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We study one-dimensional (1D) and quasi-1D periodic structures as possible platforms for the emergence
of Majorana bound states with enhanced robustness against disorder and system inhomogeneity. First, using
a simple 1D model, we analytically derive the effective parameters characterizing the minibands generated
by the periodic potential. We show that, for strong enough periodic potentials, the higher-energy minibands
hosting Majorana bound states have significant advantages compared to their counterparts in uniform systems,
including increased topological gaps, enhanced robustness against disorder, and enlarged parameter space
regions consistent with the presence of topological superconductivity. We identify the problem of engineering
a strong enough periodic potential as a key roadblock to realizing efficient periodic 1D structures. To address
this challenge, we propose an efficient implementation of the periodic potential based on quasi-1D channels
realized in two-dimensional (2D) semiconductor heterostructures proximity coupled to superconductor strips of
periodically modulated width. Our numerical study of the modulated channel device shows excellent agreement
with the simple 1D model, reveals a topological phase diagram that is quite insensitive to the details of the
confining potential associated with screening by the superconductor, and demonstrates that engineering patterned
2D structures represents a powerful and versatile approach to realizing robust Majorana bound states.
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I. INTRODUCTION

Majorana bound states (MBSs), also called Majorana
zero modes (MZMs), are zero-energy modes localized near
topological defects in topological superconductors, e.g., at
vortex cores in a two-dimensional (2D) system or near the
edges of a one-dimensional (1D) system [1]. These states
have attracted much attention in the last decade due to their
topological protection and non-Abelian statistics, which make
them promising candidates as a platform for implementing
topological quantum computing [2–4]. Following theoretical
proposals for realizing topological superconductivity using
spin-orbit-coupled semiconductors and s-wave superconduc-
tors [5,6], significant experimental effort has been dedicated to
the search for signatures of zero-energy MBSs in proximity-
coupled semiconductor-superconductor (SM-SC) heterostruc-
tures [7–19]. While many observations have been consistent
with the predicted MBS signatures, there is a persistent con-
cern that at least some (and possibly all) of the features ob-
served so far are, in fact, due to topologically trivial Andreev
bound states (ABSs) that mimic the Majorana phenomenol-
ogy [20–23]. These low-energy Andreev bound states can be
induced through several mechanisms, including soft confine-
ment [20,22,24], disorder [23,25–27], inhomogeneous super-
conductivity [28–30], nonuniform spin-orbit coupling [31],
and intersubband coupling [32]. In essence, the root cause
for the emergence of these (topologically trivial) low-energy
ABSs is the presence of some type of nonuniformity within
the system. Accessing the topological phase would require
applying a strong enough magnetic field corresponding to a
Zeeman splitting larger than the characteristic energy scale

associated with the nonuniformity, which may not be possible
without completely destroying the superconducting gap. The
emergence of low-energy ABSs mimicking the Majorana
phenomenology at low values of the magnetic field, which
is well established theoretically [20–23,26,28,29,32–34], can
be viewed as a precursor to Majorana physics, in the sense
that topological superconductivity will necessarily emerge if
the system inhomogeneity is reduced, or if the magnetic field
is enhanced without destroying superconductivity. However,
realizing MBSs that are practically relevant for quantum
computing requires devices that reliably give rise to well-
separated Majorana modes and are free of topologically trivial
low-energy ABSs. While reducing the inhomogeneities within
the system below an acceptable level may prove difficult,
one can adopt a completely different strategy and amplify
the nonhomogeneity in a controlled manner by applying a
periodic potential, i.e., creating a superlattice [27,35–39].

In this work, we analytically and numerically study the
emergence of MBSs within periodic structures and show that
the periodic design alleviates many of the issues alluded to
above. We also propose an efficient design for realizing strong
periodic potentials using quasi-1D modulated-width channels
in 2D semiconductor-superconductor heterostructures. We
show that periodic structures provide three main advantages
when compared to uniform systems. (1) The total area of
the parameter space associated with the topological supercon-
ducting phase increases. As pointed out in previous studies
[27,35–37], this is related to the formation of minibands in the
presence of a periodic potential. (2) The topological gap char-
acterizing the topological superconducting phase is typically
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larger than the corresponding value in a uniform system and,
generally, increases with increasing chemical potential. In
essence, this occurs as a result of an increased effective spin-
orbit coupling within the higher-energy minibands. (3) The
topological state shows increased robustness against disorder.
This is an effect of the increased topological gap combined
with the highly oscillatory nature of the states associated with
high-energy minibands.

In Sec. II, we explore the effects of a periodic potential
within a purely 1D system based on the minimal model
of a Majorana nanowire [5,6], with the addition of a pe-
riodic potential. Starting from a suitable low-energy basis,
we analytically derive effective parameters characterizing
each set of periodicity-induced minibands. These parameters
include renormalized effective masses, spin-orbit-coupling
coefficients, Zeeman splittings, and Majorana localization
lengths. The derived analytic expressions provide valuable in-
sight into the underlying physics and suggest possible avenues
for optimizing the topological properties of the system. Nu-
merical calculations based on an equivalent 1D tight-binding
model show excellent agreement with the analytic results and
highlight the importance of creating a sufficiently strong pe-
riodic potential, without which the periodic structure loses its
advantages over the uniform system. The formation of (topo-
logically trivial) partially separated Andreev bound states (ps-
ABSs) [21,22,24] in the presence of a soft confining potential
is explored in Sec. II D. We find that the confinement must be
softer (i.e., have a smaller slope) within the periodic system,
as compared to a uniform one, to ensure the ps-ABS collapse
to zero energy. Thus, the presence of a periodic potential
reduces the parameter region associated with the presence
of ps-ABSs, which may provide a significant advantage in
the search for topologically protected MBSs. In addition, we
investigate the effects of potential disorder (see Sec. II E) and
find that, typically, the topological phase becomes more robust
in the presence of an additional periodic potential. Moreover,
in a superlattice the nonlocal (edge-to-edge) correlations in-
dicative of well-separated MBSs localized at the ends of the
system are found to become less sensitive to the presence of
disorder.

While a periodic potential can, in principle, offer the
advantages mentioned above, engineering a strong enough
potential represents a nontrivial task. Naively, one could try
to generate such a potential using periodic arrays of gates
applied to “standard” semiconductor wire-superconductor de-
vices similar to those used in recent Majorana experiments
[7,40–44]. We find that, unfortunately, the effective periodic
potential generated within such a nanowire setup is too weak
for the superlattice scheme to provide any notable advantage
over the uniform system. A possible alternative is discussed
in Sec. III. The proposed device (see Fig. 10), which we will
refer to as a modulated channel device or a Majorana waveg-
uide, consists of a two-dimensional electron gas (2DEG)
hosted by a semiconductor heterostructure and proximity
coupled to a lithographically defined superconductor that
generates a quasi-1D channel with periodically modulated
width. The feasibility of this type of structure is supported by
the recent progress in fabricating two-dimensional epitaxial
superconductor-semiconductor heterostructures that support

low-energy features similar to those observed in proximitized
wires [17,45–50]. While a periodic potential is not directly
applied, the periodic structure of the device results in the
formation of minibands similar to those induced by an actual
periodic potential, due to scattering at the interfaces between
regions of differing width [51]. For not-too-large values of the
chemical potential, the topological properties of the system,
including the stability of the MBSs, exhibit all the advanta-
geous features identified in the 1D “ideal” periodic model.
In addition, we show that the topological phase diagram is
not dramatically affected by the details associated with the
screening by the superconductor of the confinement potential
that defines the modulated channel. Specifically, we consider
a confining potential that varies near the edges of the region
covered by the superconductor over a finite length scale χ

and show that the phase diagram depends weakly on χ . Fur-
thermore, we argue that χ can be quite large, which implies
that the chemical potential of the electron gas underneath the
superconductor is tunable (to a certain degree), providing an
important knob for accessing the topological superconducting
phase. Taking into account all these findings, as well as the
natural ability of the 2DEG system to enable the construction
of complex structures, we conclude that the Majorana waveg-
uide and, more generally, patterned 2D structures represent
a promising versatile platform for realizing robust Majorana
bound states.

II. ONE-DIMENSIONAL MODEL OF PERIODIC
MAJORANA NANOWIRES

In this section we study analytically and numerically a
simple, one-dimensional model of a Majorana wire in the
presence of a periodic effective potential. We show that topo-
logical superconductivity and Majorana zero modes emerge
at low values of the applied Zeeman field (on the order of the
induced pairing potential) whenever the chemical potential is
tuned near the bottom/top of a potential-induced pair of mini-
bands. We determine explicit analytical expressions for the
renormalized miniband parameters (e.g., effective mass and
spin-orbit coupling) and the Majorana localization length in
periodic nanowires. The validity of these analytic expressions
is verified numerically. We also investigate the effect of the
periodic potential on the topological phase diagram, the emer-
gence of topologically trivial Andreev bound states in systems
with soft confinement, and the robustness of Majorana bound
states against disorder.

