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Bilayer graphene in a magnetic field hosts a variety of ordered phases built from eight Landau levels close in
energy to the neutrality point. These levels are characterized by orbital n = 0, 1, valley ξ = +, −, and spin σ =
↑, ↓; their relative energies depend strongly on the Coulomb interaction, magnetic field, and interlayer bias. We
treat interactions at the Hartree-Fock level, including the effects of metallic gates, layer separation, spatial extent
of the pz orbitals, all Slonczewski-Weiss-McClure tight-binding parameters, and pressure. We obtain the ground
state as function of the applied magnetic field, bias, and pressure. The gates, layer separation, and extent of the
pz orbitals weaken the Coulomb interaction at different length scales; these effects distort the phase diagram but
do not change its topology. However, previously predicted continuous transitions become discontinuous when
all tight-binding parameters are included nonperturbatively. We find that pressure increases the importance of the
noninteracting scale with respect to the Coulomb energy, which drives phase transitions to occur at lower fields.
This brings two orbitally polarized states not yet predicted or observed into the experimentally accessible region
of the phase diagram, in addition to previously identified valley-polarized, spin-polarized, and partially orbitally
polarized states.
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I. INTRODUCTION

Electrons in a magnetic field occupy highly degenerate
states known as Landau levels (LLs). In multilayer two-
dimensional (2D) materials, a perpendicular electric field can
change the relative position in energy of electronic states near
the Fermi level, offering an exciting platform for the explo-
ration of quantum order in condensed matter systems. Bilayer
graphene (BLG) is no exception, and it has been shown
experimentally [1–5] to produce different macroscopic states,
such as a fully spin-polarized state, a fully valley-polarized
state, and others to be described below. The appearance of
these states as a function of applied fields generates a phase
diagram, which is a target of research in this area and provides
a map for the study of these phases. Of course, the experimen-
tal identification of each ground state is challenging, and this
work needs to be complemented by theoretical understanding
of the system.

Recent experiments [1,2,4] on undoped (filling factor
ν = 0) BLG found a single sharp transition as the electric
field was increased while the magnetic field was low, but
at higher magnetic fields, the phase boundary splits into
two. These transitions were identified by peaks in the sam-
ple’s two-terminal conductivity. One low-field state is a fully
spin-polarized or ferromagnetic state evolving from a canted
antiferromagnetic state, identified by edge-state conductivity
measurements [3,6,7]. The other two have been character-
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ized by layer polarization measurements [1], which support
the identification of the low-magnetic-field, high-electric-field
state as a fully valley-polarized state, and of the intermediate
state as one with mixed polarization in both spin and valley.
The intermediate state is also the first to be observed with
polarization in the orbital index n, an additional low-energy
degree of freedom in BLG deriving from its unique LL spec-
trum: E0 ≈ 0, E1 ≈ 0, E±n ≈ ±h̄ω

√
n(n − 1) for n � 2 [8].

The ν = 0 phase diagram has proven to be highly sensitive
to experimental perturbations, such as screening by an atomi-
cally thin dielectric [4] or changes in device geometry and size
[3], underlining the possibilities for quantum state engineering
and the importance of a careful treatment of interactions.
In this work, we add a different method of manipulating
states: pressure. We show that pressure can be used to control
the orbital degree of freedom, and that this is achieved by
changing the energy scale of the noninteracting dynamics
relative to the interaction energy scale.

Regarding the treatment of interactions, two approaches
have been used in previous work: one based on the bare
Coulomb potential [9–13], and the other using only short-
range interactions which may break symmetries of the bare
Coulomb potential, an approach introduced by Kharitonov
[6,14,15]. Additionally, Hunt et al. [1] treat the direct
Coulomb interaction with a random phase approximation
including metallic gates in the bare propagator in addition to
symmetry-breaking parameters. On one hand, the former ap-
proach has no free parameters but has not yet reproduced the
experimentally observed intermediate phase; on the other, the
latter approach has succeeded in reproducing the intermediate
phase but requires undetermined parameters whose physical
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origins are not transparent. So that we can understand the
underlying physics while exploring the effects of pressure, we
take the parameter-free approach.

Previous use of this approach has included the effects of
layer separation in Refs. [9–13] and screening by metallic
gates in Ref. [1] when treating the interaction. We unify
these by deriving a propagator which includes both effects,
and also address the out-of-plane spatial extent of the pz

orbitals with layer-resolved three-dimensional (3D) LL wave
functions, which had previously been taken as 2D in each
layer. These wave functions are derived by exact diagonal-
ization of a four-band tight-binding Hamiltonian including all
Slonczewski-Weiss-McClure tight-binding (TB) parameters,
which we show are key in determining the nature (discon-
tinuous, or continuously interpolating between ground states)
of phase transitions. In particular, our model predicts a sin-
gle sharp spin- to valley-polarized transition at low fields,
which contrasts with the continuous transition mixing the
states found in previous parameter-free studies [9–13]. Our
results therefore impact the interpretation of this transition’s
experimental transport signature, which is not yet universally
agreed upon.

Under pressure, we find two orbitally polarized states
not yet predicted or observed. These states appear because
pressure increases the energy gap between orbitals so that it
overcomes the interaction energy scale, which stabilizes the
spin- and valley-polarized states observed at low magnetic
fields. Hence, pressure effectively tunes the strength of inter-
actions relative to the noninteracting energy scale. Pressure
can also be treated as a theoretical proxy in our results for
other effects that influence the noninteracting energy scales.

The paper is outlined as follows. In Sec. II A, we solve the
TB model in a magnetic field to find LL energies and wave
functions. We then address interactions at the Hartree-Fock
level in Sec. II B, and describe our approach to the interacting
problem. Solving the interacting problem as a function of
magnetic field and bias yields phase diagrams which we
present in Sec. III. We also characterize the possible ground
states in this section, and discuss how the effects we include
in treatment affect our results. We summarize our work and
findings, and suggest next steps, in Sec. IV.

II. METHODS

A. Noninteracting Hamiltonian

We begin with the spin-free TB Bloch Hamiltonian

Hk =

⎡
⎢⎢⎣

2ε + �
2 tφ t4φ∗ t⊥

tφ∗ �
2 t3φ t4φ∗

t4φ t3φ∗ −�
2 tφ

t⊥ t4φ tφ∗ 2ε − �
2

⎤
⎥⎥⎦ (1)

written in the basis {|A1, k〉, |B1, k〉, |A2, k〉, |B2, k〉}. Here,
|T k〉 = 1√

N

∑
R eik·R|T R〉 is the Fourier transform of the pz

orbitals |T R〉 on the lattice site T = T2DTz with sublattice
T2D = A, B and layer Tz = 1, 2, located in the unit cell at
τT = τ2D

T + τz
T ẑ with τ2D

T in the hexagonal lattice and layer
τ z

T = (−1)Tz+1d/2. R gives the location of the unit cell, and
N gives the number of unit cells in the sample. t , t⊥, t3, and t4
are the hopping parameters, ε gives the site energy for stacked

FIG. 1. The BLG unit cell has a four-atom basis with inequiva-
lent A and B sites in each layer. They are shown here with upper layer
sites are denoted as A1, B1 and lower layer sites as A2, B2. The A1
sites and B2 sites are stacked.

