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Interparticle coulombic decay (ICD) is an efficient energy transfer process between two weakly interacting
systems. ICD was recently proposed as the underlying fundamental mechanism for technological purposes based
on quantum dot nanostructures, such as wavelength-sensitive detectors. Via ICD, an excited donor quantum dot
releases its excess energy by ionizing a neighboring acceptor dot. Here, we demonstrate that the presence of
a third (ICD inactive) quantum dot can serve as a bridge between the two dots, which is shown to result in
an enhancement of the efficiency of the ICD-mediated energy transfer. Furthermore, our results show that this
enhancement is found to be robust against change in the characteristics of the bridge quantum dot, particularly
the depth and size. On the other hand, its relative position with respect to the donor and acceptor dots is found
to foster ICD when it is located in between the two dots. Our findings provide new insights for the development
of ICD-based nanostructure technologies, particularly for rational design of three coupled quantum dots.
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I. INTRODUCTION

Interparticle coulombic decay (ICD) is an efficient energy
transfer process between two weakly interacting systems, first
predicted theoretically in [1] and demonstrated experimen-
tally in [2] and [3]. Via ICD, an excited donor partner releases
its excess energy by ionizing a neighboring acceptor species.
ICD was demonstrated to be a general phenomenon since the
donor and acceptor partners may be ions, atoms, molecules
[4–6], quantum wells [7–9], or quantum dots [10–13] (see
also [14]). It was also shown that the energy transfer is not
restricted to the electronic degrees of freedom and may, for
example, involve vibronic couplings when the donor is a
vibrationally excited molecule [15].

In terms of applications, it was recently proposed to use
ICD in quantum well and quantum dot nanostructures as a
fundamental mechanism for technological purposes such as
wavelength-sensitive detectors [7,8,12]. However, to achieve
a high degree of efficiency of such devices, ICD must be the
dominant process. In this context, electron-phonon couplings
are the main competing phenomena [16]. In general, the
ICD efficiency decreases with increasing distance between
the donor and the acceptor partners. In contrast, at a large
interparticle distance, electron-phonon couplings are expected
to weakly depend on this distance since the nanostructures
do not strongly interact with each other [16]. It is therefore
essential to determine the optimal interparticle distances that
foster the ICD [10] and, thus, permit the enhancement of its
efficiency.

*nicolas.sisourat@upmc.fr

In this context, the effects of the shape of quantum dots on
the ICD efficiency were investigated, as well as the shape and
characteristics of the involved artificial atoms [12,17]. It was
also recently shown that another ICD mechanism, so-called
superexchange ICD, is possible when the donor and acceptor
systems are separated by a bridge atom. For the benchmark
neon-helium-neon trimer, it was demonstrated that the ICD
between the two neon atoms is substantially enhanced in the
presence of a bridge helium atom compared to the isolated
neon dimer case [18,19]. In these studies, it was shown that
the energy transfer is mediated by virtual states where one
electron from one of the neon atoms is transferred to the
bridge helium atom.

In the present work, we study numerically the ICD process
in coupled quantum dots in order to achieve a high degree
of efficiency of the ICD-mediated energy transfer between a
donor and an acceptor quantum dot. In particular, we explore
the possibility of controlling the ICD by changing the char-
acteristics of the nanostructure. This is achieved using low-
dimensional models that effectively model coupled quantum
dots, as in [10–13]. The essence of our results is that a
clear enhancement of the ICD rate is observed when a third
quantum dot is inserted. With the use of a simple physical
model based on perturbation theory, we identify the origin of
this enhancement and relate it to two physical mechanisms:
(i) the bridge dot modifies the continuum states around the res-
onance, and (ii) it yields additional virtual transitions, which
occur via the superexchange ICD mechanism. Moreover, the
enhancement is found to exhibit a weak dependence on the
parameters of the third quantum dots (i.e., depth and size),
which is an interesting finding for rational design of three
coupled quantum dots. We further discuss the sensitivity of
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the ICD to the location of the third quantum dot with respect
to the donor and acceptor dots.

Our investigation of ICD in nanostructures focuses on
semiconductors for two and three coupled quantum dots using
a one-dimensional (1D) model. Although a 1D model has
obvious limitations, our main goal is to search for optimal
conditions under which the ICD rate gets enhanced, which is
relevant for a full-dimensional model.

