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We derive general rigorous results relating revivals in the dynamics of quantum many-body systems to the
entanglement properties of energy eigenstates. For a D-dimensional lattice system of N sites initialized in a
low-entangled and short-range correlated state, our results show that a perfect revival of the state after a time
of at most O(poly(N )) implies the existence of at least O(

√
N/ log2D(N )) “quantum many-body scars”: energy

eigenstates with energies placed in an equally spaced ladder and with Rényi entanglement entropy of at most
O(log(N )) + O(|∂A|) for any region A of the lattice. This shows that quantum many-body scars are a necessary
consequence of revivals, independent of particularities of the Hamiltonian leading to them. We also present
results for approximate revivals and for revivals of expectation values of observables and prove that the duration
of revivals of states has to become vanishingly short with increasing system size.
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I. INTRODUCTION

The behavior of out-of-equilibrium quantum many-body
systems has received widespread attention in recent years.
This has largely been motivated by the recent progress in
experimental platforms such as cold atoms, ion traps, and
Rydberg atoms, where many of these systems can be realized
in practice [1–3]. One of the most widely studied situations
in this context is that of “quantum quenches”: The system
is first prepared in an initial pure state, to then be subjected
to an instantaneous change of Hamiltonian H0 → H that
drives it out of equilibrium. In generic cases, it is believed
that the dynamics will relax to an equilibrium state locally
indistinguishable from a thermal ensemble, as granted by the
eigenstate thermalization hypothesis (ETH) [4,5]. Both the
eigenstate thermalization hypothesis and this relaxing behav-
ior have been confirmed in numerous numerical and experi-
mental works [6,7]. However, there are various cases where
this prediction fails notoriously. They include integrable sys-
tems that relax to a so-called generalized Gibbs ensemble
[8] and, also, many-body localized systems [9], characterized
by the presence of quasilocal integrals of motion [10] which
prevent the system from thermalizing due to memory of the
initial conditions.

Recently, a new kind of deviation from the predictions of
the eigenstate thermalization hypothesis has been found. It
consists of systems which, rather than relaxing, actually revive
back to the initial state after a short time. This phenomenon
was first found in the experiment in Ref. [3], which showed
that a system of 51 Rydberg atoms did not thermalize as
expected when prepared in a particular initial product state.
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Shortly thereafter, this was associated with the presence of a
number of anomalous energy eigenstates in the spectrum [11],
so-called quantum many-body scars. The first class of models
displaying such anomalous eigenstates had been constructed
in [12], and since then, numerous recent efforts have aimed to
characterize these eigenstates [13–19]. Since their discovery,
they have been found in further classes of models (see, for
example, Refs. [20–28]) (including driven ones [29–31]),
some of which even display perfect revivals when the system
is prepared in particular product states [32,33] or matrix
product states (MPSs) [34,35]. While it is clear that in any
model exhibiting scarred eigenstates there are relatively low-
entangled initial states that show perfect revivals (simply take
a superposition of two scarred eigenstates), it is not expected
that one can always find short-range correlated states (e.g.,
product states) that show perfect revivals.

Motivated by these recent findings, we here derive a num-
ber of analytical results that apply to many-body systems
exhibiting revivals at short times from low-entangled and
short-range correlated states. Our results significantly improve
on a lemma presented in Ref. [32]. We first derive properties
of the energy spectrum and eigenstates that have to be fulfilled
whenever (approximate) revivals appear in a local quantum
many-body system, independent of the details of the Hamil-
tonian and in any dimension D of the underlying lattice. We
show that the existence of at least O(

√
N/ log2D(N )) (where

N is the system size) quantum many-body scars follows from
the early revivals of low-entangled and short-range correlated
initial states, when the revival time τ is at most of the order
of poly(N ). We prove that all of these quantum many-body
scars have Rényi entanglement entropies (of orders α > 1)
of at most O(log(N )) + O(|∂A|), for any subset A of the
lattice sites, with the area law term vanishing if the initial
state experiencing revivals is a product state. Our bounds
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hence match the scaling that has been found in concrete
model Hamiltonians [20–22,32–35]. In dimension D = 2 or
higher and for initial product states, our results show that
quantum-many-body scars show even weaker entanglement
in terms of Rényi entropies of order α > 1 than allowed by
an area law (with log corrections). For Rényi entropies with
α � 1, we use techniques inspired by the problem of bounding
entanglement of ground states of gapped models [36] to show
that the entanglement entropy scales at most as O(

√
N |∂A|).

The paper is structured as follows: In Sec. II we state
our assumptions on the initial states and define the notion
of exact and approximate revivals. Then, in Sec. III, we
give constraints on the energy distribution of initial states
with revivals, which we use to give bounds on the Rényi
entanglement entropy Sα , first in Sec. IV (for α > 1) and then
in Sec. V (α � 1). In Sec. VI we explain the consequences
of perfect revivals on an observable, and in Sec. VII we
give universal constraints that all periodic revivals must obey.
In Appendices A and B we include the proof of some of
the technical statements and discuss a model example to
benchmark our bounds.

II. SYSTEMS WITH REVIVALS

We consider a system on a regular D-dimensional lattice
� of N d-dimensional sites with a local Hamiltonian H =∑

x∈� hx, where the local terms hx have support on at most b
neighbouring sites and are uniformly bounded by a constant h:
‖hx‖ � h. As usual, we denote the unitary implementing time
evolution Ut = exp(−iHt ) and the energy eigenstates |Ej〉.
Without loss of generality, we assume that the ground-state
energy vanishes, E0 = 0, and set h̄ = 1. We further assume
that the system is prepared in a pure state |�〉 which:

(i) is a low-entangled state: For every region A on the
lattice, the reduced density matrix σA has rank at most χ |∂A|,
where |∂A| is the area of the boundary of A and χ is indepen-
dent of the system size.

(ii) is short-range correlated and out of equilibrium: It
fulfills exponential decay of correlation with a finite correla-
tion length and the standard deviation of the energy is given
by σ ≡

√
〈H2〉 − 〈H〉2 = s

√
N for some constant s > 0.

The statement of assumption (i) is somewhat technical,
but it includes all states that can be represented by a tensor
network with constant bond dimension, such as projected
entangled-pair states in D = 2 and MPSs in D = 1. The
constant χ is then directly related to the bond dimension. In
particular, for product states we have χ = 1. The upper bound
σ � s

√
N required in assumption (ii) follows directly from

the finite correlation length. The assumption therefore simply
makes explicit that the initial state must not be an eigenstate
of the Hamiltonian. We emphasize that generic tensor network
states also have a finite correlation length [37].