A1 and B2 atoms, and � is an interlayer bias induced by a
perpendicular electric field. We follow the sign convention of
Jung and MacDonald [16] for the TB parameters.

We expand φ = φ(k) to linear order in q = k − Kξ about
valley ξ :

φ(k) = eiaCCky

[
1 + 2e−i 3aCC

2 ky cos

(
aCC

√
3

2
kx

)]
, (2a)

φ(Kξ + q) ≈ − ξ
3aCC

2
(qx − ξ iqy) = −ξ

3aCC

2
q−ξ , (2b)

where aCC = 0.142 nm is the interatomic distance and q± =
qx ± iqy. The lattice sites and coordinate system are depicted
in Fig. 1.

We represent the magnetic field B = Bẑ by a vector poten-
tial in the Landau gauge given by A = Bxŷ. This will enter
the Hamiltonian through a Peierls substitution k → k + e

h̄ A,
which is analogous to the replacement of momentum with
canonical momentum p → p + eA. The result is q± → qx ±
i(qy + e

h̄ Bx) = κ±.
With this substitution, the Hamiltonian may be written in

terms of harmonic oscillator raising and lowering operators.
Denoting the harmonic oscillator wave functions by Qj (x) and
acting on the wave function

h jX (R) = 1√
Ly

e
i X

l2
B

Ry
Qj (Rx − X ), (3)

we verify the commutation relation [κ−, κ+]h jX (R) =
2
l2
B
h jX (R), where lB =

√
h̄

eB is the magnetic length. Hence, κ±

satisfies κ+ =
√

2
lB

a+, κ− =
√

2
lB

a. In particular, if we define
the basis states

|T jX 〉 =
∑

R

h jX (R)|T R〉, (4)

where h jX (R) is an envelope on the pz orbitals |T R〉, then
they satisfy a+|T jX 〉 = √

j + 1|T ( j + 1)X 〉 and a|T jX 〉 =√
j|T ( j − 1)X 〉. Note that the index j would be the Landau

level index in simpler systems. However, our Hamiltonian
below mixes these states |T jX 〉, so that its eigenstates are
superpositions of them. These eigenstates are the Landau
levels of our system.
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Letting Cμ = 3aCC√
2lB

tμ, then, we have for example in valley
ξ = + the LL Hamiltonian

H+ =

⎡
⎢⎢⎢⎣

2ε + �
2 −Ca −C4a+ t⊥

−Ca+ �
2 −C3a −C4a+

−C4a −C3a+ −�
2 −Ca

t⊥ −C4a −Ca+ 2ε − �
2

⎤
⎥⎥⎥⎦. (5)

The Hamiltonian H− for the other valley ξ = − is obtained
by replacing a and a+ with −a+ and −a, respectively, in the
same basis. The full noninteracting Hamiltonian (both spatial
and spin parts) is then

ĤNI = (
1
2

(
1 + λv

z

)
Ĥ+ + 1

2

(
1 − λv

z

)
Ĥ−

) − μBBλs
z, (6)

where λv
z = 1o ⊗ σ v

z ⊗ 1s and λs
z = 1o ⊗ 1v ⊗ σ s

z , in which
σ v

z and σ s
z are Pauli matrices acting on the valley and spin

spaces {+,−} and {↑,↓} respectively, and μB is the Bohr
magneton.

This Hamiltonian contains three experimental parameters.
The magnetic field enters through B and lB, and the electric
field enters through the interlayer bias �. Pressure enters
more subtly through the TB parameters, which were obtained
by Munoz et al. [17, Table II] by fitting the band structure
of the TB model to the band structure calculated by density
functional theory (DFT). Another parameter taken from DFT
is the layer separation d [17, Table I] which will be important
when considering interactions.

To diagonalize Hξ , which contains operators as represented
in Eq. (5), we express it as a matrix of scalars by taking matrix
elements in a truncated basis of oscillator states

〈T jX |Hξ |T ′ j′X 〉 ,
T, T ′ = A1, B1, A2, B2,

j, j′ = 0, 1, 2, . . . , jmax.
(7)

The coefficients of the wave functions for the states near the
neutrality point decrease as j increases. For all magnetic fields
and pressures considered here, and for the Landau levels near
the neutrality point which we are interested in, the absolute
values of the coefficients are smaller than 0.01 when j > 15.
Therefore, we truncate our expansion at jmax = 15.

As a result of the diagonalization, we obtain the Landau
levels of the system labeled by the Landau level index or
orbital quantum number n, with wave functions given by

|nξσX 〉 =
∑
T j

cT j
nξ |T jX 〉 × |σ 〉 (8)

when spin is included. Of the possible values for n, two
Landau levels n = 0, 1 are near the neutrality point. The eight
combinations of three binary indices n = 0, 1, ξ = +,−,
σ = ↑,↓ give the eight nearly degenerate low-energy Landau
levels (LLLs). Each LLL is highly degenerate because its
energy does not depend on the guiding center X .

At zero bias, there is a useful symmetry between the
valleys which is a consequence of the relation between the
Hamiltonians H+ and H− described in Eq. (5). As a result,
their eigenvectors are related by the signed permutation

cT j
n− = (−1) jcπT j

n+ ,

[
T
πT

]
=

[
A1 B1 A2 B2
B2 A2 B1 A1

]
, (9)

so that the valley − states have the same spatial distribution as
the valley + states but in the opposite layer and lattice sites.
(This symmetry identifies ξ = + with the upper layer and
ξ = − with the lower layer, which known as the valley-layer
correspondence.) Furthermore, their energies are degenerate
and may be labeled En independently of valley. Over the
range of high magnetic fields that we are interested in, bias
has negligible effect on coefficients, so the symmetry may be
treated as exact and bias can be addressed as a perturbation to
the energy. Defining the layer polarization of the LLL n by

�n =
⎛
⎝ ∞∑

j=0

∑
T2D

∣∣cT2D1 j
n+

∣∣2

⎞
⎠ −

⎛
⎝ ∞∑

j=0

∑
T2D

∣∣cT2D2 j
n+

∣∣2

⎞
⎠ (10)

and using the symmetry between the valleys, the full nonin-
teracting energy is

Enξσ = En − ξ�n
�

2
− σμBB. (11)

Energies Enξσ versus bias, and orbital gap E1 − E0, layer
polarization �n, and eigenvector coefficients cT j

nξ versus mag-
netic field and pressure, are illustrated in Sec. S1 of the
Supplemental Material [18]. Note that when we refer to orbital
gap, we mean the splitting caused strictly by noninteracting
orbital dynamics, not the energy gap between two LLLs
of different orbital, which in general also depends on bias,
magnetic field, and interactions.