Our model as well as its numerical implementation based
on the time-dependent Schrödinger equation (TDSE) and per-
turbation theory is presented in Sec. II. In Sec. III, we report
on the ICD efficiency in coupled quantum dot systems with
respect to (i) the distance between the donor and the acceptor
species and (ii) the characteristics of the bridge quantum dot.
The article ends with the conclusions of this work in Sec. IV.
Atomic units are used throughout unless stated otherwise.

II. THEORY AND COMPUTATIONAL DETAILS

A. Quantum dot models

We consider 1D models which have proved to properly
account for the essential properties of realistic 3D quantum
dots with respect to ICD [13]. Such models provide a correct
description of the electron dynamics involved in the quantum
dots with less computational effort. The effective two-electron
Hamiltonian in our systems is given as

H (z1, z2) = h1(z1) + h2(z2) + VC (z1, z2), (1)

where zi (i = 1, 2) denotes the coordinate of the ith electron.
The one-electron Hamiltonian hi is of the form

hi(zi ) = −1

2

∂2

∂z2
i

+ VQD(zi), (2)

where VQD(zi ) is the electron-dot potential (as shown in
Fig. 1), built on Gaussian potentials as in [10]

VQD(zi ) = −Zd e−σd (zi+R/2)2−Zme−σm (zi−bm )2−Zae−σa (zi−R/2)2
.

(3)

Here, Zj and σ j ( j = d, m, a) are, respectively, the depth and
size of the donor, mediator, and acceptor quantum dot poten-
tials. R is the distance between the donor and the acceptor
quantum dots, which are located symmetrically around the
origin, and bm is the coordinate of the mediator center. In this
framework, two coupled quantum dots are modeled by setting
Zm = 0. In Eq. (1), the single-particle Hamiltonians h1 and h2

are coupled via the interaction term VC (z1, z2). The latter is a
repulsive soft Coulomb potential and is expressed as

VC (z1, z2) = 1√
(z1 − z2)2 + α exp [−β(z1 − z2)2]

. (4)

This model potential has been chosen to avoid the singular-
ity at z1 = z2. The same model has been used in previous
works to describe the correlated electron-electron interaction
in connection with ICD in two coupled quantum dots (see,
e.g., [10]).

FIG. 1. Schematic of ICD in two (upper panel) and three (lower
panel) coupled quantum dots. Via ICD, the left (donor) quantum
dot releases its excess energy by ionizing the right (acceptor) dot,
as indicated by the arrows. Quantum dots are represented by ef-
fective one-dimensional potentials as in [10–13]. E ( j)

n denote the
one-electron energies (see text).

B. Dynamics and decay widths

The electron dynamics of the nanostructures modeled as
above is governed by the TDSE

[
H (z1, z2) − i

∂

∂t

]
ψ (z1, z2, t ) = 0. (5)

We construct the initial wave function from the eigenstates
of the one-electron Hamiltonian, in which one electron is
localized in the excited state φ

(d )
2 of the donor quantum

dot and the other in the ground state φ
(a)
1 of the acceptor

quantum dot:

ψ (z1, z2, t = 0) = 1√
2

[
φ

(d )
2 (z1)φ(a)

1 (z2) + φ
(d )
2 (z2)φ(a)

1 (z1)
]
.

(6)
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The energy (E ) of the initial state is above the lowest ion-
ization threshold (E∞) of the two-electron system (i.e., so-
called resonant, or quasibound, state). The one-electron states
denoted by φ

( j)
n ( j = d, m, a; n = 1, 2) are solutions of the

time-independent Schrödinger equation

hi(zi )φ
( j)
n (zi ) = E ( j)

n φ( j)
n (zi ). (7)

The initial wave function is chosen to be symmetric with
respect to electron permutation, which corresponds to a singlet
spin state. We have also performed the calculations for the
triplet-state case. Conclusions similar to those reported below
were reached. Note that the symmetry is conserved throughout
propagation. At the end of the propagation, the decay width
� for a given quantum dot system is obtained by fitting the
computed values of the autocorrelation function,

a(t ) = |〈ψ (t = 0)|ψ (t )〉|2, (8)

to the generic decay function e−�t .

