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We report anisotropic spin polarization of edge currents in MoS2 and WS2 monolayer zigzag nanoribbons
(ZNRs) deposited on either nonmagnetic or ferromagnetic insulator substrates. We employ an 11-band tight-
binding model to calculate the electronic band structures of transition metal dichalcogenide (TMDC) monolayers
and their corresponding nanoribbons in the presence of Rashba spin-orbit coupling (RSOC) and magnetic
proximity effect produced by ferromagnetic substrate. We adopt the nonequilibrium Green’s function method
together with Landauer-Büttiker formalism to study the quantum transport behavior stemming from the edge
states of ZNRs. We demonstrate that the spin-polarized edge current can be generated in both MoS2 and WS2

ZNRs with RSOC. We find that the spin polarization spreads out in all three directions. This is in stark contrast
to what occurs in zigzag graphene nanoribbons, for which the polarization only exists in the transverse direction
(across the width of ribbons). In addition, the spin polarization direction strongly depends on the strength of
the intrinsic SOC component. The interplay of Rashba and intrinsic SOC is crucial for the spin polarization of
the currents in any spatial direction. For TMDCs with stronger intrinsic SOC such as in WS2 monolayer ZNRs,
we observe that the spin polarization along the perpendicular direction to the plane of the ZNR can be as large
as 90%. Moreover, the unusual anisotropy of the spin polarization can be further enhanced by the magnetic
proximity effect. These results open up possibilities for the generation of tunable high-spin polarization currents
in ZNRs without application of an external magnetic field.
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I. INTRODUCTION

Since the landmark achievement of graphene [1], two-
dimensional (2D) materials such as transition metal dichalco-
genides (TMDCs) have been extensively explored due to
their unique chemical and physical properties, as well as
their great potential for postsilicon electronics [2,3]. Un-
like graphene, the inversion asymmetry together with strong
spin-orbit coupling (SOC) in the monolayer TMDCs (MoS2,
MoSe2, WS2, WSe2) leads to spin splitting and spin-valley
locking, giving rise to intriguing characteristics for spintronics
and valleytronics. In addition, tungsten (W)-based compounds
exhibit a spin-orbit splitting approximately twice as large as
that of molybdenum (Mo)-based ones, and the signs of the
conduction band spin-orbit splittings in W- and Mo-based
TMDCs are opposite. Therefore, their optical properties are
quite different, e.g., Mo compounds are bright materials and
W-based ones are darkish for the ground states [2,4–7].

This large spin splitting, especially in the valence band, in
turn, suppresses the spin relaxation and results in long spin
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lifetimes. Moreover, due to the large valley separation in the
momentum space, the decay of valley polarization through the
intervalley scattering mediated by low-energy phonons is typi-
cally slow. Therefore, carriers in TMDCs usually possess long
valley lifetimes [8]. These features are greatly important for
spintronic and valleytronic applications, in which the charge,
spin, and valley degrees of freedom are exploited. Hence,
relevant proposals based on TMDCs have gained significant
impact on the current technology-oriented research [9,10].
Recently, TMDC nanoribbons have been successfully synthe-
sized by several methods [11–13], ranging from chemical to
mechanical routes, mostly zigzag-terminated. Although great
progress has been made experimentally, the theoretical under-
standing of the properties of these systems still remains very
elusive. This brings forth the question of their spin-dependent
transport properties in comparison to those of GNRs, which
are more widely explored.

As known, intrinsic SOC in graphene is negligible, but
the occurrence of spin-dependent transport in graphene
nanoribbons (GNRs) with extrinsic Rashba SOCs (RSOCs),
which are generated by an external applied electric field has
been previously predicted [14], both in armchair-terminated
and zigzag ones. Furthermore, the spin polarization is
mainly along the transversal direction of GNRs, while the
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perpendicular and longitudinal components are vanishingly
small [14,15]. There are different routes to modify these
features: for example, vacancies that break the longitudinal
mirror symmetry of the ribbons, such as square notches, allow
for nonzero spin polarization in all directions [16]. Also,
in bilayer GNRs, the transversal spin polarization can be
further enhanced by the interplay of RSOC and an asymmetric
double-gate voltage [17]. Finally, corrugated ZGNRs, i.e.,
nanoribbons that contain multiple RSOC regions, may deliver
significantly enhanced spin polarizations [18].

Besides SOC, the edges of zigzag graphene and TMDC rib-
bons are also fundamentally different. Specifically, the atoms
at both edges of ZGNRs are obviously the same, all carbon
[14], whereas in TMDC ribbons they correspond to different
atomic species and hence the corresponding longitudinal sym-
metry is always broken. Independent of the number of zigzag
chains across the ribbon width, the edge termination is similar
(while Mo atoms are located at one edge, S atoms are at the
other edge), and edge states have a similar behavior. However,
when the ribbon width changes, the transport properties of
TMDC ZNRs changes at higher energy ranges. Since the
transport properties of a system are closely correlated to its
electronic band structure, one can infer that the transport
properties of ZGNRs are quite different than those of TMDC
zigzag nanoribbons (ZNRs). Analogously, quantum transport
in Mo-based TMDC ribbons should also differ from that of
its W-based counterparts because of their distinct spin-orbit
ordering in the band structure.

Therefore, a comparative study of the transport properties
of TMDC and graphene ZNRs is crucial for understanding
the roles of intrinsic SOC and extrinsic RSOC in different
materials with different spin-orbit strength as well as of the
structure of ribbon edges in the carrier transport. Moreover,
considering the magnetic proximity effect in TMDCs induced
by ferromagnetic (FM) insulator substrates [19–24], which
lifts the valley degeneracy, it is also essential to demonstrate
how the exchange field and its combined effect with spin-orbit
field affect spin-dependent transport. This, together with un-
derlying physics of the spin-polarization anisotropy, remains
elusive and yet to be understood.

