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Many-body effects in nodal-line semimetals: Correction to the optical conductivity
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Coulomb interaction might have important effects on the physical observables in topological semimetals with
vanishing density of states at the band touching due to the weak screening. In this work, we show that Kohn’s
theorem is not fulfilled in nodal-line semimetals (NLSMs), which implies nonvanishing interaction corrections
to the conductivity. Using renormalized perturbation theory, we determine the first-order optical conductivity
in a clean NLSM to be σ⊥⊥(�) = 2σ‖‖(�) = σ0[1 + C2αR(�)], where ⊥ and ‖ denote the perpendicular and
parallel components with respect to the nodal loop, σ0 = (2πk0)e2/(16h) is the conductivity in the noninteracting
limit, 2πk0 is the nodal-loop perimeter, C2 = (19 − 6π )/12 � 0.013 is a numerical constant, and αR(�) is the
renormalized fine-structure constant in the NLSM. The analogies between three-dimensional NLSMs and two-
dimensional Dirac fermions are reflected in the parallelism between their respective optical conductivities, both
in the noninteracting limit and in the correction, as pointed out by the equality of the universal coefficient C2 in
both systems. Finally, we analyze some experiments that have determined the optical conductivity in NLSMs,
discussing the possibility of experimentally measuring our result.
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I. INTRODUCTION

Modern condensed matter physics has an increasing in-
terest in the study of systems based on their topological
properties. While the most renowned classes of topologi-
cally nontrivial materials are the topological insulators [1],
which are gapped in the bulk but have protected gapless
surface states, more recent work has shown the existence of
topologically nontrivial materials which are also gapless in
the bulk, the so-called topological nodal semimetals [2–4].
These materials are characterized by a crossing between the
conduction and valence bands closest to the Fermi level.
While this crossing is protected by certain symmetries (i.e.,
it cannot be removed by symmetry-preserving perturbations),
its robustness depends crucially on the codimension of the
band-touching node, i.e., on the difference between the spa-
tial dimension and the defect dimension. In three dimen-
sions (3D), two cases must be differentiated. Weyl [5,6] and
Dirac [7] semimetals, in which the nodes consist of zero-
dimensional (0D) discrete nodal points, are the most robust
variety. For instance, the presence of either time-reversal
symmetry or inversion symmetry (not both simultaneously)
guarantees the topological stability of Weyl semimetals. The
crossing may also be a one-dimensional (1D) nodal line [8],
either twofold degenerate (Weyl type) or fourfold degenerate
(Dirac type). Nodal lines might appear in different shapes: ex-
tended lines running across the Brillouin zone (BZ) [9], closed
loops [8], chains of loops [10], linked rings [11,12], knotted
loops [13], etc.
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This line node defines the so-called nodal-line semimetals
(NLSMs), which are the focus of this work. Whereas NLSMs
do not posses the robustness of point nodes, the presence of
some additional symmetries can stabilize them, and indeed
depending on the protecting symmetries different topological
invariants can be defined [14–17]. For instance, two Z2 in-
variants have been found when time-reversal, inversion, and
spin-rotation (i.e., absence of spin-orbit coupling) symmetries
apply [18,19], while stability when spin-rotation symmetry
is broken requires additional (nonsymmorphic) symmetries
to be imposed, such as a glide or twofold screw symmetry
[4,20,21], and a Z index can be associated to the nodal line
in this case. It has also been found that when a protecting
symmetry is broken, the NLSM becomes either gapped or a
Weyl or Dirac semimetal [22–24].

However, in general, these conditions are insufficient to
ensure the nodal line having constant energy [8], and thus it
is not generically located at the Fermi level. It is true though
that a constant energy line may well be a good approximation,
and indeed exact if particle-hole symmetry is present (as in
nodal-line superconductors). Unlike most topological phases,
NLSMs do not necessarily posses protected surface states
[18,25], which would in general require the surfaces to pre-
serve the symmetries that protect the line node. Nevertheless,
even if this does not apply, when particle-hole symmetry
(approximately) holds, a (nearly) flat, drumheadlike band
appears over the surface BZ enclosed by the projection of the
nodal line onto the corresponding surface [8]. However, the
lack of topological protection for these surface states means
that a change of the model parameters not necessarily break-
ing any particular symmetry might spoil their flatness and
localization [14].
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Aside from their fundamental interest, NLSMs have also
a practical interest due to their unusual transport properties
[26–31], and moreover they have been proposed as hydrogen
catalysts due to their exotic surface states [32]. However,
while there has been strong theoretical interest for NLSMs
since their first proposal [8] and there exist a number of
materials predicted to show these line nodes [3], experimental
evidence has only appeared quite recently. To our knowl-
edge, there are a dozen solid-state materials in which nodal
lines have been experimentally demonstrated, especially via
angle-resolved photoemission spectroscopy (ARPES) [33] or
quantum magnetic oscillation measurements [34]. Among
these materials, one can mention, for instance, ZrSiS [35–39],
PbTaSe2 [20,40], and CaAgAs [41,42]. Let us highlight that,
more lately, optical spectroscopy has emerged as a comple-
mentary experimental technique able to provide evidence to
identify NLSMs [9,43,44]. On the other hand, NLSMs have
also been realized with cold atoms [45] as well as in photonic
[46–48] and mechanical [49] metacrystals.

This work studies the effect of the long-range Coulomb
interaction between electrons on a physical observable: the
optical conductivity. The influence of the Coulomb interaction
on the properties of other physical systems is well known.
In Fermi-liquid metals, although this long-range interaction
is marginal in the renormalization group (RG) sense, the
strong Thomas-Fermi screening arising from their extended
Fermi surface with nonzero density of states (DOS) makes the
Coulomb interaction effectively short ranged (and thus irrele-
vant) [50–52]. Physical properties in nodal-point semimetals
in both 2D (e.g., graphene) and 3D (e.g., Weyl semimetals)
receive logarithmic corrections due to the Coulomb inter-
action remaining only marginally irrelevant [53–57] as a
consequence of a vanishing DOS at the nodal points, which
makes screening weak due to the few states available to
participate. NLSMs also display a vanishing DOS at the line
node [30], so the Coulomb interaction is expected to remain
long ranged and marginally irrelevant. Indeed, this has been
found to be the case in clean NLSMs [58]. Moreover, a non-
trivial interacting fixed point at which the screened Coulomb
interaction is irrelevant has been predicted by means of both
RG and large-N computations [58]. This fact thus validates
a perturbative treatment around this fixed point, despite the
nominal ratio between kinetic and Coulomb energies being
zero for vanishing chemical potential [59]. On the other hand,
when disorder (by itself a marginally relevant perturbation) is
taken into account, Coulomb interaction becomes marginally
relevant by a feedback mechanism, although the Coulomb in-
teraction flows to strong coupling asymptotically more slowly
than disorder [60].

These considerations raise the question of the effect of the
Coulomb interaction on the physical observables in NLSMs,
which are expected to receive logarithmic corrections. This
work focuses on the contribution of the Coulomb interaction
to the optical conductivity, which being directly influenced
by the charge dynamics thus provides information about the
electronic band structure as well as about the correlations of
the low-energy quasiparticles [61].

The corresponding problem of determining the Coulomb
correction to the optical conductivity in graphene was the
subject of a long controversy in the past. To first order in

perturbation theory, the conductivity of intrinsic graphene at
zero temperature reads as [62]

σgr (�) = e2

4h̄

[
1 + Cαgr (�) + O

(
α2

gr

)]
, (1)

where αgr (�) = e2/[4πε0 h̄vgr (�)] is the renormalized fine-
structure constant in suspended graphene, with ε0 the vacuum
permittivity and vgr (�) the renormalized (physically mea-
surable) Fermi velocity of graphene, and C is a numerical
constant. In particular, the controversy arose due to the fact
that different calculations gave three different values for this
first-order coefficient C [63]:

C1 = 25 − 6π

12
� 0.512, (2a)

C2 = 19 − 6π

12
� 0.013, (2b)

C3 = 22 − 6π

12
� 0.263. (2c)

What is more, the universality of this coefficient was also
questioned since it was proposed that high-energy details
not taken into account by the continuum Dirac model were
necessary to correctly determine C.

It is worth noticing that experiments [64,65] indicate that
the overall effect of the Coulomb interaction is small. How-
ever, due to the fact that αgr ∼ 2 in suspended graphene, the
validity of perturbation theory, and in particular the smallness
of the higher-order terms in the perturbative expansion, is not
guaranteed. Therefore, although C2 is the value which better
fits to experiments, one cannot rigorously conclude that this
is correct result from phenomenology, but theoretical analysis
is needed. On the other hand, experiments can be compared
to nonperturbative calculations such as [66,67], both giving
good agreement.

There are mainly two important technical details in the
calculation of C. First, the initial approach for computing
the conductivity from other quantity: from the density-density
response, from the current-current correlator (Kubo formula),
and from the kinetic quantum transport equation. Second, for
calculations in the continuum Dirac model, the regularization
procedure used: hard or soft cutoff, dimensional regularization
(DR), implicit regularization, etc.

