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Large RKKY coupling from multiple scattering in armchair graphene nanoribbons
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We consider the Ruderman-Kittel-Kasuya-Yosida (RKKY) type coupling between two magnetic impurities
on metallic armchair graphene nanoribbons (AGNR). Our key findings are that the lowest-order RKKY
(LO-RKKY) coupling does not describe the coupling physics, and a full implementation of electron multiple
scattering in RKKY coupling leads to orders of magnitude enhancement in the coupling magnitude. Key physics
of our findings are revealed in our analysis of the LO-RKKY coupling. Within the Born approximation for
the electron-magnetic-impurity scattering, the LO-RKKY coupling has inherited the singular density of states
feature so that incident electrons at AGNR-subband band edges give finite contributions. Our other finding, that
contribution from a gapped subband to LO-RKKY coupling is very small, implies then that severe cancellations
must have occurred between states at its subband band edges and states not at its subband band edges. Magnitudes
of the cancellation terms are each of the same order as the LO-RKKY coupling. This cancellation no longer
occurs when full multiple scattering is reinstated. Contributions to the RKKY coupling from states at subband
band edges are entirely suppressed, due to the restoring of the finiteness in the wave functions of these states.
Contributions from states not from the subband band edges, though modified, retain their orders of magnitude.
Analytic expressions have been obtained to further illustrate the physics.
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I. INTRODUCTION

Magnetic impurities embedded in metal can interact via an
important indirect exchange coupling, the Ruderman-Kittel-
Kasuya-Yosida (RKKY) coupling [1–3], where conduction-
electron spins mediate between the impurities. RKKY in-
teraction has been studied in rare-earth metals [4], metal
surfaces [5], magnetic metallic multilayers [6], dilute mag-
netic semiconductors [7], one- or two-dimensional semi-
conductors with Rashba spin-orbit coupling [8], and car-
bon nanotubes [9]. The successful fabrication of graphene
[10,11] has prompted RKKY interaction studies on graphene
sheets [12–26], bilayer graphene [27–29], and in graphene
nanoribbons [30–35]. Most recently, the trending new field
of topological physics has spawned RKKY interaction stud-
ies in monolayer MoS2 [36], in zigzag silicene nanoribbons
[37], in transition metal dichalcogenides [38], and in three-
dimensional Dirac semimetals [39].

Research in the RKKY coupling Jeff in graphene sheet
has kept up to the second order in J [12–26], the exchange
coupling between a magnetic impurity and the mediating
electrons. As such it is the lowest-order RKKY (LO-RKKY)
coupling J (1)

eff that they have obtained. Multiple scattering
of the electrons between the magnetic-impurity pair is jus-
tifiably reckoned negligible. Issues of interests include the
dependence of the J (1)

eff on the spatial separation between
the two magnetic impurities, the difference in the coupling
characteristics for two magnetic impurities that are of the
same or different sublattice-site type, and possible resonant
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enhancement of the LO-RKKY coupling from introducing an
onsite potential from the magnetic impurity to the electrons
[25]. The electronic nature of the RKKY coupling motivates
research efforts to explore ways to either enhance the magni-
tude of the coupling [25] or to monitor the sign of the coupling
[23].

Research in the RKKY coupling in graphene nanoribbons
focuses also on the calculation of J (1)

eff [16,30,32–35,40]. An
earliest study on the RKKY in graphene nanoribbon focused
on the zigzag graphene nanoribbons while commenting that
the armchair edge did not significantly affect the RKKY
[16]. Invoking an effective Hamiltonian for the armchair
graphene nanoribbons (AGNR), which is valid near the zero
energy, analytic expression for J (1)

eff was obtained [30], show-
ing ferromagnetic (antiferromagnetic) coupling when the two
magnetic impurities are of the same (different) sublattice-site
type, and that J (1)

eff varies as L−1, where L is the longitudinal
separation between the two magnetic impurities. This same
L dependence in J (1)

