∞)|�α〉

= 1

Z

∑
α

e−βEα

(
− i

h̄

)4 ∫∫ −∞

+∞
dt ′

2dt ′
1

∫∫ +∞

−∞
dt2dt1〈�α|[Tt ′V †

1,I (t ′
1)V †

2,I (t ′
2)][TtV2,I (t2)V1,I (t1)]|�α〉,

where Tt defines the time ordering along −∞ → +∞, and Tt ′ defines the antitime ordering along +∞ → −∞. 
(2) can be
reexpressed into the form by a contour-time ordering:


(2) =
(

− i

h̄

)4 ∫
[t1t2;t ′

1t ′
2]

dt ′
2dt ′

1dt2dt1〈[TcV
†

1,I (t ′
1)V †

2,I (t ′
2)V2,I (t2)V1,I (t1)]〉. (69)

Here Tc is a contour-time ordering operator. It is defined on the time contour C = C+ ∪ C−, where t ∈ C+ evolves as −∞ → +∞
and t ′ ∈ C− evolves as +∞ → −∞ as shown schematically in Fig. 5. The definition of Tc is given by [21,22]

Tc[A(t1)B(t2)] =
{

A(t1)B(t2), if t1 >c t2,
±B(t2)A(t1), if t1 <c t2,

(70)

where >c and <c are defined according to the position of the time arguments, latter or earlier in the time contour C, and
± are defined for the bosonic or fermionic operators, respectively. In Eq. (69), [t1t2; t ′

1t ′
2] ≡ t1, t2 ∈ C+ and t ′

1, t ′
2 ∈ C−, and

〈A〉 = 1
Z Tr(e−βH0 A).

In the particle-particle channel for a Cooper pair with (k ↑,−k ↓), the coincidence probability of the cARPES follows


(2) = (g1g2)2

h̄4

∫
[t1t2;t ′

1t ′
2]

dt ′
2dt ′

1dt2dt1〈[Tcc†k↑(t ′
1)c†−k↓(t ′

2)c−k↓(t2)ck↑(t1)]〉eiE (2)
1 (t1−t ′

1 )/h̄+iE (2)
2 (t2−t ′

2 )/h̄, (71)
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and in the particle-hole channel, the coincidence probability of the cARP/IPES follows


(3) = (g1g2)2

h̄4

∫
[t1t2;t ′

1t ′
2]

dt ′
2dt ′

1dt2dt1〈[Tcc†k1σ1
(t ′

1)ck2σ2 (t ′
2)c†k2σ2

(t2)ck1σ1 (t1)]〉eiE (3)
1 (t1−t ′

1 )/h̄+iE (3)
2 (t2−t ′

2 )/h̄. (72)

Obviously the time evolution in the contour-time formal-
ism shows that the time dynamics are deeply involved in the
coincidence probabilities of the proposed two-particle coinci-
dence detection techniques. Thus, they can be introduced to
study the time-retarded physics, such as the dynamical forma-
tion of the Cooper pairs, the time-retarded physics of the itin-
erant magnetic moments and the nematic particle-hole pairs.
Moreover, with the reexpressed contour-time formalism, we
can introduce the well-established contour-time perturbation
formalism to calculate the coincidence probabilities in the
study of the weak- or intermediate-coupling electrons.

V. SUMMARY

In this article we have proposed an experimental coin-
cidence technique, the cARPES, to study the two-particle
correlations. In the cARPES, two incident photons are ab-
sorbed and two photoelectrons are emitting into vacuum.
A coincidence detector records the two photoelectrons in
coincidence with the counting probability relevant to a two-
particle Bethe-Salpeter wave function in the particle-particle
channel. The cARPES spectra of a free Fermi gas and a BCS
superconducting state have been studied in detail.