A. Renormalization of miniband parameters

We begin by considering a minimal model of the Majo-
rana nanowire [5,6] in the presence of a periodic potential.
More specifically, we have a one-dimensional system (i.e., a
Majorana wire) with Rashba spin-orbit coupling, (induced)
superconductivity, magnetic field applied parallel to the wire,
and a periodic (effective) potential. The system is modeled by
the Bogliubov–de Gennes (BdG) Hamiltonian

HBdG =
(

Ho −i�σy

i�∗σy −H∗
o

)
. (1)
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FIG. 1. (a) Rectangular 1D potential profile with period �.
(b) Spectrum of the effective Hamiltonian (8) near the zone center
for zero magnetic field (� = 0) in the absence (dashed lines) and
presence (solid lines) of a periodic potential. The red (blue) lines
correspond to spin σ =↑ (↓). (c) Energy-level diagram showing
the couplings of the zone n basis states with k = 0 induced by the
periodic potential and the applied magnetic field. The color code is
the same as in (c).

The diagonal (normal wire) component is

Ho = h̄2k̂2

2m∗ − μ + V (x) + αk̂σz + �σx, (2)

where m∗ is the effective mass, μ is the chemical potential, α

is the Rashba spin-orbit coefficient, � is the (half) Zeeman
splitting, � is the (induced) superconducting pairing, and
k̂ = −i∂x is the momentum operator. Note that σi, with i =
x, y, z, are the Pauli matrices acting within the spin space.
The potential V (x) is periodic with the period �, so that
V (x + �) = V (x). A specific example of a periodic potential
used in the calculations is shown in Fig. 1(a). We first study
the quantum problem described by the BdG Hamiltonian with
periodic boundary conditions, so that k represents a good
quantum number. In the absence of the magnetic field and
periodic potential, the normal Hamiltonian eigenstates are
simply given by the spin-polarized plane waves

〈x|k, n, σ 〉 = χσ√
L

ei(k+Gn )x, (3)

where L is the total length of the system, χσ = (δσ,↑, δσ,↓)T is
the spinor corresponding to spin projection σ , Gn = 2πn/�

is a reciprocal (super)lattice vector, and k is restricted to
the first Brillioun zone, −π/� < k � π/�. The label n is
the zone number of the plane-wave state corresponding to
the (superlattice) Brillioun zone to which the state belongs.
The energies of the eigenstates (3) are given by

Ek,n,σ = h̄2

2m∗ (k + Gn)2 + α(k + Gn)(σz )σσ − μ. (4)

To understand the effects of the periodic potential and mag-
netic field, it is convenient to Fourier transform V (x) and
to calculate the matrix elements of the perturbations (i.e.,

periodic potential and magnetic field) in the plane-wave basis
given by Eq. (3). We have

V (x) =
∞∑

n=−∞
Ṽne−iGnx, (5)

〈k, m, σ |V (x)|k, n, σ ′〉 = Ṽn−mδσ,σ ′ , (6)

〈k, m, σ |�σx|k, n, σ ′〉 = �δm,n(σx )σσ ′ . (7)

Provided the period � is sufficiently small, the energy dif-
ference between different minibands, i.e., the difference be-
tween Ek,m,σ and Ek,n,σ ′ with |m| 
= |n|, is much larger
than the characteristic energy scales associated with the
periodic potential and the magnetic field. Consequently,
the basic physics can be understood by treating V (x) and
� as perturbations acting within the subspace of basis
states having the same absolute value of the zone number,
i.e., {|k, n,↑〉, |k,−n,↑〉, |k, n,↓〉, |k,−n,↓〉}. For n 
= 0,
the effective normal-state Hamiltonian acting within this sub-
space is

Hn(k)=

⎛⎜⎝Cn + v+k U ∗
n � 0

Un −Cn − v−k 0 �

� 0 −Cn + v−k U ∗
n

0 � Un Cn − v+k

⎞⎟⎠
− μn + h̄2k2

2m∗ , (8)

where the effective parameters are

μn = μ − 2n2π2h̄2

m∗�2
− Ṽ0, (9)

Cn = α
2πn

�
, (10)

vn± = n
2π h̄2

m∗�
± α, (11)

Un = V2n. (12)

Notice that for � = 0 (i.e., no magnetic field), spin is a good
quantum number [i.e., the red and blue bands in Figs. 1(b)
and 1(c) do not couple] and one can exactly diagonalize the
Hamiltonian in Eq. (8). The energies of the corresponding
eigenstates are

ε
(n)
±,σ (k) = ±

√
[Cn + (σz )σσ v̄nk]2 + |Un|2

+ (σz )σσαk − μn + h̄2k2

2m∗ ,

(13)

with v̄n = 1
2 (vn+ + vn−). The spectrum of a typical miniband

in the vicinity of k = 0 is shown in Fig. 1(b). When there
is no periodic potential (Un = 0, dashed lines), the spectrum
consists of two Dirac-type cones with intersections shifted
away from k = 0 due to the spin-orbit coupling. This gives
rise to an energy splitting 2Cn at k = 0, i.e., a splitting pro-
portional to the Rashba coefficient (α) and the miniband index
(n). Applying a periodic potential opens a gap of size 2|Un|
at the nodes of the Dirac cones. Expanding the eigenenergies
ε

(n)
±,σ in the wave vector near k = 0, we have

ε
(n)
±,σ ≈ h̄2k2

2m∗
n±

+ (σz )σσαn±k − μ̃n±, (14)
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where the effective spin-orbit coupling αn±, mass m∗
n±, and

chemical potential μ̃n± are renormalized by the periodic po-
tential,

αn± =
[

1 ± 4π2n2

γn

(
h̄2

|Un|m∗�2

)]
α, (15)

1

m∗
n±

=
[

1 ± 4π2h̄2n2

m∗�2|Un|γn

(
1 ∓

∣∣∣∣ Cn

Unγn

∣∣∣∣2
)]

1

m∗ , (16)

μ̃n± = μn ∓
√

C2
n + |Un|2, (17)

with γn =
√

1 + |Cn/Un|2. Remarkably, both the upper and
lower pairs of minibands mimic the spectrum of a uniform
Rashba nanowire, but having renormalized effective masses
and spin-orbit parameters that depend on the characteristics
(i.e., amplitude and period) of the periodic potential. This
suggests the possibility of optimizing the effective parameters
of the nanowire by engineering the periodic potential. For
example, Eq. (15) shows that, for moderate values of n,
the renormalized spin-orbit coefficient can be significantly
larger than the corresponding bare parameter α. Combining
Eqs. (15) and (16), we obtain the effective spin-orbit energy

ẼSO,n = ±m∗α2

2h̄2 + 2π2n2

γn

(
α2

|Un|�2

)
, (18)

where the first term is the bare spin-orbit energy of the original
Hamiltonian (2) with no periodic potential, i.e., with V (x) =
0, and the second term is a potential-induced contribution.
Note that this additional contribution increases with the mini-
band index (n) and can become dominant, as we explicitly
show below.

Next, we apply a magnetic field, � 
= 0, which removes the
spin degeneracy at k = 0. For convenience we incorporate the
effects of the magnetic field by writing the Hamiltonian (8)
in the basis of eigenstates corresponding to � = 0. Explicitly,
we have

H̃n(k) =

⎛⎜⎜⎜⎝
ε

(n)
+,↑ �̃ 
 0
�̃ ε

(n)
+,↓ 0 −



 0 ε
(n)
−,↓ �̃

0 −
 �̃ ε
(n)
−,↑

⎞⎟⎟⎟⎠, (19)

where �̃(k) and 
(k) are intraminiband and interminiband
pair-coupling terms, respectively. Focusing on k = 0 and
expanding �̃ and 
 in a power series with respect to the
parameter (Cn/Un), we have

�̃(k = 0) =
[

1 − 1

2

(
Cn

Un

)2

+ 3

8

(
Cn

Un

)4

+ O
(

Cn

Un

)6
]
�,

(20)


(k = 0) =
[(

Cn

Un

)
− 1

2

(
Cn

Un

)3

+ O
(

Cn

Un

)5
]
�, (21)

where, without loss of generality, we assumed Un ∈ R. Note
that the (±) pairs of minibands become decoupled if 
 → 0,
i.e., in the limit of strong periodic potentials (Cn/|Un|) → 0.
As long as the energy separation between the miniband pairs
dominates over the Zeeman splitting, i.e.,

√
C2

n + |Un|2 �

�/2, we can treat �̃ as the renormalized Zeeman splitting.
From Eq. (20) we see that �̃ = � in the limit (Cn/|Un|) → 0,
but, for finite (Cn/|Un|), the effective Zeeman splitting is
renormalized to smaller values. To understand the physical
mechanism responsible for this behavior, we refer to Fig. 1(c).
Before the application of the periodic potential and magnetic
field, the high-energy states are |0, n,↑〉 and |0,−n,↓〉. These
two states cannot couple directly because V (x) preserves
spin and �σx preserves the zone number n, therefore, the
mixing between these states must rely on an indirect path
involving both � and |Un|. The periodic potential |Un| couples
the (same-spin) upper- and lower-energy states, but has to
overcome an energy gap 2Cn. Hence, we expect a large
effective Zeeman splitting �̃ only if (Cn/|Un|) � 1. Indeed, in
the opposite limit (Cn/|Un|) � 1, we find a reduced effective
Zeeman splitting �̃ ≈ (|Un|/Cn)�. Since we are interested in
realizing Majorana physics, which requires a Zeeman splitting
�̃ > �, we focus of the strong periodic potential regime
(Cn |Un|) � 1.