eff was also obtained numerically [40],
while its sensitivity to the transverse locations of the magnetic
impurities was shown [40]. The issue of going beyond the LO-
RKKY was addressed by invoking a super-unit-cell approach
[31], where instead of a magnetic-impurity pair in the AGNR,
super unit cells each containing two magnetic impurities are
considered. The problem was solved by the method of diag-
onalization [31]. Even though the multiple scattering feature
between the two magnetic impurities in a super unit cell has
been incorporated, other multiple scatterings such as between
magnetic impurities from different super unit cells have also
been included. Concern about using such a super-unit-cell
approach for even a single magnetic impurity had been raised
[15]. Furthermore, two spin-aligned magnetic impurities in
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FIG. 1. Schematic illustration of an armchair graphene nanorib-
bon with W = 20 carbon chains. Two magnetic impurities occupying
the A-type carbon sites are shown. The lengths labeled by ax and ay

are a and
√

3a, respectively.

a super-unit-cell arrangement would cause the chemical po-
tential to become spin dependent. These added features could
lead to nontrivial effects not present to the original problem of
a magnetic-impurity pair. It is then of great interest to consider
the RKKY coupling for a magnetic-impurity pair on graphene
nanoribbons and treat in full the multiple scattering of the
mediating electrons between the impurities. We therefore opt,
in this work, to calculate Jeff for a magnetic-impurity pair on
AGNRs, as is shown in Fig. 1, that are connected at their two
ends to reservoirs of the same chemical potential.

Multiple scattering is known to be crucial in quantum
transport in quasi-one-dimensional system [41], leading to
transmission dip structures at energies just below, and very
close to, subband band edges for the case of attractive scat-
terers. It is associated with the singular density of states at
subband band edges, and the formation of quasibound states
at the subband band edges for attractive scatterers [42].

In this work, multiple scattering is found to drastically en-
hance the magnitude of the RKKY coupling Jeff . It is shown,
for instance, greater than J (1)

eff , the LO-RKKY results, by up to
two orders of magnitude for an AGNR of width W = 20. We
show that understanding of this drastic enhancement of Jeff is
hidden in J (1)

eff , and particularly, in the way that J (1)
eff ends up in

a very small magnitude. Contributions to J (1)
eff are solely from

the gapless subband while those from the gapped subbands are
very small. Meanwhile, the Born approximation treatment of
the electron-magnetic-impurity scattering has carried with it
the singular density of state features (at subband band edges)
so that there are finite contributions to J (1)

eff from incident states
at the subband band edges. So, our other findings that the
very small contribution from a gapped subband to J (1)

eff must
be a result of a large cancellation among incident states from
the same gapped subband. More specifically, the cancellation
must have occurred between contributions from at-the-band-
edge states and contributions from non-band-edge states, all
from the same gapped subband. We also find that magnitudes
of these two cancellation terms are each of the same order

FIG. 2. Conceptual highlight of our key findings. Contributions
to LO-RKKY coupling from a gapped subband (as shown) suffers
severe cancellation between its states from at-the-band-edge (ABE)
and from the non-band-edge (NBE) regions. Full multiple scattering
in RKKY suppresses the ABE terms, leading to much enhanced
RKKY coupling.

as the J (1)
eff . On the other hand, the large difference in the

range of energy, from which the at-the-band-edge and the
non-band-edge terms collect their contributions, strongly hints
that the two terms could be affected differently should other
factor, such as multiple scattering, be included in our calcu-
lations. Indeed, we find out that when multiple scattering is
fully incorporated to the electrons, the two terms are affected
differently. The at-the-band-edge term is suppressed because
the scattering wave functions are no longer singular at the
band edges. The non-band-edge term remains essentially in
the same order of magnitude. This opens up significant con-
tribution to Jeff from gapped subbands, leading to the drastic
enhancement in the magnitude of Jeff . A conceptual highlight
of the aforesaid reason for the dramatic enhancement in Jeff

over that in J (1)
eff is presented in Fig. 2.