A thorough recapitulation of the theoretical calculations of
C can be found in [68]. The calculation was first tackled in
[62], where the value C1 was obtained using a hard-cutoff
regularization with the Kubo approach. Shortly after, [69]
concluded that in order for the three approaches, density-
density response, Kubo and kinetic equation, to give a consis-
tent result within a cutoff regularization, this has to be a soft
one, in which case the three approaches provide the value C2.
This is a consequence of the fact that, in the approaches using
the current operators (Kubo and kinetic equation), a naive
hard-cutoff regularization violates the Ward identity, and thus
gauge invariance. Nevertheless, a hard-cutoff regularization
can also be used with these approaches as long as it is
appropriately applied to enforce the Ward identity, as argued
by [70,71] based on their Kubo hard-cutoff calculation. The
density-density response approach does not suffer from this
problem, and it gives the same result C2 for all cutoffs [69,72].
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Then, Ref. [73] presented a DR calculation using both
Kubo and density-density response approaches, both giving
the C3 result and respecting the Ward identity. However, as it is
transparent in the more recent DR calculations of [63,68], DR
gives the C2 result using both the Kubo and density-density
response approaches provided that one substracts all the coun-
terterms consistently order by order. The delicate point is that
even if one does not substract the subdivergences in the first-
order polarization tensor, a finite result is obtained, but one
has to substract them in order to be consistent and properly
renormalize the theory. The C3 value was obtained again by
[74] using the Kubo approach and starting from a lattice
model, but finally performing the integrals with a hard-cutoff
without checking the Ward identity, which has the subtlety
indicated above. Indeed, some of these authors obtained later
C1 using a similar method, and C2 using the density-density
response approach with a hard cutoff [75]. At the same time,
by applying implicit regularization to the Kubo approach
and setting the arbitrariness by requiring the transversality
of the polarization tensor, [76] obtained C2. Furthermore, a
lattice tight-binding Kubo and a Wilson momentum-shell DR
density-density response approach yielded C2 [77]. Finally, an
unscreened Hartree-Fock calculation [67] has obtained C =
1
4 � C3.

In summary, the more widely accepted conclusion is that
the first-order coefficient C is universal, i.e., independent
of high-energy details and spatial extension of atomic wave
functions [77], and it has the small value C2, which was first
obtained by [69], independently of the regularization scheme
used.

In this work, by mapping the NLSM problem to the
graphene problem in the low-energy regime, we find that
the optical conductivity of NLSMs obtains many-body cor-
rections even at zero temperature and with the chemical
potential pinned to the nodal line, analogously to graphene.
It is worth highlighting that the low-energy region, where
the NLSM displays a linear dispersion, corresponds to re-
maining at the leading-order term in a Taylor expansion in
powers of the inverse of the nodal-ring radius 1/k0, i.e., to
the large-k0 limit. Outside this regime, we expect frequency-
dependent corrections O(�/vrk0), both in the noninteracting
limit, where they have already been determined in [30],
and in the interaction correction. Evidently, these corrections
would be model and thus material dependent, so that the
analogy with graphene is no longer valid outside the lin-
ear regime. However, the study of the Coulomb interaction
correction outside the linear regime, e.g., in lattice models,
lies beyond the scope of this work, and we leave it for the
future.

Within this linear dispersion model of the NLSM, the
optical conductivity is anisotropic, with the component per-
pendicular to the nodal ring being twice the parallel ones:

σ⊥⊥(�) = σ0
[
1 + C2αR(�) + O

(
α2

R

)]
, (3a)

σ‖‖(�) = 1
2σ⊥⊥(�), (3b)

where σ0 = k0e2/(16h̄) is the noninteracting optical con-
ductivity, k0 is the radius of the nodal ring, and αR(�) =
e2/[4πεh̄vR(�)] = αR(μ̄)/[1 + (1/4)αR(μ̄) ln (μ̄/�)] is the
renormalized fine-structure constant in the NLSM, with ε

the static lattice dielectric constant of the NLSM, vR(�) the
renormalized (physically measurable) Fermi velocity, and μ̄

the renormalization scale. Here, by means of dimensional
regularization and both the Kubo and density-density response
approaches (basically following the procedure of [68]), we
have obtained the value C2 = (19 − 6π )/12 � 0.013 for the
first-order coefficient for the NLSM, as determined by [68]
for graphene. As an aside, it is worth mentioning that, due to
the NLSMs being 3D materials, it is the material’s effective
dielectric constant ε that enters in the coupling constant αR

instead of the vacuum permittivity ε0. Since the value of
ε might be of order of 10 (or more) times bigger than ε0,
the coupling αR might now be much smaller than unity, and
therefore perturbation theory is ensured to be well defined in
NLSMs, in contrast to graphene.

As predicted by [8] based on the equal Fermi-surface
codimension (2) and DOS energy dependence (∝|E − EF |),
the optical conductivity of the NLSM shares analogies with
the optical conductivity of graphene. In the noninteracting
case, this fact was already discussed in Refs. [59,78], being the
optical conductivity independent of the frequency and given
by a universal value times the perimeter of the nodal ring
(2πk0). This nonuniversal dependence comes from NLSMs
living in 3D instead of 2D, and it significantly differentiates
NLSMs also from Weyl semimetals, where the optical con-
ductivity depends linearly with the frequency [79]. Moreover,
the analogies with graphene permeate to the interacting case.
In the large-k0 limit, the interaction correction to the optical
conductivity is found to be exactly parallel to that of graphene
(except for the factor k0 in σ0), so that it contains a logarithmic
dependence on the frequency. It is also worth highlighting
that, while this interaction correction σ0C2αR(�) is nonuni-
versal, its material dependence has exactly the same structure
as that of the noninteracting conductivity (a proportionality to
k0), at least for sufficiently low frequency.

The paper is organized as follows. In Sec. II we de-
scribe the model for a NLSM and the simplifications we
will use to compute the corrections to the optical con-
ductivity. Section III is devoted to the analysis of the op-
tical conductivity (3) of an interacting, clean NLSM. Fi-
nally, in Sec. IV we discuss the features to consider in
order to experimentally observe the previous result. Our
result is compatible with the experimental uncertainties
in current experiments measuring the optical conductiv-
ity, although there are no evidences of the logarithmic in-
crease in frequency yet. Appendix A presents the proof
of the failure of Kohn’s theorem in NLSMs, which im-
plies the appearance of nonvanishing interaction correc-
tions to the conductivity. The technical details dealing with
the derivation of the optical conductivity are provided in
Appendix B.

II. NLSM MODEL

We begin by introducing the minimal continuum model of
a NLSM we will use in this work. Following [17,18,34,58],
we consider two bands crossing each other in a circular loop
in the xy plane in momentum space, with the dispersion
being parabolic in the x and y directions and linear in z.
The second-quantized noninteracting Hamiltonian reads as
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FIG. 1. Band structure of the NLSM with energy and momenta
measured in units of vrk0 and k0, respectively. Left: band structure of
the full Hamiltonian (4) along the Kx and Ky directions for Kz = 0.
The line node is highlighted in black. Right: comparison of the band
structures of the full (4) and linearized (6) Hamiltonians along the Kx

direction for Ky = Kz = 0.

Ĥ0 = ∑
K â†

KH0(K )âK , with

H0(K ) =
(

� − K2
x + K2

y

2m

)
τx + vzKzτz, (4)

where K is the canonical momentum and τ are the Pauli
matrices. The corresponding band structure, which is plotted
in Fig. 1, is then

E±(K ) = ±
√(

� − K2
x + K2

y

2m

)2

+ v2
z K2

z . (5)

The bands touch each other at the circle defined by K2
x + K2

y =
k2

0 in the Kz = 0 plane, where we have defined the nodal-line
radius k0 = √

2m�.
This model describes a rather general NLSM with time-

reversal, inversion, and reflection symmetries [17], as well as
spin-rotation symmetry if the Pauli matrices act on the orbital
degrees of freedom (in which case the line node would be of
the Dirac type, with the additional degeneracy due to spin).
This model accurately describes the low-energy dispersion re-
lation of the NLSM candidate Ca3P2 [17,80], which displays
negligible spin-orbit coupling as well as an almost energy-flat
nodal ring approximately located at the Fermi level.

While the full Hamiltonian (4) will be the one used for ana-
lyzing Kohn’s theorem in Appendix A, a linear approximation
around the nodal line will be considered when computing the
optical conductivity. This linear approximation is more easily
written in the so-called toroidal coordinates (kr, ϕk, kz ). These
are defined from the cylindrical coordinates (Kr, ϕk, Kz ), but
with the momenta measured from the nodal ring instead of
the origin,1 i.e., Kr = kr + k0 and Kz = kz. For kr, kz � k0, we
can expand the Hamiltonian up to linear order in momentum
around the nodal ring, which amounts to retaining the leading
order in a 1/k0 expansion,2 to obtain [59,78]

H0(k) = vrkrτx + vzkzτy, (6)

1Unless otherwise stated, we will use capital letters for momenta
measured from the origin, while lower-case ones will be reserved for
momenta measured from the nodal ring.

2In fact, we will implicitly take the limit k0 → ∞ so that kr lies in
the interval (−∞,∞) instead of in (−k0, ∞).

where the radial Fermi velocity is vr = k0/m (for later conve-
nience and with no physical effects, we have changed sign the
term multiplying τx and interchanged τz by τy).

Furthermore, it is important to keep in mind that we will
consider an isotropic linear dispersion in order to keep the
analytical tractability of the problem. We therefore set vz =
vr = v0 in model (6), leaving the study of the anisotropy for
the future.

The linearized Hamiltonian (6) allows the nodal line to be
regarded as an infinite collection of 2D Dirac dispersions,
each defined for a 2D (kr, kz ) plane in momentum space
corresponding to a given azimuthal angle ϕk , which perpen-
dicularly intersects the nodal ring. Loosely speaking, a NLSM
can thus be thought of a large-N graphene living in 3D.
The similarity of this effective 2D dispersion of the NLSM
with graphene will allow us to take advantage of the results
obtained for this extensively studied material. Finally, let us
point out that this linear approximation is valid as long as
momentum and frequency are much smaller than k0 and vrk0,
respectively (see Fig. 1). Consequently, in physical grounds,
NLSMs with large nodal rings or open nodal lines (i.e., with
large radius of curvature k0) are ideal systems to observe the
effects described in this work.