In this paper, we develop a comprehensive theory about
anisotropic spin polarization of edge current in monolayer
MoS2 and WS2 ZNRs deposited on either nonmagnetic or
ferromagnetic insulator substrates, involving intrinsic SOC
and external RSOC as well as magnetic proximity effects on
quantum transport. These hybrid systems could be used as
robust tunable spin (valley) filters for diverse applications. We
focus our attention on the anisotropy of spin polarization in
carrier transport. We observe that spin-polarized edge current
can be generated in both MoS2 and WS2 ZNRs with RSOC.
Unlike ZGNRs in which spin polarization is only along the
transverse direction, here the spin polarization spreads out
in all three directions and shows a strong anisotropy. We
explain this effect as a competition between intrinsic and
RSOC. Moreover, the largest spin polarization component
is no longer along the transversal (y) direction of TMDC
ZNRs as in GNRs. Interestingly, the spin polarization along
the z direction can reach 90% of its total value in TMDCs
with stronger intrinsic SOC, such as WS2 monolayer ZNRs.

Furthermore, this unusual anisotropy can be further enhanced
by the magnetic proximity effect.

This paper is organized as follows: In Sec. II, we present
our 11-band tight-binding (TB) model and theoretical frame-
work for the calculation of the quantum transport properties
such as spin quantum conductance and spin polarization.
In Sec. III, we discuss our results. Finally, we present the
conclusions in Sec. IV.

II. THEORETICAL MODEL

In this section, we first introduce the Hamiltonian, in-
cluding intrinsic SOC, extrinsic RSOC, and exchange field
interaction within the TB approximation. Then, we present the
theoretical framework of nonequilibrium Green’s functions
and Landauer-Büttiker formalism, used to determine quantum
transport properties, including quantum conductance and spin
polarization of current through TMDC ZNRs.

A. Multiband tight-binding model for TMDC monolayers

A TMDC monolayer is composed of one layer of
transition-metal atoms M sandwiched between top and bottom
layers of chalcogen atoms X . Considering five d orbitals from
the M atom and six p orbitals of X atoms in the top and bottom
layers, i.e., pt

x, pt
y, pt

z, d3z2−r2 , dx2−y2 dxy, dyz, dzx, pb
x, pb

y, pb
z ,

we construct an 11-band model for the TMDC monolayer.
The second-nearest-neighbor hopping terms for both M and
X atoms are taken into account. The total Hamiltonian for
the TMDC monolayers grown on ferromagnetic insulator
substrate reads

H = H0 + HR + Hex, (1)

where the first term is the Hamiltonian of pristine TMDC
monolayers, the second one denotes the RSOC Hamiltonian,
and the third term corresponds to the exchange interaction
produced by a ferromagnetic substrate. By applying a unitary
transformation, we decouple the total Hamiltonian into dif-
ferent subspaces with even and odd symmetries. More details
about the decoupling in even and odd subspaces can be found
in Ref. [25].

1. Multiband tight-binding model for pristine TMDC monolayers

In second quantization language, H0 is written as

H0 =
∑
i,μ,s

(
EM

i,μ,sa
†
i,μ,sai,μ,s + EX

i,μ,sb
†
i,μ,sbi,μ,s

)

+
∑

〈i, j〉,μ,ν,s

tMX
i, j;μ,ν a†i,μ,sb j,ν,s

+
∑

〈〈i, j〉〉,μ,ν,s

(
tMM
i, j;μ,ν a†i,μ,sa j,ν,s + tXX

i, j;μ,ν b†i,μ,sb j,ν,s
)

+
∑

〈〈〈〈i, j〉〉〉〉,μ,ν,s

(
tMM
i, j;μ,ν a†i,μ,sa j,ν,s + tXX

i, j;μ,ν b†i,μ,sb j,ν,s
)

+
∑

i,μ,s,ν,s′
λμ,ν,s,s′ (a†i,μ,sai,ν,s′ + b†i,μ,sbi,ν,s′ ) + H.c. (2)
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Here i and j run over the lattice sites, ν and μ denote the
orbitals, ai,μ,s (a†i,μ,s) is the annihilation (creation) operator
of an electron in transition metal sites (M = Mo, W), and
biμs (b†iμs) refers to the corresponding annihilation (creation)
operator at chalcogen sites (X = S, Se, Te). 〈〉, 〈〈〉〉, and
〈〈〈〈〉〉〉〉 indicate the sum over all the nearest, next-nearest,
and next-next-nearest neighbor sites, respectively. In Eq. (2),
the first and second terms comprise the on-site energies for
both elements of M and X atoms, respectively, the third term
contains the first nearest-neighbor hoppings, and the fourth
and fifth terms describe hoppings within the same elements.
λμ,s,ν,s′ is the intrinsic SOC parameter, with s, s′ indicating
the spin orientation. Here, we consider MoS2 and WS2 as
our starting materials. The corresponding intrinsic SOC pa-
rameters are λMo = −0.0806 eV, λW = 0.2754 eV, and λS =
−0.052 eV, and H.c. stands for Hermitian conjugate. For
more details about our TB calculation implementation under
the second-nearest-neighbor hopping approximation of both
transition metals and chalcogenide atoms, as well as relevant
intrinsic spin-orbit parameters for other TMDCs monolayers,
see Ref. [25].

2. Multiband tight-binding model for Rashba spin-orbit coupling

With the Hamiltonian of the pristine TMDC monolayers
at hand, we can straightforwardly extend our study to the
TMDCs with RSOC, which can be generated by breaking
the structural inversion symmetry due to a substrate. The
RSOC intensity can be tuned by the application of an external
electric field [14,26,27]. The effective Rashba interaction in
the second-quantization picture reads

HR = iλR

∑
〈i, j〉,μ,s,s′

1

|�ri, j | (�σs,s′ × �ri, j )ẑc
†
i,μ,sc j,μ,s′ + H.c.,

(3)

where c†i,μ,s(ci,μ,s) = a†i,μ,s, b†i,μ,s (ai,μ,s, bi,μ,s), λR is the
RSOC parameter, �σ are the Pauli matrices, and �ri, j is the
distance vector between nearest neighbors at i and j sites.