To investigate the emergence of topological superconduc-
tivity and Majorana bound states, we consider a BdG Hamil-
tonian with uniform induced pairing potential � and a normal
component described by Eq. (19). Since a large effective
Zeeman splitting is needed for the emergence of Majorana
bound states, we focus on the regime (Cn/|Un|) � 1, which
implies �̃ � 
. This allows us to use quasidegenerate pertur-
bation theory [52] to decouple the higher-energy miniband
pair from the lower-energy pair. Note that we implicitly
incorporate the effects of the lower-energy minibands on the
higher-energy pair, but a similar analysis can be done by ex-
plicitly keeping the lower-energy pair in the effective model.
To second order in 
, the effective Hamiltonian describing the
higher-energy minibands has the form

H (n)
eff =

[
h̄2k2

2m∗
n+

−
(

μ̃n+ − 
2

2
√

C2
n + |Un|2

)
+ �̃σx

]
τz

+ αn+kσz + �σyτy. (22)

This Hamiltonian corresponds to a simple, uniform Majorana
nanowire model [5,6] having effective parameters that are
renormalized by the periodic potential [see Eqs. (15)–(17),
(20), and (21)]. In the regime (Cn/|Un|) � 1, the system
undergoes a topological phase transition at a (bare) critical
Zeeman field

�2
c ≈ (

μ̃2
n+ + |�|2)[1 +

(
1 − μ̃n+

|Un|
)(

Cn

|Un|
)2

]
. (23)

Note that in the limit (Cn/|Un|) → 0 we recover the “stan-
dard” expression of the critical field for a uniform Majorana
nanowire [5,6]. When � > �c, the system is in a topologi-
cal superconducting phase, with two zero-energy Majorana
bound states localized at the edges.

To illustrate the emergence of Majorana bound states in a
high-energy miniband, we solve numerically the BdG prob-
lem described by Eq. (1) for a finite system using the finite-
difference method. For simplicity and clarity, we first consider
an idealized periodic potential composed of a single harmonic
of the form V (x) = 2U cos (πx/�), with � = 25 nm, so that
Ṽn = Uδn,±1. Other system parameters are m∗ = 0.026 mo,
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FIG. 2. (a) Low-energy spectrum of a finite system described
by Eq. (1) as a function of the applied (bare) Zeeman splitting �.
The system parameters are m∗ = 0.026 mo, α = 20 meV nm, � =
0.5 meV, � = 25 nm, L = 5.1 μm, and C1/U1 = 0.5. The chemical
potential is μ = 103.5 meV, corresponding to the bottom of the
|n| = 1 higher-energy miniband pair, i.e., μ̃1+ = 0. The green dashed
line shows the critical Zeeman splitting predicted by Eq. (23),
which coincides with the minimum of the bulk gap, as expected.
(b) Envelopes of the MBS wave functions corresponding to the green
star in (a). The inset shows a zoom-in of the second maximum of the
right Majorana. Note the highly oscillatory nature of the Majorana
wave function (black lines).

α = 20 meV nm, � = 0.5 meV, L = 5.1 μm, C1/U1 = 0.5.
The chemical potential is μ = 103.5 meV, which corresponds
to μ̃1+ = 0, i.e., the chemical potential is set to the bottom
of the |n| = 1 higher-energy miniband pair. The results are
shown in Fig. 2. Upon applying a sufficiently high Zeeman
field, a pair of Majorana modes emerges at zero energy
[see Fig. 2(a)]. Note that Majorana bound states could not
emerge at such a high chemical potential (μ = 103.5 meV)
in a uniform system, as the required Zeeman field would
completely destroy superconductivity in the parent supercon-
ductor. Rather, the periodic potential has expanded the pa-
rameter space consistent with topological superconductivity,
as pointed out in Refs. [27,35,37]. The green dashed line
in Fig. 2(a) shows the critical Zeeman splitting predicted by
the analytical expression in Eq. (23). Note that this value
coincides with the minimum of the bulk gap, which occurs at
� > � due the additional (Cn/|Un|) contribution in Eq. (23).
The wave functions of the two MZMs corresponding to � =
2 meV, which are obtained using the Majorana representation
[21] of the lowest-energy states, are shown in Fig. 2(b).
Note that the broad blue and red curves, which represent the
modulus squared of the envelope functions corresponding to
the two MZMs localized at the ends of the wire, are very
similar to Majorana wave functions emerging in a uniform
system. However, a zoom-in of the second maximum of the
right (red) Majorana mode [see the inset of Fig. 2(b)] reveals

the highly oscillatory nature of the wave function, which
oscillates with a wavelength �. This rapidly oscillating nature,
which is indicative of large-k components, represents the
source of the enhanced (renormalized) spin-orbit coupling in
Eq. (15).

B. Majorana localization length

A key parameter that characterizes the Majorana bound
states is the localization length ξ representing the characteris-
tic length scale of the MBS. This localization length controls,
among other things, the amplitude of the energy splitting
oscillations due to the partial overlap of the MBSs localized
at the opposite ends of a finite wire. A natural question is how
does the localization length of a periodic Majorana structure
compare with the localization length of the corresponding
uniform system? On the one hand, the reduced effective mass
[see Eq. (16)] favors delocalization, while, on the other hand,
the increased spin-orbit coupling [see Eq. (15)] enhances the
Majorana localization. To determine the relative role of these
effects, we study (analytically and numerically) the solutions
of the effective Hamiltonian (22). Details can be found in the
Appendix. We find the the localization length of the MBSs
associated with the higher-energy miniband pair (n+) has the
form

ξn+ ∼ �SO

(
�

�

)√
1 + 4μ̃n+ẼSO,n+

�2
+ 4Ẽ2

SO,n+
�2

, (24)

where �SO = h̄2/(m∗α) is the bare spin-orbit length, while
μ̃n+ and ẼSO,n+ are the renormalized chemical potential (17)
and spin-orbit energy (18), respectively. Note that a similar
calculation can be done for ξn−. The first two factors in
Eq. (24) (i.e., those outside the square-root sign) are bare pa-
rameters entering the original BdG Hamiltonian (1). The last
factor (i.e., the square root) contains renormalized parameters
and leads to a moderate increase of the localization length.
We verify Eq. (24) numerically by fitting the envelope of
the Majorana wave function to an exponential, |ψ |2 ∝ e−2x/ξ .
The results are shown in Fig. 3 as a function of (C1/U1)
for fixed Zeeman field, � = 2 meV, and μ̃1+ = 0. Note the
excellent agreement between the analytical and numerical
results for (C1/U1) � 1.5, which corresponds to the strong
periodic potential regime. Above this threshold, the local-
ization length increases strongly as the critical Zeeman field
�c approaches � = 2 meV. Note that the dashed line shows
the localization length of a uniform wire [V (x) = 0, μ = 0]
with the same bare parameters as the periodic system. In
the limit C1/U1 → 0, the periodic and uniform systems have
the same localization length, ξ ≈ 600 nm, while the localiza-
tion length of the periodic system increases with increasing
C1/U1. At C1/U1 = 1, ξ is roughly double for the periodic
system as compared to the uniform wire. However, this is
a rather moderate increase, particularly considering that the
renormalized effective mass m∗

1+ = 0.0016 mo is significantly
smaller than the bare effective mass m∗ = 0.026 mo. Finally,
we note that, while the results shown in Figs. 2 and 3 are
based on an idealized periodic potential of the form V (x) =
2U cos (πx/�), the basic physics discussed above holds for
generic periodic potentials.
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FIG. 3. Localization length ξ1+ as a function of C1/U1 for a
system with � = 2 meV and μ̃1+ = 0. The blue line shows the
analytical result given by Eq. (24), while the red dots correspond
to the numerical solution extracted by fitting the envelope of the
Majorana wave function |ψ | ∝ e−x/ξ1+ . The system parameters are
the same as in Fig. 2, except L = 20 μm and C1/U1 varies. For
comparison, the localization length of a uniform wire with the same
bare parameters (m∗, α, and �) and μ = 0 is shown as a black dashed
line.