III. OPTICAL CONDUCTIVITY

In Appendix A we provide a demonstration of the failure
of Kohn’s theorem in NLSMs. In this section, we examine
one of the physical consequences of this failure: the nonzero
interaction corrections to the conductivity. In particular, we
have computed the uniform optical conductivity of the NLSM
up to first order in the Coulomb interaction in the collisionless
regime (i.e., with the frequency � being much larger than
the disorder-induced scattering rate 1/τ , �τ � 1) at zero
temperature and assuming the chemical potential μ to be
pinned exactly at the nodal line. We are mainly interested in
this intrinsic case, μ = 0, since minimal screening will occur
and thus a higher effect of Coulomb interaction is expected.
Conversely, based on Fermi-liquid theory, whenever μ is
placed sufficiently away from the line node, strong screening
of the Coulomb interaction is expected to make it effectively
short ranged.

The diagrammatic calculations of the optical conductivity
in terms of renormalized perturbation theory are presented in
Appendix B. Here we will only summarize the results and
provide their physical interpretation.

As mentioned in the Introduction, the optical conductivity
is found to be

σzz(�) = σ0
[
1 + C2αR(�) + O

(
α2

R

)]
, (7a)

σxx(�) = σyy(�) = 1
2σzz(�). (7b)

Let us point out that σi j will be multiplied by the degener-
acy of the nodal loop (e.g., by 2 for a Dirac nodal line). We
will first analyze the noninteracting part and then discuss the
implications of the interaction correction.

As was already obtained by [78], the noninteracting optical
conductivity is σ0 = k0e2/(16h̄). First of all, let us note that it
is frequency independent (as long as the collisionless regime
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and our linear low-energy model apply, i.e., 1/τ � � �
vrk0), which is also characteristic of massless Dirac fermions
in 2D. As proposed by [28], this feature can be used to distin-
guish the NLSM from Weyl and Dirac semimetals, where the
optical conductivity grows linearly with frequency [79]. Let
us mention that for � � vrk0 a linear dependence with fre-
quency is expected by analogy with Weyl and Dirac semimet-
als (in our particular model, this linear increase applies only
to optical conductivity components parallel to the nodal line,
with the perpendicular one tending to a constant value [30], by
analogy with double-Weyl semimetals [56,81]). On the other
hand, a Drude peak will arise in the low-frequency regime
�τ � 1 [29,30], where disorder, temperature, and chemical
potential have an important effect.

Another interesting feature of the optical conductivity in
the noninteracting limit is that it is determined by the product
of a universal constant e2/(16h), independent of material
parameters, and the material-dependent nodal-ring perimeter
2πk0. This contrasts with graphene, where the noninteracting
optical conductivity, and thus the absorption, is universal
[64,65]. This difference is expected by dimensional analysis
and analogy with graphene. In fact, the 3D optical conductiv-
ity, being a current density response, has an additional inverse
length unit compared to the corresponding 2D case. The only
two quantities, within the low-energy effective model, with
inverse length units in the uniform limit q → 0 are k0 and
�/v, the former being the one that appears in the response of
a NLSM. Incidentally, only the quantity �/v is available for
Weyl and Dirac semimetals, explaining the linear dependence
of their conductivity with the frequency. The fact that it is k0

and not �/v that enters in the NLSM response can be intu-
itively understood from noticing that the NLSM dispersion
can be viewed as a collection of 2D Dirac dispersions, one
for each point in the nodal line, so a proportionality to the
nodal-ring perimeter is expected.

Furthermore, the optical conductivity is highly anisotropic:
the perpendicular component to the nodal ring is two times
larger than the others. This result is in agreement with the opti-
cal response of a straight nodal line [9], where the components
of the optical conductivity perpendicular to the nodal line are a
nonzero constant while the parallel one vanishes. In our circu-
lar nodal line, the angular integration over the circumference
gives rise to a factor 1

2 in the parallel components.
Let us now discuss the modifications induced by the

Coulomb interaction. In the large-k0 limit, the interaction
correction turns out to be σ0C2αR(�), so, while being nonuni-
versal, it displays just the same material dependence as
the noninteracting conductivity through the factor k0 in σ0.
Moreover, it is characterized by exactly the same universal
constant as in graphene, which we have determined to be
C2 = (19 − 6π )/12 � 0.013, the value more accepted up to
date first obtained by [69]. Its smallness stems from the
quasicancellation of the self-energy and vertex corrections to
the polarization tensor. Let us point out that remaining at the
leading order in the 1/k0 expansion is justified by the fact
that our low-energy linear model is only valid for momenta
and frequencies much smaller than k0 and vrk0, respectively.
This allows k0 to be interpreted as the momentum UV cutoff

, 
 ∼ k0, which must be very large for the renormalization
method to work in our model. In other words, neglecting the

next terms in 1/k0 is at the same level that neglecting the band
bending through the quadratic dispersion.

The most remarkable effect of the interactions is the
introduction of a logarithmic dependence on the frequency
through the renormalized, i.e., physically measurable, cou-
pling constant αR(�) = e2/[4πεh̄vR(�)], with vR(�) the
renormalized Fermi velocity [58,82]. The logarithmic in-
crease of vR(�) with decreasing frequency implies that the
coupling constant αR(�) displays a logarithmic decrease with
decreasing frequency �. Indeed, using the solution of the
renormalization group Eq. (B34), which relates vR at any
frequency � to its value at other arbitrary energy μ̄ (the
so-called renormalization scale) through vR(�) = vR(μ̄)[1 +
(1/4)αR(μ̄) ln (μ̄/�)], we find the following frequency de-
pendence of αR(�):

αR(�) = αR(μ̄)

1 + (1/4)αR(μ̄) ln (μ̄/�)
∼ 4

ln (E
/�)
, (8)

where in the second approximation we have chosen the renor-
malization point to be the frequency UV cutoff E
 of the
theory, and we have used that � � E
.

Again, it is interesting to highlight the differences with
3D Weyl semimetals. In this case, the interaction correc-
tion is proportional to αR(�)[Ca + Cb ln (E
/�)] ∼ [Ca +
Cb ln (E
/�)]/ ln (E
/�) ∼ Cb, with Ca and Cb nonzero con-
stants, i.e., the leading correction is approximately constant
in frequency [79,83] (more precisely, this is the correction to
the linear frequency dependence mentioned before). The ap-
pearance of this additional term Cb ln (E
/�) that eventually
cancels the logarithmic contribution from the renormalized
coupling constant αR(�) has been associated to the violation
of hyperscaling in 3D quantum critical points (QCPs) [79],
which is accompanied by logarithmic corrections to the ther-
modynamic potentials [84]. The QCP in NLSMs does not
satisfy hyperscaling, but the absence of the additional loga-
rithmic term indicates that Cb = 0 for NLSMs, which means
that violation of hyperscaling is not a sufficient condition for
obtaining a nonzero Cb.

Finally, let us point out that, even though we have consid-
ered zero temperature T and vanishing chemical potential μ,
our results will be approximately valid in the collisionless re-
gion of the quantum-critical regime of the nodal-line fluid (in
the vicinity of an electron-doped to hole-doped Fermi-liquid
transition). This corresponds to the limit μ � kBT � h̄� �
h̄E
, where the interband contribution dominates compared to
the intraband one.

IV. DISCUSSION: EXPERIMENTAL CONSEQUENCES

Let us now discuss the observable effects in experiments.
Recent infrared spectroscopy experiments have already deter-
mined the optical conductivity (indirectly from the reflectiv-
ity) in NLSMs, such as ZrSiS [43], NbAs2 [9], and YbMnSb2

[44]. While almost flat, i.e., frequency-independent, regions in
the real part of the optical conductivity have been found, there
are many features to discuss in the real systems.

First of all, the three mentioned materials display a spin-
orbit-induced gap, and therefore there is no physical nodal
line. It is true though that the gap is small in the three cases
� ∼ 10 meV, so that the electronic wave functions retain
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information about the parent nodal line that would exist in
the absence of spin-orbit coupling. Therefore, a NLSM model
for the fictitious nodal line would approximately apply for
frequencies greater than twice the gap. Second, the (fictitious)
nodal line does not have circular shape over the Brillouin zone
in these materials. For instance, it forms a diamond-shaped
network in ZrSiS [85] and a curve that crosses the Brillouin
zone in NbAs2 [9]. The main change compared to the circular
nodal ring is that each component of the optical conductivity
is expected to be proportional to the (appropriately projected)
length of the line node in the corresponding direction. More-
over, as mentioned in the Introduction, since fine tuning would
be needed to ensure that the nodal line has constant energy,
the (fictitious) nodal line in the three mentioned materials
is energy dispersive. As argued by [9,78], this case could
be approximately tackled by substituting the total length
of the nodal line (its perimeter 2πk0 in our case) by the
effective length that is allowed to be proved at frequency
� by Pauli blocking. This effective length would grow with
frequency, introducing an increase of the optical conductivity,
until reaching the total length at high enough frequency, above
which the optical conductivity would approximately take on
the constant value determined without considering the energy
dispersion.

With all this in mind, the noninteracting model would still
predict a frequency-independent conductivity for high enough
frequencies, in particular, greater than the decay rate 1/τ , the
gap �, and the chemical potential μ, as well as allowing to
prove the whole length of the nodal line. Indeed, an almost
flat region has been measured for the three materials. While
for NbAs2 and YbMnSb2 the comparison with ab initio
calculations has shown that this frequency-independent region
arises from the effectively 2D Dirac nodal-line dispersion, in
the case of ZrSiS a detailed DFT+multiorbital tight-binding
study [85] has revealed that the band structure is not enough to
reproduce it, but it is the interplay with disorder in the sample
that provides this flat character. However, it is not known how
the Coulomb interaction might change this scenario where the
full lattice dispersion relation is considered. We will leave this
question for the future.