3. Multiband tight-binding model for the
exchange field interaction

We assume that the exchange field is produced by a fer-
romagnetic substrate perpendicular to the plane of the mono-
layer. It breaks time-reversal symmetry, leading to the removal
of spin degeneracy. The Hamiltonian for the exchange inter-
action is

Hex = λex

∑
i,μ,s,s′

[m̂.�σs,s′ ]c†i,μ,sci,μ,s′ + H.c., (4)

with λex being the exchange field parameter and m̂ the unit
vector along the magnetization direction.

B. Multiband tight-binding model for TMDC
zigzag nanoribbons

Pristine TMDC ZNRs, as shown in Fig. 1, maintain the
periodicity along the transport direction (x axis), while the
carriers are confined due to the edges the across their widths,
that we take as the y direction. To take into account all the

hoppings in Eq. (2), we have doubled the size of the unit cell
with respect to that usually employed in the literature [see
dashed rectangular box in Fig. 1(b)]. Regarding the interaction
between one unit cell and the adjacent ones, we denote Hn,n+1

and Hn,n−1, respectively. Taking advantage of the translational
symmetry in the transport direction, we then write down the
Hamiltonian which depends on the wave vector (kx),

H = Hn,n+1e2ikxa + Hn,n + Hn,n−1e−2ikxa, (5)

where Hn,n denotes the Hamiltonian containing the interac-
tions in the nth unit cell and a is the lattice constant, which is
0.316 nm for MoS2 and 0.315 nm for WS2. In this section,
it is sufficient to consider only the even subspace, since
it describes very well the transport properties at the Fermi
level [25]. The matrix elements of RSOC and exchange field
interaction for TMDC ZNRs are calculated in Appendixes A
and B, respectively.

C. Quantum transport

A powerful tool to study transport properties is the
nonequilibrium surface Green’s function (NEGF) method
[28]. The foremost advantages of this framework are its
simplicity and low computational cost. Our system comprises
three parts, as shown in Fig. 1(b): the central or scattering
region indicated by C and the left (L) and right (R) semi-
infinite leads. The length of the central transport region is
determined by l and the width of the system by W , given by
the number of zigzag lines (N). The influence of the leads
on the central part is considered via a self-energy (�L,R)
correction. The electrical conductance per spin channel is
calculated in real space by means of the Landauer-Büttiker
formalism [29,30],

Gss′ = GoTr
{
�L

s (ε)Gr
C,ss′ (ε)�R

s′ (ε)Ga
C,s′s(ε)

}
, (6)

where Go = e2/h is the quantum conductance unit. Tr{· · · }
refers to the trace of the product of the retarded [Gr

C,ss′ (ε)]
and advanced [Ga

C,ss′ (ε)] Green’s functions of the central part

as well as their couplings to the leads �
j
s (ε) ( j = L, R), with

E the energy and η → 0+ is a real infinitesimal quantity. To
calculate Gr

C (z) and Ga
C (z), we employ ε = E − iη and ε =

E + iη, respectively. The Green’s function of the two-terminal
device per spin is given by

Gr,a
C,ss′ (ε) = [

ε − HC,ss′ − �L
s (ε) − �R

s (ε)
]−1

, (7)

where HC,ss′ is the Hamiltonian of the central part per spin,
�

j
s (ε) = H†j,Cgj (z)Hj,C ( j = L, R) are the spin-diagonal self-

energies, Hj,C is the Hamiltonian matrix describing the cou-
pling between the central part and the leads, and g j are
the Green’s function of the semi-infinite leads, which are
calculated iteratively [30,31] (see Appendix C). We define the
couplings to the leads �L,R

s as

� j
s (ε) = i

{
� j

s (ε) − [
� j

s (ε)
]†}

( j = L, R). (8)

With Eq. (6), the total conductance can be calculated as
follows:

G =
∑
ss′

Gss′ = G↑↑ + G↑↓ + G↓↑ + G↓↓. (9)
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FIG. 1. (a) Perspective view of zigzag TMDC nanoribbon device containing a front-back gate voltage (blue slab). (b) Top view of the
zigzag TMDC nanoribbon device, composed of a central region (C) connected to the left (L) and right (R) semi-infinite leads (marked in cyan),
where l is the number of unit cells (rectangular box) of the central part and W is its width, given by the number of zigzag lines (N).

With the Green’s function of the conductor at hand, the
total density of states (DOS) can be obtained by

DOS(E ) = − 1

π
Im Tr

[∑
ss′
Gr

C,ss′ (ε)

]
. (10)

Another crucial physical quantity which is used to charac-
terize the current is the spin polarization, defined by [32]

Pα = I↑
j,α − I↓

j,α

I↑
j,α + I↓

j,α

, (11)

where I↑
j,α and I↓

j,α represent the currents flowing through lead
j chosen along the α direction with spin-up and spin-down
components, respectively. In terms of the Green’s function,
this equation can be written as [16,17,27]

Pα = G0Tr
[
σα�L

s (ε)Gr
C,ss′ (ε)�R

s′ (ε)Ga
C,s′s(ε)

]
G

, (12)

where σα are the corresponding Pauli matrices with α =
x, y, z. The projections of spin polarization along the x, y,
and z directions, i.e., Px, Py, and Pz are the parallel, transver-
sal, and perpendicular ones, respectively. Clearly, the total

polarization labeled by Pt can be quantified as

Pt =
√

P2
x + P2

y + P2
z . (13)

It is clear from the previous definition that the total polariza-
tion must obey current conservation, with Pt � 1.