The way in which we understand revivals of a state is in
terms of the fidelity with the initial state, captured by the
following definition.

Definition 1. An initial state |�〉 = ∑
j c j |Ej〉 evolved with

a Hamiltonian H has an ε revival at time τ if

|F (τ ) − F (0)| � ε, (1)

FIG. 1. Schematic of the energy distribution and of the intervals

δ (l ), with equally spaced peaks of width 2δ/τ . In the limit of per-
fect revivals, the peaks have width 0. The upper bound follows from
the Berry-Esseen theorem (Theorem 6 in Appendix A). Theorem 1
guarantees that at least O(

√
N/ logD(N )) peaks have a weight larger

than O(1/poly(N )).

where F (t ) = | f (t )| with f (t ) = 〈�|−itH |�〉 =∑
i |c j |2e−itE j .
The definition only involves an ε revival at a single time τ .

However, it implies that there are further periodic approximate
revivals at later times. Concretely, an ε revival at time τ

implies (see Appendix A 1 for derivation)

F (mτ ) �1 − m
√

2ε, m ∈ N. (2)

We emphasize that the revival of the full many-body state
is a very strong condition and f (t ), which is sometimes
known as the “spectral form factor” and its absolute F (t )
value as the “survival probability,” is not a directly measurable
quantity (F (t ) is, however, measurable in principle using an
interferometric Ramsey scheme [38–41]). For this reason, we
also consider the case of a perfectly recurring expectation
value of an observable A, leading to similar results under an
additional assumption (see Sec. VI).

III. CONSTRAINTS ON THE ENERGY DISTRIBUTION

From the definition f (t ) = 〈�| exp(−iHt )|�〉, it is clear
that f (t ) is the characteristic function of the probability
distribution of energy. In this section, we therefore study the
properties of the probability distribution of energy in the case
of ε revivals of a state that fulfils assumption (ii) above. First,
we show that if there are approximate revivals at short times τ ,
a large weight of the distribution is contained within equally
spaced “peaks,” whose spacing depends on τ (see Fig. 1). This
is true for any initial state. We then make use of the fact that
the probability distribution of energy of a state with a finite
correlation length is roughly Gaussian, with which we show
that at least ∼√

N of the peaks each contain a total weight of
at least O(1/N ).

As before, we write the initial state in the energy eigenbasis
as

|�〉 =
∑

j

c j |Ej〉.
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In the case where the Hamiltonian has degenerate energy
levels, we choose the basis in each energy eigenspace so that
every energy appears only once in the above decomposition of
|�〉. To set up some further notation, let us introduce α(t ) as
the phase of f (t ):

f (t ) = eiα(t )F (t ), α(0) = 0. (3)

Given α(τ ) and an arbitrary constant 0 � δ � π , we define
for all l ∈ Z the energy intervals


δ (l ) = 2π l + α(τ )

τ
+

[
− δ

τ
,
δ

τ

]
, (4)

where addition is pointwise, and the interval between two
consecutive such intervals


δ (l ) =
(

2π l + α(τ )

τ
+ δ

τ
,

2π (l + 1) + α(τ )

τ
− δ

τ

)
. (5)

These partition the real line as R = ⋃
l∈Z 
δ (l ) ∪ 
δ (l ). Note

that since ||H || � hN , the number of intervals 
δ (l ) in the
spectrum with nonzero energy eigenvalues is at most

n ≡ τh

2π
N ∝ τN. (6)

To declutter the notation in what follows, let us also introduce
p as the probability measure of energy of the initial state, so
that

p(
δ (l )) =
∑

i:Ei∈
δ (l )

|ci|2. (7)

The following lemma lower-bounds the probability of mea-
suring an energy on the initial state within one of the intervals

δ (l ).

Lemma 1. Let ε � |F (τ ) − F (0)|. Then∑
l∈Z

p(
δ (l )) � 1 − ε

1 − cos(δ)
. (8)

Proof. The proof follows from simple applications of in-
equalities between complex numbers. Since f (0) = 1, we
have

|F (τ ) − F (0)| = ∣∣e−iα(τ ) f (τ ) − f (0)
∣∣ (9)

=
∣∣∣∣∣∣
∑

j

|c j |2
(
1 − e−iα(τ )−iEjτ

)∣∣∣∣∣∣. (10)

Since for any complex number we have |z| =√
Rez2 + Imz2 � |Rez|, we get the lower bound

|F (τ ) − F (0)| �
∑

j

|c2
j |(1 − cos(Ejτ + α(τ ))). (11)

We now split up the summation in terms of the intervals 
δ (l )
and 
δ (l ) and neglect the contributions from 
δ (l ). This
yields a lower bound

|F (τ ) − F (0)| �
∑
l∈Z

∑
j:Ej∈
δ (l )

|c j |2(1 − cos(Ejτ + α(τ ))).

(12)

For Ej ∈ 
δ (l ) we have that

cos(Ejτ + α(τ )) � cos(δ). (13)

We hence obtain

ε � |F (τ ) − F (0)| � (1 − cos(δ))
∑
l∈Z

p(
δ (l ))

⇒
∑
l∈Z

p(
δ (l )) � ε

1 − cos(δ)
. (14)

Using the normalization of the probability distribution of
energy, we then find

1 − ε

1 − cos(δ)
�

∑
l∈Z

p(
δ (l )). (15)

�
Lemma 1 tells us that if an ε revival at time τ occurs, the

energy distribution must be mostly contained in the intervals

δ (l ) as long as cos(δ) is not too close to unity. The smaller ε

(which is equivalent to an increasingly exact revival), the nar-
rower the intervals 
δ (l ) can be made, by choosing a δ such
that the right-hand side of (8) is close to 1. If the recurrence
time τ is very large, both the distance between the intervals

δ (l ) and their width 2δ/τ are small. In a finite system,
for every ε > 0, recurrence theorems guarantee [42,43] the
existence of a corresponding recurrence time τR. For generic
systems, however, one expects that τR = O(exp(exp(N ))),
while for particular cases such as integrable systems, it is
expected that τR = O(exp(N )) [44]. In either case, the dis-
tance between the intervals 
δ (l ) becomes comparable to or
smaller than the level spacing, so that the union of the 
δ (l )
automatically contains (almost) all energy eigenvalues.

The next important feature of energy distributions of local
models in a state with a finite correlation length is given
by the Berry-Esseen theorem [45]. This is a strengthening
of the central limit theorem, in which the error from having
finite sample sizes is bounded by a function of the number of
samples. It allows us to derive the second key constraint.