We have also presented another two experimental coin-
cidence techniques, the cARP/IPES and the cARIPES. In
the cARP/IPES, an incident photon excites a photoelectron
and an incident electron transits into a low-energy state of
the sample electrons with an additional photon emitting into
vacuum. The emitting photoelectron and photon are detected
in coincidence by a coincidence detector with the coincidence
probability relevant to a two-particle Bethe-Salpeter wave
function in the spin or charge particle-hole channel. There are
two incident electrons in the cARIPES which transit into the
low-energy states of the sample electrons with two additional
photons emitting into vacuum. A coincidence detector detects
the two emitting photons in coincidence, and the counting
coincidence probability is relevant to a two-particle Bethe-
Salpeter wave function in the particle-particle channel with
main contribution from the electronic states above the Fermi
energy.

All of the three experimental coincidence techniques can
provide directly the information on the frequency Bethe-

FIG. 5. Two-branch contour C for the time ordering operator Tc

[21]. ti and t f are the respective initial and final times. The whole
time contour C involves an upper time branch C+ and a lower time
branch C−. If ti → −∞, t f → +∞, the contour C is the so-called
Schwinger-Keldysh contour [22].

Salpeter wave functions in the particle-particle or particle-
hole channel. Since the frequency Bethe-Salpeter wave func-
tions show the momentum and energy dependent two-particle
dynamical physics of the sample electrons, these coincidence
techniques can be introduced to study the momentum and
energy resolved two-particle correlations with the center-of-
mass and inner-pair relative dynamics. If the spin configu-
rations of the photoelectrons or the incident electrons can
be detected, these coincidence detection techniques will be
momentum-energy-spin resolved in the study of the two-
particle correlations in the particle-particle or particle-hole
channel. Moreover, the inner-pair time-retarded physics can
also be studied by these coincidence detection techniques.

The three experimental coincidence techniques proposed
to detect the two-particle correlations will play important
roles in the study of the many-body physics of the strongly
correlated electron materials, such as the microscopic pairing
mechanism of the Cooper pairs in the unconventional super-
conductor, the formation of the itinerant magnetic moments in
the metallic ferromagnet/antiferromagnet, and the inner-pair
physics of the particle-hole pairs in the metallic nematic state.
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APPENDIX: CALCULATION OF �
(2)
1 IN

SUPERCONDUCTING STATE

From Eq. (27) or (29), the contribution of φ
(2)
αβ,1 to the

coincidence probability of the cARPES for the BCS super-
conducting state is shown to follow



(2)
1 = 2π (g1g2)2T

h̄3

1

Z

∑
α

e−βEα δ(E (2) )|ukvk|2Iα,

where Iα is defined by

Iα = ∣∣c1nα
k↑ + c∗

1

(
1 − nα

k↑
) + c2

(
1 − nα

−k↓
) + c∗

2nα
−k↓

∣∣2
,

with c1 and c2 given by

c1 = 1 − ei(Ek+E (2)+iδ+ )T/2h̄

(Ek + E (2) + iδ+)/h̄
,

c2 = 1 − e−i(Ek−E (2)−iδ+ )T/2h̄

(Ek − E (2) − iδ+)/h̄
.

Since nα
kσ = 0, 1, 


(2)
1 can be further obtained as



(2)
1 = 2π (g1g2)2T

h̄3 δ(E (2) )|ukvk|2CI , (A1)
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where CI is defined as

CI = |c1 + c∗
2|2

[
n2

F (Ek ) + n2
F (−Ek )

]
+ 2|c1 + c2|2nF (Ek )nF (−Ek ). (A2)

In the limit with large T , we have the following results that

|c1 + c2|2 = |c1 + c∗
2|2 = C12, (A3)

with

C12 = π h̄T [δ(E (2) + Ek ) + δ(E (2) − Ek )], (A4)

which can be shown by mathematical plotting as functions
of E (2) and confirmed partially from Eq. (21) in the limit
T → +∞. Substituting these results back into Eqs. (A1)
and (A2), we can obtain 


(2)
1 as shown in Eq. (44), where

nF (Ek ) + nF (−Ek ) = 1 has been used. It is noted that the
temperature-dependent Fermi distribution function nF does
not appear explicitly in 


(2)
1 .
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