III. RESULTS AND DISCUSSIONS

In this section, we first present the electronic band struc-
tures of pristine MoS2 and WS2 monolayers, and then we
discuss the effects of RSOC, exchange field, and the combina-
tion of both. This serves as a reference for the electronic band
structures of nanoribbons in the presence of RSOC, exchange
field, and both effects, that we present afterward. Finally, we
discuss the transport properties, focusing on the anisotropy of
the spin polarization. It is worthwhile to recall that although
we focus mainly on the narrow TMDC ZNRs, the behavior
of the edge current is also applicable to wider nanoribbons
due to the central role of edge states for this edge termination
[33].

A. Band structure of pristine TMDCs monolayers

To gain better insight of quantum transport property, let us
start with the simplest case, corresponding to the electronic
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FIG. 2. Electronic band structure of monolayer MoS2 (a) and
WS2 (b) including intrinsic SOC only. Colors indicate the z com-
ponent of the spin (〈Sz〉).

band structure in pristine TMDCs monolayers, considering
only intrinsic SOC, i.e., without extrinsic RSOC and exchange
field, as shown in Figs. 2(a) and 2(b) for the monolayer
MoS2 and WS2, respectively (for that, we made a Fourier
transformation of Eq. (2) in order to work in the reciprocal
space). The intrinsic SOC gives rise to spin splitting at the
high symmetry K and K ′ points of both the conduction and va-
lence bands. The lack of spatial inversion symmetry combined
with strong intrinsic SOC leads to the so-called spin-valley
locking, i.e., the spin splittings in the two inequivalent K and
K ′ valleys have the same magnitude but opposite signs. The
spin splitting of the valence band, arising primarily from the
transition-metal d orbitals, is around hundreds of meV, which
is far greater than that of the conduction band, ranging from
several to tens of meV. From our 11-band TB calculations,
which account for the second-nearest-neighbor hopping terms
of both transition-metal and chalcogenide atoms, we obtain a
conduction (valence) band splitting of 21 meV (158 meV) in
monolayer MoS2, and 27 meV (472 meV) in monolayer WS2.
These values are in good agreement with recent reports in the
literature [34]. Note that the spin-splitting energy grows with
the increase of the intrinsic SOC parameter, which depends
on the atomic species. Consequently, the spin splitting is more
significant in W-based TMDCs than that in Mo-based ones, cf.
the K (K ′) splittings in Figs. 2(a) and 2(b). Furthermore, from
Figs. 2(a) and 2(b), we can also see that the order of spin-up
and spin-down states for the topmost valence band in the K
(K ′) valley in WS2 is reverted, as compared to that in MoS2.
In contrast to the K (K ′) point, the electronic band structure in
the � point remains spin degenerate, as a result of the Kramers
degeneracy.

B. Effects of RSOC and exchange field on the band
structure of TMDC monolayers

Let us consider now the effect of extrinsic RSOC and
exchange field on the electronic band structure. To analyze
this systematically, we first focus on the Rashba effect (i.e.,

FIG. 3. Electronic band structure of monolayer MoS2 [(a)–(c)]
and WS2 [(d)–(f)]. The left [(a), (d)], middle [(b), (e)], and right
[(c), (f)] panels are for the cases of RSOC, exchange field, and
both of them, respectively. The colors represent the z component of
the spin (〈Sz〉). The strength of RSOC λR = 0.05 eV and exchange
field λex = 0.1 eV are considered. The direction and magnitude are
indicated by the sign and number in the color bar.

without exchange field), then we study the effect of exchange
field only, and further discuss their combined effects.

In Figs. 3(a) and 3(d), we show the band structure of mono-
layer MoS2 and WS2, respectively, calculated using Eq. (2)
and solely the extrinsic RSOC given by Eq. (3). Similar to the
usual Rashba scenario in conventional semiconductor nanos-
tructures, we observe a band shift of the two spin branches
with respect to the � point (k = 0) of the band structure.
In other words, a crossing (commonly called saddle point)
between two spin branches at k = 0 is formed, while for finite
k the spin degeneracy is lifted because of the structural inver-
sion symmetry breaking, which induces a nonzero RSOC. The
strength of the Rashba spin-splitting energy depends on the
Rashba coefficient, which can be controlled by the intensity of
external electric field or the type of substrate. This remarkable
band splitting was also previously mentioned in Ref. [26],
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where the authors present first principles calculations, show-
ing that it is feasible to achieve the same effect by preparing a
MoS2 monolayer on a bilayer Bi(111) substrate. It is worth
noting that the spin-up and spin-down states around the �

point are fully mixed, and hence the spin is no longer a good
quantum number. This can be clearly seen from the color
of the bands in the vicinity of the � point, which indicates
the z component of spin 〈Sz〉 ∼ 0, whereas the RSOC is less
pronounced around the K and K ′ points.

Figures 3(b) and 3(e) display the band structures of mono-
layer MoS2 and WS2, respectively, deposited on a FM sub-
strate [19]. We assume that the FM substrate produces an out-
of-plane exchange field. Note that the intrinsic SOC together
with broken inversion symmetry leads to a spin-valley locked
band structure. Time-reversal symmetry requires the SOC
splitting to produce identical values for the K and K ′ valleys.
However, a FM exchange interaction breaks time-reversal
symmetry and lifts the spin degeneracy even at the � point.
It always lowers the energy of spin-down bands and raises
the energy of the spin-up bands. Hence, the exchange field
competes with the spin-orbit splitting in the K valley, while it
enlarges the spin-orbit conduction band gap in the K ′ valley,
leading to a valley-contrasting behavior, see Figs. 3(b) and
3(e) in which the lowest conduction bands around K and K ′
have the same spin states. In addition, since the exchange field
does not have an in-plane component, there is no spin mixing
in the band structure. Therefore, the spin remains a good
quantum number, as shown in the colors of the band structure
near the �, K , and K ′ points, where the spin-up and spin-down
states can be easily distinguished. All these features are in
stark contrast to those found considering only the RSOC,
cf. Figs. 3(a) and 3(d), with very small spin components
around �.