Lemma 2. Let |�〉 be a state fulfilling assumption (ii). Then
there exists a constant K � 0 (independent of N) such that

p(
δ (l )) � δ

στ
+ K

log2D(N )√
N

. (16)

The proof can be found in Appendix A 2. Lemma 1 and
Lemma 2 have competing effects: While Lemma 1 shows that
the distribution clusters around at most n evenly spaced energy
intervals, Lemma 2 guarantees that no particular interval of
energy width δ can contain a weight larger than δ/(τσ ) +
K log2D(N )/

√
N . Together, they imply the existence of a

large number of intervals each containing a certain minimum
weight:

Theorem 1. Given an initial state-fulfilling assumption, (ii),
and with an ε revival at time τ , then for every c > 1 and
0 < δ � π , the number Nc,δ of intervals 
δ (l ) in the energy
distribution with p(
δ (l )) > 1/(cN ) is lower-bounded as

Nc,δ �
√

N

[
1 − hτ

2πc − ε
1−cos(δ)

]
δ/(τ s) + K log2D(N )

. (17)
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Proof. The total number of peaks 
δ (l ) is upper-bounded
by n = hNτ/2π . Hence the total number of peaks such
that p(
δ (l )) � 1/(cN ) is trivially also upper-bounded by
n. Let the index set Jδ collect the peaks such that p(
δ (l ))
> 1/(cN ). Then using Lemma 1 we find

1 − ε

1 − cos(δ)
�

∑
l /∈Jδ

p(
δ (l )) +
∑
l∈Jδ

p(
δ (l )) (18)

� n
1

cN
+

∑
l∈Jδ

p(
δ (l )) (19)

= hτ

2πc
+

∑
l∈Jδ

p(
δ (l )). (20)

Using Lemma 2 we then get

1 − ε

1 − cos(δ)
� hτ

2πc
+ Nc,δ√

N

(
δ

sτ
+ K log2D(N )

)
,

and rearranging yields the desired bound. �
To understand this bound, let us make a specific choice for

c and δ, assuming that ε is very small. For example, we can
choose c = 2hτ/π and δ = √

2ε, so that ε/(1 − cos(δ)) ≈
1/2, and we find

Nc,δ �
√

N

4

[√
2ε

τ s
+ K log2D(N )

]−1

. (21)

We see that the number of peaks of width
√

2ε such that
each of them contains a weight of at least (π/2)/(hτN ) is
essentially lower-bounded by O(

√
N/ log2D(N )).

The result holds for any value of τ , but if τ scales very
quickly with N , this result loses its predictive power. For τ =
poly(N ), one still finds a total weight of 1/poly(N ) in each
peak, which is sufficient for our arguments on entanglement in
the next section. However, if we consider the usual recurrence
time τR for some ε > 0 in a generic system, which is τR =
O(exp(exp(N ))), our bound trivializes: the right-hand side
becomes negative if we do not choose c doubly exponentially
large in the system size. At the same time, if we choose c
doubly exponentially large, the peaks are only required to
contain a doubly exponentially small amount of weight, which
does not yield useful information.

IV. BOUNDS ON THE RÉNYI ENTANGLEMENT ENTROPY
WITH α > 1

We now estimate the entanglement entropy of (approx-
imate) eigenstates of the system. The previous discussion
motivates the definition of the following normalized pure
states:

|Êl〉 = 1√
p(
δ (l ))

∑
Ej∈
δ (l )

c j |Ej〉. (22)

These are approximate energy eigenstates with energy Êl =
(2π l + α(τ ))/τ for which δ/τ controls the precision, in the
sense that ∥∥H |Êl〉 − Êl |Êl〉

∥∥ � δ

τ
(23)

and

‖Ut |Êl〉 − e−iÊl t |Êl〉‖ �
√

2(1 − cos(δt/τ )) ≈ δ
t

τ
, (24)

where the last approximation holds for δt/τ � 1. The states
|Êl〉 hence dephase in a time of order τ/δ but cannot be dis-
tinguished from eigenstates on time scales much smaller than
that. In the limit δ/τ → 0 they converge to actual eigenstates
provided that the limit exists, i.e., the interval 
δ (l ) actually
contains an eigenstate in this limit.

Theorem 1 implies that the initial state has a fidelity of at
least 1/cN with Nc,δ of the approximate eigenstates. This is in
fact enough to bound the Rényi entanglement entropy Sα of
those approximate eigenstates for every region of the lattice,
which is the focus of our next main result. We remind the
reader at this point that the Rényi entropies are defined as

Sα (ρ) = 1

1 − α
log(Tr[ρα]). (25)

In the limit α → 1 they converge to the von Neumann entropy
pointwise and they fulfill Sα � Sβ for α � β. In the limit α →
∞, one obtains S∞(ρ) = − log(‖ρ‖).

Theorem 2. There exist at least Nc,δ of the approximate
eigenstates |Êl〉 with the following property: For all α > 1
and for any subregion A of the lattice, the Rényi entanglement
entropy is bounded as

Sα (ρ̂ (l )
A ) � α

α − 1
[log cN + |∂A| log(χ )], (26)

where Nc,δ is bounded as per Theorem 1 and ρ̂
(l )
A =

TrAc [|Êl〉〈Êl |].
Proof. This result is a slight extension of an argument from

Ref. [46]: Since the fidelity F between two quantum states
cannot decrease under tracing out subsystems, we have

|〈�|�〉|2 � F (ρA, σA)2, (27)

where, ρA = TrAc [|�〉〈�|] is the reduced state of |�〉 on A
and σA that of |�〉. The fidelity between two states is smaller
than that of the outcome distributions of any measurement
on the states. We can therefore use the binary projective
measurement {Pσ , 1 − Pσ }, with Pσ being the projector onto
the image of σA, to find

F (ρA, σA)2 � Tr[ρAPσ ] � rank(σA)‖ρA‖ (28)

= rank(σA) exp(−S∞(ρA)). (29)

In Refs. [46] and [47] it was further shown that S∞ � α−1
α

Sα .
Using assumption (i), we thus find in our case

1

cN
� |〈�|Êl〉|2 � χ |∂A| exp

(
−α − 1

α
Sα

(
ρ̂

(l )
A

))
, (30)

and solving for Sα (ρ̂ (l )
A ) yields the desired bound. �

In D = 1, |∂A| simply counts the number of connected
components of A and for a product state we have χ = 1, so
that the area law term vanishes. As long as c = O(poly(N )),
the result then leads to O(

√
N/poly(log(N ))) approximate

eigenstates with entanglement entropy of order O(log(N )).
Since τ < c, this allows for a longer revival time, of up to
τ = O(poly(N )).
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For systems that exhibit perfect revivals, ε = 0, we can
choose δ = 0, so that by Eq. (23) the |Êl〉 become exact
eigenstates with energies in the set {(2πk + α(τ ))/τ }k∈Z.