B. Coulomb interaction

The Coulomb interaction

V̂ = 1

2

∫
d2r

∫
dz

∫
d2r′

∫
dz′ψ+(r, z)ψ+(r′, z′)V (r − r′, z, z′)ψ (r′, z′)ψ (r, z) (12)

is treated in the Hartree-Fock (HF) approximation, similarly to previous works [6,9–15,19,20]. Throughout this work, we use
r for the 2D in-plane position vector, and retain z dependence to address the effects of layer separation, gating, and the spatial
extent of the pz orbitals.

Expanding the Coulomb interaction as its Fourier transform in the in-plane direction as V (r, z, z′) = ∑
q eiq·rV (q, z, z′), and

expanding the field operators in the LLL basis,

ψ (r, z) =
∑
nξσX

φnξσX (r, z)cnξσX =
∑
nξσX

(∑
T R

cT
nξX (R)〈r, z|T R〉 × |σ 〉

)
cnξσX , (13)
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we have

V̂ = 1

2

∑
n jξ jσ j Xj

j = 1, 2, 3, 4

∑
q

[∫
dz

∫
dz′V (q, z, z′)

(∫
d2r eiq·rφ∗

n1ξ1σ1X1
(r, z)φn4ξ4σ4X4 (r, z)

)

×
(∫

d2r′e−iq·r′
φ∗

n2ξ2σ2X2
(r′, z′)φn3ξ3σ3X3 (r′, z′)

)]
c+

n1ξ1σ1X1
c+

n2ξ2σ2X2
cn3ξ3σ3X3 cn4ξ4σ4X4 . (14)

To incorporate both layer separation and the screening effect of metallic double gates used in recent experiments [1–3], we use
a propagator of the Coulomb interaction corresponding to equipotential walls at ±D. The Fourier transform of this propagator is

V (q, z, z′) = 2π

A

e2

4πεrε0

1

q

cosh q(2D − |z′ − z|) − cosh q(z + z′)
sinh 2qD

, (15)

where D = 20 nm [1,2] is the distance from the center of
the bilayer to the gates above and below, and εr = 6.9 [21].
Because recent experiments use hexagonal boron nitride as a
substrate and dielectric, we have taken the effective dielectric
constant to be the dielectric constant of hexagonal boron
nitride. Throughout the remainder of this work, the normaliza-
tion and energy scale will be rewritten as 2π

A
e2

4πεrε0

1
q = 1

N�
α 1

qlB
,

where N� is the number of flux quanta penetrating the bilayer
and hence the degeneracy of the system, and α = e2

4πεrε0lB
is

the interaction energy scale. We include both gating and layer
separation because both affect wave-vector scales relevant
the LLs, as illustrated in Fig. 2. As mentioned previously,
the pressure-dependent layer separation d was obtained by
Munoz et al. [17, Table I] using DFT.

FIG. 2. (a) The interaction strength given by Eq. (19) versus
wave vector is plotted here, in units of 1

N�
α 1

qlB
. We use the interlayer

case Tz �= T ′
z for demonstration. It can be seen that gating weakens

the long-range (small q) interactions and layer separation weakens
the short-range (large q). The dashed curve corresponds to the

interaction neglecting separation d
TzT ′

z
eff = 0, and the dotted curve

corresponds to the absence of gates D → ∞. (b) The amplitude of
the elementary form factors, as defined in Eq. (22), is plotted versus
wave vector on the same scale. As the form factors are integrated
against the interaction in the exchange integral of Eq. (29), in this
figure we can see that both length scales are relevant in the reciprocal-
space support of the wave functions.

Using d � D, this propagator can be very well approxi-
mated as

V

(
q,+d

2
,−d

2

)
≈ 1

N�

α
1

qlB
tanh(qD)e−qd . (16)

Taking D → ∞ yields the propagator of Refs. [9–13], while
taking d = 0 yields the propagator of Ref. [1].

The tight-binding orbitals extend out of the planes of the
graphene layers, spreading out charge in the z direction with
density

P(z) =
∫

d2r|ψ2pz (r, z)|2, (17a)

ψ2pz (r, z) =
(

Z

a0

) 5
2 1√

32π
ze− Z

2a0

√
r2+z2

, (17b)

where Z = 3.1358 is the Clementi-Raimondi effective nuclear
charge [22] and a0 is the Bohr radius. In previous work, this
out-of-plane spatial extent of the pz orbitals was neglected,
i.e., the z-direction density was taken to be P(z) = δ(z)
[1,9–13]. This density is integrated out to obtain the layer-
resolved Coulomb interaction

VTzT ′
z
(q) =

∫
dz

∫
dz′V (q, z, z′)

× P

(
z + (–1)Tz

d

2

)
P

(
z + (–1)T ′

z
d

2

)
. (18)

We find that this integral can be well approximated by

VTzT ′
z
(q) = 1

N�

α
1

qlB
tanh (qD)e−qd

TzT ′
z

eff (19)

which has the form of Eq. (16) but uses an effective layer

separation d
TzT ′

z

eff in place of the physical layer separation d .
This expression is a fit to exact evaluations of Eq. (18). A
complete derivation of these expressions may be found in Sec.
S2 of the Supplemental Material [18], together with Fig. S3
which illustrates the validity of the fit given by Eq (19).
In the limit P(z) → δ(z), the effective interlayer separation
becomes the actual layer separation so that the effective

intralayer separation vanishes, d
TzT ′

z

eff = d (1 − δTzT ′
z
), and we

have V11(q) → V (q, d
2 , d

2 ) and V12(q) → V (q, d
2 ,− d

2 ). By
symmetry, V11(q) = V22(q) and V12(q) = V21(q).

Returning now to Eq. (14), it remains to calculate the
Fourier transforms of the wave-function overlaps, or form
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factors. These are evaluated as∫
d2r eiq·rφ∗

n1ξ1σX1
(r, z)φn4ξ4σX4 (r, z)

= δX4,X1−qyl2
B
ei qx

2 (X1+X4 )
∑

Tz

P

(
z + (–1)Tz

d

2

)
JTz

n1ξ1
n4ξ4

(q) (20)

with the layer-projected form factors (writing cT2DTz j
nξ in place

of cT j
nξ )

JTz

n1ξ1
n4ξ4

(q) =
∑
j1 j4

Kj1 j4 (q)
∑
T2D

cT2DTz j1
n1ξ1

∗
cT2DTz j4

n4ξ4
(21)

and elementary form factors

Kj1 j4 (q) =
∫

dx eiqxxQj1

(
x − qyl2

B

2

)
Qj4

(
x + qyl2

B

2

)
. (22)

Each of these expressions is derived in detail in Sec. S2
as well, and a general expression for the elementary form
factors follows in Sec. S4, in the Supplemental Material [18].
We will approximate JTz

n1ξ1
n4ξ4

(q) = JTz

n1ξ1
n4ξ1

(q)δξ1ξ4 in the following

because the ξ = + and − LLLs have very little overlap. We
have broken the full form factors into the layer-projected form
factors JTz

n1ξ1
n4ξ4

(q) because each LL wave function has support on

both layers. This splitting between layers is important because
it delocalizes charge and weakens interactions.