In Figs. 3(c) and 3(f), we show the combined effect of
both RSOC and exchange field on the band structure. It is
clear from the figures that a considerable spin splitting occurs
around the � point. Likewise, due to the exchange field, there
are more bands with spin-up and spin-down in the z direction
than for the Rashba-only cases.

C. Edge states of pristine TMDC zigzag nanoribbons

Now we are ready to focus our attention on the edge
states of pristine TMDC ZNRs, obtained by solving Eq. (5)
in the absence of both extrinsic RSOC and exchange field.
In Fig. 4(a) [Fig. 4(d)], we show the band structure of MoS2

(WS2) ZNRs, including only intrinsic SOC. The width (W )
of the ribbon is fixed at N = 10. The edge states emerge
in both MoS2 and WS2 nanoribbons. Before discussing the
electronic band structure in detail (as shown below in Fig. 4),
we first take a look at the DOS, especially in the energy
range corresponding to the edge states, see Figs. 4(b) and 4(e)
for MoS2 and WS2 nanoribbons, respectively. The van Hove
singularities are seen as sharp peaks at each energy subband;
basically this is due to the 1D character of these systems.
Because of the peaked DOS which comes from the edge
states, metallic behavior and the corresponding conductance
channels are expected. We show the total spin conductance
for MoS2 and WS2 nanoribbons in Figs. 4(c) and 4(f), respec-
tively. We can see that the conductance increases in steps of

FIG. 4. (a) Electronic band structure, (b) density of states, and
(c) total quantum conductance for MoS2 ZNR. (d)–(f) The corre-
sponding results for WS2 ZNR. The width of ZNRs is chosen as
N = 10.

2G0: More conducting channels open with increasing energy.
The conductance shows plateaus and they increase with the
number of subbands occurring below the Fermi energy [35].

D. Effects of RSOC and exchange field on the edge states
of TMDC zigzag nanoribbons

Here we focus on the band structure of TMDC ZNRs. To
better appreciate the effect of external RSOC and exchange
field, we first analyze the ribbons in the presence of intrinsic
SOC only. Figure 5 zooms the bands around the energies
of the edge states for MoS2 (a) and for WS2 ZNRs (b).
Remarkably, it is found that the branches of spin-up and
spin-down edge states are shifted with respect to the point
at kx = 0, even without the inclusion of external RSOC. In
other words, the intrinsic SOC alone shifts the spin-up branch
to one direction in k space and the spin-down branch in the
opposite direction, leading to the crossing of the bands with
opposite spin at kx = 0 [36]. This is in contrast to the bulk 2D
monolayers, for which the bands are spin degenerate near the
� point, cf. Figs. 2(a) and 2(b).

It is important to remark that the shift of edge spin bands
in nanoribbons without external RSOC is similar to that
occurring in bulk 2D monolayers with RSOC. However, the
spin properties are fundamentally distinct. In the bulk 2D
case, there is a considerable spin mixing around the � point,
while for ZNRs the spin remains a good quantum number.
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FIG. 5. Electronic band structure of MoS2 (left panels) and WS2 (right panels) ZNRs, for (λR, λex) = (0, 0) [(a), (b)], (0.05, 0)[(c), (d)], (0,
0.1 eV) [(e), (f)], and (0.05, 0.1 eV) [(g), (h)]. N = 10.

In addition, we note that for a given Fermi level, the MoS2

ZNRs behaves as a quantum valley Hall (QVH) phase [25,37].
This follows from the metallic edge modes in zigzag TMDC
nanoribbons being valley locked, while the semiconductor
edge modes of armchair TMDC nanoribbons are valley mixed
and thus make the valley degree of freedom no longer a
good quantum number [25,33]. Note that the QVH phase also
implies possible emergence of valley-polarized edge current
as a result of spin-valley locking.

In Figs. 5(c) and 5(d), we show the band structures in-
cluding RSOC with λR = 0.05 eV, for MoS2 and WS2 ZNRs,
respectively. In contrast to the bulk 2D monolayer where the
spin is degenerate in the � point, here we can see a spin state
splitting even at kx = 0, leading to minigaps. This feature
may create a helical regime, i.e., the orientation of spin-up
and spin-down branches might change when crossing this
point. This peculiarity is essential to generate spin polariza-

tion of charge currents in quantum transport measurements.
These minigaps are necessary for topological superconductiv-
ity states [38].

Now, we turn to the effect of exchange interaction.
Figures 5(e) and 5(f) show the band structures of MoS2 and
WS2 ZNRs nanoribbons only in the presence of exchange field
with λex = 0.1 eV. We consider the exchange field oriented
along the z direction, i.e., parallel to the spin quantization
axis. Clearly, the spin-up and spin-down branches of the band
structures are asymmetric with respect to kx = 0 because
time-reversal symmetry is broken in the presence of exchange
field. Note also that the spin remains a good quantum num-
ber, in contrast to the cases including only the RSOC, cf.
Figs. 5(c) and 5(d) for MoS2 and Figs. 5(e) and 5(f) for
WS2.

In Figs. 5(g) and 5(h), we plot the combined effect of
RSOC and exchange field interaction on the electronic band

195422-7



J. H. CORREA et al. PHYSICAL REVIEW B 101, 195422 (2020)

FIG. 6. (a), (d) Spin-resolved quantum conductances Gss′ in units of G0, containing spin-conserved components (G↓↓, G↑↑) and spin-flip
components (G↑↓, G↓↑); (b), (e) total quantum conductance G, and (c), (f) spin polarization Pα along α = x (blue color), y (red color), and
z (black color) directions as a function of the Fermi energy in TMDC ZNRs with N = 10 and l = 30 with λR = 0.05 eV. Results for MoS2

(left panels) and WS2 (right panels) ZNRs are shown, where N and l denote the numbers of zigzag lines along the transverse direction and the
length of the central conductor in number of unit cells, respectively.

structure for MoS2 and WS2 ZNRs, respectively. As we can
see, the contribution of the exchange interaction is mainly
present at the band-edge states where the spins are almost
well defined. In this case, the strength of the exchange field
is bigger than the extrinsic RSOC and it would cause Pz to be
larger than Px and Py, as we will see below.