C. Topological phase diagram in systems
with rectangular periodic potential

To investigate the effect of the periodic potential on the
topological phase diagram, we consider a system with rectan-
gular periodic potential, as shown in Fig. 1(a). Explicitly, we
have

V (x) =
{

Vo, 0 � x � Lbar

0, Lbar < x < �
(25)

where Vo and Lbar are the height and length of each potential
barrier, respectively, and V (x + �) = V (x). The Fourier com-
ponents of the potential are

Ṽn = −iVo

2πn

[
exp

(
i2πnLbar

�

)
− 1

]
. (26)

The energy spectra of the normal system with and without the
periodic potential are shown in Fig. 4(a) as blue solid lines and
black dashed lines, respectively. In the absence of the periodic
potential, the dispersion is quadratic and there are no energy
gaps. Applying a periodic potential opens energy gaps at the
zone center and at the zone boundaries inducing (pairs of)
minibands.

As noted above, the dispersion of the minibands is similar
to that of uniform Rashba nanowires, except that the effective
parameters are renormalized and miniband dependent [see
Eqs. (14)–(17)]. Each of the minibands can support Majorana
bound states, as long as the chemical potential is close to its
bottom/top and the Zeeman splitting is strong enough. For
a given set of parameters, we use the Chern-Simon invariant
[53,54] Q to determine whether the system is topologically
trivial (Q = 1) or nontrivial (Q = −1). Figure 4(b) shows the
calculated phase diagram as a function of Zeeman splitting
� and chemical potential μ. Topologically trivial regions are
shown in gray, while the topologically nontrivial regions are
colored using a color scale that indicates the size of the

FIG. 4. (a) Low-energy spectrum of a normal wire in the absence
(black dashed lines) and presence (blue solid lines) of a periodic
potential. (b) Topological phase diagram of the periodic system as
a function of chemical potential μ and Zeeman field �. Gray regions
are topologically trivial. The color of the topological regions is
determined by the size of the topological gap. The system parameters
are m∗ = 0.023 m0, α = 10 meV nm, � = 0.5 meV, � = 100 nm,
Lbar = 15 nm, and Vo = 20 meV.

topological gap. Several features are worth pointing out. First,
we emphasize that the emergence of a low-field topological
phase is associated with the chemical potential being near one
of the miniband edges, i.e., either the one at k = 0 or the k =
±π/� band edge. The critical Zeeman field �c(μ) has minima
near each of these band edges. Note that the corresponding
uniform system only supports a low-field topological phase
for low values of μ, i.e., for chemical potential values near the
bottom of the conduction band. Second, the areas of the pa-
rameter space that support topological superconductivity typ-
ically increase as one reaches higher-energy minibands. This
is due to the increasing of the miniband width with energy. For
example, the lowest-energy miniband has a bandwidth of less
than 0.5 meV. For any (large enough) value of the Zeeman
field, the single miniband occupancy condition (consistent
with the emergence of topological superconductivity) is only
satisfied within a narrow chemical potential window compa-
rable to the bandwidth. The increase of the topological phase
with the miniband index is further illustrated in Fig. 5, which
shows the dependence of the low-energy spectrum of a finite
wire on the applied Zeeman field for two different values of
the chemical potential corresponding to the k = 0 band edge
of the (a) second and (b) fifth pair of minibands, respectively.
Both sets of parameters support topological superconductivity
and zero-energy MBSs, but in the case of the second miniband
[Fig. 5(a)] this occurs over a rather narrow range of Zeeman
fields. Indeed, the system in Fig. 5(a) becomes nontopological
for � > 1.7 meV, when the k = ±π/� band edge crosses the
Fermi level. The third important feature of Fig. 4(c) is the
increasing of the topological gap as the chemical potential
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FIG. 5. Energy spectrum of a finite system of length L = 6 μm
as function of the Zeeman field for a chemical potential (a) μ =
6.73 meV (corresponding to the top of the second pair of minibands)
and (b) μ = 31.02 meV (bottom of the fifth miniband pair). The
topological phase (corresponding to the orange shading) supports a
pair of zero-energy Majorana modes. Note that the topological gap
is significantly larger in (b), i.e., in the topological phase associated
with the fifth miniband [see also Fig. 4(b)].

moves into the higher-energy minibands. The larger topo-
logical gap is a consequence of the larger spin-orbit energy
characterizing the higher-energy minibands [see Eq. (18)]. We
conclude that the presence of a periodic potential (i) expands
the (low-field) parameter region that supports a topological
superconducting phase and (ii) can enhance the size of the
(low-field) topological gap. Note that throughout this work we
are particularly interested in the low-field regime (� � 5�),
as strong magnetic fields are detrimental to superconductivity,
can lead to the complete collapse of the parent superconduct-
ing gap, and, therefore, are less relevant to understanding the
physics of experimentally realizable structures.

D. Soft confinement and partially separated Andreev
bound states in periodic systems

Systems with inhomogeneous parameters are known to
give rise to low-energy Andreev bound states (ABSs) in the
topologically trivial phase [20–28,30]. Of particular interest
are the trivial near-zero-energy modes that mimic the lo-
cal phenomenology of Majorana bound states, the so-called
partially separated Andreev bound states (ps-ABS) or quasi-
Majorana modes [22,24]. In the Majorana representation,
these low-energy states are characterized by Majorana com-
ponents that are partially separated in space, unlike “standard”
ABSs, which consist of highly overlapping Majorana compo-
nents. The energy splitting of the low-energy ABSs (including
the ps-ABSs) is sensitive to local perturbations, indicating that
these states do not share the topological protection of well-
separated MBSs. Here, we study the emergence of low-energy
ps-ABSs in a periodic system due to soft confinement and

FIG. 6. (a) Low-energy spectrum as a function of the applied
Zeeman field for a system with soft confinement (and no periodic po-
tential). (b) Low-energy spectrum of a periodic system with soft con-
finement. The periodic potential has the form V (x) = Vo cos(πx/�),
with Vo = 8 meV and � = 20 nm, while the soft confinement has
a slope κ = 2 meV/μm. Both systems support ABS modes that
collapse toward (and stick to) zero energy as the Zeeman splitting
increases. Note, however, that in the periodic system the ABS
collapses to zero energy at a significantly larger Zeeman field.

compare the properties of these states with those of ps-ABSs
emerging in “conventional” nanowires with soft confinement
and no periodic potential. For clarity, we consider an idealized
soft confinement given by the potential

V ′(x) = −κx, (27)

where κ is the slope of the potential. The potential given by
Eq. (27) has the property that, for sufficiently long wires,
induced low-energy states are independent of the chemical
potential, up to an overall spatial shift. For small enough
values of κ we expect nearly zero-energy ps-ABSs emerging
for values of the Zeeman splitting slightly above � since there
will be a sufficiently wide region that locally satisfies the
topological condition � >

√
[μ − V (x)]2 + �2. Increasing κ

shrinks the region of space where the topological condition is
met (for a given value of �) and the ps-ABS collapses toward
zero energy at larger values of the Zeeman field.

The low-energy spectra of a system with soft confinement
in the (a) absence and (b) presence of the periodic potential
are compared in Fig. 6. The periodic potential has the form
V (x) = Vo cos(πx/�), with Vo = 8 meV and � = 20 nm. We
notice that the low-energy spectrum in Fig. 6(a), i.e., in
the absence of a periodic potential, has a zero-energy state
emerging at a Zeeman field just above the induced pairing
� = 0.5 meV. By contrast, the periodic system supports a
near-zero-energy state only above � ≈ 1.1 meV. This behav-
ior suggests that the presence of a periodic potential reduces
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FIG. 7. (a) Majorana wave functions corresponding to the low-
energy ps-ABS marked by a green star in Fig. 6(a). (b) Envelopes
of the Majorana wave functions corresponding to the low-energy
ps-ABS marked by a green square in Fig. 6(b). Note that the actual
wave function oscillates rapidly, as illustrated in Fig. 2(b). The main
Majorana peaks are wider in the periodic system (b) as a result of a
smaller effective mass. In turn, this requires a higher Zeeman field
for satisfying the partial separation condition associated with the
collapse of the ps-ABS to zero energy [22] (see Fig. 6).

the low-field parameter region that supports ps-ABSs (i.e.,
quasi-Majoranas).