The Coulomb interaction is now expressed as

V̂ = 1

2

∑
n j Xj

j = 1, 2, 3, 4

∑
ξξ ′σσ ′

∑
q

∑
TzTz′

c+
n1ξσX1

c+
n2ξ ′σ ′X2

cn3ξ ′σ ′X3 cn4ξσX4

×VTzT ′
z
(q)

⎛
⎝δX4,X1−qyl2

B
ei qx

2 (X1+X4 )JTz

n1ξ

n4ξ

(q)

⎞
⎠

×
⎛
⎝δX3,X2−qyl2

B
ei qx

2 (X2+X3 )J
T ′

z

n2ξ
′

n3ξ
′
(−q)

⎞
⎠. (23)

In the Hartree-Fock approximation, we replace

1
2 c+

n1ξ1σ1X1
c+

n2ξ2σ2X2
cn3ξ3σ3X3 cn4ξ4σ4X4

→ 〈c+
n1ξ1σ1X1

cn4ξ4σ4X4〉c+
n2ξ2σ2X2

cn3ξ3σ3X3

− 〈c+
n1ξ1σ1X1

cn3ξ3σ3X3〉c+
n2ξ2σ2X2

cn4ξ4σ4X4 , (24a)

V̂ → V̂D − V̂X, (24b)

where V̂D is the direct term and V̂X is the exchange term. We
then define the density operators

ρ
ξξ ′σσ ′
nn′ (q) = 1

N�

∑
XX ′

δX ′,X−qyl2
B
ei qx

2 (X+X ′)c+
nξσX cn′ξ ′σ ′X ′ (25)

which give a natural basis for studying the system and inter-
actions. In terms of the density operators, the direct term is

written as

V̂D = N�

∑
q

∑
n1n2n3n4
ξξ ′σσ ′

H ξξ ′
n1n2n3n4

(q)
〈
ρξξσσ

n1n2
(q)

〉
ρξ ′ξ ′σ ′σ ′

n3n4
(−q), (26)

H ξξ ′
n1n2n3n4

(q) = N�

∑
TzTz′

VTzT ′
z
(q)JTz

n1ξ

n2ξ

(q)J
T ′

z

n3ξ
′

n4ξ
′
(−q), (27)

and the exchange term is written as

V̂X = N�

∑
q

∑
n1n2n3n4
ξξ ′σσ ′

X ξξ ′
n1n4n3n2

(q)
〈
ρξξ ′σσ ′

n1n2
(q)

〉
ρξ ′ξσ ′σ

n3n4
(−q), (28)

X ξξ ′
n1n4n3n2

(q) =
∑
TzTz′

∫
d2 p l2

B

2π
H ξξ ′

n1n4n3n2
(q)eiqlB×plB . (29)

Since the exchange integral has the symmetries X ξξ ′
klmn(q) =

X ξ ′ξ
klmn(q) and X ++

klmn(q) = X −−
klmn(q), we can write all exchange

integrals in terms of the two X ++
klmn(q) and X +−

klmn(q). Further
information on the properties and calculation of the exchange
integrals is given in Sec. S4 in the Supplemental Material [18].

We will focus only on spatially uniform solutions and
find the lowest-energy state in this subspace. This can be
later compared with possible states that break translational
symmetry. In other words, we assume 〈ρξξσσ

n1n2
(q)〉= 0 if q �= 0.

[After making this assumption we will generally drop the
argument (0), e.g., write Xn1n4n3n2 instead of Xn1n4n3n2 (0).]

The direct term in the Coulomb interaction is a Coulomb
blockade that penalizes layer polarization. In the present case
of uniform states, it takes the form of a capacitive correction,
as noted in previous work [1,9,11–13]. We find that, up to a
constant for fixed total filling ν,

V̂D = −N��V
∑
nξσ

(
ν2

1 + ξ�n

2
+ ν1

1 − ξ�n

2

)
ρξξσσ

nn , (30)

where we have defined the upper- and lower-layer occupations
by

νTz = 1

2

⎛
⎝ν̃ − (−1)Tz

∑
nξσ

〈
ρξξσσ

nn

〉
ξ�n

⎞
⎠, (31)

with ν̃ = ν + 4 being the number of filled LLLs, and

�V = α

lB

∫
dz

∫
dz′

(
|z′ − z + d| − |z′ − z| − d (2z + d )

2D

)
× P(z)P(z′). (32)

Hereafter, we will frequently refer to this simply as the
Coulomb blockade. In the limits P(z) → δ(z), D → ∞ this
reproduces the result of previous work, �V = α d

lB
[1,9–13].

Hence, �V can also be written in terms of an effective layer

separation dCB
eff defined by �V = α

dCB
eff
lB

, and we find that the
extent of the pz orbitals weakens the Coulomb blockade:
dCB

eff < d . This is shown in Fig. S3, and the derivation of these
equations from the direct term is given in Sec. S3, in the
Supplemental Material [18].

As pointed out by Shizuya [23], exchange interactions with
the “Dirac sea” of occupied LLs lower the energy of the n = 1
orbitals relative to n = 0:

V̂DS = 1
2 N�(X ++

1111 − X ++
0000) 1

2

(
1 − λo

z

)
, (33)
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where λo
z = σ o

z ⊗ 1v ⊗ 1s in which σ o
z is a Pauli matrix acting

on the orbital space {0, 1}. This exactly compensates for the
difference in exchange energy for fully occupied n = 0 LLLs
compared to n = 1. Reference [23] also indicates that the
direct interaction with the Dirac sea screens the bias. Because
rescaling bias exclusively affects the valley gap, it does not
change the balance between any energy scales in a way that
would change which ground states appear as a function of
magnetic field and bias. Hence, we do not address the direct
DS interaction, though it could be relevant for quantitative re-
sults in future studies. Adding this “Lamb-type shift” �Lamb =
1
2 (X ++

1111 − X ++
0000) to the noninteracting Hamiltonian, we have

ĤNI+DS = N�

∑
nξσ

(Enξσ + �Lambδ1n)ρξξσσ
nn . (34)

The full HF Hamiltonian is then

ĤHF = ĤNI+DS + V̂D − V̂X. (35)

The Hamiltonian matrix element (HHF)(nξσ ),(n′ξ ′σ ′ ) is the co-

efficient of the density operator ρ
ξξ ′σσ ′
nn′ . Because the Hamil-

tonian for a spatially uniform system is block diagonal in
X , with eight-dimensional blocks indexed by nξσ , the HF
problem is reduced to an 8 × 8. If the filling factor is ν, then
ν̃ = ν + 4 LLLs are filled, so the many-body eigenstate is

|�〉 =
∏

X

⎡
⎣ ν̃∏

j=1

⎛
⎝∑

nξσ

Aj
nξσ c+

nξσX

⎞
⎠

⎤
⎦|∅〉, (36)

where Aj
nξσ are the coefficients of the jth eigenvector of the

matrix (HHF)(nξσ ),(n′ξ ′σ ′ ), ordered by energy with the lowest
first. The density matrix elements are given by

〈
ρ

ξξ ′σσ ′
nn′

〉 =
ṽ∑

j=1

(
Aj

nξσ

)∗
Aj

n′ξ ′σ ′ . (37)

In the self-consistent approach to solving the HF problem,
these density matrix elements are then used to generate a
new HF Hamiltonian, and the cycle is iterated until a self-
consistent solution has been found. When the solution is
found, we refer to it as an LLSD (Landau level Slater deter-
minant) or LLC (Landau level coherent) state if it is given by
a diagonal or nondiagonal density matrix, respectively. LLC
states can be thought of as the result of LLSD states mixing
via coherent superpositions.