We now discuss the possible experimental consequences
of the Coulomb interaction on the optical conductivity. Two
facts have to be taken into account. First, the interaction
correction we have determined is quite small compared to
the noninteracting value. Indeed, for typical Fermi velocities
vR ∼ 5 × 105–106 m/s [86] and static lattice dielectric con-
stants ε ∼ 10–40, the coupling constant takes on values αR ∼
0.05–0.5. If we assume a perturbative scheme to be valid,3

then the ratio of the interaction correction to the noninteract-
ing value is C2αR ∼ 0.0005–0.005 � 1. The second aspect to
consider is that material-specific characteristics, as discussed
in previous paragraphs, give important contributions to the
optical conductivity, which our simple toy model does not
capture.

3Some NLSMs might display relatively strong correlation effects,
e.g., ZrSiS [39], thus spoiling the applicability of a perturbative
treatment in principle.

FIG. 2. Representation of the optical conductivity σzz (in units of
σ0) as a function of the frequency � (in units of the UV cutoff E
).

What is otherwise expected, irrespective of some material-
specific features, is the logarithmic dependence with fre-
quency. After all, this essentially comes from the effective 2D
Dirac dispersion, which is a good approximation whenever the
curvature of the nodal line in the Brillouin zone is not large.
Nevertheless, the change of the interaction correction over fre-
quency is also quite small. For example, when the frequency is
changed from � ∼ 0.001E
 to � ∼ 0.1E
, the conductivity
increases about ∼1% (see Fig. 2). In any case, due to the
complexity of features significantly contributing to the optical
conductivity as well as to the relatively small frequency range
(∼10–100 meV) in which it is nearly flat (compared with
∼1 eV in graphene [64,65,70]), such expected logarithmic
dependence is hidden in current experiments. Probably, if a
real material better described by a simple model is found,
the interaction correction could be measured, provided that
experimental precision is high enough. In this respect, Ca3P2

is a good candidate [17,80].

V. CONCLUSIONS

To summarize, we have shown that electron-electron in-
teractions induce corrections to the conductivity in NLSMs.
By applying the field-theoretic perturbative renormalization
procedure, we have determined the effect of the long-range
Coulomb interaction on the optical conductivity. Our result
applies to the frequency range where one can neglect the
disorder-driven relaxation (collisionless regime), the probable
energy dispersion of the nodal line, its possible (spin-orbit
induced) gap, Pauli blocking, and the effects of a finite tem-
perature, while still being able to approximate the dispersion
as linear around the line node.

A remarkable conclusion of our work is the fact that,
despite the different dimensionality, some analogies between
3D NLSMs and 2D Dirac systems appear when interactions
are considered. Indeed, provided that the curvature of the
nodal line is sufficiently small and in the region where its
dispersion is approximately linear, the interaction correction
logarithmically increases with frequency and the first-order
coefficient is universal and equals exactly that of graphene.
In fact, by mapping the calculation of the correction in the
NLSM to the corresponding problem in graphene and by
applying dimensional regularization along the same lines
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as [68], the first-order coefficient has the value C2 = (19 −
6π )/12 � 0.013 of [69]. Our result also shows a fundamental
interest due to enabling to differentiate the interaction effect in
distinct 3D topological semimetals, such as Weyl semimetals
and NLSMs.

Finally, regarding the experimental consequences of our
work, even if our result is compatible with the experimental
uncertainties, there is no evidence for a logarithmic frequency
dependence due to the complexity of the band structure of the
already known materials exhibiting nodal lines. Consequently,
more work is needed in this line, both experimental, trying to
find new materials behaving as simpler NLSMs (or trying to
simulate transport experiments with cold atoms or photonic
metamaterials), and theoretical, making predictions for more
realistic models (e.g., including Fermi velocity anisotropy,
energy dispersion of the nodal line, band bending, chemical
potential, temperature, etc.).
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APPENDIX A: KOHN’S THEOREM

This Appendix is devoted to the analysis of the fate of
Kohn’s theorem in NLSMs. Kohn’s theorem [87] is a powerful
result imposing restrictions on the effect that electron-electron
interactions might have on the long-wavelength conductivity
and the cyclotron resonance frequency (if a magnetic field
is applied). It states that in a Galileo-invariant system, i.e.,
a single-band Fermi-liquid metal with parabolic band dis-
persion and strictly obeying translational invariance, these
two physical observables cannot be changed by interactions.
Consequently, the conductivity in materials verifying Kohn’s
theorem may only be changed by processes explicitly break-
ing the translational symmetry or implying several bands [88],
such as umklapp scattering due to the lattice [89], Baber scat-
tering associated with multiband systems [90], electron-hole
scattering [91], electronic screening of impurities [92], and
Altshuler-Aronov–type interaction corrections in the presence
of disorder [93]. Indeed, the nonrenormalization of the con-
ductivity by interactions in Galileo-invariant Fermi liquids is
well known (technically, the self-energy and vertex correc-
tions cancel each other) [94–96].

The intuition behind the nonrenormalization of the con-
ductivity can be explained as follows. In a Galileo-invariant
system, the total velocity, and thus the current, is proportional
to the total momentum, with total referring to the sum for
all the electrons. Since electron-electron interactions conserve
the total momentum, they cannot alter the current. In materials
where the total velocity is no longer proportional to the total

momentum, momentum conservation does not imply current
conservation. For instance, linearly dispersing Weyl and Dirac
semimetals have been shown to violate Kohn’s theorem [88],
and therefore interactions affect their conductivity intrinsi-
cally without needing explicit breaking of the translational
symmetry.

For the NLSM, a naive look at the Hamiltonian (4) might
lead to the wrong conclusion that, due to the parabolic disper-
sion in the x and y directions, Kohn’s theorem might partially
apply in these directions or when the external magnetic field
points in the z direction. However, below we explicitly show
that Kohn’s theorem fails, leading to a nonvanishing correc-
tion of the conductivity by the electron-electron interactions.
Aside from the deviation from an isotropic quadratic disper-
sion, we have identified the main cause of Kohn’s theorem
failure to be the presence of more than one band. We therefore
argue that Kohn’s theorem is in fact a very specific result
and will in general not apply. It may though be a good
approximation for isotropic Fermi-liquid metals in which the
chemical potential is well inside one band and far away from
the rest (compared to the rest of relevant energy scales).

Let us now present the rigorous proof of our previous
assertion. For that, we will use the first-quantized version of
the full Hamiltonian (4). Assume that an external magnetic
field B is applied. Due to the initial rotational symmetry in the
xy plane in the absence of B, we can choose the x axis such
that the most general magnetic field lies in the xz plane, mak-
ing an angle θ with the z axis: B = B sin(θ )ex + B cos(θ )ez.
Without losing generality, we take the angle θ to range from
0 to π/2, with the interval (π/2, π ] considered by a negative
B. In an appropriate Landau gauge, the vector potential lies
in the y axis: A = B[x cos(θ ) − z sin(θ )]ey. The N-particle
Hamiltonian minimally coupled to the external magnetic
field is4

H =
N∑

i=1

[(
� − P2

i,x + P2
i,y

2m

)
τi,x + vPi,zτi,z

]

+
∑

1�i<k�N

u(ri − rk ),

(A1)

where u(ri − rk ) is a two-body interaction between electrons
i and k dependent on their relative position, and Pi = K i +
eAi = K i + eB[xi cos(θ ) − zi sin(θ )]ey is the mechanical mo-
mentum of electron i. We assume that the two-body interac-
tion is even, i.e., u(r) = u(−r). For instance, the Coulomb
interaction u(r) = e2/(4πε|r|) verifies that, although our re-
sults apply to more general interactions. For shortness, we
will sometimes use cylindrical coordinates such that P2

i,r =
P2

i,x + P2
i,y as well as the simplified notation uik ≡ u(ri − rk ).

The steps followed in the subsequent analysis are the
following. First, we calculate the velocity operator of one
electron, from which the total velocity operator can be deter-
mined. The next step is writing the equations of motion (in the
Heisenberg picture) for the one-particle and total mechanical

4Throughout the analysis of Kohn’s theorem, Latin subindices will
label the electron on which the operator acts, while Greek subindices
will be reserved for spatial coordinates x, y, or z.
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momentum operators, which can be easily expressed in terms
of the velocity operators. Finally, the equation of motion for
the total velocity operator is written. If, as in the NLSM, in
this last equation there exists a nonvanishing term explicitly
containing the interaction potential, then Kohn’s theorem is
not fulfilled since interactions modify the total velocity and
thus the total current, as well as the cyclotron frequency.

The velocity operator v j = dr j

dt = i
h̄ [H, r j] of electron j in

Cartesian components is given by

v j,x = −Pj,x

m
τ j,x, v j,y = −Pj,y

m
τ j,x, v j,z = vτ j,z. (A2)

This is in fact the expected result according to the quadratic
and linear dispersions. The presence of the Pauli matrices pre-
vents the total velocity v = ∑N

j=1 v j from being proportional
to the total mechanical momentum even in the x and y axes,
which is the main reason why Kohn’s theorem does not hold
in our system.