To understand this behavior, we calculate the Majorana
components of the ps-ABSs marked by the green star and
square in Figs. 6(a) and 6(b), respectively. The results are
shown in Fig. 7. Both states are characterized by a partial
separation of the Majorana components larger than the widths
of the corresponding main peaks of the Majorana wave func-
tions, which is a necessary condition for the collapse of the
ps-ABS to zero energy [22]. The key difference between the
states in Fig. 7(a) and those in Fig. 7(b) is that the “conven-
tional” ps-ABS is characterized by Majorana peak widths that
are significantly narrower than the corresponding peaks of the
ps-ABS emerging in the periodic system. Consequently, in
a periodic wire with soft confinement the partial separation
condition [22] is realized at higher values of the Zeeman
field, as compared to a “conventional” system, as explicitly
shown in Fig. 6. Finally, we note that width of the (main)
Majorana peak, which controls the Zeeman field associated
to the collapse to zero energy of the ps-ABS, is determined
by the effective mass. In a periodic system, the effective
mass can be significantly reduced, particularly for higher-
energy minibands [see Eq. (16)]. Consequently, the presence
of a periodic potential reduces the probability of (accidental)
ps-ABSs emerging in the (topologically trivial) low-field
regime, and, implicitly, reduces the likelihood of getting false
positives when searching for Majorana zero modes. Quantita-
tive estimates of this superlattice-induced reduction require a
more realistic modeling of the hybrid system.

E. Robustness against disorder

Our next objective is to investigate the robustness against
disorder of the topological superconducting phase realized
in a periodic system and compare it with the robustness of
the corresponding phase emerging in uniform structures. We

note that the presence of disorder, which, to some degree,
is inevitable in real systems, can lead to the reduction of
the topological gap [55,56] and the emergence of trivial
low-energy modes [25,57–59]. To investigate the effects of
disorder, we consider a correlated Gaussian disorder potential
V ′(x), characterized by

〈V ′(xi )〉 = 0, (28)

〈V ′(xi )V
′(x j )〉 = U 2 exp

(
−|xi − x′

j |
Ldis

)
, (29)

where U is the disorder strength, xi is the position along the
wire corresponding to lattice site i, and Ldis is the disorder
correlation length scale. In our numerical calculations we
use Ldis = 50 nm, which is a length scale comparable to the
typical diameter of a semiconductor nanowire. The correlated
disorder is numerically implemented using the scheme de-
scribed in Ref. [60]. The other system parameters are the same
as in Fig. 4 and the wire length is L = 5 μm. For comparison,
we also consider a “conventional” disordered wire having
the same system parameters and disorder potential, but no
periodic potential.

First, we calculate the density of states (DOS) averaged
over disorder (using 1000 realizations) as a function of the
disorder strength for a fixed value of the Zeeman field � =
1.2 meV, well inside the topological phase of a clean system.
The results are shown in Fig. 8(a) for a uniform system
with chemical potential μ = 0 and in Figs. 8(b)–8(d) for a
periodic systems with chemical potential corresponding to the
bottom of the second, third, and fourth k = 0 miniband edges,
respectively. In the absence of disorder (U = 0), the system
is in the topological phase and supports a pair of zero-energy
MBSs localized at the edges of the finite wire. The presence of
the Majorana modes is signaled by a sharp zero-energy peak
in the density of states (see Fig. 8). We also note the larger
topological gap associated with the higher-energy minibands
of the periodic system, which is due to a larger effective
spin-orbit coupling. Indeed, the zero-disorder topological gap
in the third and fourth k = 0 minibands [Figs. 8(c) and 8(d)] is
significantly larger than the corresponding gap in the uniform
system [Fig. 8(a)]. As the disorder is turned on, the topological
gap collapses as low-energy bound states (localized by the
disorder potential) start to populate the gap. Note that the
collapse of the gap to zero energy occurs at significantly
higher disorder strengths in the periodic system (with chemi-
cal potential inside higher-energy minibands) as compared to
the uniform case. This is consistent with the corresponding
size of the topological gap at U = 0. For clarity, in the bottom
row of Fig. 8 we provide line cuts of the (disorder-averaged)
density of states at fixed disorder strengths. One clearly
notices the zero-energy peak associated with the presence
of MBSs and the collapse of the topological gap in the
presence of disorder. Remarkably, in the periodic system with
a chemical potential inside the fourth miniband [Fig. 8(h)], a
finite topological gap survives at U = 0.75 meV > � and the
zero-energy peak is well defined even at U = 1.5 meV. We
also note that the (average) density of states corresponding
to higher-energy minibands is reduced relative to the uniform
system DOS due to a smaller (renormalized) effective mass
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FIG. 8. Density of states averaged over 1000 disorder realizations as function of the disorder strength U for (a) a uniform system with
chemical potential μ = 0 and (b)–(d) a periodic structure with chemical potential set to the second (b), third (c), and fourth (d) k = 0 miniband
edges. The Zeeman splitting is fixed at � = 1.2 meV, the length of the wire is L = 5 μm, the disorder correlation length is Ldis = 50 nm,
and other system parameters are the same as Fig. 4. The bottom rows (e)–(h) show line cuts corresponding to the colored lines in the top
row: U = 0 (black lines), U = 0.75 meV (green), and U = 1.5 meV (red). Note that the topological gap and the Majorana zero-energy peak
corresponding to higher-energy minibands of the periodic system [ (c), (d) and (g), (h)] are significantly more robust against disorder than their
counterparts emerging in the uniform system [(a) and (e)].

in the periodic system. This results in a large ratio between
the zero-energy peak height and the background density of
states corresponding to high-energy minibands of the periodic
system [see, e.g., Fig. 8(h)].

The results discussed above suggest that a periodic system
can support (low-field) topological superconductivity and Ma-
jorana zero modes that are significantly more robust against
disorder than their counterparts realized in a uniform system
(having the same parameters), provided the chemical potential
is tuned into the higher-energy minibands. An interesting
problem that cannot be settled based on our density of states
analysis concerns the survival of the zero-energy peaks above
the disorder strength corresponding to the collapse of the
topological gap (see Fig. 8). While it is tempting to attribute
the peak to MBSs localized at the ends of the wire, which is
definitely the case for weak disorder, one has to keep in mind
that generic class D systems are known to have zero-energy
peaks in their density of states even in the absence of topologi-
cal MBS localized at the boundaries. This phenomenon can be
understood in terms of the Griffiths effect [55,61], i.e., the dis-
order potential causing fluctuations in the chemical potential
that generate short topologically trivial and nontrivial regions
throughout the wire. Highly overlapping low-energy MBS
emerge at domain walls between these regions. It has been
shown that a power-law peak in the density of states at E =
0 is expected to occur due to such disorder-induced states,
in contrast with the sharp peak associated with topological
MBSs localized at the edges of the wire [61].

To clearly disentangle the contributions generated by topo-
logical MZMs from those associated with local MBS pairs
(including ps-ABSs or quasi-Majoranas), we introduce the

following edge-to-edge correlation function

C = max(0, C̃), (30)

with

C̃ = |ψ1,L|2|ψ1,R|2 f (E1, ωo,
)

−
λ 
=1∑
λ

|ψλ,L|2|ψλ,R|2 f (Eλ, ωo,
), (31)

where ψλ,L(R) is the left (right) edge component of the
positive-energy state λ and f is a weight function (explicitly
defined below) peaked at zero energy and characterized by an
energy window ω0. Note that C 
= 0 signals that the lowest-
energy mode has nonzero weight at both ends of the wire,
i.e., it consists of well-separated MBSs. Possible nonlocal
correlations associated with higher-energy states result in C̃ <

0 [see Eq. (31)], hence, C = 0. A perfectly symmetric system
can support topologically trivial near-zero-energy states that
have equal (nonzero) amplitudes at the ends of the system.
However, in this situation the BdG states λ = 1 and 2 are
degenerate and have equal R/L amplitudes, which leads to the
cancellation of the first two terms in Eq. (31). In the presence
of disorder, the symmetry is broken and the nearly degenerate
states λ = 1 and 2 are (typically) localized at opposite ends
(hence, again, the correlation is zero). There can be disorder
configurations that generate accidental nonzero correlations
due to nearly degenerate trivial states, but we found that
these situations are rare and the weight of the corresponding
contributions is negligible when considering a large enough
number of disorder realizations. Finally, note that the lowest-
energy state can have a finite energy ε and still generate a
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FIG. 9. Correlation phase diagrams for uniform and periodic systems as a function of chemical potential and Zeeman splitting. The
correlation strength C is defined by Eq. (30) and is averaged over 300 disorder realizations, with each panel being normalized to the maximum
value corresponding to a clean, uniform system [(a)]. The disorder strength is U = 0 for the panels in the top rows [(a)–(d)], U = 0.5 meV
(middle row), and U = 1.0 meV (bottom row). Note that the edge-to-edge correlations are suppressed most rapidly in the periodic system with
low chemical potential (second column), followed by the uniform system (first column). In the periodic system with higher-energy minibands
(third and fourth columns) the correlations decrease with disorder at a lower rate, indicating an increased robustness of MBSs against disorder.

well-defined edge-to-edge correlation, as long as ε < ω0. This
property is extremely useful for disentangling well-separated
MBSs and ps-ABSs in finite (relatively short) wires, as both
types of states may be characterized by finite-energy splitting
oscillations. The weight function is defined as

f (E , ωo,
) = H (E ,−ωo,
) − H (E , ωo,
) (32)

with

H (E , ωo,
) = {1 + exp [−2(E − ωo)/
]}−1. (33)

Note that Eq. (33) becomes the Heaviside step function in
the limit 
 → 0. In the numerical calculations we use ωo =
2 meV to define the range of relevant low-energy states and

 = 0.2 meV to define the smooth transition region. Also,
we define ψλ,L(R) as the total weight (including summations
over the spin and particle-hole degrees of freedom) within the
leftmost (rightmost) 200-nm segment of the wire.