Corollary 1. If F (τ ) = F (0) for some τ , there exists a
set of at least Nc,0 energy eigenstates |El〉 with energies in
the set {(2πk + α(τ ))/τ }k∈Z and such that their entanglement
entropy of any region is bounded as

Sα

(
ρ

(l )
A

)
� α

α − 1
[log cN + |∂A| log(χ )], α > 1, (31)

where

Nc,0 �
√

N

(
1 − hτ

2πc

)
K log2D(N )

. (32)

This bound on the entropy is consistent with the examples
in [20–22] and [32–35], which display eigenstates with a
log(N ) scaling of the von Neumann entropy (see Appendix
B for a more detailed comparison).

V. BOUNDS ON THE RÉNYI ENTANGLEMENT ENTROPY
WITH α � 1

For this range of entropies, let us again consider the case
of perfect revivals, with F (τ ) = F (0). In this case, the scar
states on which the initial state |�〉 has support can be exactly
represented by polynomial functions of the Hamiltonian, with
a low degree. Consider the polynomial

Ki(H ) =
∏
j �=i

((
1 − (H − Ei )2(

Ej − Ei
)2

))
, (33)

where the product over j ranges from 1 to hNτ/2π , except for
i. Note that Ki(H )|Ei〉 = |Ei〉 and Ki(H )|Ej〉 = 0. Thus,

Ki(H )|�〉 = ci|Ei〉, (34)

which can be interpreted as the statement that the polynomial
Ki(H ) projects |�〉 to the state |Ei〉. The next result is an
immediate consequence of this construction, following [36].

Theorem 3. If F (τ ) = F (0), then for all eigenstates |Ei〉
with nonzero support on |�〉, the Rényi-0 entanglement en-
tropy of sufficiently regular regions is bounded as

S0
(
ρ̂

(l )
A

)
� 7

√
hNτ |∂A| log (hN2τdb) + |∂A| log χ.

The proof, together with a precise definition of what
we mean by sufficiently regular regions, can be found in
Appendix A 3. This result also bounds the von Neumann
entropy, since S1 � S0. Note that this result holds for all
eigenstates on the equally spaced ladder, as opposed to only
O(

√
N ) of them as in Corollary 1. While it represents a

nontrivial bound, much smaller than the O(N ) expected for
most eigenstates, the concrete models in the literature show
that this could potentially be improved to O(log N ). Indeed,
in concrete models, the scar states can usually be written
as |Ei〉 = (

∑
j S j )i|�〉 for some simple state |�〉 (such as

the ground state), where Sj are single-particle operators and
j labels the sites of the lattice. These eigenstates |Ei〉 have
equally spaced energies Ei = ωi + E0, so that there are at

most hN/ω of them in the spectrum. Writing( ∑
j

S j

)i

=
i∑

k=0

(
i

k

)( ∑
j∈A

S j

)k( ∑
j∈Ac

S j

)i−k

, (35)

we find that the Schmidt rank of the operator (
∑

j S j )i is at

most log(i) � log hN
ω

. Thus, if |�〉 is low-entangled in the
sense of assumption (i), as is usually the case, all entangle-
ment entropies of |Ei〉 are bounded by log hN

ω
+ |∂A| log χ .

VI. REVIVALS IN AN OBSERVABLE

Assuming a revival of the full many-body state is a rather
strong condition. Intuitively, it should be possible that phys-
ically relevant observables have a revival in terms of their
expectation value 〈A(t )〉 ≡ 〈�(t )|A|�(t )〉 at time τ and yet
the full many-body state has a small overlap with the initial
state, F (τ ) � 1. It may therefore be surprising that conclu-
sions similar to those above can be reached when one assumes
that the expectation value is periodic,

〈A(t )〉 = 〈A(t + τ )〉 ∀t, (36)

and makes one further assumption on the observable. To state
this assumption, let us write

〈A(t )〉 =
∑
i, j

cic
∗
j Ai je

−i(Ei−Ej )t =
∑

ω

vωe−iωt , (37)

such that vω = ∑
Ei−Ej=ω cic∗

j Ai j . Then for any ω′,

0 = lim
T →∞

∫ T

0

dt

T
(〈A(t + τ )〉 − 〈A(t )〉)eiω′t

= (e−iτω′ − 1)vω′ .

It follows that either the frequency ω′ does not appear in
the dynamics of the expectation value (vω′ = 0) or it is of
the form ω′ = 2π l/τ . For local observables in many-body
systems, we expect that in general Ai j �= 0 unless A and H
share some symmetry. It therefore seems reasonable to assume
that generically

vω = 0 ⇒ cic
∗
j = 0, ∀ Ei − Ej = ω. (38)

We thus conclude that cic∗
j �= 0 only if Ei − Ej = 2π l/τ for

some integer l . This in turn implies F (0) = F (τ ), which
is the assumption of Corollary 1. We leave it as an open
problem to explore the setting of approximate ε revivals of
local observables.

VII. UNIVERSAL CONSTRAINTS ON REVIVALS

In the preceding sections, we have assumed revivals and
derived properties of the energy eigenstates from this assump-
tion. Before concluding, let us now briefly discuss general
constraints for such revivals which apply to any model with
a local Hamiltonian. It is expected that if revivals of the initial
product state exist, their duration [i.e., the time for which F (t )
is larger than some constant] must become vanishingly short
in the thermodynamic limit (see Fig. 2). This is also a feature
found in the concrete models (see, for example, Refs. [33,34]).
This property does not imply that the duration of revivals for
local observables becomes short in the thermodynamic limit,
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τ
t

1

1-ε

F(t)

τrev

2τ

FIG. 2. Illustration of the typical behavior of the fidelity of a
system with revivals. According to Theorems 4 and 5, the width of
the peaks τrev must decrease with the system size.

but only the time interval in which the full many-body state
has a large overlap with the initial state.

We illustrate this behavior with two different and general
results. The first one shows that the average fidelity over time
decays with the system size for any initial state fulfilling
assumption (ii).