To obtain the equation of motion for the mechanical mo-
mentum Pj,β , one needs the commutators

[Pi,α, Pj,β ] = ih̄eδi j

(
∂Aj,α

∂r j,β
− ∂Aj,β

∂r j,α

)
, (A3)

[uik, Pj,β ] = ih̄{δi j∂βu jk + δk j∂βu ji}, (A4)

where we have used the results for the commutation rela-
tions for functions of operators obtained by [97], as well as
the fact that u(r) = u(−r) implies that ∂βu(r) = −∂βu(−r),
where ∂βu(r) ≡ ∂u(r′ )

∂r′
β

|r. The equation of motion may be most

suitably written in the Cartesian coordinates (‖, y,⊥) in which
‖ and y lie in the plane perpendicular to the external magnetic
field and ⊥ points in the direction of the magnetic field. For
any vector W ,

W⊥ = cos(θ )Wz + sin(θ )Wx,

W‖ = − sin(θ )Wz + cos(θ )Wx.
(A5)

We furthermore define W± = W‖ ± iWy, which are (propor-
tional to) the raising and lowering operators for the Landau
levels. The equation of motion for the one-particle mechanical
momentum operator then reads as

dPj,±
dt

= ±ieBv j,± −
N∑

k = 1
k �= j

2∂∓u jk,

dPj,⊥
dt

= −
N∑

k = 1
k �= j

∂⊥u jk,

(A6)

where ∂∓u(r) ≡ ∂u(r′ )
∂r′∓

|r and ∂⊥u(r) ≡ ∂u(r′ )
∂r′

⊥
|r, with r∓ = r‖ ∓

iy. Summing up for all the electrons, the total mechanical
momentum verifies

dP±
dt

= ±ieBv±,
dP⊥
dt

= 0. (A7)

Note that no many-body interactions appear explicitly due to
the fact that

∑N
j=1

∑N
k=1;k �= j ∂βu jk = 0 since ∂βu is odd with

respect to the inversion operation r → −r.
Let us interpret Eq. (A7). As usual, the magnetic field

affects only the dynamics in the plane perpendicular to it,

and the total momentum in the direction of the magnetic field
P⊥ is conserved. Furthermore, if we set B = 0, we recover
the conservation of the total momentum. On the other hand,
in the presence of a magnetic field, the cyclotron resonance
frequency ωc is defined by the expression dP±/dt = ±iωcP±.
In this case, due to the lack of proportionality between
momenta and velocity, we cannot conclude that the total
momentum and the total velocity would be unaffected by the
electron-electron interactions. In fact, many-body interactions
change the evolution of the total velocity, which implies a
renormalization of the current and, from its definition together
with Eq. (A7), also of the cyclotron resonance frequency.

In order to see explicitly the presence of the many-body
interactions in the equations of motion, we need to calculate
the second derivative of the momentum, which is proportional
to the equation of motion for the total velocity v±. With a
view to avoiding mathematical difficulty and focusing on the
physical interpretation, let us first compute this for the two
particular cases in which the magnetic field points in the z and
x directions, and finally state the results for the general case.

1. Magnetic field in the z direction

In this case, the angle of the magnetic field with the z
axis is θ = 0, so that v‖ = vx, v⊥ = vz = v

∑N
j=1 τ j,z, and

v± = −∑N
j=1(Pj,±/m)τ j,x . Using expressions (A6) and the

following time derivatives of the Pauli matrices

dτ j,x

dt
= −2

1

h̄
vPj,zτ j,y = −2

i

h̄
v j,zPj,zτ j,xτ j,z, (A8)

dτ j,z

dt
= i

2

h̄

(
� − P2

j,x + P2
j,y

2m

)
τ j,xτ j,z, (A9)

we find the equations of motion for the total velocity:

dv±
dt

= ±i
eB

m

P±
m

+ i
2

h̄

N∑
j=1

v j,⊥v j,±Pj,⊥

+ 2

m

N∑
j=1

N∑
k = 1
k �= j

∂∓u jkτ j,x, (A10)

dv⊥
dt

= −i
2

h̄

N∑
j=1

v j,⊥

(
� − P2

j,r

2m

)
τ j,x. (A11)

The presence of the Pauli matrix τ j,x multiplying the deriva-
tives of the many-body interaction in the v± Eq. (A10) implies
that this sum does not vanish. In fact,

2
N∑

j=1

N∑
k = 1
k �= j

∂∓u jkτ j,x = 1

2

N∑
j=1

N∑
k = 1
k �= j

(τ j,x − τk,x )[∂xu jk + ∂yu jk],

(A12)

which is distinct from zero in general since the terms being
summed up are even under the exchange of indices j ↔ k.
On the contrary, interactions do not enter explicitly in the v⊥
Eq. (A11). However, the second derivative d2v⊥/dt2 contains
terms proportional to

∑N
j=1

∑N
k=1;k �= j Pj,α∂αu jkτ j,y, with α =
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x, y, which again do not vanish. Indeed,

d2v⊥
dt2

= i

(
2

h̄

)2

v

N∑
j=1

(
� − P2

j,r

2m

)
H0

j τ j,y

+ 2v

h̄m

N∑
j=1

N∑
k = 1
k �= j

[Pj,x∂xu jk + (x ↔ y)]τ j,y, (A13)

where H0
j = (� − P2

j,r

2m )τ j,x + vPj,zτ j,z is the noninteracting
part of the Hamiltonian of the j electron.

Therefore, we have shown that, when the magnetic field
points parallel to the z axis, the evolution of the total velocity
depends on the many-body interactions, and consequently
both the current and the cyclotron resonance frequency will
be renormalized by electron-electron interactions in NLSMs.
Let us point out that this result comes mathematically from the
presence of the Pauli matrices, which have a noncommutative
algebra. Physically, this means that it is the presence of the
two bands that gives rise to the violation of the Kohn’s
theorem. We anticipate that the same result will be obtained
for an arbitrary magnetic field.

2. Magnetic field in the x direction

In this case, the angle of the magnetic field with the z axis
is θ = π/2, so that v‖ = −vz, v⊥ = vx = −∑N

j=1
Pj,x

m τ j,x, and

v± = −∑N
j=1 (vτ j,z ± i Pj,y

m τ j,x ). Following analogous steps as
in the previous section, we find that the equation of motion for
the total velocity is

dv±
dt

=
N∑

j=1

v j,z

h̄

[
−2i

(
� − P2

j,r

2m

)
τ j,x

± {v j,y, Pj,z}
]

± i

m

N∑
j=1

N∑
k = 1
k �= j

∂yu jkτ j,x, (A14)

dv⊥
dt

= i
2

h̄

N∑
j=1

v j,zv j,xPj,z + 1

m

N∑
j=1

N∑
k = 1
k �= j

∂xu jkτ j,x. (A15)

Again, due to the presence of the Pauli matrices, the terms
containing explicitly the many-body interactions do not van-
ish. However, contrary to the case in which B = Bez, the
nonvanishing term due to the interactions in the v⊥ Eq. (A15)
already appears at the first time derivative. This asymmetry
stems from the different dispersion relation in the x and z
directions. In fact, Ref. [88] showed that the first nonvanishing
explicit interaction-dependent term already appeared at the
first time derivative of the velocity operator in the case of
bilayer graphene (quadratic band touching), while one should
calculate the second time derivative of the velocity when
dealing with Weyl semimetals (linear dispersion) to see this
term appear.

3. Arbitrary magnetic field

Let us now calculate the time derivative of the velocity op-
erators in the general case when B = B[cos(θ )ez + sin(θ )ex].

Given the particular results discussed above, we expect the
Kohn’s theorem to fail also in this general case since a non-
vanishing interaction-dependent term is expected to appear
at the first time derivative of the velocity operators, as we
will now show. The only increased difficulty of this general
case compared to the previous particular cases arises from
the lengthier mathematical expressions. Given that expressing
the results in terms of just the ⊥ and ± components of the
velocities and momenta is more complex and it does not
provide an easier interpretation, we will provide the results
in terms of both the ⊥, ± and the x, y, z components.

After following the same steps as in the previous cases, we
arrive at the following expressions for the time derivatives of
the total velocity operators:

dv⊥
dt

=
N∑

j=1

{
2i

h̄
v

[
cos(θ )

(
� − P2

j,r

2m

)
τ j,x

− sin(θ )Pj,zv j,x

]
τ j,z

}
+ sin(θ ) cos(θ )

eB

m

Py

m

+ 1

m
sin(θ )

N∑
j=1

N∑
k = 1
k �= j

∂xu jkτ j,x (A16)

and

dv±
dt

= eB

m

⎡
⎣− sin2(θ )

Py

m
± i

N∑
j=1

v j,±τ j,x

⎤
⎦

− 2i

h̄
v

N∑
j=1

{[(
cos(θ )v j,x ± iv j,y

)
Pj,z

+ sin(θ )

(
� − P2

j,r

2m

)
τ j,x

]
τ j,z

}

+ sin(θ )

m

N∑
j=1

N∑
k = 1
k �= j

[
cos(θ )∂xu jk ± i∂yu jk

]
τ j,x. (A17)

Analogously to the previous cases, the terms explicitly fea-
turing the electron-electron interactions do not vanish due to
the algebra of the Pauli matrices, i.e., the presence of two
bands in which the interband transitions have to be taken into
account. Incidentally, it is straightforward to verify that these
general expressions reduce to the particular cases calculated
above. Note that the only value of θ for which the interaction-
dependent term vanishes in Eq. (A16) is θ = 0, i.e., when
the magnetic field points toward the z direction, where we
proved that the interactions enter explicitly into the second
time derivative.

As we had previously advanced, we have explicitly proved
that Kohn’s theorem fails in NLSMs. In the absence of
magnetic field, the conductivity is renormalized by electron-
electron interactions in such systems even if the total momen-
tum is conserved. When a magnetic field is introduced, both
the dynamics of the total momentum and total velocity are
changed by these many-body interactions, which results in a
renormalization of the cyclotron resonance frequency too.
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The key point for the verification of Kohn’s theorem can
be deduced from Eq. (A7), which can be shown to hold
for a general Hamiltonian. Accordingly, Kohn’s theorem will
hold provided that the total velocity is a conserved quantity.
For example, it is interesting to note that even for the sim-
plest quadratic two-band Hamiltonian H0 = [P2/(2m) − �]τz

Kohn’s theorem fails (electron-hole scattering prevents its
verification).