Calculated edge-to-edge correlations averaged over 300
disorder realizations are shown in Fig. 9 for both the peri-
odic and uniform systems. The top panels correspond to a
clean system (U = 0), while the middle and bottom panels
correspond to U = 0.5 and 1 meV, respectively. The length
of the wire is L = 2 μm, while other system parameters
are the same as in Fig. 8. First, we note that for a clean
system (see top panels in Fig. 9) the areas with C 
= 0
correspond to the the topological superconducting phase in
Fig. 4(b), demonstrating that the edge-to-edge correlations
are generated by Majorana modes localized at the ends of
the wire. To emphasize this property, we will use the term
correlation phase diagram to designate the map C(μ,�).
Note that the large correlations corresponding to the green
regions in Figs. 9(a) and 9(b) are due to strongly local-
ized MBSs characterizing the corresponding clean systems.
By comparison, the (clean) MBSs associated with higher-
energy minibands [Figs. 9(c) and 9(d)] have larger localization

lengths, hence lower values of |ψ1,L(R)|2 and, implicitly, C.
Upon introducing disorder, the edge-to-edge correlation is
reduced in all cases, essentially due to the hybridization of
end-of-wire MBSs with disorder-induced low-energy states.
In addition, one can notice (primarily in the uniform system)
a shift of the correlated area toward larger values of μ, which
is consistent with the findings of Ref. [27]. However, the
most important feature is that the suppression of C does not
occur at the same rate for all parameter regimes. While in a
periodic system with low chemical potential (second column
in Fig. 9) the correlations are suppressed even faster than in
the uniform system (first column), periodic systems with a
chemical potential within higher-energy minibands (columns
three and four) are characterized by correlations that decrease
at a lower rate than the uniform system, which signals the
increased robustness of MBSs against disorder. Note that
while Figs. 9(i) and 9(k) have similar correlation levels at U =
1 meV, the periodic system (third column) is characterized by
correlations decreasing with the disorder strength at a signif-
icantly slower rate than the correlations in the homogeneous
system (first column). We conclude that topological phases
and Majorana zero modes realized in periodic systems can be
more robust against disorder than their counterparts emerging
in uniform system, provided the chemical potential lies within
a sufficiently high-energy miniband.

III. MAJORANA WAVEGUIDES

Our detailed analysis of the periodic Majorana system
based on the 1D toy model given by Eqs. (1) and (2) has
demonstrated that the presence of a periodic potential could
provide significant advantages for realizing Majorana zero
modes in semiconductor-superconductor structures, such as
increasing the low-field parameter range consistent with topo-
logical superconductivity, enhancing the topological gap and
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FIG. 10. (a) Schematic representation of the proposed Majorana
waveguide device. A 2DEG hosted by a semiconductor heterostruc-
ture is proximitized by a quasi-1D superconductor with alternating
wide and narrow regions. A top gate depletes the 2DEG outside the
region covered by the superconductor generating a quasi-1D channel
with periodically modulated width. (b) Top view of the periodic
quasi-1D channel.

the robustness of the Majorana modes against disorder, and
reducing the (low-field) parameter space associated with the
emergence of topologically trivial low-energy states. How-
ever, our analytical expressions for the renormalized effective
parameters, corroborated by the numerical results, indicate
that these potential benefits can only be obtained if (i) the ap-
plied periodic potential is strong enough and (ii) the chemical
potential is tuned within one of the higher-energy minibands.
In practice, realizing the first condition is highly nontrivial.
Our numerical estimates indicate that using, for example, a
proximitized semiconductor nanowire [7,40–44] and a pe-
riodic arrangement of potential gates is highly unlikely to
generate a strong enough periodic potential.

In this section we approach the critical problem of realiz-
ing the periodic potential from a different angle: instead of
actually applying an external periodic potential, we propose
the realization of an effective periodic potential by modulating
the width of the device. More specifically, we propose the
realization of periodic Majorana devices based on quasi-
1D channels realized in 2D semiconductor heterostructures
proximity coupled to superconductor strips of periodically
modulated width. The feasibility of such a device is supported
by recent progress in engineering Al-InAs two-dimensional
heterostructures showing experimental signatures consistent
with Majorana physics [17,45,46,48–50]. A schematic rep-
resentation of the proposed device is shown in Fig. 10(a).
A semiconductor quantum well hosting a two-dimensional
electron gas (2DEG) with large spin-orbit coupling and g
factor is proximity coupled to a conventional superconductor
(e.g., Al) grown on top of the semiconductor heterostructure.
The structure is capped by a top gate that can deplete the
2DEG outside the region covered by the superconductor,
while the area under the superconductor is screened. As the
width of the superconductor is periodically modulated, we
obtain a quasi-1D channel with periodic position-dependent
width. A top view of the periodic quasi-1D channel is shown
in Fig. 10(b). As shown explicitly below, the periodic modu-
lation of the superconductor width generates a Majorana wire
with effective periodic potential basically equivalent to the 1D
model investigated in Sec. II.

We model the proposed Majorana waveguide by consid-
ering a 2DEG with Rashba spin-orbit coupling and position-

dependent confining potential described by the Hamiltonian

H2DEG =
[
− h̄2

2m∗
(
∂2

x + ∂2
y

) − μ + V (x, y)

]
σo

+ αykxσy − αxkyσx, (34)

where m∗ is the effective mass, μ is the chemical potential, αx

and αy are Rashba coefficients, and V (x, y) is a confining po-
tential periodic in the x direction with period �, V (x + �, y) =
V (x, y). Let us first consider a “hard-wall” confining potential

V (x, y) =
{

0, proximitized region in Fig. 10(b)
∞, depleted region in Fig. 10(b). (35)

The width of the proximitized region is x dependent, alternat-
ing between W1 and W2, with a bottom offset w, as shown in
Fig. 10(b). First, we study the spectrum of an infinite channel
by imposing periodic boundary conditions in the x direction.
In the limit W1 = W2, w = 0, and αx = 0, the spectrum is
trivially given by the analytic expression

En,p,τ (kx ) = h̄2

2m∗

[
π2n2

W 2
1

+
(

kx + 2π p

�

)2
]

− μ + (σz )τ,τ αykx,

(36)

where −π/� < kx � π/�, n ∈ Z+, p ∈ Z, and τ = 1, 2. The
quantum number n indicates the transverse mode, while p is
the zone number, and τ refers to the ±y spin- 1

2 eigenstates.
Note that the spectrum, which consists of folded and shifted
parabolas, is gapless. Allowing W1 
= W2 and/or w 
= 0 leads
to the opening of energy gaps near k = 0 and k = ±π/�.
This property can be viewed as a consequence of plane waves
scattering at the interface between the regions with different
widths. The calculated spectrum of a system with W1 
= W2

and w = 0 is shown in Fig. 11(a). Since the eigenenergies
scale as E ∝ W −2

1 , as long as the ratios between the spa-
tial variables are held fixed [51], it is natural to define the
energy unit as Eo = (π2h̄2/2m∗W 2

1 ), i.e., the confinement
energy associated with the first transverse mode in a quasi-1D
channel of width W1. Notice that the first miniband has its
bottom just above Eo. The (modulus squared of the) wave
function corresponding to the lowest-energy state [marked by
a red square in Fig. 11(a)] is shown in Fig. 11(b). Notice
that the wave function has a single transverse lobe localized
within the wide region and does not leak significantly into
the narrow region. The minimum energy required to have
an oscillatory component within the narrow region is E =
Eo(W1/W2)2 ≈ 2.16Eo. The wave function corresponding to
the k = 0 state of the third miniband is shown in Fig. 11(c).
The state is still dominated by the first transverse mode, but it
has three maxima within the wide region. States characterized
by transverse modes with two (or more) maxima occur above
E ≈ 4Eo, as expected based on the fact that the confinement
energy of the second transverse mode in a uniform channel is
4Eo. An example of such states is show in Fig. 11(d). Similarly
to the first miniband, this miniband is quite flat, as the second
transverse mode decays in the narrow regions for energies
below E ≈ 8.65Eo. However, this miniband mixes with other
minibands (dominated by the first transverse mode) near the
zone edge, where it acquires some dispersion. In general,
minibands above 4Eo are characterized by strong mixing
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(b)

(c)

(d)

FIG. 11. (a) Spectrum of a quasi-1D system with “hard-wall”
confining potential. (b)–(d) Modulus square of the k = 0 eigenstates
marked by colored squares in (a). The gray areas outside the narrow
regions (of width W2) are inaccessible due to the “hard-wall” confine-
ment. The system parameters are W2/W1 = 0.68, w = 0, L1/W1 =
2.6, L2/W1 = 0.4, m∗αyW1/h̄2 = 0.13, and αx = 0, and the energy
unit is Eo = (π 2 h̄2/2m∗W 2

1 ).

between different transverse modes. Below this threshold
energy, however, the system has a spectrum similar to that of
a purely 1D system in the presence of a periodic potential,
which can be seen by comparing the low-energy minibands of
Figs. 11(a) and 4(a). Therefore, we expect the results obtain
based on the purely 1D model of Sec. II to hold at least for the
first few minibands of the quasi-1D structure.