This paper is organized as follows. In Sec. II, we present
our theoretical framework and apply it to obtain our LO-
RKKY coupling J (1)

eff results, up to J2, both analytical and
numerical. This section also serves to establish the notations
we use in this work. In Sec. III, we present the RKKY
coupling Jeff for the case when full multiple scattering of
the mediating electrons between the magnetic impurities is
implemented. Our results, both analytic and numerical, that
Jeff is greater than J (1)

eff by up to two orders of magnitude will
be presented in this section. Finally, we present our conclusion
in Sec. IV.

II. RKKY COUPLING: LOWEST ORDER

This section first presents our theoretical framework for
the RKKY coupling between two magnetic impurities on AG-
NRs. We then focus on the lowest-order RKKY (LO-RKKY)
coupling, in which the mediating electrons are treated within
the Born approximation. This LO-RKKY result turns out to be
important for this work because it provides a basis and a guide
for a clearer presentation of our RKKY coupling calculation
in the next section, where full multiple scattering is treated for
the mediating electrons. It is also noted that the LO-RKKY
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coupling consideration has been the main approach taken
up for the RKKY research so far. Thus, to our LO-RKKY
results, we have performed extensive analytical analysis in
order to obtain an unambiguous picture for the next section.
Toward that end, and to concentrate on the physics behind
our findings, we opt to focus upon the case when the two
magnetic impurities have their spin oriented perpendicular to
the plane of the AGNRs, namely, S = Szẑ. Our results for the
RKKY coupling should remain the same had we considered
S of general orientations because the pristine AGNR do not
have spin-dependent interaction. This section also serves to
establish the notations that we have adopted in this work.

The calculation of the RKKY coupling is by way of a
density matrix approach, with the density matrix ρ defined
by

ρ =
∑
γ ,kn ν

f (γ ε(kn)) |�knν〉〈�knν |, (1)

where f (E ) is the Fermi-Dirac distribution for the reservoirs
at the two ends of the AGNR, both having the same chemical
potential μ, and γ denotes the sign of the incident state
energy E (kn, γ ) = γ ε(kn) where the incident state |ψkn〉 is
given in Eq. (A4), and γ is kept implicit in |ψkn〉. Associated
basic parameters for AGNRs are defined in the paragraph
in which Eq. (A4) is contained. The corresponding scattered
state |�knν〉, in the presence of the two magnetic impurities
located at AGNR lattice sites |I〉 = |RI, sI〉, for I ∈ 1, 2,
and described by an exchange model

V̂ = J
∑
I

|I〉〈I| SI · σ, (2)

is given, in the lattice representation of the Lippmann-
Schwinger equation, by

�knν,ν (J ) = ψkn (J ) + J
∑
I

GJI (γ ε(kn))SI ν�knν,ν (I ).

(3)
Here, |J 〉 denotes a general AGNR lattice site, J is the ex-
change coupling constant (in units of t0 the graphene hopping
constant), SI is of unity magnitude, in units of h̄, σ is the Pauli
vector for the electron spin, with σz|ν〉 = ν|ν〉, and GJJ ′ is
given in Eq. (A1). The scattered state |�knν〉 = |�knν,ν〉 |ν〉
conserves spin when SI is along ẑ. The average 〈V 〉, defined
by 〈V 〉 = Tr[ρV̂ ], depends on the relative orientations of SI’s,
and is obtained to be

〈V 〉 = J
∑
kn,ν

∑
I

f (−ε(kn))|�knν,ν (I )|2νSI . (4)

In Eq. (4), we have set μ = 0.
The LO-RKKY coupling result is obtained from Eq. (4)

by replacing �knν,ν (I ) on the right-hand side of Eq. (3) by
ψkn (I ). This gives us the lowest order 〈V 〉(1):

〈V 〉(1)

J2
= 2

∑
kn,ν

∑
I,I ′

Re
[
GII ′ (−εkn )ψkn (I )ψ∗

kn
(I ′)

]
SISI ′ .