It is very useful to calculate the average energy per particle
as well. If there are Ne electrons in the LLLs, then since
ν̃ = Ne

N�
, up to a constant we have

EHF

Ne
= 1

ν̃

⎡
⎢⎢⎢⎣

∑
nξσ

(
Enξσ + 1

2
(X ++

1111 − X ++
0000)δ1n

)〈
ρξξσσ

nn

〉

−�V ν1ν2 − 1

2

∑
n1n2n3n4
ξξ ′σσ ′

X ξξ ′
n1n4n3n2

〈
ρξξ ′σσ ′

n1n2

〉〈
ρξ ′ξσ ′σ

n3n4

〉
⎤
⎥⎥⎥⎦.

(38)

This is the energy that the correct many-body solution will
minimize. Enξσ is the noninteracting energy given by Eq. (11),
1
2 (X ++

1111 − X ++
0000) is the Lamb-type shift [23], �V is the

Coulomb blockade given by Eq. (32), and X ξξ ′
n1n4n3n2

are the
exchange matrix elements appearing in Eq. (29). By compar-
ing the energies of LLSD states and mixing them into LLC
states near their crossings, we can also minimize energy as a
function of the parameter or parameters that describe the LLC
state’s superposition. This method allows us to find the ground
state analytically, and is the approach we use in this work.

III. RESULTS

A. Phase diagrams

Using the HF calculations presented above, we obtain the
ground state for different values of magnetic field, bias, and
pressure. For fixed pressure, we draw this as a phase diagram
whose different regions represent characteristic ground states
as a function of magnetic field and bias. The diagrams evolve
continuously with pressure, and we give results for zero
pressure, an intermediate pressure of 29.8 GPa, and a high
pressure of 96.4 GPa. These were chosen as the minimum
and maximum pressures given by Munoz et al. [17], plus an
intermediate pressure at which all states are easily visible.
Since pressure changes the scale of the bias versus magnetic
field phase diagrams but does not change their topology, in
the following discussion we will use the intermediate pressure
case at 29.8 GPa to illustrate.

For low magnetic field and bias, the ground state is the
fully spin-polarized (FSP) state, which is layer unpolarized
and is drawn in blue in Fig. 3. Further information on this
state, and all others, is given in Sec. III B, and they are
represented pictorially in Fig. 3(e). As the bias is increased
while the magnetic field is kept low, the FSP state is replaced
by the fully valley-polarized (FVP) state, which is fully layer
polarized and drawn in red. This phase transition occurs when
the bias is strong enough to overcome the Coulomb blockade
energy. The situation described here can be seen by following
the first line cut at B = 17 T in Fig. 3(b). To give a more
complete picture of the evolution of the ground state with bias,
these states’ energies and those of higher-energy LLSD states
are plotted along in Fig. 4(a) along the same line cut.

The transition from the layer-unpolarized FSP state to the
layer-polarized FVP state is an example of a more general
trend: as bias increases and overcomes the Coulomb blockade,
states with lower-layer polarization are replaced by states with
higher-layer polarization, Indeed, in Fig. 4, the slope of energy
versus bias for each LLSD state is the total layer polarization∑

nξσ ξ�n〈ρξξσσ
nn 〉. Because the energy of the fully layer-

polarized FVP state decreases most steeply with bias, it is
always the ground state at sufficiently high bias. Conversely,
the energy of the layer-unpolarized FSP state is unaffected
by bias. This pattern persists throughout the phase diagram
for all magnetic fields. Consider increasing the magnetic field
to B = 28 T, shown by the second line cut in Fig. 3(b) and
by Fig. 4(b). At this field the transition between the FSP and
FVP states no longer occurs directly but has an intermediate
state, which is known as the partially orbitally polarized (POP)
state and is drawn in orange. This state is partially polarized
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FIG. 3. Phase diagrams for (a) zero, (b) intermediate, and (c) high pressures are given; (d) magnifies (c). Five LLSD and no LLC states
appear. Notice that applied pressure literally compresses the phase diagram so that all transitions occur at progressively lower fields, as
explained in the text, but that the overall topology remains unchanged. The dashed lines on P = 29.8 GPa correspond to the traces in Fig. 4. (e)
A schematic of the dot-diagram depiction of states devised by Lambert and Côté [11,12], and the dot-diagram representation of the different
states appearing in our phase diagrams.

in all three degrees of freedom; in particular, it is partially
valley and hence partially layer polarized. In this way the
trend continues: as bias overcomes the Coulomb blockade,
each successive ground state has greater layer polarization.

The transition to the POP state is driven by a transition
in energy scale dominance that occurs as the magnetic field
is increased, much like the transition between bias and the
Coulomb blockade energy which happened as the bias was
increased. This transition occurs as the orbital gap E1 − E0,
which scales as B, overcomes the exchange energy, which
scales as

√
B. This transition induces the general trend of spin

and valley polarization being traded for orbital polarization
as the magnetic field increases. This trend follows from the

more precise rule that exchange favors states with same-spin,
same-valley pairs of LLs occupied, which can be read from
Fig. 3(e) as pairs of vertically aligned dots. These pairs are
favorable because only states of the same spin and valley have
nonzero overlap, so that their energy is reduced by exchange.

As the magnetic field is increased further, the trend of
orbital polarization becoming favored over spin and valley
polarization as the magnetic field is increased brings into
the phase diagram two additional orbitally polarized states
not previously observed. At B = 35 T, shown by the third
line cut in the phase diagram of Fig. 3(b) and by the energy
of the states in Fig. 4(c), the low-bias ground state is the
orbitally and spin-polarized (OSP) state, drawn in charcoal. It
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FIG. 4. (a)–(d) The state energies are plotted here as a function of bias for the representative magnetic field line cuts in Fig. 3(b). Pressure is
fixed at P = 29.8 GPa because it does not change the topology of the phase diagram. (e) The diagrams of Fig. 3(e), which give the colors used
to label the ground states, are repeated here for convenience. The energies of higher-energy LLSD states are plotted in olive to demonstrate the
presence of these states and their energies relative to the ground states.

is partially orbitally and spin polarized, but valley unpolarized
and hence minimally layer polarized, so that it replaces the
FSP state as the bottom rung of the ladder of increasingly
layer-polarized states. At B = 38 T, shown by the fourth line
cut in Fig. 3(b) and by Fig. 4(d), the fully orbitally polarized
(FOP) state, drawn in green, likewise replaces the OSP state
as the minimally layer-polarized ground state at low bias. The
FOP state is fully orbitally polarized and has no valley or spin
polarization, so it is layer unpolarized.