APPENDIX B: OPTICAL CONDUCTIVITY

This Appendix presents the perturbative calculations of
the uniform optical conductivity of the isotropic Fermi-
velocity NLSM up to first order in the Coulomb interaction
in the collisionless regime at zero temperature and van-
ishing chemical potential. For this one needs the polariza-
tion tensor or photon self-energy �μν , where5 �00(�, q) =
ie2〈ρ(�, q)ρ(−�,−q)〉 is the charge density-density re-
sponse function and �i j (�, q) = ie2〈 ji(�, q) j j (−�,−q)〉 is
the charge current-current response function,6 with � the
frequency, q the wave vector, and e the electron charge. It is
well known from linear response theory that the conductivity
tensor σi j and the polarization are related through σ R

i j (�, q) =
−i(1/�)�R

i j (�, q) (the superscript R indicates that we are
interested in the retarded response due to causality).

To obtain the particle current density operator ĵi, i =
x, y, z, we minimally couple the linear Hamiltonian (6) to
an external classical electromagnetic potential Aext

i by sub-
stituting ki → ki + eAext

i . Then, ĵi can be extracted from the
functional derivative [94]

ĵi(x)= 1

e

δĤ0

δAext
i (x)

= â†(x) jiâ(x) ;

⎧⎨
⎩

jx = vr cos(ϕk )τx,

jy = vr sin(ϕk )τx,

jz = vzτy,

(B1)

where vr = vz = v0 in our isotropic Fermi-velocity model,
cos(ϕk ) = kx/kr , and sin(ϕk ) = ky/kr (note that they are oper-
ators if one works in the position representation). In the same
way, we obtain the particle density j0 ≡ ρ = τ0. Also notice
that, within our linear approximation, there is no diamagnetic
current since the terms quadratic in Aext

i would appear at order
O(1/k0).

We start by defining the action S for the fermionic quantum
field ψ0(x) for the isotropic Fermi-velocity NLSM. We will
consider the chemical potential to be pinned exactly at the
nodal line, i.e., μ = 0. We also assume zero temperature,
so that we can work with the real time formalism. The
four-momenta are defined with the Fermi velocity in the
spatial components k = (ω, v0k). By means of a Hubbard-
Stratonovich transformation [99], the quartic instantaneous
3D Coulomb interaction ρ(q)U (|q|)ρ(−q), with U (|q|) =
e2

0/(ε|q|2) ≡ g2
0/(|q|2) and g0 = e0/

√
ε the effective charge in

the NLSM, can be substituted by a coupling of the fermionic
spinor field with a photonic scalar field A0 of the form
ψ

†
0 (x)g0A0(x)ψ0(x). After performing this transformation, the

5We use the convention of, e.g., [63,68,98] to define the polariza-
tion tensor, which differs in a minus sign from, e.g., [59,94].

6Since we implicitly work with the functional integral formalism,
the expectation value 〈. . .〉 is implicitly indicating time ordering.

action, in units such that h̄ = c = 1, reads as S = S0 + SA +
Sint, where

S0 =
∫

d4x ψ
†
0 (x)[τ0ω − v0τ · k]ψ0(x), (B2)

SA =
∫

d4x
1

2
[∇3DA0(x)]2, (B3)

Sint =
∫

d4x ψ
†
0 (x)τ0(−g0)A0(x)ψ0(x), (B4)

with τ0 the 2 × 2 identity matrix, τ = (τx, τy), ω = i∂t , k =
(kr, kz ) = (−i∂r,−i∂z ), and ∇3D = (∂x, ∂y, ∂z ). All the pa-
rameters appearing in this action, i.e., g0, v0, ψ0, and A0, are
bare, unrenormalized ones.

In this work, we will apply renormalized perturbation
theory via dimensional regularization (DR) [100–102]. The
motivation for using renormalized perturbation theory is the
following. If bare, normal perturbation theory in the Coulomb
interaction were to be carried out, some results would turn
out to be infinite (technically, some loops would diverge when
integrating over large momenta). Physical results are finite,
so these divergences must be an artifact of the calculation
procedure. Indeed, they arise due to using a low-energy ef-
fective field theory, which is only valid up to some UV cutoff,
instead of the complete field theory (a lattice model, in our
case). Renormalized perturbation theory properly avoids these
infinities to obtain the correct low-energy results.

There are several regularization procedures to do so. Prob-
ably, the most intuitive one is introducing a hard UV cutoff

 in the momentum integrations, which prevents the diver-
gences. However, this simple method has some disadvantages,
the most notable one being that it does not automatically
guarantee gauge invariance. This is the main reason behind
using DR. This procedure consists of extending the initial
four-dimensional space-time to d̃ = 4 − 2ε dimensions, but
keeping Tr[τ0] = 2. In our case, we will see that it will be
necessary to extend only the (kr, kz) subspace to a (D =
2 − 2ε)-dimensional space so as to get finite results since
the integrals in frequency and the perpendicular momentum
will be finite. At the end of the calculations, one should take
the ε → 0 limit. In DR, some diagrams will initially present
divergent parts proportional to negative powers of ε, which
have to be properly substracted to ensure the finiteness of the
correct physical results.

In order to do so, we propose that the bare parameters
appearing in the action are related to the physical, renormal-
ized ones through x0 = ZxxR, x ≡ v, ψ, A, where Zx are the
so-called renormalization constants. It is conventional also to
define the so-called counterterms δx from the renormalization
constants Zx via Zx = 1 + δx. The previously mentioned di-
vergences are absorbed into the appropriate counterterms, i.e.,
some bare parameters must be infinite so that the renormalized
parameters and the physical results are finite. An important
point is that the results must be properly renormalized order
by order in perturbation theory. The counterterms are there-
fore defined as a perturbative series in the coupling constant
(the electric charge in our case), their leading order being
O(e2

R) (in the noninteracting limit there are no divergences,
so the bare parameters are equal to the renormalized ones,
and thus Zx = 1). In summary, DR consists of considering
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the interactions perturbatively in d̃ = 4 − 2ε dimensions, and
choosing the appropriate counterterms to be infinite in order
to cancel the divergences.

Regarding the electric charge, let us note that, even though
in the original four dimensions it is dimensionless (which
determines its marginal character at tree level), when ex-
tending to d̃ dimensions it acquires a mass dimension of
[g0] = [e0] = ε. In order to keep the renormalized electric
charge dimensionless as in the original four dimensions,
we will use the modified minimal subtraction (M̄S) scheme
[63,68,101]. This procedure amounts to introducing a quantity
with energy units, the so-called renormalization scale μ̄, in the
renormalization of the coupling e0 = ZeeRμ̄ε (4π )−ε/2eγE ε/2,
where γE � 0.577 is the Euler-Mascheroni constant.

With this in mind, the Lagrangian density can be written in
terms of the renormalized parameters as L = L0 + LA + Lint,
where

L0 = ψ
†
0 [τ0ω − v0τ · k]ψ0

= ψ
†
R[τ0ω − vRτ · k]ψR

+ ψ
†
R[δψτ0ω − (δψ + δv )vRτ · k]ψR, (B5)

LA = 1

2
[∇3DA0]2 = 1

2
[∇3DAR]2+ δA

2
[∇3DAR]2, (B6)

Lint = −g0ψ
†
0 τ0A0ψ0 = μ̄ε (4π )−ε/2eγE ε/2

× [−gRψ
†
Rτ0ARψR − δCoulgRψ

†
Rτ0ARψR], (B7)

where δCoul = δe + δψ + δA/2 + O(e4
R). The Feynman rules

can be derived from this Lagrangian density, with the coun-
terterms being represented by their corresponding diagrams.
Let us anticipate that the charge will not be renormalized
to lowest order, Ze = 1 + O(e4

R), so that we can write e0 ≡
eRμ̄ε (4π )−ε/2eγE ε/2 for simplicity.

We have then the following free-electron propagator:

= S
(0)
R (K) = 〈ψR(K)ψ†

R(K)〉 =

= i(τ0ω − vRτ · k)−1 = i
τ0ω + vRτ · k

ω2 − v2
Rk2

.
(B8)

The free Coulomb photon propagator (which is instantaneous,
so it does not depend on frequency) reads as

= V
(0)
R (q) = 〈AR(q)A†

R(q)〉 = i
1
q2

. (B9)

The Coulomb interaction vertex, which only couples scalar
photons, is

=−ig0τ0 =−ig0Γ
(0)
Coul , with Γ(0)

Coul = τ0, (B10)

while the coupling to the external field, which also couples
vector photons, can be extracted from the current density
operators (B1):

= −ie0jμ = −ie0Γ(0)
μ , with Γ(0)

μ = jμ. (B11)

In this work, we will use thin wavy black lines for Coulomb
photons, whereas thick wavy red ones will be reserved for
external photons. Following [78], let us define a 4 × 4 matrix
Fμν (ϕk ) = diag[1, cos(ϕk ), sin(ϕk ), 1] containing the infor-
mation about the geometric factors arising from the coupling
to the external field (B11). Then, the external vertex can
be related to that of graphene [68] as �(0)

μ = Fμν (ϕk )�(0)gr
ν ,

where one has to understand �
(0)gr
x = �

(0)gr
y ≡ �

(0)gr
1 = τx and

�
(0)gr
z ≡ �

(0)gr
2 = τy.

On the other hand, if we denote the counterterm insertions
by

⊗
, the counterterm diagrams are

= i[δψτ0ω − (δψ + δv)vRτ · k], (B12)

= i
1
2
δA , = i

1
2
δAext

µ
gμν , (B13)

= −iδCoulg0τ0 , = −iδΓµe0Γ(0)
μ . (B14)

Here, gμν = diag(+,−,−,−) is the space-time metric.
Let us mention that the Coulomb field vertex and countert-

erms equal those of the time component of the external field
by replacing e0 ↔ g0, a property we will take advantage of
later.