(5)
Here, ε(kn) = εkn is by our definition positive. Separating
Eq. (5) into S1S2-independent and S1S2-dependent terms gives
〈V 〉(1) = V (1)

0 + V (1)
1 . The S1S2-dependent term V (1)

1 is related
to the LO-RKKY coupling, and can be simplified using the

symmetry property GJJ ′ (E ) = GJ ′J (E ), in Eq. (A5), to give

V (1)
1 = 4J2

π
S1S2

∑
n

ϕn(1, 2)
∫ π

−π

dq Re
[
G12(−εkn )

]
× Re[Cs1 (kn,−1)Cs2∗(kn,−1)eiqL12 ]. (6)

Here, ϕn(1, 2) is defined in Eq. (A3), Cs(kn, γ ) are pseudospin
coefficients for (s ∈ A/B) site types, defined in Eq. (A4), and
L12 is the longitudinal separation between the two magnetic
impurities, in units of

√
3a.

Equation (6) suggests the form V (1)
1 = J (1)

eff S1S2, where J (1)
eff

is the lowest-order RKKY coupling constant. In the following,
we will evaluate J (1)

eff for the cases of same-site and different-
site types.

A. Same-site type J (1)
eff

When the two magnetic impurities are located on the same
site type, we have s1 = s2, and |Cs(kn, γ )|2 = 1

2 , such that the
integrand becomes an even function of q, and the expression
of J (1)

eff is further simplified to

J (1)
eff = 2J2

π2

∑
n,n′

ϕn(1, 2) ϕn′ (1, 2) Inn′ , (7)

where

Inn′ =
∫ π

0
dq Re

[
g12

n′ (−εkn )
]

cos(qL). (8)

We stress that g12
n′ (−εkn ), defined in Eq. (A2), has its analytical

expressions given by Eq. (A8), in the non-band-edge regime,
and by Eqs. (A9) and (A10), in the at-the-band-edge regime.
These two regimes will be important for our analysis in the
following. Here, L = |L12|.

We will evaluate J (1)
eff both numerically and analytically.

Our analytic calculation will focus on the integral Inn, and
our numerical evaluation will use an alternate form, to be
shown below, that is derived from Eq. (7). From this alternate
form of J (1)

eff we will see that contribution from Inn′ , except
for n = n′ = n0, is very small, and this is also confirmed in
our numerical calculation. Here, the n0 subband denotes the
gapless subband. To arrive at the alternate form for J (1)

eff , we
start from the same-site-type form of g12

n′ (−εkn ) in Eq. (A2) to
get

g12
n′ (−εkn ) =

∫ π

0
dq′ cos(q′L)

×
[

1

−εkn − εk′
n′ + iη

+ 1

−εkn + εk′
n′ + iη

]
. (9)

Recalling that εkn is positive, the second term in Eq. (9) has
pole features in its integrand. Now, by substituting Eq. (9) to
Eqs. (8) and (7) and following by interchanging of indices
n ↔ n′ and integration variables q ↔ q′, we can show that
terms that carry the pole features are zero. As a result, we
have

I (1)
nn′ = −

∫ π

0

∫ π

0
dq dq′ cos(qL) cos(q′L)

εkn + εk′
n′

, (10)

where η in the denominator can be dropped.
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This form of Inn′ clearly shows that there is no singular
feature in the integrand, making the numerical calculation
straightforward. Furthermore, the denominator of the inte-
grand contains cosq and cosq′ while the numerator contains
cos(qL) and cos(q′L), so it is understandable that for, say
L > 10, we expect to see great cancellations in the integral so
that Inn′ becomes very small. This argument fails for the case
when n = n′ = n0, where n0 is the gapless subband such that
εkn0

= 0 at q = 0. Hence, the most significant contribution to
In0n0 will come from the linear dispersion region of εkn0

. On
the other hand, very close to the integration region q ∼ 0 and
q′ ∼ 0, the integral does not give a finite contribution because
it is a two-dimensional integral. In short, Eq. (10) leads us
to the expectation that the sole contribution to J (1)

eff should be
from the In0n0 integral. This is confirmed by our numerical
results.

Equipped with these insights, we focus our analytical
calculation on the n = n′ 
= n0 case, but turn to Eq. (8) for
our calculation. The motivation is to see how this Inn integral
ends up in a very small value. Our aim here is to obtain,
from Eq. (8), the two cancellation terms that upon their severe
cancellations give a very small Inn. The form of Inn warrants
[according to the discussion following Eq. (A8)] the splitting
of the integral into the at-the-band-edge and non-band-edge
terms.