Now that we understand the energy scales driving the phase
transitions in Fig. 3(b), it is straightforward to understand
the changes in the phase diagram with pressure. As pressure
increases, the orbital gap increases more steeply with mag-
netic field (see Fig. S1 in the Supplemental Material [18]) so
that the transitions to orbitally polarized states occur at lower
magnetic fields. Likewise, pressure decreases layer separation
and thus weakens the Coulomb blockade so that transitions
to layer-polarized states also occur at slightly lower bias.
Hence, pressure literally compresses the phase diagram into
a smaller region in the space of magnetic field and bias. In
Fig. 3(a), the orbitally polarized states are not visible in the
phase diagram simply because the orbital gap does not grow
quickly enough at zero pressure for these states to appear
at an experimentally reasonable magnetic field. In principle,
the previously unobserved OSP and FOP states could also

have been predicted by previous zero-pressure models, but
would have required magnetic fields above those theoretically
explored thus far. In particular, the POP, OSP, and FOP states
would have appeared in Fig. 3(a) if the figure were extended
to include extraordinarily high magnetic fields.

Pressure drastically narrows the part of the phase diagram
occupied by the OSP state, as can be seen by comparing
Fig. 3(b) to Figs. 3(c) and 3(d). This is best explained through
Fig. 4, in which we see that for any magnetic field, the OSP
state’s energy is between the FSP and FOP states’ energies
at zero bias. However, when the exchange-favored FSP and
orbital-gap-favored FOP states’ energies are nearly equal in
Fig. 4(c), the OSP state becomes the ground state for a small
range of bias due to the small slope of its energy with bias, i.e.,
its small but nonzero layer polarization. Hence, the range of
magnetic fields over which the OSP state is the ground state
is dictated by the relative energies of the bias, the exchange
interaction, the orbital gap. As pressure is increased, the
growth of the orbital gap with magnetic field also increases,
so that the orbital gap outweighs the bias and the OSP state is
replaced by the FOP state at a lower magnetic field.

By increasing the layer polarization of the n = 1 or-
bital, as shown in Fig. S1(d) of the Supplemental Mate-
rial [18], pressure also reduces the total layer polarization∑

nξσ ξ�n〈ρξξσσ
nn 〉 of the OSP state, while increasing the total
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layer polarization of the POP and FVP states. As a result, at
elevated pressures the POP state replaces the OSP state at a
lower bias. This effect of increasing total layer polarization
is also responsible for steepening the slopes of the boundary
between the FVP and POP states and the boundary between
the POP and FOP states when comparing Figs. 3(b) and 3(c).

The five LLSD states we have presented are all possible
states that may appear in our model even at arbitrary magnetic
field, bias, and pressure. This is clear because increasing
pressure beyond 96.4 GPa or the magnetic field beyond 40 T
will simply further stabilize the FOP state, and increasing
bias beyond 10 meV further stabilizes the FVP state, and the
partially orbitally and layer-polarized POP state will always
intermediate between them. It is interesting that no LLC states
manifest as ground states in our results because one would
generally expect the interaction to mix LLSD states when they
are close in energy, namely, at the phase boundaries in Fig. 3
or the energy crossings in Fig. 4. This finding contrasts with
previous results [11–13,15], and we explain this discrepancy
in Sec. III C.

B. State configurations and descriptions

Of the five LLSD states we find in the phase diagram, three
(the FSP, FVP, and FOP states) are fully polarized in one
degree of freedom while unpolarized in the other, and two (the
POP and OSP states) have mixed partial polarization. We give
their wave functions and brief characterizations below.

1. Fully spin-polarized (FSP) state

The FSP state is polarized only in spin and is written as

|�FSP〉 =
∏

X

(c+
0+↑X c+

0−↑X c+
1+↑X c+

1−↑X )|∅〉. (39)

This state has no layer polarization and two same-spin, same-
valley pairs. It is maximally favored by the Zeeman splitting,
Coulomb blockade, and exchange interaction, so that it ap-
pears at low magnetic field and bias. Many previous studies
[1,6,11–13,15] have also found this state.

2. Fully valley-polarized (FVP) state

The FVP state is polarized only in valley and is written as

|�FVP〉 =
∏

X

(c+
0+↑X c+

0+↓X c+
1+↑X c+

1+↓X )|∅〉. (40)

This state has maximal layer polarization and two same-spin,
same-valley pairs. It is maximally favored by the bias and
exchange interaction, so that it is found at high bias and low
magnetic field. Many previous studies [1,6,11–13,15] have
also found this state.

3. Fully orbitally polarized (FOP) state

The FOP state is polarized only in orbital and is written as

|�FOP〉 =
∏

X

(c+
0+↑X c+

0+↓X c+
0−↑X c+

0−↓X )|∅〉. (41)

This state has no layer polarization and no same-spin, same-
valley pairs. It is maximally favored by the Coulomb blockade
and orbital gap, so that it appears at low bias and high
magnetic field. This state has not appeared in any previous
studies because it requires a large orbital gap to manifest.

4. Partially orbitally polarized (POP) state

The POP state is partially polarized in all three indices,
with 3-to-1 ratios of n = 0 to 1, ξ = + to −, and σ = ↑ to ↓,
and is written as

|�POP〉 =
∏

X

(c+
0+↑X c+

0+↓X c+
0−↑X c+

1+↑X )|∅〉. (42)

This state has partial layer polarization and one same-spin,
same-valley pair. It is partially favored by the bias, Zeeman
splitting, Coulomb blockade, exchange interaction, and orbital
gap, so that it appears at intermediate bias and magnetic field.
It has been predicted and observed before [1,2,15].

5. Orbitally and spin-polarized (OSP) state

The OSP state is partially polarized in orbital and spin, but
is unpolarized in valley, and is written as

|�OSP〉 =
∏

X

(c+
0+↑X c+

0+↓X c+
0−↑X c+

1−↑X )|∅〉. (43)

This state has very small layer polarization and one same-
spin, same-valley pair. (Layer polarization is nonzero due to
unequal polarizations of the orbitals, �0 �= �1.) It is partially
favored by the Zeeman splitting, exchange interaction, and
orbital gap, and maximally favored by the Coulomb blockade,
so that it appears at low bias and intermediate magnetic field.
It has neither been predicted nor observed in previous studies.