E. Effects of RSOC and exchange field on the spin quantum
conductance and spin polarization of carrier current

In our calculations, we consider that the central region and
two semi-infinite leads which are made of the same TMDC
nanoribbon, as shown in Fig. 1. Accordingly, we include the
intrinsic SOC throughout the whole system (both the central
region and the two leads), while the RSOC and exchange
field only appear in the central region. The Fermi energy is
controlled by applying a gate voltage. As analyzed previously,
the particle-hole symmetry in these structures is not preserved
because the conduction and valence bands are mainly dom-
inated by |dz2〉 and |dx2−y2〉 ± i|dxy〉 orbitals of the transition
metal atom, respectively. Additionally, due to the asymmetry
of the edges in TMDC ZNRs, composed of different atomic
species, the transverse reflection symmetry in these systems is
broken, in contrast to the case of ZGNRs [15]. Consequently,
it is expected that perpendicular (Pz) and parallel (Px) spin
polarizations are not zero, in contradistinction to pristine
ZGNRs [14–16]. For the quantum transport calculations, we
consider the central region having width N and length l along
the transverse (y) and transport (x) directions, respectively,
with N = 10 and l = 30 denoting the number of unit cells
[Fig. 1(b)], corresponding to 47.49 nm for MoS2 and 47.29
nm for WS2 ribbons.

In the left panel of Fig. 6, we show the spin-resolved
quantum conductance Gss′ in units of G0 [Fig. 6(a)], total
quantum conductance (G) defined by Eq. (9) [Fig. 6(b)], and
all three components (Px, Py, and Pz) of the spin polarization
[Fig. 6(c)] for MoS2 ZNRs at λR = 0.05 eV. The corre-
sponding results for WS2 ZNRs are shown in Figs. 6(d)–6(f),
respectively, namely, in the right panels of Figs. 6. Below
we describe the quantum transport properties by comparing
the characteristics of MoS2 and WS2 ZNRs. In Figs. 6(a)
and 6(d), the conductance components do not exhibit perfect
plateaus; oscillations are observed in both MoS2 and WS2

ZNRs, as also happens in ZGNRs [29,39]. It is known that
the amplitude of these oscillations depends on the length of
the central part l and it decreases as l increases, analogous
to the spin field effect transistor, in which the spin rotates as it
moves across the conductor due to the Rashba field [29,40,41].
Furthermore, the spin-conserved and spin-flip conductances
are different for all spin projection directions, i.e., G↑↑ 
= G↓↓
and G↓↑ 
= G↑↓, due to the longitudinal asymmetry in these
structures. This is in contrast to ZGNRs, where G↑↑ = G↓↓
and G↓↑ = G↑↓ if the width of the ribbons (N ) is even and
intrinsic SOC is zero but RSOC is present. More specifically,
in MoS2 ZNRs [Fig. 6(a)], the conductance from spin-flip
contribution is comparable to the spin-conserved one, being
in almost opposite phases. In other words, when the spin-flip
contribution is vanishing, the spin-conserving one attains its
maximum, and vice versa. However, in WS2 ZNRs [Fig. 6(d)],
we find that the spin-conserved conductance dominates over
the spin-flip term. This feature is attributed to the interplay
between intrinsic SOC and RSOC: The former favors the spin
polarization along the vertical direction, while the latter tends
to rotate the spin. Since the intrinsic SOC in WS2 is much
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FIG. 7. (a), (d) Spin-resolved quantum conductances Gss′ in units of G0, containing spin conserving components (G↓↓, G↑↑) and spin-flip
components (G↑↓, G↓↑); (b), (e) total quantum conductance G, and (c), (f) spin polarization Pα along α = x (blue color), y (red color), and
z (black color) directions as a function of the Fermi energy in TMDC ZNRs with N = 10 and l = 30 with λR = 0.05 eV and λex = 0.1 eV.
Results for MoS2 (left panels) and WS2 (right panels) ZNRs are shown, where N and l denote the numbers of zigzag lines along the transverse
direction and the length of the central conductor in number of unit cells, respectively.

stronger, the spin-conserved conductance is larger than the
spin-flip one.

Figures 6(b) and 6(e) show the total quantum conductance
of MoS2 and WS2 ZNRs, respectively. For MoS2 ZNRs, there
are intervals of energy ranging from 0 to 0.7 eV and from
0.95−1.3 eV, in which the total conductance shows almost
perfect plateaus. In addition, the minimum total value is 2G0,
see Fig. 6(b). In contrast, for WS2 ZNRs, the minimum total
conductance is less than 2G0, cf. Figs. 6(b) and 6(e). It is
worth noting that these conductance plateaus are directly
associated with the peaks of DOS shown in Fig. 4.

With respect to the spin polarizations, shown in Fig. 6(c),
we find that the largest contribution to the polarization in
MoS2 comes from Px and Py components. Between them,
the Px component can reach more than 25% in magnitude,
both with positive and negative signs. Along the transverse
direction, the corresponding spin polarization (Py) has similar
values to Px while only positive values are observed in an
interval of 1.39−1.46 eV for the Fermi energy. In addition,
this feature is strongly dependent on the intrinsic SOC and
is in contrast to pristine ZGNRs, where only the transverse
component is non-negligible [15]. Specifically, unusual Px

and Pz components in WS2 ZNRs are observed [Fig. 6(f)],
and we find that the Pz component dominates over the other
polarizations, reaching 90% both with positive and negative
signs. This is due to the minigap at kx = 0 in the band
structure. These remarkable quantitative results show that our
system can behave as a spin filter. Additionally, we observe
that the longitudinal component can reach considerable values
when we vary the intensity of the RSOC.