Our task is to compute the (renormalized) polarization
tensor to lowest order in the Coulomb interaction, which
diagrammatically amounts to computing

�R
μν (q) = �R(0)

μν (q) + �R(1)
μν (q) + O

(
e6

R

)
, (B15)

with �R(0)
μν the renormalized noninteracting polarization

�R(0)
μν (q) = �(0)

μν (q) + �c(0)
μν (q)

= + (at O(e2
R)),

(B16)

and �R(1)
μν the renormalized first interaction correction to the

polarization

�R(1)
μν (q) = 2�R(1a)

μν (q) + �R(1b)
μν (q) + �c(1)

μν (q), (B17)

where �R(1a)
μν is the renormalized self-energy correction

�R(1a)
μν (q) = �(1a)

μν (q) + �c(1a)
μν (q)

= + ,
(B18)
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�R(1b)
μν is the renormalized vertex correction

�R(1b)
μν (q) = �(1b)

μν (q) + 2�c(1b)
μν (q)

= + 2 ,

(B19)

and �c(1)
μν is the O(e4

R) global counterterm

Πc(1)
μν (q) = (at O(e4

R)). (B20)

Note that the factors of 2 that appear in some diagrams
arise from the number of equivalent forms the diagram can
be written. The self-energy and vertex corrections to the
polarization have subdiagrams corresponding to the one-loop
electron self-energy �(1)(k) and the one-loop dressed vertex

(1)

μ (k, q), respectively:

−iΣ(1)(k) = , (B21)

−iΛ(1)
μ (k, q) = . (B22)

Therefore, it will be useful to compute them before calculating
the two-loop polarization diagrams.

1. One-loop polarization and noninteracting conductivity

Using the shorthand notation
∫

K for the d̃-dimensional

integral
∫

dd̃ K/(2π )d̃ , the one-loop polarization tensor
reads as

i�(0)
μν (q) = −

∫
K

Tr
[( − ie0�

(0)
ν

)
S(0)

R (K + q)

× ( − ie0�
(0)
μ

)
S(0)

R (K )
]
. (B23)

In order to write the electron propagator of the sum of mo-
menta, according to the definition (B8), we need (K + q)r .
It will be useful to perform a change of coordinates by a
rotation in the xy plane to a new set of Cartesian coordinates
(k‖, k⊥, kz ), with k‖ and k⊥ parallel and perpendicular to the
projection of k in the xy plane. These new coordinates are
related to the old ones by k‖ ≡ kr , k⊥ = 0, q‖ ≡ qr cos(ϕqk ),
and q⊥ ≡ qr sin(ϕqk ), where ϕqk = ϕq − ϕk is the azimuthal
angle between q and k, i.e., the angle between the pro-
jections of q and k on the xy plane. We also define the
wave vector q′ = (�, q′), with q′

‖ = q‖ = qr cos(ϕqk ), q′
⊥ =

0, and q′
z = qz, i.e., the projection of q on the (‖ z) plane.

Now, assuming that kr, qr � k0, which is consistent with our
low-energy linear approximation of the dispersion, we can
approximate (K + q)r − k0 = √

K2
r + 2Krqr cos(ϕqk ) + q2

r −
k0 = k‖ + q′

‖ + O(1/k0). The electron propagator of the sum

of momenta may thus be written as

S(0)
R (K + q)

= i
τ0(ω+�)+vR{τx[(K +q)r −k0]+τy(K +q)z}

(ω+�)2 −v2
R

{
[(K +q)r −k0]2 + (K +q)2

z

}
� i

τ0(ω + �) + vRτ · (k + q′)
(ω + �)2 − v2

R(k + q′)2
≡ S(0)gr

R (k + q′),

(B24)

where S(0)gr
R (k) is the free-fermion propagator of graphene

in the coordinates 1 ≡‖ and 2 ≡ z. Let us highlight that q⊥
does not appear in the propagator at the zeroth order in the
expansion in 1/k0, which is the level of approximation we are
considering for computing the optical conductivity. In other
words, remaining at the leading order in the 1/k0 expansion
amounts to approximating, around each point of the line
node, the 3D energy dispersion to an effectively 2D one only
dispersing over the radial (‖) and z directions and not over
the tangent (⊥) direction. This reflects the analogy between
each point of the line node and a 2D Dirac cone, with the two
dispersing directions being 1 ≡‖ and 2 ≡ z.

Now, we change to the toroidal coordinates (kr ≡
k‖, ϕk, kz ) defined in Sec. II and, as we anticipated, we ap-
proximate the integration in kr to be from −∞ to +∞, which
is justified by the fact that our linear model is only valid up
to momenta of the order of k0, which acts as the UV cutoff

 of our theory, 
 ∼ k0, and can thus be taken to infinity if
we are interested in the physics at sufficiently smaller ener-
gies without affecting the physical results. Then, indicating
explicitly the integration over the azimuthal angle and using
that �(0)

μ = Fμν (ϕk )�(0)gr
ν , the noninteracting polarization to

lowest order in 1/k0 can be written as [78]

�(0)
μν (q) = k0

∫
dϕk

2π
Fμα (ϕk )Fνβ (ϕk )�(0)gr

αβ (q′), (B25)

where �
(0)gr
μν is the polarization of a single spinless Dirac

cone of graphene, which is finite and has been calculated
following the same steps as [63,68]: first performing the trace
by using the properties of the Pauli matrices, then Wick
rotating to imaginary frequency to calculate the frequency
integral, and finally computing the integral in D = 2 − 2ε

dimensions by means of the usual techniques [101]. In fact,
instead of calculating all the components �

(0)gr
μν , one only

needs to compute the density response �
gr
00 and the trace

�
gr
μμ since with these two quantities the longitudinal �

gr
L

and transverse �
gr
T polarizations are completely determined,

and so are all the �
gr
i j components via the relation �

gr
i j =

(qiq j/|q|2)�gr
L + (δi j − qiq j/|q|2)�gr

T [103,104]. Let us note
that the ϕk dependence in the NLSM case comes both from
the geometrical projection factor Fμα (ϕk ) and from the mo-
mentum q′ [59] via q′

‖ = qr cos(ϕqk ).
The finiteness of the noninteracting graphene polarization

implies that of the NLSM �(0)
μν , and thus the counterterm

diagram of (B16), �c(0)
μν = (δAext

μ
/2)gμν , vanishes, i.e., δAext

μ
=

0, since the first correction to the external photon propagator
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D(1)
μν is already finite:

D(1)
μν (q) = + + =

= D(0)
μν (q)+D(0)

μα (q)i

[
�

(0)
αβ (q)+ δAext

α

2
gαβ

]
D(0)

βν (q).

(B26)

Consequently, the renormalized one-loop polarization is
�R(0)

μν = �(0)
μν . Moreover, since, as mentioned before, the

Coulomb photon self-energy is �
(0)
Coul = (1/ε)�(0)

00 , the
Coulomb field counterterm also vanishes, δA = 0. Therefore,
neither the external field nor the Coulomb field do renormalize
at order O(e2

R).
Now, using Eq. (B25), the conductivity σ

(0)
i j (q) =

−i(1/�)�R(0)
i j (q) to zeroth order in the Coulomb interaction

can be deduced to be

σ
(0)
i j (q) = k0

∫
dϕk

2π
Fil (ϕk )F jm(ϕk )σ (0)gr

lm (q′). (B27)

In the long-wavelength limit q → 0 and for the noninteract-
ing case we are considering now, graphene conductivity is
diagonal (as long as time-reversal symmetry is preserved),
frequency independent, and reads as σ

(0)gr
i j (�) = δi je2

R/16
[63,68], so the NLSM conductivity is

σ (0)
zz (�) = σ0, σ (0)

xx (�) = σ (0)
yy (�) = 1

2σ0, (B28)

where σ0 = k0e2
R/16, in agreement with [78]. Let us point

out that in the noninteracting case it is straightforward to
consider anisotropic Fermi velocities by a simple rescal-
ing of momenta, which gives the following conductivities:
σ (0)

zz (�) = (vz/vr )σ0 and σ (0)
xx (�) = σ (0)

yy (�) = (vr/vz )σ0/2,
in agreement with [9,58].

As a crosscheck for our results, we can verify that the
identity qiq j�i j = q2

0�00, which stems from the transversal-
ity qμ�μν = �μνqν = 0 of the polarization required by gauge
invariance and total particle conservation [98,103,104], is
verified. In fact, using expression (B25) with �

(0)gr
00 (�, q′ →

0) = −e2
R|q′|2/(16i�) [68], we arrive at the following NLSM

density-density response:

�
(0)
00 (�, q → 0) = −k0

e2
R

16

1

i�

(
1

2
q2

r + q2
z

)
. (B29)

The transversality condition can now be checked by substi-
tution. Let us also mention that due to the anisotropy of our
system (arising from the presence of the nodal loop indepen-
dently from the Fermi velocities), the longitudinal conductiv-
ity σ

(0)
L = σ0[(1/2)q2

r + q2
z ]/|q|2 = σ0[1 + cos2(θ )]/2, which

is the relevant one in the study of plasmons [59], depends on
the polar angle θ of the external wave vector [qr = |q| sin(θ ),
qz = |q| cos(θ )].