C. Perturbation model

To help the interpretation of the results stemming from
the TDSE, we use a formalism that is reported in [20] and
[21]. In our work, the formalism is simplified by making
assumptions about the choice of the wave functions involved
in the couplings, as shown below (see also [18] and references
therein). Here, our main goal is not to obtain quantitatively
accurate results for the ICD width as much as to identify and
discuss the main contributions that lead to the enhancement of
the ICD width in the presence of a third quantum dot. In this
context, the decay width is given by

� = 2π |〈ψ (t = 0)|Ĥ − E |ψ f 〉|2, (9)

where ψ (t = 0) and E are the initial state and its energy,
respectively [see Eq. (6)]. The final state ψ f is, in our model,

ψ f = N

[
ψk + 〈ψdm|Ĥ |ψk〉

(E − Edm)
ψdm

]
, (10)

where

ψk = 1√
2

[
φ

(d )
1 (z1)k(z2) + φ

(d )
1 (z2)k(z1)

]
, (11)

ψdm = 1√
2

[
φ

(d )
2 (z1)φ(m)

1 (z2) + φ
(d )
2 (z2)φ(m)

1 (z1)
]
, (12)

N is a normalization factor, and Edm the energy of the latter
state. In Eq. (11), k represents the continuum state at the
energy of the ICD electron (i.e., E − E∞). The second term
in Eq. (10) corresponds to the superexchange ICD term in
which the energy transfer is mediated by the state where one
electron sits in the donor dot while the second electron is in the
bridge dot. Note that there are other couplings that could be
included in the second term (e.g., one electron is in the ground
state of either the donor or the acceptor dot, and the second
electron in the bridge). Our calculations, however, show that
their contributions are insignificant and thus are omitted from
Eq. (10). More details about the evaluation of the decay width
using Eq. (10) can be found in [18].

D. Computational details

We used the same parameters to model the donor and
acceptor dots as in [10], i.e., (Zd , Za) = (1.0, 0.8) a.u. and
(σd , σa) = (0.25, 1.0) a.u., while for the mediator quantum
dot a broad range of parameters is considered (see below).
With the use of these parameters, the donor dot supports
two bound states and their eigenenergies are labeled E (d )

1 and
E (d )

2 , while the acceptor and mediator dots support only one
bound state each and the corresponding energies are labeled
E (a)

1 and E (m)
1 , respectively. These single-electron energies

are given in Fig. 1 for R = 14 a.u. and bm = 0. Note that
they do not vary by more than 20% with respect to these
parameters in the range of values employed in this work.
The time-independent Schrödinger equation [see Eq. (7)] is
solved using a Lagrange-mesh method [22,23] with varia-
tional basis functions of a sinus form. In the interaction term
VC (z1, z2), α and β are soft parameters set to 0.01 and 100 a.u.,
respectively [10].

The time evolution of the electronic wave function
ψ (z1, z2, t ), which satisfies the TDSE [see Eq. (5)], is solved
numerically using a split-operator method combined with a
fast Fourier transform algorithm as in [24]. This is carried
out on a symmetric 2D grid of size L = 127.75 a.u. with the
grid spacing δz = 0.25 a.u., i.e., 512 grid points along each
direction. The time step used in the calculation is δt = 0.09
a.u. The convergence was checked by performing additional
calculations with twice the size of the box and a smaller
time step. Furthermore, a complex absorbing potential (CAP)
placed at positions ±zCAP along each coordinate is employed
to avoid artificial reflections. It is expressed as [11]

WCAP = −iη | zi ± zCAP |k �(z ± zCAP), (13)

where η and k are the strength and the order of the CAP,
respectively. � is the Heavyside step function. In these cal-
culations, we used η = 0.003 and k = 2. The boundary is
chosen such that zCAP = ±0.85L. Convergence of the results
with respect to the CAP parameters and grid size has been
checked.

We applied the fitting procedure to obtain the decay widths
[see Eq. (8)] at different final times, ranging from 6200 to
12 400 a.u. The results do not change significantly with
respect to the latter values.