Theorem 4. Let |�〉 be a pure state fulfilling assumption
(ii). Then ∫ T

0

dt

T
|F (t )|2 � 5π

2σT
+ K ′ log2D(N )√

N
, (39)

where K ′ � 0 is a constant independent of the system size.
A revival at a time τ of fidelity at least (1 − ε) for a

time interval of length τrev contributes to the left-hand side
of Eq. (39) with (1 − ε)τrev/τ , so that

(1 − ε)τrev

τ
� 5π

2στ
+ K ′ log2D(N )√

N
. (40)

For times τ � O(1), we see that the right-hand side goes as
∼O(1/

√
N ). This bound then restricts the revivals of high

fidelity to either a very short time interval τrev or a very late
time τ . In Appendix B we show that the model from [33]
effectively saturates this bound.

The second result utilizes the Lieb-Robinson (LR) bound
[48] to show that a short time after an initial product state is
prepared (or, equally, after a perfect revival), its overlap with
the initial state has to be subexponentially small in the system
size. For simplicity, we formulate and prove this result only in
the case of a D-dimensional cubic lattice of side length L and
with a translationally invariant initial state and Hamiltonian.
We emphasize, however, that a similar argument applies to
any regular D-dimensional lattice and also for initial states
that are only translationally invariant with a higher period than
the lattice spacing.

Theorem 5. Consider the translationally invariant initial
state |�〉 = |ψ〉⊗N on the cubic lattice � = ZD

L evolving
under a strictly local, uniformly bounded, and translationally
invariant Hamiltonian H . Define

k(t ) = − log (〈�|ρx(t ) ⊗ 1|�〉), (41)

where ρx(t ) = Tr{x}c [Ut |�〉〈�|U †
t ] is the reduced density ma-

trix of an arbitrary site x at time t . If |�〉 is not an eigenstate,
then for any δ > 0 there exists a time 0 < τ < δ such that

FIG. 3. Schematic for the idea behind Theorem 5: An operator
located in region Ai at time t = τ can (approximately) only be influ-
enced by region Ai(τ ) at time t = 0 due to the past Lieb-Robinson
“light cone.” If the quantum state of regions Ai(τ ) factorizes at
time t = 0, it follows that correlation functions between operators
supported in regions Ai (approximately) factorize at time τ . Since
translationally invariant product states have an exponentially small
overlap, one expects that the states at times t = 0 and t = τ have an
exponentially small fidelity (as evidenced by concrete models; see
Appendix B).

k(τ ) > 0. For any such fixed time τ and for large enough L,
we have

F (τ )2 � O
(

exp

(
−1

4
[LDk(τ )]1/1+D

))
. (42)

The theorem says that, whenever k(τ )>0, the fidelity between
|�〉 and the time-evolved state Uτ |�〉 is subexponentially
small in the linear size of the system L. Furthermore, from
a perturbative expansion one quickly finds that for small τ

we have k(τ ) = O(τ 2). The proof of Theorem 5 is relatively
involved and presented in Appendix A 5. However, the idea
behind it is simple and sketched in Fig. 3.

VIII. CONCLUSION

We have derived general results on the energy spectrum
and the entanglement of (approximate) energy eigenstates
for systems that show revivals. Most importantly, our results
show that the presence of “quantum many-body scars” with
small amounts of entanglement of order log(N ) is a necessary
consequence of the existence of revivals of a low-entangled
state with a revival time that is at most O(poly(N )). This
explains why this scaling behavior has been found in the
concrete models studied so far [20–22,32–35]. One drawback
of our results is that they only show an O(log(N )) scaling
for Rényi entanglement entropies of orders α > 1, while for
smaller α we can only show the upper bound O(

√
N |∂A|).

While it is often found in practice that the von Neumann
entropy and the higher-order Rényi entanglement entropies
show a similar scaling behavior, this is not always the case.
In particular, our bounds on the Rényi entanglement entropies
do not guarantee the existence of an efficient description in
terms of MPSs [49] [although a O(log(N )) bound on the von
Neumann entropy would not imply this either]. Indeed, it is
known [46] that there exist states with both (a) an arbitrarily
large overlap with a product state and (b) a volume-law scaling
of the von Neumann entropy, while all Rényi entropies of
order α > 1 are bounded by a constant (dependent on α). It
is an interesting open problem to find arguments for bounding
the Rényi entropy with α < 1 by O(log(N )), which would
guarantee an efficient MPS description of the scar states from
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dynamical considerations alone. A further interesting open
problem is to understand whether the emergent (approximate)
SU(2) representations that are connected to quantum many-
body scars in concrete models [22,32–35] can be derived
from general arguments. Finally, it would be interesting to see
whether results similar to those in the case of approximate
revival of the initial state can also be derived for approximate
revivals of (generic) expectation values of observables. This
would also be interesting from the point of view of bounding
equilibration time scales in interacting quantum many-body
systems, a problem where relatively little rigorous progress
has been made so far (see, for example, Refs. [7] and [50–52]
and references therein for recent discussions of this problem).
In particular, it is an interesting open problem whether ε-
approximate revivals of local observables and at early times
are possible in entanglement-ergodic systems [46], where
all energy eigenstates at positive energy density fulfill weak
volume laws of entanglement.
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APPENDIX A: TECHNICAL PROOFS OF THE
MAIN RESULTS

1. Proof of inequality (2)

Here we show inequality (2), using the notation |�(t )〉 =
Ut |�〉. First, from the triangle inequality and the unitary
invariance of the trace norm, we find

‖|�(0)〉〈�(0)| − |�(mτ )〉〈�(mτ )|‖1

� m‖|�(0)〉〈�(0)| − |�(τ )〉〈�(τ )|‖1. (A1)

We now make use of the Fuchs–van de Graaf inequalities [53]

1 − F (ρ, σ ) � 1

2
‖ρ − σ‖1 �

√
1 − F (ρ, σ )2, (A2)

where F (ρ, σ ) = ‖√ρ
√

σ‖1 is the fidelity between two quan-
tum states. In our case we have

F (t ) = |〈�(t )|�(0)〉| = F (|�(t )〉〈�(t )|, |�(0)〉〈�(0)|).
(A3)

Using F (τ )2 = (1 − ε)2 � 1 − 2ε, we thus find

1 − F (mτ ) � m
√

1 − F (τ )2 � m
√

2ε, (A4)

which proves the claim.

2. Proof of Lemma 2

We first need the Berry-Esseen theorem for local Hamilto-
nians from [45], which reads as follows.