Next, we investigate numerically the correspondence be-
tween the properties of the Majorana waveguide and the pre-
dictions of the 1D toy model. For concreteness, we consider a
quasi-1D system with effective parameters consistent with an
InAs/Al heterostructure implementation of the proposed de-
vice: m∗ = 0.023 mo, αx = αy = 100 meV Å, � = 0.3 meV,
W1 = 50 nm, W2 = 30 nm, L1 = 130 nm, L2 = 20 nm, and
w = (W1 − W2)/2 = 10 nm. The corresponding normal spec-
trum for μ = � = 0 is shown in Fig. 12(a). Note the qualita-
tive similarity with the spectrum in Fig. 11(a). The absence
of mixing between the flat and the dispersive high-energy
minibands is due to a mirror symmetry with respect to the x
axis generated by the specific choice of geometric parameters.
The corresponding topological phase diagram as a function
of Zeeman field � and chemical potential μ is shown in
Fig. 12(b). The topologically trivial and nontrivial regions
correspond to the gray and colored regions, respectively, with
the color scale indicating the size of the topological gap. The
phase diagram displays the main qualitative features found in
the context of the 1D model (see Fig. 4). Again, each miniband
edge supports a (low-field) topological phase region, with the
flat minibands generating a nontrivial phase only inside thin

FIG. 12. (a) Spectrum of a quasi-1D periodic system with mirror-
symmetric “hard-wall” confining potential. (b) Topological phase
diagram of the periodic system as a function of chemical potential
μ and Zeeman splitting �. Gray regions are topologically trivial,
while colored regions are topologically nontrivial, with the color
scale indicating the size of the topological gap. Note that the phase
diagram is qualitatively similar to the phase diagram of the 1D
model shown in Fig. 4(b). The system parameters are m∗ = 0.023 mo,
αx = αy = 100 meV Å, � = 0.3 meV, W1 = 50 nm, W2 = 30 nm,
L1 = 130 nm, L2 = 20 nm, and w = (W1 − W2)/2 = 10 nm.

slices of parameter space. Also, the topological gap generally
increases as the chemical potential moves into higher-energy
minibands, due to a larger effective spin-orbit coupling. Note,
however, the effect of higher-energy flat minibands (absent in
the 1D model), which can create narrow topological regions
at higher values of the chemical potential. In practice, these
regions are likely irrelevant, due to their small areas (requiring
a high degree of fine tuning), and, most importantly, due to
their small topological gaps.

Consider now a finite segment of length L = 3.75 μm of
the quasi-1D system discussed above. The dependence of
the low-energy spectrum on the applied Zeeman field for
μ = 22.2 meV is shown in Fig. 13(a). For comparison, the
spectrum of a uniform wire with constant thickness W1 =
50 nm and the chemical potential tuned to the bottom of the
first transverse mode (all other parameters being the same) is
shown in Fig. 13(b). As expected based on our 1D analysis,
the periodic system with the chemical potential within a
higher-energy miniband supports a larger topological gap and
has a lower density of states, compared to the uniform system.
Also note that the Majorana mode in Fig. 13(a) is character-
ized by larger energy splitting oscillations as compared to its
counterpart in the uniform system [see Fig. 13(b)], indicating
a larger MBS localization length, in agreement with the results
of Sec. II.

While the “hard-wall” potential is a convenient approx-
imation for initially exploring the physics of Majorana
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FIG. 13. (a) Low-energy spectrum of a finite quasi-1D periodic
system as a function of the Zeeman field �. The length of the system
is L = 3.75 μm and the chemical potential is μ = 22.2 meV. All
other parameters are the same as in Fig. 12. (b) Spectrum of a
uniform system of thickness W1 = 50 nm (same as the wide region
of the periodic system) and chemical potential corresponding to the
bottom of the first transverse mode. All other parameters are the same
as in (a).

waveguides, in real systems there is a finite length scale χ ,
over which the confining potential varies from its value inside
the covered region to its value inside the depleted region. In
fact, it is important that this “soft-confinement” length scale
be large enough, as this enables the tuning of the chemical
potential by the top gate. Quantitatively, the length scale χ ,
which describes the efficiency of the screening by the super-
conductor of the potential created by the top gate, depends
on the details of the heterostructure and can be estimated
by solving a numerically challenging Schrödinger-Poisson
problem [62–64]. Here, we do not address this problem, but
instead consider χ as a phenomenological parameter and in-
vestigate the following key question: How are the topological
phase diagram and the properties of the Majorana bound
states affected by a finite (rather than zero) screening length?
To address this question, we model the “smooth” confining
potential as

V (x, y) = Vmax{g(x)V1(y) + [1 − g(x)]V2(y)}, (37)

where

g(x) =H (x, 0, χ ) − H (x, L1, χ ), (38)

V1(y) =H (−y, 0, χ ) + H (y,W1, χ ), (39)

V2(y) =H (−y,w, χ ) + H (y,w + W2, χ ), (40)

with H defined in Eq. (33). An example of a smooth con-
fining potential landscape is shown in Fig. 14. Note that
the finite screening length χ rounds the corners of the wide

FIG. 14. Confining potential landscape for a smooth potential
defined by Eq. (37) with parameters: W1 = 50 nm, W2 = 30 nm,
L1 = 130 nm, L2 = 20 nm, and χ = 10 nm.

and narrow regions, resulting in a smooth periodic quasi-1D
channel.

The dependence of the phase diagram on the screening
length χ is illustrated in Fig. 15. The system is characterized
by a soft confinement potential given by Eq. (37) with Vmax =
75 meV and different values of the screening length. All other
parameters are the same parameters as in Fig. 13. In the top
panel, i.e., Fig. 15(a), we have χ = 0, which means a sharp
transition from the covered region to the depleted region,
similar to the hard-wall scenario, except for a finite value
of the potential in the depleted region. The resulting phase
diagram is practically identical to the hard-wall phase diagram
in Fig. 13(b), except for an overall shift to smaller values of
the chemical potential due to a (small) leakage of the wave
functions into the depleted region. As the screening length χ

increases, the topological regions move to higher values of μ

as the proximitized (i.e., covered) channel acquires a nonzero
potential. Importantly, the phase diagram remains largely un-
affected by the finite χ , even for values of the screening length
comparable to the width of the channel [e.g., in Fig. 15(c)
we have χ = 0.67W2 = 0.4W1]. Of course, the exact shape
and location of the phase boundaries change slightly with

FIG. 15. Topological phase diagram for a system with soft con-
finement. The confining potential is given by Eq. (37), with Vmax =
75 meV and different screening lengths: (a) χ = 0, (b) χ = 10 nm,
and (c) χ = 20 nm. Other system parameters are the same as in
Fig. 13. Increasing the screening length χ shifts the phase diagram
toward larger values of μ, but does not change the main features.
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χ , but the overall topological area, the lowest values of the
critical Zeeman field, and the typical size of the topological
gap are practically insensitive to changes of the screening
length. This insensitivity, combined with the overall shift of
the phase diagram, demonstrates the possibility of tuning the
chemical potential using the top gate (i.e., changing Vmax)
without altering the phase boundaries. For the parameters used
in these calculations, a variation of the chemical potential
on the order of 5 meV (i.e., 10�) practically guarantees
access to a miniband edge, which corresponds to a low-field
topological phase. In addition, the overall energy scale can be
further controlled through the channel geometry, in particular,
the length scales L1, L2, W1, and W2 that determine the
confining potential landscape. Having demonstrated the basic
equivalence between the low-energy physics of the Majorana
waveguide and the effective 1D model of Sec. II, we conclude
that periodic quasi-1D channels engineered using patterned
2D semiconductor-superconductor structures represent an ex-
tremely versatile platform that can provide significant advan-
tages for realizing robust Majorana zero modes.