Let us turn now to the more realistic case in which both the
exchange field interaction and RSOC are taken into account in

the quantum conductance and spin polarization. In Fig. 7, we
show the spin-resolved quantum conductances, total quantum
conductance, and spin polarization for MoS2 (left panel) and
WS2 (right panel) ZNRs. Here we choose λex = 0.1 eV and
keep the same value of RSOC parameter λR = 0.05 eV used
above. From Figs. 7(a) and 7(d), we find that the interplay
of the two interactions reverses the dominant contributions
to the conductance between the spin-conserved and spin-flip
ones, as compared to the case that only RSOC is present, cf.
Figs. 6(a) and 7(a) for MoS2 ZNRs and cf. Figs. 6(d) and 7(d)
for WS2 ZNRs. This is because the exchange term directly
affects the spin-conserved components of the conductance. It
is also manifested in the spin polarization plotted in Figs. 7(e)
and 7(f), for MoS2 and WS2 ZNRs, respectively. It is found
that the Pz component in MoS2 ZNRs reaches almost 30%
both with positive and negative signs, while the Px and Py

components decrease considerably when λex is absent, see, for
instance, Fig. 6(c). Most interestingly, for WS2 ZNRs, the Pz

component of the spin polarization can reach almost 100%
in both positive and negative values. On the other hand, the
values of Px and Py decrease considerably. This indicates that
the effect of exchange field interaction is more important in
W-based TMDC ribbons than in Mo-based ones.

To gain deeper insight on spin polarization, we further
explore the dependence of spin polarization on the RSOC
parameter and the Fermi energy. In Figs. 8(a)–8(d), we show
the contour of three components (Px, Py, and Pz) of spin
polarization, and the total polarization (Pt ) as functions of
RSOC and Fermi energy for MoS2 ZNRs. We have omitted
the exchange field in the calculation to elucidate the effect
of RSOC. Let us start with the Px component [Fig. 8(a)]. We
observe three branches of spin polarization at different Fermi
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FIG. 8. Contour of the three components, Px (a), Py (b), Pz (c), and the total Pt (d) of spin polarization for a MoS2 ZNR with N = 10 and
l = 30 as a function of RSOC parameter and Fermi energy.

energies, which correspond to the three minigaps in the band
structure, see Fig. 5(c). Interestingly, the Px is positive (yellow
color) in the energy range of 0.7−0.8 eV, while it becomes
negative (blue color) when the Fermi energy lies in the range
of 0.85−1.0 eV. It becomes positive again (red and yellow
colors for higher and lower RSOC parameters, respectively)
as the Fermi energy further increases (1.3−1.4 eV). On the
other hand, for each of the three branches, the energy range
quenches considerably as the RSOC parameter decreases.
This is because the minigaps decrease in the band structure
with diminishing RSOC parameter.

The dependence of Py and Pz components on the RSOC
strength and Fermi energy are displayed in Figs. 8(b) and 8(c).
We also find three branches in the same energy range as Px.
Nevertheless, the magnitude of Py and Pz is smaller than that
of Px. Interestingly, at specific values of the Fermi energy and
high RSOC, Pt can reach its maximum value 100% (red color),
see Fig. 8(d).

In Fig. 9, we show the spin-polarization components and its
total value for WS2 ZNRs in contour plots. Similar to MoS2

ZNRs, there are three branches at different Fermi energies for
each component. Among them, the first two branches almost
collapse at the same energy, because two of the three minigaps
in the band structure almost coincide [Fig. 5(d)]. Our results
show that Px rises above 50% with negative sign for larger

RSOC strengths, and more than 75% in positive value but
in a different energy range. In addition, the Pz component
is much stronger than Px and Py WS2 ZNRs, in contrast to
MoS2 ZNRs, for which the Px component is the strongest.
This follows from the fact that spin mixing around kx = 0 is
much weaker in W-based TMDCs than in Mo-based ones, due
to the larger intrinsic SOC of W.

As for the total polarization Pt [Fig. 9(d)], it can attain
100% in all three branches within a large energy range, as op-
posed to in MoS2 ZNRs, where Pt ∼ 100% only occurs in one
branch. We demonstrate that devices made of TMDC ZNRs
possess polarization in different directions even in the absence
of defects and/or impurities that were essential for ZGNRs.
[27] This is in stark contrast to the case of graphene, in
which only the spin polarization along the transverse direction
(Py) survives under the condition that the transverse reflection
symmetry maintains [15]. We find that intrinsic SOC is a
key ingredient for the emergence of nonzero polarization in
all directions. From an experimental point of view, we note
that it is feasible to measure all three components of the spin
polarization by using a Wien filter and Mott detector [27,42].

Bear in mind that the valley-polarized edge current in
TMDC zigzag ribbons can be inferred because spin and
valley are locked together. It is worthy to comment that
the presence of a high concentration of disorders or edge
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FIG. 9. Contour of the three components, Px (a), Py (b), Pz (c), and the total Pt (d) of spin polarization for a WS2 ZNR with N = 10 and
l = 30 as a function of RSOC parameter and Fermi energy.

vacancies might affect the transport properties of TMDC
ZNRs [33].