Theorem 6 (Lemma 8 in [45]). Let |�〉 be a state with a
finite correlation length, energy variance σ , and a local Hamil-
tonian with uniformly bounded local terms, of a system of
N particles on a D-dimensional lattice. Given the cumulative
function

J (x) =
∑
Ei�x

|ci|2 (A5)

and the Gaussian cumulative function

G(x) =
∫ x

−∞

dt√
2πσ 2

e
−(t−〈H〉)2

2σ2 , (A6)

then

sup
x

|J (x) − G(x)| � C
log2D(N )

s3
√

N
, (A7)

where C is a constant and s = σ√
N

.
The proof of Lemma 2 follows straightforwardly from this

result. Let us first recall the definition of p(
δ (l )) from the
text,

p(
δ (l )) =
∑

i:Ei∈
δ (l )

|ci|2, (A8)

where 
δ (l ) = 2π l+α(τ )
τ

+ [− δ
τ
, δ

τ
]. Using the notation of

Theorem 6, we can write

p(
δ (l )) = J

(
2π l + α(τ )

τ
+ δ

τ

)
− J

(
2π l + α(τ )

τ
− δ

τ

)
.

(A9)

Now, using the triangle inequality and the Berry-Esseen
bound,

|J (x + y) − J (x)| � |G(x + y) − G(x)| + |J (x + y)

− G(x + y) + G(x) − J (x)| (A10)

� |G(x + y) − G(x)| + 2 sup
x

|J (x) − G(x)|

(A11)

� |G(x + y) − G(x)| + K
log2D(N )√

N
, (A12)

where K � 2C/s3. By definition we have that, for all x � 0,

|G(x + y) − G(x)| =
∫ x+y

x

dt√
2πσ 2

e
−(t−〈H〉)2

2σ2

�
∫ y/2+〈H〉

−y/2+〈H〉

dt√
2πσ 2

e
−(t−〈H〉)2

2σ2

=
∫ y/2

−y/2

dt√
2πσ 2

e
−t2

2σ2 � y

2σ
, (A13)

where in the last step we have used that erf[x] ≡
1√
π

∫ x
−x dte−t2 �

√
2x. Setting y = 2δ

τ
completes the proof.
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3. Proof of Theorem 3

We start with the assumption of perfect revivals F (τ ) =
F (0), which implies that

|�〉 =
∑

i

ci|Ei〉, Ei = 2π l + α(t )

τ
, (A14)

where l ∈ Z. Since the Hamiltonian is bounded, we know that
the number of such levels is at most hNτ

2π
, so that |�〉 has

support on at most that many levels. Let us now define the
following operator Ki for the eigenstate |Ei〉:

Ki(H ) =
∏
j �=i

((
1 − (H − Ei )2

(Ej − Ei )2

))
. (A15)

This is a polynomial of the Hamiltonian of degree at most hNτ
π

and is such that Ki(H )|�〉 = ci|Ei〉.
Now fix a bipartition A ∪ Ā of the lattice. The boundary of

a set A, denoted B(A), is the set of local terms hx which are
supported on both A and Ā. Assume the following regularity
conditions for it, parametrized by an integer m.

Definition 2. Let m be an integer. The bipartition A ∪ Ā is
said to be m regular if the following holds.

(a) There exist 2m nonempty concentric sets
A−m, . . . , A−2, A−1, A1, A2, . . . , Am satisfying A ⊂ A1 ⊂
A2 ⊂ . . . Am and A ⊃ A−1 ⊃ A−2 ⊃ . . . A−m. Let A0 = A.

(b) The number of spins in Am\A and A\A−m is at most
10m|∂A|.

(c) Every local term hx belongs to at most one B(Aq).
Several natural partitions, such as rectangular, vertical, and

circular, satisfy these conditions, whenever |∂A| = �(m) (i.e.,
for sufficiently large regions).

Given this definition, we now proceed to bound the
Schmidt rank of polynomials of the Hamiltonian, using a
result from [36].

Lemma 3. Fix an integer m > 0. For any m-regular biparti-
tion of the lattice, it holds that

SR(H �) � (2�Ndb)
2�
m +10m|∂A|,

where SR(X ) denotes the Schmidt rank of an operator X with
respect to the bipartition.

Proof. Following the regularity condition (Definition 2) on
A, we write H = ∑m+1

q=−m Hq, where

Hq =
∑

x:supp(hx )⊂Aq\Aq−1

hx +
∑

x∈B(Aq−1 )

hx

for q ∈ {−m + 1, . . . , m},

H−m =
∑

x:supp(hk )⊂A−m

hx,

and

Hm+1 =
∑

x:supp(hx )∈L\A−m

hx.

Following [54], we can view H as an effective one-
dimensional Hamiltonian. It was argued in [36] that H � can

be expanded as a linear combination of at most
(
�+m

m

) · (2�
2�
m

)
multinomials of {Hq}m+1

q=−m, such that each multinomial has

a Schmidt rank of at most (Ndb)
�/m

across some bipartition
Aq ∪ Āq (with −m < q < m). Since the number of spins be-
tween Aq and A is at most 10m|∂A| (recall Definition 2), each

such multinomial has a Schmidt rank of at most (Ndb)
�/m ·

s10m|∂A| across the bipartition A ∪ Ā. Thus,

SR(H �) �
(

� + m

m

)
·
(

2�
2�
m

)
· (Ndb)

�
m · s10m|∂A|

� (2�Ndb)
2�
m +10m|∂A|.

This completes the proof. �
On the other hand, assumption (i) from the text implies that

there exists a product state |ψA〉 ⊗ |ψA′ 〉 and an operator K�

of Schmidt rank SR(K� ) � χ |∂A| such that K� |ψA〉 ⊗ |ψA′ 〉 =
|�〉.

We now proceed to prove Theorem 3. Note that Eq. (34)
states that |Ei〉 can be obtained from |�〉 by applying a
polynomial in H of degree at most hNτ

π
. Applying Lemma 3

and choosing � = hNτ
π

, m =
√

�
|∂A| yields

log SR(Ki ) � 12

√
hNτ |∂A|

π
log

(
2hN2τdb

π

)

� 7
√

hNτ |∂A| log (hN2τdb) (A16)

for every m-regular partition. With this, a bound on the Rényi-
0 entropy follows:

S0(TrĀ(|Ei〉〈Ei|)) � log SR(Ki ) + log SR(K� )

� 7
√

hNτ |∂A| log
(
hN2τdb

) + |∂A| log χ.