III. RESULTS AND DISCUSSION

The ICD mechanisms discussed are schematically depicted
in Fig. 1 for the case of two (upper panel) and three (lower
panel) coupled quantum dots. The top diagram represents a
direct process, in which the excess energy of the donor can
be used to directly ionize the electron from the acceptor. In
the case of three coupled quantum dots, the excess energy
is mediated by the presence of a third quantum dot located
between the donor and the acceptor during the ICD. In the
perturbation theory picture, this additional effect is taken into
account via an extra term related to the superexchange ICD,
as outlined in connection with Eq. (10). This mechanism has
been discussed for trimers and has been shown to lead to an
enhancement of the efficiency of the ICD width [18].
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FIG. 2. Ratio between the decay widths for three and two cou-
pled quantum dots as a function of the distance between the donor
and the acceptor dots (R). Inset: Decay widths for two (dashed
red line) and three (solid blue line) coupled quantum dots. The
parameters (see text) of the bridge quantum dot are (Zm = 0.6,
σm = 4.0).

Stimulated by these recent findings [18] and by funda-
mental interest in quantum dots for nanotechnological pur-
poses, we aim in this work to search for optimal conditions
characterizing a third quantum dot, under which the ICD
width gets enhanced. Here the characteristics of this third
quantum dot (depth, size, and relative position), which is
referred to as the bridge, are chosen such that the energies of
the bound states of the donor and acceptor remain unchanged
with respect to the case of two coupled quantum dots. This
is an important condition for ensuring the physical interpre-
tation of the efficiency of ICD in the presence of a bridge
quantum dot.

We consider both scenarios depicted in Fig. 1 and calculate
the corresponding decay widths. To evaluate the enhancement
of the ICD, we present in Fig. 2 the ratio

ρ = �3QD

�2QD
(14)

between the decay widths for the three coupled (�3QD) and
two coupled (�2QD) dots as a function of the distance R
between the donor and the acceptor dots (all other parameters
fixed). The widths for each system are displayed in the inset in
the same figure. The parameters of the bridge quantum dot are
Zm = 0.6, σm = 4.0, and bm = 0.0 (i.e., the bridge dot is at the
midpoint between the donor and the acceptor dots). It is shown
that, in general, the decay widths decrease with increasing R
for both systems. However, this trend is not monotonous as
already discussed in [10]: for some interparticle distances the
electron-electron interaction creates an effective potential that
may trap the ICD electron, delaying the decay process (e.g.,
at R � 17 and 19 a.u. for the cases of two and three quantum
dots, respectively). The ratio between the decay widths varies
between about 0.1 and 2.3, showing that a significantly higher
ICD efficiency (i.e., a faster decay) can be achieved for some
interparticle distances in the presence of the bridge dot. As
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FIG. 3. Ratio between the decay widths for three and two cou-
pled quantum dots as a function of the parameters (see text) of
the bridge quantum dot, for R = 13.5 a.u. Some contour lines are
indicated by the cyan lines.

shown in the figure, the largest enhancement of the decay
process is obtained here at about R � 13.5 a.u.

To provide insights into the observed enhancement, we
make use of a simple physical model as described in Sec. II C.
The model is based on perturbation theory and has the ad-
vantage of separating direct processes from indirect ones.
The model, therefore, enables us to identify the main con-
tributions responsible for the observed enhancement of the
ICD width in Fig. 2. Here, the bridge quantum dot can lead
to the observed enhancement around R � 13.5 a.u. via two
mechanisms: it can modify the continuum states around the
resonance (see [7] for more details) and can participate in
the energy transfer via superexchange ICD. To disentangle
and quantify both contributions we have computed the decay
widths using the perturbation model reported in Sec. II C.
Above R = 12 a.u., the result stemming from this model
agrees quantitatively with that of the numerically exact TDSE
calculations. Below R = 12 a.u., the coupling between ψk

and ψdm becomes too strong and the perturbation correc-
tion is not adequate. We, therefore, focus on the results of
the model within its range of validity (i.e., R > 12 a.u.).
By removing the superexchange ICD term in Eq. (10) (i.e.,
ψ f = ψk), it is possible to quantify the contributions of both
mechanisms discussed above. These calculations show that
both mechanisms contribute nearly equally for R ∼ 13.0-18.0
a.u. (not shown). At larger distances, the superexchange ICD
mechanism does not contribute since the coupling between
ψdm and ψk decreases exponentially with the distance (see
[18]). We mention here that the perturbation model predicts
that the superexchange ICD mechanism largely dominates at
distances below 12.0–13.0 a.u. However, as noted above the
model is not quantitative in this interparticle distance range
and further work is needed.