IV. CONCLUSIONS

In summary, we report anisotropic spin-polarized edge
currents through MoS2 and WS2 monolayer ZNRs deposited
on either nonmagnetic substrate or on FM insulators. We
employ an 11-band TB model to calculate the electronic band
structures of TMDC monolayers and their nanoribbons in
the presence of RSOC and exchange field interaction. We
adopt the nonequilibrium Green’s function method together
with Landauer-Büttiker formalism to study quantum transport
through edge states. RSOC leads to a band crossing at � point
that can be opened by an exchange field induced by magnetic
proximity effect. We demonstrate that spin-polarized edge
current can be generated in both MoS2 and WS2 ZNRs with
RSOC. Unlike ZGNRs, in which spin polarization mainly
occurs in the transverse direction, in TMDC nanoribbons it
spreads out into all three directions. Interestingly, the largest
spin-polarization component is not along the transversal direc-
tion of TMDC ZNRs. It depends strongly upon the intrinsic
SOC, which is an essential ingredient for this effect. In the
TMDCs with large intrinsic SOC such as WS2 monolayer
ZNR, the largest polarization is along the z direction. In
addition, the magnetic proximity effect favors this anisotropy.
For λex = 0.1 eV, high efficient spin filtering behaviors are
found in both materials. For instance, Pz can reach more than

90% in WS2 NRs. The anisotropy of the spin polarization can
be experimentally measured by Mott polarimeters [42,43]. We
expect that our results should stimulate relevant experimental
investigations for these 1D systems.
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APPENDIX A: RASHBA FIELD IN TMDC
ZIGZAG NANORIBBON

The basis set we consider for TMDC ZNR is given
by |dz2〉, |dxy〉, |dx2−y2〉, |pe

z〉, |pe
x〉, |pe

y〉 ⊗ |↑,↓〉, where
pe

z = 1√
2
(pt

z − pb
z ), pe

x = 1√
2
(pt

x + pb
x ) and pe

y = 1√
2
(pt

y + pb
y)

[25]. The matrix elements for the Rashba term can be
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written as

HB
R (�r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 hR 0 0 0 0 0
0 0 0 0 0 0 0 hR 0 0 0 0
0 0 0 0 0 0 0 0 hR 0 0 0
0 0 0 0 0 0 0 0 0 hR 0 0
0 0 0 0 0 0 0 0 0 0 hR 0
0 0 0 0 0 0 0 0 0 0 0 hR

h∗
R 0 0 0 0 0 0 0 0 0 0 0

0 h∗
R 0 0 0 0 0 0 0 0 0 0

0 0 h∗
R 0 0 0 0 0 0 0 0 0

0 0 0 h∗
R 0 0 0 0 0 0 0 0

0 0 0 0 h∗
R 0 0 0 0 0 0 0

0 0 0 0 0 h∗
R 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with hR = i λR
a (�r · ŷ + i�r · x̂) and

HR = HB4|m, n〉〈m, n + 4| + HB5|m, n〉〈m, n − 4|
× HB2(|m, n〉〈m + 1, n + 2| + |m, n〉〈m − 1, n + 2|)
× HB3(|m, n〉〈m + 1, n − 2| + |m, n〉〈m − 1, n − 2|),

(A1)

where

HB2 = HB
R ( �C1) + HB

R ( �C3), (A2)

HB3 = HB
R ( �C4) + HB

R ( �C6), (A3)

HB4 = HB
R ( �C2), (A4)

HB5 = HB
R ( �C5). (A5)

Here B = M, X denotes the transition metal and chalco-
gen atoms, respectively. HR is the corresponding Rashba
Hamiltonian. The kets and bras are defined with respect to
the coordinates relative to the site (m, n) and �C1, �C2, ..., �C6 are
hopping vectors connecting different sites and the values are
given in Ref. [25].

APPENDIX B: EXCHANGE INTERACTION IN
TMDC ZIGZAG NANORIBBON

The matrix Hamiltonian of the exchange field produced by
a FM substrate perpendicular to the monolayer plane is given
by

hex =

⎛
⎜⎜⎜⎜⎜⎝

λex 0 0 0 0 0
0 λex 0 0 0 0
0 0 λex 0 0 0
0 0 0 λex 0 0
0 0 0 0 λex 0
0 0 0 0 0 λex

⎞
⎟⎟⎟⎟⎟⎠ ⊗

(
1 0
0 −1

)
, (B1)

and

Hex = hex|m, n〉〈m, n|. (B2)

APPENDIX C: THE RECURSIVE GREEN’S
FUNCTION METHOD

The Green’s function can be written as

(E ± iε − H )G = I. (C1)

By projecting into the right layer orbitals and using the
Dyson’s equation, we get a set of equations [31],

(E ± iε − H00)G00 = I + H†01G10,

(E ± iε − H00)G10 = H†01G00 + H01G20,

(E ± iε − H00)G20 = H01G10 + H01G30,

...

(E ± iε − H00)Gn0 = H†01Gn−1,0 + H01Gn+1,0, (C2)

where E is the energy of the incoming electron, Hnm

are the matrix elements of the TB Hamiltonian, and Gnm

is the Green’s function. We consider the leads are pris-
tine (i.e., without any disorder), which ensures the relation
H00 = H11 = . . . . . . = Hnn and H01 = H12 = . . . . . . = Hn−1n

with the latter denoting the the matrix elements connecting
different layers. With the help of the transfer matrices T and
T , we can obtain a chain of layers to connect the Green’s
function of an individual layer using the previous and next
layer, such that G00 = TG10 and G10 = TG00. The transfer
matrix elements are given by [30,31]

T = t0 + t̃0t1 + t̃0t̃1t2 + . . . + t̃0t̃1t̃2...tn, (C3)

T = t̃0 + t0t̃1 + t0t1t̃2 + . . . + t0t1t2...t̃n, (C4)

where ti and t̃i describe the recursion relation:

ti = (I − ti−1t̃i−1 − t̃i−1ti−1)−1t2
i−1, (C5)

t̃i = (I − ti−1t̃i−1 − t̃i−1ti−1)−1t̃2
i−1. (C6)

To obtain T and T̃ , an iteration procedure is
adopted. We start with the iteration from the principal
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layer, i.e.,

t0 = (E ± iε − H00)−1H†01, (C7)

t0 = (E ± iε − H00)−1H01. (C8)

Then, we repeat the process until the convergence is attained,
i.e., tn, t̃n � δ, with δ a small quantity defining the precision
of the convergence.
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