This completes the proof.

4. Proof of Theorem 4

The proof follows an argument first made in [55] and
[56], combined with the Berry-Esseen theorem (see Sec. A 2,
above). Since the integrand of the left-hand side is positive,
we have that∫ T

0

dt

T
|F (t )|2

� 5

4

∫ T

0

T dt

T 2 + (t − T
2 )2

|F (t )|2

=
∑
l,m

|cl |2|cm|2 5

4

∫ T

0

T dt

T 2 + (t − T
2 )2

e−it (El −Em )

�
∑
l,m

|cl |2|cm|2 5

4

∣∣∣∣∣
∫ T

0

T dt

T 2 + (
t − T

2

)2 e−it (El −Em )

∣∣∣∣∣
= 5π

4

∑
l,m

|cl |2|cm|2e−T |El −Em|. (A17)

205107-8



REVIVALS IMPLY QUANTUM MANY-BODY SCARS PHYSICAL REVIEW B 101, 205107 (2020)

Appendix B in [55] (and also Appendix B in [56]) then shows
that∑
l,m

|cl |2|cm|2e−T |El −Em| � 4 max
E

∑
El ∈{E ,E+1/T }

|cl |2 ≡ 4ξ (1/T ).

(A18)

Next, we again use the Berry-Esseen theorem (Theorem 6).
Note that we can write

ξ (1/T ) = max
E

J (E + 1/T ) − J (E ). (A19)

Let us define E∗ as the solution of the optimization in
Eq. (A19). This yields∣∣∣∣ξ (1/T ) − G

(
E∗ + 1

T

)
+ G(E∗)

∣∣∣∣ � 2 sup
x

|J (x) − G(x)|
(A20)

� 2C
log2D(N )

s3
√

N
,

where in the first line we use the triangle inequality, and in the
second the Berry-Esseen theorem. Thus∫ T

0

dt

T
|F (t )|2

� 5π

(
G

(
E∗ + 1

T

)
− G(E∗)

)
+ 10πC

log2D(N )

s3
√

N
(A21)

� 5πErf[1/(
√

2σT )] + 10πC
log2D(N )

s3
√

N
, (A22)

where erf[x] ≡ 1√
π

∫ x
−x dte−t2

. The result now follows from

the fact that erf[x] �
√

2x and setting K ′ � 10πC/s3.

5. Proof of Theorem 5

The proof of Theorem 5 relies on Lieb-Robinson (LR)
bounds [48], which apply under our assumptions on the
Hamiltonian stated in the text. LR bounds can be stated in
different ways (see Ref. [57] for a review). For our purposes,
the following formulation will be most suitable. To state it, we
have to set up some notation. For any region X of the lattice
� = ZD

L , we define

HX =
∑

x:supp(hx )⊆X

hx (A23)

as the sum of Hamiltonian terms supported in region X . For
any region X we define the complement X c = �\X and |X |
to be the number of lattice sites contained in X . For any two
regions of the lattice X,Y we denote by d (X,Y ) the lattice
distance between the regions. For any region X we further
define U X

t as the unitary propagator for time t under the
Hamiltonian HX . Given our conventions, we thus have Ut =
U �

t . Now let A be a local observable. By abuse of notation,
we also denote by A its supporting region on the lattice and
hence by |A| the corresponding number of sites of the lattice
on which it acts. We further define

AX (t ) = U X
t

†
ÂU X

t , A�(t ) = A(t ). (A24)

We are now in a position to state the LR bounds that we use.

Lemma 4 (Lieb-Robinson bounds). Let A be a local observ-
able and H a strictly local, and uniformly bounded Hamilto-
nian. Then there exist constants KLR, vLR�0 such that for all
X with l := d (A, X c)�2D − 1 we have

‖AX (t ) − A(t )‖ � ‖A‖KLRlD−1evLRt−l . (A25)

The LR bounds tell us that we can approximate the time
evolution of a local observable A by time evolution con-
strained to a neighborhood X around it as long as the distance
l from A to the complement of X is much larger than vLRt . In
turn this implies that regions on a lattice that are a distance
l apart cannot build up significant correlations within a time
much smaller than l/vLR.

For now, we keep the proof slightly more general than
the statement in the theorem and consider an initial state
|�〉 = ⊗x|ψx〉 that need not be translationally invariant. We
then specialize to the latter case towards the end of the
proof. In the following we write |�(τ )〉 = Uτ |�〉. First, using
that |�〉 = |�(0)〉 is a product state, we find for any region
A

|〈�(τ )|�(0)〉|2 = 〈�(τ )| ⊗x∈� |ψx〉〈ψx||�(τ )〉
� 〈�(τ )| ⊗x∈A |ψx〉〈ψx| ⊗ 1Ac |�(τ )〉.

(A26)

Viewing Ax = |ψx〉〈ψx| ⊗ 1�\{x} as a local observable sup-
ported at site x ∈ A and A = ⊗x∈A|ψx〉〈ψx| ⊗ 1Ac as one sup-
ported in region A, we can then make use of the Heisenberg
picture to get

|〈�(τ )|�(0)〉|2 � 〈�(0)|A(τ )|�(0)〉. (A27)

We now fix region A to consist of a sublattice of sites, all
of which are a distance 2(l + 1) + r apart from each other,
where r is the maximum diameter of the support size of the
Hamiltonian terms:

r = max
x∈�

|diam(supp(hx ))|. (A28)

The distance l will be fixed later. We define Bx(l ) to be an l
neighborhood of x,

Bx(l ) = {y ∈ � | d (x, y) � l}, (A29)

and set X = ∪x∈ABx(l − 1). With this choice we have
d (A, X c) = l and

U X
t =

∏
x∈A

V x(t ), (A30)

where V x(t ) is only supported within Bx(l − 1), which implies

AX (t ) =
∏
x∈A

AX
x (t ). (A31)

Using the LR bounds and that |�(0)〉 is a product state, we
then find

〈�(0)|A(τ )|�(0)〉 � 〈�(0)|AX (τ )|�(0)〉 + KLRlD−1evLRτ−l

=
∏
x∈A

〈�(0)|AX
x (τ )|�(0)〉 + KLRlD−1evLRτ−l .

(A32)
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We can now make use of the LR bounds again to approximate
each factor:

〈�(0)|AX
x (τ )|�(0)〉 � 〈�(0)

∣∣Ax(τ )
∣∣�(0)〉 + KLRlD−1evLRτ−l

= 〈�(τ )|Ax|�(τ )〉 + KLRlD−1evLRτ−l .