IV. SUMMARY AND CONCLUSIONS

In this work we investigate the emergence of topologi-
cal superconductivity and Majorana zero modes in periodic
structures, focusing on (i) determining the impact of the
periodic potential on the robustness of the Majorana modes
and (ii) identifying practical solutions for engineering a strong
enough periodic potential. First, we consider a simplified
one-dimensional model of the periodic structure and derive
analytical expressions for the effective parameters that charac-
terize the periodic potential-induced minibands. We find that
higher-energy minibands are characterized by large values of
the effective spin-orbit coupling and low effective masses.
In turn, this leads to enhanced values of the topological gap
and low densities of bulk states, creating ideal conditions for
the realization of robust topological superconductivity. Using
numerical simulations, we show explicitly that the presence
of a periodic potential reduces the low-field parameter space
consistent with topologically trivial low-energy states that
mimic the local phenomenology of Majorana zero modes (i.e.,
ps-ABSs or quasi-Majoranas). Most importantly, the periodic
potential enhances the robustness of the Majorana modes
against disorder. To demonstrate this point, we introduce an
edge-to-edge correlation function that could prove useful in
determining the expected output of nonlocal (three-terminal)
conductance measurements on Majorana devices. The price
for the larger topological gap and the increased robustness
against disorder is an enhanced Majorana localization length
characterizing the periodic structures. While this implies
longer wires for realizing topologically protected Majorana
zero modes, in the near term this property (combined with
the enhanced robustness against disorder and the reduced sus-
ceptibility of generating trivial low-energy states) can prove
helpful in demonstrating hybridization-induced Majorana os-
cillations, a key feature that, so far, has eluded experimental
observation, casting doubts regarding the real nature of the ob-
served zero-bias conductance peaks. In addition, the enhance-
ment of the Majorana localization length is rather moderate
(a factor of 2, or less), provided the periodic potential is

strong enough, a key condition for actualizing the potential
benefits of periodic structures.

To address the critical problem of engineering strong
enough periodic potentials, we propose the Majorana waveg-
uide device, a quasi-1D channel with periodically modulated
width hosted by a semiconductor heterostructure and prox-
imity coupled to a lithographically defined superconductor.
We show that the periodic modulation of the channel width
can generate an effective periodic potential with the required
specifications. Moreover, in the regime characterized by a
chemical chemical potential smaller than the confinement
energy of the second transverse mode, the phase diagram
of the Majorana waveguide has all the qualitative features
predicted by the 1D effective theory (compare, for example,
Figs. 4 and 13). Finally, we show that the finite length scale
associated with the screening by the superconductor has a
weak effect on the phase boundaries, basically resulting in an
overall shift of the chemical potential. This property suggests
the possibility of efficient control of the chemical potential
by a top gate. In addition, the effective system parameters
can be engineered by controlling the channel geometry, in
particular, the length scales L1, L2, W1, and W2 that determine
the confining potential landscape. These elements, which
support the feasibility of conditions necessary for actualizing
the potential benefits of periodic structures identified by our
analysis of the effective 1D model, suggest that modulated
quasi-1D channels realized in patterned 2D semiconductor-
superconductor structures provide a promising platform for
realizing robust Majorana zero modes.

Future theoretical efforts that could assist the fabrication
and measurement of this type of devices should build on
detailed Schrödinger-Poisson simulations of realistic struc-
tures. Obtaining quantitative estimates of the screening length
will enable the optimization of the channel geometry and the
identification of the realistic range for the top gate lever arm.
In addition, based on the calculated screening length, one can
estimate the strength of the effective disorder generated by
patterning imperfections, which addresses the important engi-
neering problem regarding how precise these patterns need to
be. Finally, these efforts must be supplemented by calculations
of transport properties, including quantitative predictions of
edge-to-edge correlations expected in a multiterminal mea-
surement.
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APPENDIX: LOCALIZATION OF MAJORANA
BOUND STATES

As we did in the main text, we consider the 1D Rashba
nanowire in an applied magnetic field and with s-wave su-
perconductivity, except we include no periodic potential. The
Hamiltonian is given by

H =
(

h̄2k2

2m∗ − μ + αkσy + �σz

)
τz − �σyτy, (A1)
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where μ is the chemical potential, � is the Zeeman energy,
� is the induced superconductivity parameter, and σi and
τi are the Pauli matrices acting in spin and particle-hole
space, respectively. This Hamiltonian is known to undergo a
topological phase transition at a Zeeman field given by

�c =
√

�2 + μ2, (A2)

with Majorana bound states emerging at the edges of the wire
once this critical magnetic field is reached. While the Majo-
rana states will have zero energy for a semi-infinite system, the
overlap between the edge Majorana causes oscillations about
zero energy as � is changed. This overlap can be quantified
if we know the length scale on which the Majorana bound
states are localized at the edge of the wire. Since the Majorana
bound state’s energy lies inside the bulk energy bands, the
states are necessarily composed of evanescent waves that have
a complex wave number. The imaginary component of the
complex wave number causes decay of the edge mode as
it enters into the bulk of the wire. We can study the length
scale of this decay by studying the complex band structure of
Eq. (A1), where we let k become a complex number.

To begin, we find the eigenenergies of Eq. (A1), which are
found to be

E2(k) =
(

h̄2k2

2m∗ − μ

)2

+ �2 + �2 + α2k2

± 2

√(
h̄2k2

2m∗ − μ

)2

(�2 + α2k2) + �2�2. (A3)

Note that for any eigenenergy E , there also exists an eigenen-
ergy (−E ) due to the particle-hole symmetry of the Eq. (A1).
Since Majorana bound states are (nearly) zero-energy modes,
we desire to find k satisfying Eq. (A3) for E = 0. In principle,
this can be done exactly since finding E = 0 solutions to
Eq. (A3) involves solving a quartic equation for the variable
k2. The quartic equation solution is too complicated to be of
practical use, however, so we instead approach the problem
using asymptotic methods [65]. Note that in the limit of
� = 0, the Hamiltonian (A1) separates into particle and hole
components. The spectrum of the isolated particle sector is
simply

E (k) = h̄2k2

2m∗ − μ ±
√

�2 + α2k2, (A4)

and we can easily find the E = 0 solutions, which are

k2
o = 2m∗

h̄2 (μ + 2ESO)

± 2m∗

h̄2

√
�2 + 4μESO + 4E2

SO, (A5)

where ESO = m∗α2/(2h̄2) is the spin-orbit energy. Note that ko

represents an asymptotic approximation for k in Eq. (A3) as
� → 0. To find the leading-order correction, we let k2 = k2

o +
(2m∗/h̄2)�p2 and substitute this expression into Eq. (A3).
Here, p2 is a dimensionless parameter that we wish to find. A
question arises as to what sign to take in Eq. (A5). To answer
this question, notice that for large enough �, we obtain a set
of purely real and a set of purely imaginary values for ko.
The purely real and imaginary sets of eigenvalues correspond

FIG. 16. Localization length, ξ , vs superconducting gap, �, for a
long nanowire, ξ � L, with parameters m∗ = 0.026mo, μ = 1 meV,
α = 50 meV · nm, and � = 3 meV. Numerical localization length is
extracted by fitting the Majorana wavefunction to the exponential
envelope, ψ ∝ exp(−x/ξ ).

to the low- and high-energy spin-split bands, respectively,
where the high-energy spin band has imaginary wave numbers
because no propagating bulk states exist at E = 0 for this
band. In the presence of � 
= 0, the real eigenvalues are
rotated slightly into the complex plane, while the imaginary
eigenvalues remain completely imaginary. The localization
length of the Majorana modes will be determined by the
eigenvalues with the smallest imaginary component. There-
fore, the eigenvalues stemming from the real eigenvalues of
Eq. (A5) are the most important, so we take the (+) sign. Upon
substitution, we find the asymptotic relation

p2 ∼ ±i

√
4ESOk2

o

�2 + 4μESO + 4E2
SO

, (A6)

as � → 0. Our total wave number is then given by

k = ±κ ± iq, (A7)

κ ∼ ko, (A8)

q ∼
√(

2m∗

h̄2

)
ESO

�2 + 4μESO + 4E2
SO

�, (A9)

where the two (±) in Eq. (A7) are independent. The localiza-
tion length is then just the reciprocal of the imaginary part of
the wave number, ξ = q−1. We find

ξ ∼ �SO

(
�

�

)√
1 + 4μESO

�2
+ 4E2

SO

�2
, (A10)

where �SO = h̄2/(m∗α) is the spin-orbit length. This shows
the expected behavior of increased delocalization for large �

and small α.
Interestingly, in the limit of ESO � �, we actually find

increasing localization length for increasing α. While this
regime is difficult to achieve for the conventional proximitized
Rashba nanowire setups, this situation is possible in the
higher-energy minibands within a periodic potential setup.
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A comparison between the numerical and derived analyti-
cal localization length of Eq. (A10) is shown in Fig. 16
as a function of �, showing excellent agreement. We note
that starting from the assumption of a small spin-orbit co-
efficient α in Eq. (A3), we find a similar and consis-
tent asymptotic expression for the localization length, given

by

ξ ∼ �SO

√
�2 − �2

�
, (A11)

as α → 0 in the case of μ = 0.
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