We now investigate the sensitivity of ICD with respect to
the parameters of the bridge species. In Fig. 3, we present the
ratio ρ [Eq. (14)] as a function of Zm and σm. The distance
between the donor and the acceptor species is fixed at R =
13.5 a.u. and bm is kept equal to 0 (i.e., the bridge dot is
again fixed at the midpoint between the donor and the acceptor
dots). Our results show that, for Zm ranging from 0.3 to 0.6 and
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FIG. 4. Decay widths as a function of the position of the bridge
quantum dot, for R = 13.5 a.u. (i.e., the donor and acceptor dots
are fixed at −6.75 and 6.75 a.u., respectively.). The dashed red line
indicates the decay width in the absence of the bridge. Note that we
have limited the range of bm to values that do not change significantly
the energies of the donor and acceptor dots with respect to the case
of two coupled quantum dots.

σm ranging from 4 to 10 a.u., the ICD width is enhanced in the
presence of the bridge dot by a factor of between about 1.6
and 2.4.

Furthermore, in Fig. 4, we show the decay width as a
function of the position bm of the bridge quantum dot, for
R = 13.5 a.u. We report only results for values of bm which
do not modify significantly the energies of the donor and
acceptor quantum dots, compared to the centered case (bm =
0). One can see in the middle panel that the enhancement
of the ICD process is maximal when the bridge dot is at
the midpoint between the other two quantum dots. The ICD
process becomes weaker as the bridge dot approaches the
acceptor dot (i.e., bm > 0). The energies of the donor are
significantly modified when the bridge dot is moved towards
it (i.e., bm < 0). A change in the donor potential affects the
efficiency of the ICD process. As mentioned above, we are
interested in the enhancement of the ICD process owing only
to the presence of the third dot. We therefore do not report
results for −13 < bm < 0.

The left and right panels in Fig. 4 show the decay width
when the bridge dot is located on the left side of the donor
(bm < −R/2) or on the right side of the acceptor (bm >

+R/2), respectively. It is interesting to note that the ICD is
substantially enhanced when the bridge dot is placed on the
left side of the donor dot, showing that the relative position

of the bridge, donor, and acceptor dots is also a relevant
parameter for optimization of the ICD rate. The observed
behavior of the decay widths, reported in Fig. 4, is related to
interferences between the direct path [i.e., ψ (t = 0) → ψk]
and the one corresponding to the transition via the virtual
state ψdm (i.e., via the superexchange ICD mechanism). These
interferences lead to the enhancement or suppression of the
decay width depending on the location of the bridge quantum
dot. This can be understood from the perturbation model
defined above, which incorporates virtual transitions in the
final state, as shown in Eq. (10). A similar effect has recently
been discussed for three-body ICD processes occurring in
atomic clusters [25].

At this point, we conclude that efficiency of the ICD-
mediated energy transfer can be achieved for a broad range
of parameters characterizing the inserted bridge quantum dot.
This is an interesting finding for rational design of three
coupled quantum dots.

IV. CONCLUSION

We have shown that energy transfer mediated by the inter-
particle coulombic decay process between two quantum dots
can be substantially enhanced in the presence of a third bridge
dot. The efficiency of the process can thus be improved by
more than a factor of 2. Furthermore, we have investigated
the mechanisms leading to this increase and how the latter
depends on the characteristics (depth, size, and relative posi-
tion) of the bridge species. It was found that the efficiency of
the ICD is robust against change of the depth and size of the
inserting bridge dot. On the other hand, this efficiency was
shown to be sensitive to the relative position of the bridge
dot with respect to the donor and acceptor quantum dots. Our
findings, therefore, offer alternative routes to manipulate ICD
and ultimately design three coupled quantum dots. This work
provides new insights into the energy transfer processes in
nanostructures and should be useful for the development of
quantum-dot-based technologies.
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