C. Absence of LLC states

The five states we observe are all LLSD states, despite the
presence of interactions which in general mix the noninter-
acting eigenstates into LLC states. To explain the absence
of LLC states, we focus on a particular example which has
appeared in previous work [11–13,15], the FSP-FVP state.
This state continuously interpolates between the eponymous
LLSD states with two spin-valley superpositions, and can be
parametrized by two angles θ0, θ1 as

|�FSP-FVP〉 =
∏

X

[c+
0+↑X (cos θ0c+

0−↑X + sin θ0c+
0+↓X )c+

1+↑X (cos θ1c+
1−↑X + sin θ1c+

1+↓X )]|∅〉. (44)

For this state not to appear at the phase boundary between the FSP and FVP states, it must be energetically unfavorable. We
can verify this analytically by calculating the concavity of its energy, given in Eq. (S32) in the Supplemental Material [18], with
respect to the superposition parameters. To simplify this, we describe the superposition using a single parameter with the common
[13,15] approximation θ0 = θ1 ≡ θ . This approximation, that the transitions occur in tandem, is good because exchange couples
the n = 0 occupation to the n = 1 occupation. (Only same-spin, same-valley pairs lower the energy of the state by exchange, so
it is beneficial for the n = 0 and 1 superpositions to transfer from − ↑ to + ↓ together.) In this case, the concavity of the energy
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with respect to the − ↑ LLL occupation is(
d

d cos2 θ

)2

ν
EFSP-FVP

HF

Ne
= 2�V (�0 + �1)2 + 2α

[(
X +−

0000 + 2X +−
0110 + X +−

1111

) − (
X ++

0000 + 2X ++
0110 + X ++

1111

)]
. (45)

If this expression is negative, then the superposition is unfa-
vorable and the energy is minimized at end points cos2 θ = 1
or 0, i.e., the FSP or FVP LLSD states. We find that it is
negative for all magnetic fields and pressures in our model.

There are two contributions to the concavity in Eq. (45): the
Coulomb blockade (�V ) term, which is always �0, and the
exchange (X ξξ ′

klmn) term, which is always �0. Each exchange

integral X ξξ ′
klmn is positive, so the exchange term actually has

a positive intervalley +X +−
klmn and negative intravalley −X ++

klmn
component. Recalling the valley-layer correspondence, how-
ever, the intervalley integrals are always smaller because the
layer separation d weakens interlayer interactions.

From this we see that the FSP-FVP LLC state will be
unfavorable if the Coulomb blockade is too weak, or if the
disparity between the intravalley and intervalley exchange
integrals is too large. In our model, the spatial extent of the
pz orbitals weakens the Coulomb blockade, and the layer-
resolved form factors derived from exact diagonalization in-
crease the intravalley-intervalley disparity. In contrast, if the
extent of the pz orbitals is neglected and the valley-layer
correspondence is assumed to be exact, then the FSP-FVP
state appears as in previous work using similar interaction
propagators [11–13].

We further compare the effects of the spatial extent of the
pz orbitals, layer separation, gating, and layer-resolved form

factors in Sec. III D to explain their impacts on the model.
We find that the layer-resolved exact diagonalization form
factors are principally responsible for the absence of super-
positions. Determining whether superpositions are favorable
using energy concavity extends similarly to other pairs of
LLSD states, and we use this method to confirm that no other
LLC states appear in our model. We give the concavities of
the relevant superpositions in Sec. S5 and discuss the physical
interpretation of each term in Sec. S6 in the Supplemental
Material [18].

D. Effects of 3D pz orbitals, layer separation, gating,
form factors, and heterostructures

Our model includes the spatial extent of the pz orbitals,
layer separation, metallic gates, and layer-resolved form fac-
tors found by exact diagonalization. Since previous models
have included some of these effects while neglecting others,
it is worthwhile to explore their respective impacts on the
phase diagram. To this end, in Fig. 5 we plot phase diagrams
in which we have either neglected only one of these effects,
or included only one and neglected the others. These phase
diagrams are meant to be compared with our main result in
Fig. 3(b) and with one another. We choose to compare at
P = 29.8 GPa, where the differences are most visible. In the

FIG. 5. These phase diagrams, calculated for P = 29.8 GPa, show what our model would predict if, in Coulomb interaction calculations, we
(a) neglected the spatial extent of the pz orbitals by taking P(z) → δ(z), (b) neglected layer separation by taking d = 0, (c) neglected metallic
gates by taking D → ∞, (d) neglected exact diagonalization form factors by using one-component wave functions with cT j

n+ = δT,B1δ j,n, or
(e)–(h) include only one of the aforementioned effects while neglecting the others. (i) The diagrams and colors used to label the LLSD states
are repeated here. As the LLC states continuously interpolate between LLSD states, the LLC states are colored by interpolating between the
colors of the LLSD states they mix.
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following, we will proceed column by column through Fig. 5
to explore each effect in turn.

The spatial extent of the pz orbitals is the focus of Figs. 5(a)
and 5(e); it in general weakens the Coulomb interaction, as
it spreads the electron density out vertically. We can see
this effect by comparing Fig. 5(a), where it is neglected, to
Fig. 3(b) and Figs. 5(b) and 5(c), where it is included. When it
is neglected, the FSP state extends to higher magnetic field be-
cause the pz orbitals’ extent weakens exchange (which favors
the FSP state over orbitally polarized states) and to higher bias
because the pz orbitals’ extent weakens the Coulomb blockade
(which favors the FSP state over the FVP state). The OSP state
extends to higher bias as well in Fig. 5(a) for the same reason
regarding the Coulomb blockade. Indeed, the effective layer
separations plotted in Fig. S3 in the Supplemental Material
[18] also show that the pz orbitals’ extent weakens both the
Coulomb blockade and exchange interactions. The weakening
of the Coulomb blockade is also apparent in Fig. 5(e), where
the partially layer-polarized POP state appears at lower biases
than in Figs. 5(f) and 5(g).

Layer separation is the focus of Figs. 5(b) and 5(f).
Layer separation greatly decreases the intervalley exchange
integrals. These are the off-diagonal matrix elements in the
Hamiltonian that mix LLLs of different valleys, producing
avoided crossings that we see these as LLC states. Therefore,
neglecting d narrows the FSP-FVP LLC state substantially
in Fig. 5(f) as compared to Figs. 5(e) and 5(g). In Fig. 5(b),
this effect is not apparent because the LLC state does not
appear. However, layer separation also reduces the intravalley
exchange integrals by a small amount. These integrals are
responsible for stabilizing spin- and valley-polarized states;
therefore, the exchange-favored FSP state extends to slightly
higher magnetic field in Fig. 5(b), where layer separation is
neglected, than in Fig. 3(b), where it is included.

The metallic gates are the focus of Figs. 5(c) and 5(g).
Being separated from the bilayer by a large distance D =
20 nm in our model, the gates have the smallest impact on
the phase diagram out of all the effects we consider. They
slightly screen both the Coulomb blockade and the exchange
interaction, so that without the gates, the FSP and FVP states
in Fig. 5(c) take up a slightly larger region of phase space than
with the gates in Fig. 3(b). The region of the phase diagram
occupied by orbitally polarized states is smallest in Fig. 5(g)
out of all the lower row figures, illustrating that the gates
weaken the exchange interaction less than any of the other
effects.

The layer-resolved exact diagonalization form factors are
the focus of Figs. 5(d) and 5(h); they physically describe the
spatial distribution of the LL wave functions [cf. Eq. (8) and
the coefficients plotted in Fig. S2 the Supplemental Material
[18]] split between the two layers, have the most substantial
impacts on the phase diagram. They not only weaken inter-
actions more than any other effect, but also render superpo-
sitions unfavorable. Weakening the Coulomb blockade brings
phase transitions to lower bias and weakening exchange in-
teraction brings phase transitions to lower magnetic fields, so
that the phase diagram is scaled down. This is seen when com-
paring Fig. 5(d) to the other upper row figures [5(a)–5(c)], and
when comparing Fig. 5(h) to the other lower row figures [5(e)–
5(g)]. The suppression of superpositions is evinced by the

facts that Fig. 5(d) is the only upper row figure to feature the
FSP-FVP LLC state, and that Fig. 5(h) is the only lower row
figure which does not feature the aforementioned LLC state.