(A33)

Using that ‖A(t )‖ = ‖AX (t )‖ = ‖AX
x (t )‖ = ‖Ax(t )‖ = 1, we

can then bound

〈�(0)|A(τ )|�(0)〉 �
∏
x∈A

〈�(0)|Ax(τ )|�(0)〉

+ 2|A|KLRlD−1evLRτ−l . (A34)

However, we also have

〈�(0)|Ax(τ )|�(0)〉 = 〈�(τ )||ψx〉〈ψx| ⊗ 1{x}c |�(τ )〉
= Tr[ρx(τ )|ψx〉〈ψx|] =: exp(−kx(τ )).

(A35)

Putting the bounds together and using the assumption

k(τ ) = min
x∈�

kx(τ ) > 0, (A36)

we thus find

|〈�(τ )|�(τ )〉|2 � exp(−k(τ )|A|)
+ 2|A|KLRlD−1 exp(vLRτ − l ). (A37)

We now choose l = (LDk(τ ))1/(1+D). For large enough L,
we then find

|A| � 1

2

(
L

l

)D

= 1

2

(
LD

k(τ )

) D
1+D

, (A38)

|A| � 1

4

(
LD

k(τ )

) D
1+D

. (A39)

This leads to

|〈�(τ )|�(0)〉|2

�
[

1 + KLR

(
LD

k(τ )

) D
1+D (

LDk(τ )
)D−1/(D+1)

evLRτ

]

× exp

(
−1

4
(LDk(τ ))1/(1+D)

)
(A40)

=
[

1 + KLR

(
N2D−1

k(τ )

) 1
D+1

]
exp

(
−1

4
(Nk(τ ))1/(1+D)evLRτ

)

(A41)

= O
(

exp

(
−1

4
(Nk(τ ))1/(1+D)

))
. (A42)

What is left is to show that for any δ > 0 there exists a τ < δ

such that k(τ ) > 0. To do this, we now make use of the
translational invariance, so that k(τ ) = kx(τ ) for any x ∈ �.
Suppose now, contrarily, that there exists a δ > 0 and k(τ ) =
0 for all τ < δ. This means that k(τ ) is constant over an open
interval. But since in any finite system k(τ ) is an analytic
function, it then has to be constant. This in turn implies that

ρx(τ ) = |ψ〉〈ψ |x (A43)

for all τ , which implies that the initial state is an eigenstate.
This finishes the proof of Theorem 5. We emphasize that we
only used the translational invariance of the initial state to
argue that k(τ ) > 0. It should be clear from the argument
given above that it can be generalized to situations where,
for example, the initial state is translationally invariant with
a higher period or is only a product state after neighboring
spins are blocked together.

APPENDIX B: COMPARING THE BOUNDS WITH
PREVIOUS RESULTS

To illustrate the tightness of our bounds, we compare our
results with those of a recently found model with quantum
scars and perfect revivals in Ref. [33]. The model is the spin-1
XY model in a hypercubic lattice with N = LD particles and
Hamiltonian

H =
∑
〈i j〉

(
Sx

i Sx
j + Sy

i Sy
j

) + h
∑

i

Sz
i + D

∑
i

(
Sz

i

)2
, (B1)

where Sα
i are the spin-1 operators at site i. In Ref. [33] it was

found that this Hamiltonian has N + 1 eigenstates |Sn〉 with
n ∈ {0, . . . , N} which form a representation of SU(2) and
have equally spaced energies En = h(2n − N ) + ND. More-
over, there exists a particular product state |�0〉 = ⊗

i |ψi〉,
the so-called “nematic Néel” state, which is such that

|F (t )|2 = |〈�0|e−iHt |�0〉|2 = cos2N (ht ), (B2)

that is, it exhibits perfect revivals at periods of π/h, with a
weight suppressed exponentially with the system size. This
initial product state can be written as

|�0〉 =
N∑

n=0

cn|Sn〉, c2
n = 1

2N

(
N

n

)
, (B3)

so that 〈H〉 = ND and σ = h
√

N , which thus fulfills assump-
tions (i) and (ii) from the text. One can easily calculate that
for any T = π l/h we have∫ T

0

dt

T
|F (t )|2 =

(
N − 1

2

)
!√

πN!
= (πN )−1/2 + O(N−3/2), (B4)

which shows that the scaling of Theorem 4 is close to optimal.
For a bipartition of the lattice N = NA + NB with NA � NB,

the scar eigenstates have a Schmidt decomposition |Sn〉 =∑K
k=0

√
λ

(n)
k |i(n)

k,A〉 ⊗ |i(n)
k,B〉, where K = max{n, NA}. The coef-

ficients are calculated to be

λ
(n)
k =

(NA

k

)( NB

n−k

)
(N

n

) . (B5)

Let us choose NA = NB = N/2. The Rényi-∞ entropy can
now be easily obtained by noting that for all n, the largest
Schmidt coefficient is given by

λ(n)
max =

(N/2
n/2

)2

(N
n

) . (B6)

Let us now do the change of variables n = bN , so that b is
an O(1) number for the O(N ) eigenstates in the bulk of the
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spectrum. For large N , using Stirling’s approximation, we find
that(

N/2

bN/2

)2

� 1

πNb(1 − b)

(
N

2

1(
bN
2

)b( (1−b)N
2

)(1−b)

)N

, (B7)

(
N

bN

)
� 1√

2πb(1 − b)N

(
N

1

(bN )b((1 − b)N )(1−b)

)N

,

(B8)

which leads to

λ(n)
max �

√
2

πb(1 − b)N
, (B9)

and therefore

S∞ ≡ − log λ(n)
max � 1

2 log N + 1
2 log(πb(1 − b)/2). (B10)

This, together with the inequalities for Rényi entropies Sα �
S∞ for all α � 0 and

α − 1

α
Sα � S∞, ∀α � 1, (B11)

implies that all the Rényi entropies with α > 1 of the O(N )
eigenstates also scale logarithmically and that the Rényi en-
tropies for 0 � α � 1 scale at least logarithmically. Similar
conclusions can likely be reached with further models in the
literature such as [32] and [34]. In contrast, Corollary 1 only
guarantees the existence of O(

√
N/ log2D (N )) eigenstates in

which the Rényi entropies with α > 1 scale at most logarith-
mically.

In addition, in [33] it is shown that at least one eigenstate
in the middle of the spectrum has von Neumann entanglement
entropy scaling as S1 � O(log N ), which suggests that Theo-
rem 3 is not tight.
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