2. Electron self-energy and velocity renormalization

The electron self-energy (B21), using expression (B24) for
the electron propagator, is

−i�(1)(k)=
∫

p
(−ig0τ0)S(0)gr

R (k + p′)(−ig0τ0)V (0)
R (p). (B30)

Working in the (k‖, k⊥, kz ) coordinates, the p⊥ dependence
only appears through the free-photon propagator V (0)

R (p) =
i/(p2

‖ + p2
⊥ + p2

z ). We can thus directly integrate it out to

produce an effectively 2D photon propagator V (0)gr
R (p) =

i/(2
√

p2
‖ + p2

z ) ≡ i/(2
√

p′
‖

2 + p′
z
2 ) ≡ V (0)gr

R (p′), which is ex-
actly the free-photon propagator in graphene [63,68] in the co-
ordinates 1 ≡‖ and 2 ≡ z. Therefore, the NLSM self-energy
equals that of graphene [plus corrections O(1/k0)], �(1)(k) =
�(1)gr (k). Following the same calculations as [63,68] (Wick
rotating to imaginary frequency, performing the frequency
integral, and calculating the integral in D = 2 − 2ε dimen-
sions), we finally arrive at

�(1)(k) = −αR

8
eγE ε

(
μ̄2

|k|2
)ε

G(ε)(vRτ · k) (B31a)

= −αR

8

(
1

ε
− ln

|k|2
μ̄2

+ 4 ln 2

)
(vRτ · k) + O(ε),

(B31b)

where we have taken the ε → 0 limit in the second equality
and we have defined the renormalized fine-structure constant
of our isotropic Fermi-velocity NLSM αR = g2

R/(4πvR) =
e2

R/(4πεvR), which is the effective coupling constant of the
Coulomb interaction, as in graphene. Furthermore, we have
defined the function G(ε) = [�(1/2 − ε)]2�(ε)/[π�(1 −
2ε)], where �(x) is the gamma function.

Although the (bare) self-energy diverges, we have to
choose the appropriate counterterms so that the electron prop-
agator S(1)

R (k) to first order in the coupling αR remains finite:

S
(1)
R (K) = + + =

= S(0)
R (K ) + S(0)

R (K )i�(1)(k)S(0)
R (K )

+ S(0)
R (K )i[δψτ0ω − (δψ + δv )vRτ · k]S(0)

R (K ).
(B32)

This implies, using the M̄S subtraction scheme and up to order
O(αR) = O(e2

R), that

δψ = 0, δv = −1

ε

αR

8
, (B33)

i.e., the wave function is not renormalized while the velocity
is. As a crosscheck, we can compute the velocity β function
[68] and compare it to the literature:

βv ≡ μ̄
∂vR

∂μ̄
= 2vRδvε = −vR

αR

4
. (B34)

Indeed, this negative β function, which means that velocity
grows in the infrarred (i.e., with decreasing frequency) as in
graphene [82], coincides with the one provided in [58] for
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the isotropic Fermi-velocity NLSM we are considering here.
The Coulomb coupling β function to O(α2

R) can also be easily
derived from its definition and βv:

βα ≡ μ̄
∂αR

∂μ̄
= α2

R

4
. (B35)

As already computed by [58], the Coulomb coupling flows to
weak coupling (i.e., decreases in the infrared), determining its
marginally irrelevant character.

3. One-loop interaction vertex and Ward identities

We now proceed to calculate the one-loop correction to
the interaction vertex between the fermionic and the external
electromagnetic fields �(1)

μ = �(0)
μ + 
(1)

μ , where

−ie0

(1)
μ (k, q) =

∫
p
(−ig0τ0)S(0)gr

R (k + p′ + q′)

× ( − ie0�
(0)
μ

)
S(0)gr

R (k + p′)(−ig0τ0)V (0)
R (p).

(B36)

As we did in the calculation of the self-energy, let us work
in the (k‖, k⊥, kz ) coordinates. As in the former case, the
only p⊥ dependence occurs at the photon propagator V (0)

R (p).
Therefore, we can integrate in p⊥ to obtain V (0)gr

R (p′). Conse-
quently, we can again take advantage of the vertex correction
in graphene 


(1)gr
μ and write


(1)
μ (k, q) = Fμν (ϕk )
(1)gr

ν (k, q′), (B37)

where q′
‖ = qr cos(ϕqk ) and q′

z = qz.
Before continuing to the two-loop calculations, let us make

the following remark. Gauge invariance of the theory imposes
some constrictions, the so-called Ward identities [68,82,101].
One of them is that the renormalization constant of the
Coulomb interaction vertex ZCoul, or equivalently of the time
component of the external field vertex Z�0 , must equal that
of the time component of the kinetic term Zψ , i.e., ZCoul =
Z�0 = Zψ . Since ZCoul = ZψZeZ1/2

A and we have previously
determined that neither the wave function nor the gauge field
do renormalize at order O(e2

R) in the NLSM, Zψ = ZA =
1 + O(e4

R), then the Ward identity implies that the charge
is not renormalized either, Ze = 1 + O(e4

R), a well-known
property in graphene [68,82]. Other Ward identity consists of
the equality of the spatial components of the external field
vertex and the kinetic term Z�i = ZψZv , which implies that
δ�i = δv + O(e4

R) in the NLSM.
We can indeed check that the Ward identities are veri-

fied. First, 

(1)
Coul = 


(1)
0 are finite for the NLSM due to the

finiteness of 

(1)gr
Coul for graphene [68], which implies that

the vertex counterterm vanishes, δCoul = δ�0 = 0 + O(e4
R), or

equivalently ZCoul = Z�0 = 1 + O(e4
R), which proves the first

Ward identity since Zψ = 1 + O(e4
R). Second, using the re-

lation (B37) and the divergent part of the spatial compo-
nent of the dressed vertex in graphene [68], 


(1)gr
i (k, q′) =

αR/(8ε)vRτi + O(ε0), we can write the vertex correction for
the NLSM as



(1)
i (k, q) = αR

8ε
ji(ϕk ) + O(ε0) = αR

8ε
�

(0)
i + O(ε0). (B38)

Considering also the spatial components of the counterterm
diagram (B14), the renormalized first-order external interac-
tion vertex is therefore

�
R(1)
i = �

(0)
i +


(1)
i +δ�i�

(0)
i = �

(0)
i

[
1+ αR

8ε
+δ�i

]
+ O(ε0).

(B39)
Its finiteness implies that the spatial vertex counterterm is
δ�i = −αR/(8ε) ≡ δv , which is exactly the requirement im-
posed by the second Ward identity.

4. Two-loop polarization and interaction corrections to
conductivity

The Feynman diagrams contributing to the first Coulomb
interaction correction to the polarization tensor are sketched
in expressions (B17)–(B20). They read as

i2�R(1a)
μν (q) = i2

[
�(1a)

μν (q) + �c(1a)
μν (q)

]
= −2

∫
k

Tr
{( − ie0�

(0)
ν

)
S(0)gr

R (k + q′)
( − ie0�

(0)
μ

)
× S(0)gr

R (k)[−i(�(1)(k) + δvvRτ · k)]

× S(0)gr
R (k)

}
(B40)

and

i�R(1b)
μν (q) = i

[
�(1b)

μν (q) + 2�c(1b)
μν (q)

]
= −

∫
k

Tr
{( − ie0�

(0)
ν

)
S(0)gr

R (k + q′)

× [ − ie0
(

(1)

μ (k, q′) + 2δ�μ
�(0)

μ

)]
S(0)gr

R (k)
}
.

(B41)

Using the analogies between NLSMs and graphene, in
particular �(0)

μ = Fμα�
(0)gr
μ , �(1) = �(1)gr , δv = δ

gr
v , 
(1)

μ =
Fμα


(1)gr
α , and δ�μ

= δ
gr
�μ

, and working in toroidal coordinates
(kr ≡ k‖, ϕk, kz ), we can write that

�R(1x)
μν (q) = k0

∫
ϕ

Fμα (ϕk )Fνβ (ϕk )�R(1x)gr
αβ (q′), (B42)

where x = a, b and we have used the shorthand notation
∫
ϕ

for the angular integration
∫

dϕk/(2π ). The calculation of
�

R(1x)gr
μν follows the same lines as in the noninteracting case:

first performing the trace, then Wick rotating to imaginary fre-
quency to perform the frequency integral and eventually using
the master integrals of [63,105] in D = 2 − 2ε dimensions.
And once again, the easiest way to do it is to take advantage of
the decomposition of the graphene polarization in longitudinal
and transverse and calculate the time component and the trace.
As before, we have followed the same procedure as [68],
obtaining the same intermediate as well as final results, so we
refer to that paper for further details of the calculation. Indeed,
in these interaction corrections a little subtlety has been done
in a different but analogous way to [68]. Here, we use conven-
tional renormalization (see, e.g., [101]) and draw explicitly
the counterterm diagrams that substract the subdivergences
of the self-energy and vertex corrections [see the second
diagrams of (B18) and (B19)]. On the other hand, Ref. [68]
applies the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ)
renormalization prescription, where the subdivergences are

205102-14



MANY-BODY EFFECTS IN NODAL-LINE SEMIMETALS: … PHYSICAL REVIEW B 101, 205102 (2020)

substracted directly without explicitly drawing the countert-
erm diagrams (see, e.g., [102]). Nevertheless, both procedures
are completely equivalent.

Since �
R(1x)gr
μν turns out to be finite in graphene [68], the

corresponding �R(1x)
μν for the NLSM is also finite, and thus

there is no global divergence. Therefore, the global O(e4
R)

counterterm (B20) vanishes, �c(1)
μν = 0, i.e., δA = δAext

μ
= 0 +

O(e6
R), as in graphene. Then,

�R(1)
μν (q) = 2�R(1a)

μν (q) + �R(1b)
μν (q)

= k0

∫
dϕk

2π
Fμα (ϕk )Fνβ (ϕk )�R(1)gr

αβ (q′). (B43)

The first interaction correction to the conductivity in our
NLSM σ

(1)
i j is thus easily computed from the corresponding

one in a single Dirac cone of graphene σ
(1)gr
i j . We have

obtained it to be

σ
(1)gr
i j = e2

R

16
C2αRδi j, (B44)

where the first-order coefficient is C2 = (19 − 6π )/12 �
0.013, the value first obtained by [69] and the more accepted
up to date. Consequently, for the NLSM, performing the
integral over the azimuthal angle

σ (1)
zz (�) = 2σ (1)

xx (�) = 2σ (1)
yy (�) = σ0C2αR. (B45)

The full expression of the optical conductivity presented
in the main text can then be deduced from expressions
(B28) and (B45) after reinstating the h̄ factors where
appropriate.
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