Figure 5(h) is also notably the only diagram to feature the
OSP-POP state, a superposition between the OSP and POP
states. It has constant partial orbital and spin polarization and
continuously evolving partial valley polarization, and is given
by

|�OSP-POP〉
=

∏
X

[c+
0+↑X c+

0+↓X c+
0−↑X (cos θc+

1+↑X + sin θc+
1−↑X )]|∅〉.

(46)

Further information on this state is in Sec. S5 in the Supple-
mental Material [18].

We have examined here only a representative subset of the
possible combinations of included and neglected parameters.
Our model is also compatible with previous models by chang-
ing the parameters described above, plus a few constants.
For example, we have reproduced the onset and end of the
FSP-FVP state given by Ref. [11] by removing gates and the
spatial extent of the pz orbitals, using simplified form factors,
neglecting the Lamb-type shift, and using the TB parameters
and dielectric constant given therein; and we have reproduced
the LLL energy levels of Ref. [19] by using the same ap-
proximations and additionally setting the orbital gap to 0.
Additionally, to facilitate comparison of Fig. 5 to previous
theoretical work, in producing these phase diagrams we have
taken d = 0 only in the Coulomb interaction propagator and
keep d �= 0 in the Coulomb blockade as in Ref. [1], and use
cT j

n+ = δT,B1δ j,n only in the Coulomb interaction calculations
but not in Enξσ , as in Refs. [9–13].

A modification of the Coulomb interaction we have not
addressed in our model is that of screening by more complex
heterostructures than a uniform boron nitride dielectric. Re-
cently, the experiment of Chuang et al. [4] on stacked BLG
and WSe2 monolayers or bilayers showed that WSe2 brings
the appearance of the POP state to lower magnetic fields, and
noted that thin dielectric layers primarily screen short-range
interactions, which weakens exchange. Weakening exchange
disfavors the FSP and FVP states, so that the POP state
appears at a lower magnetic field.

IV. CONCLUSION

We have produced Landau level phase diagrams of charge-
neutral (ν = 0) BLG as a function of magnetic field, bias, and
pressure. We found noninteracting eigenstates and energies
using a four-band tight-binding model with hoppings between
each pair of lattice sites. Projecting into the eight LLLs near
the Fermi level and treating the Coulomb interaction through
the Hartree-Fock approximation, we studied how gate screen-
ing, layer separation, the spatial extent of the pz orbitals, and
layer-resolved form factors found by exact diagonalization
impact the interaction and phase diagrams. All parameters
were determined by ab initio calculations [17,22] or indepen-
dent experimental measurements [21].

Five LLSD states (FSP, FVP, POP, OSP, and FOP) manifest
as ground states. Two of these (OSP and FOP) previously have
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been neither theoretically predicted to appear nor observed ex-
perimentally. The appearance of the orbitally polarized states
(POP, OSP, and FOP) is driven by noninteracting dynamics
overtaking the Coulomb interaction as the dominant energy
scale, and this transition is controlled by pressure and the
magnetic field. The absence of LLC states in our results, in
comparison to similar theoretical work using parameter-free
long-range Coulomb propagators [9–13], is unique to our
model. We isolated the use of exact diagonalization form fac-
tors which respect the inequivalence between valley and layer
as the source of this change. This emphasizes that, due to the
small energy scales involved in this system, even parameters
or effects which appear small may in fact be significant.

We chose to focus on ν = 0, but our model may readily
be applied for other filling factors. Likewise, we focused on
ground-state phase diagrams, but our model can also be used
to calculate excited-state energies and single-particle energy
gaps to explain transport or cyclotron resonance experiments,
as in Ref. [11] or [19], respectively, for example. These are
natural followup topics for us to explore in future work,
alongside the effects of correlations and fluctuations, and the
possibilities of nonuniform states.

Comparison to experiment is subtle. Conduction modes
have been proposed for both discontinuous and continu-
ous transitions: conduction domain walls percolating through
the bulk for discontinuous transitions between LLSD states
[24,25] and gapless edge excitations for continuous transitions
through LLC states [26,27]. Furthermore, due to the confining
potential of the edge, the ground state in the bulk may deform
into a different ordered state near the edge, which could
obscure measurements of the bulk [26,28]. With these caveats,
we believe it is reasonable to interpret the experimentally de-
tected transitions and reflecting transitions in the bulk ground
state, with some uncertainty due to masking by edge states.
Recent experiments [1,2] found a single transition at low
magnetic fields, the FSP-to-FVP transition, bifurcating into
two transitions, the FSP-to-POP and POP-to-FVP transitions,
at B = 12 T at zero pressure. The signature (e.g., conductivity
spike) of the FVP-to-FSP transition is similar to that of the
transitions involving the POP state, which is consistent with
our finding that all transitions are of the same order, i.e., all
are discontinuous. Our phase diagrams also share with exper-
iment the same topology of the single transition bifurcating as
the magnetic field is increased; however, in our model the POP
state can only be brought down to experimentally accessible
magnetic fields with pressure. This suggests opportunities

for both theoretical and experimental research. Theoretically,
our model appears to be missing a key ingredient that helps
stabilize orbitally polarized states. Experimentally, this would
mean that the orbitally polarized states we predict, the OSP
and FOP states, are likely to be accessible at lower magnetic
fields than we present here.

Comparing Refs. [11,13] and this work, which did not
find the POP state around B = 12 T at zero pressure, with
Refs. [1,15], which did, suggests some missing ingredients.
For example, LL mixing provides screening [1,11,29–31]
and, together with the electron-phonon interaction, can in-
duce symmetry-breaking interactions [6,14,15] which may
stabilize the POP state. These symmetry-breaking interactions
stabilize a canted antiferromagnetic state [6,15,20], which
does not appear in our model but is supported by experimental
evidence [3,7]. Additionally, one experiment by Li et al. [3]
using a different device geometry and tilted magnetic field
found a metallic state between the FSP and FVP states. We
have not addressed these characteristics in our model, and
at this point the nature of the metallic state remains an open
question as well.

Even small or weak effects may be important due to the
small energy scale of the LLLs. This is demonstrated by the
above comparison of published results; by our comparison
of the effects of model details in Sec. III D, particularly the
nature of the form factors; and by a comparison of the orbital
gap plotted in Fig. S1 in the Supplemental Material [18] to
the phase diagrams in Fig. 3, which shows the significant
impact of increasing orbital splitting by only a few meV/T.
We are working to understand the aforementioned effects
in a physically transparent way. Such understanding will be
necessary to answer the many remaining open questions for
research in this field and to explore its continually expanding
possibilities, both theoretical and experimental.
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