On the other hand, the n 
= n′ cases of Eq. (8) present no
need for similar splittings of the integral. It is because the
integration variable q in Eq. (8) is not the same as q′, the
variable that corresponds to the n′th subband. This leads to the
fact that the q width at the n′th subband band edge is much
narrower than that for the n = n′ case. The q widths for the
n 
= n′ and n = n′ cases are, respectively, of the order of η

and
√

η. As such, the at-the-band-edge contribution to Inn′ for
n 
= n′ is negligible.

Returning to the Inn terms, where n 
= n0, we expect a
severe cancellation between the at-the-band-edge and non-
band-edge contributions. Analytical expressions for these two
contributions will be obtained in the following, from which
we can access their respective magnitudes directly. Splitting
the Inn terms accordingly, we have

Inn = I (0)
nn + I (NBE)

nn + I (π )
nn , (11)

where I (0)
nn and I (π )

nn are the at-the-band-edge integrals at band
edges q = 0 and π , respectively. The band-edge energy at q =
0 (q = π ) is εn,min (εn,max). Using Eq. (A9), we have

I (0)
nn = −πεn,min

2βn

∫ α

0
dq Re

[
i

�
+ L

]
, (12)

where � =
√

q2 − iη̃, η̃ = εn,minη/βn, and βn = −cos(knxa).
The integration range is up to α, which is taken to be of the
order of tens of

√
η̃. The expression is for the �L � 1 case,

with the L-depending term in the integrand coming from the
expansion of e−i� L. This �L � 1 condition is already suffi-
cient to give us important insights for a reasonable range of L
because � is sufficiently small. Performing the integration in
Eq. (12), we have

I (0)
nn = πεn,min

2βn

[π

4
− α L

]
. (13)

I (π )
nn can be shown to have the form similar to Eq. (12), except

that εn,min, q2 − iη̃, and L are changed to εn,max, q̃2 + iη̃, and
−L, respectively. Here, q̃ = π − q, and

I (π )
nn = −πεn,max

2βn

[π

4
− α L

]
. (14)

The non-band-edge integral is given by

I (NBE)
nn = − π

4βn

∫ π−α

α

dq
sin(2qL)

sinq
εkn , (15)

where Eq. (A8) has been used for g12
n (−εkn ). It is more

convenient to express in terms of the integral that covers the
entire q range, given by

I (NBE)
nn = − π

4βn

∫ π

0
dq

sin(2qL)

sinq
εkn − πLα[εn,max − εn,min]

2βn
.

(16)
Note that, in Eq. (16), the second (linear L) term cancels
that in I (0)

nn and I (π )
nn , given respectively by Eqs. (13) and (14).

The integral in the first term in Eq. (16), apart from a factor
−π/(4βn), is defined by

In =
∫ π

0
dq

sin(2qL)

sinq

√
1 + 4β2

n − 4βncosq, (17)

where εkn = √
1 + 4β2

n − 4βncosq can be evaluated (see Ap-
pendix B) to give

In = −π

2
[εn,max − εn,min] + π

√
1 + 4β2

n

×
∞∑

k=L

k∑
m=L

(4k)! b2k+1
n

(2k)! 26k+1(k − m)!(k + m + 1)!
, (18)

where bn = 4βn/(1 + 4β2
n ).

We point out that this is a remarkable result. First of
all, if we substitute the first term in Eq. (18) to Eq. (16),
and then sum up with Eqs. (13) and (14), we indeed see
explicitly the exact cancellation, or the zero contribution to
Inn in Eq. (11). The residual contribution to Inn hence comes
from the second term in Eq. (18). The order of magnitude of
this second term can be estimated by taking the k = m = L
term in Eq. (18) to give (4L)! b2L+1

n /[(2L)! 26L+1(2L + 1)!] ∼
2−2L−1.5, where we have taken bn ∼ 1, and the Stirling for-
mula n! ≈ √

2πn(n/e)n. This gives very small results for, say,
L > 5. The same small order of magnitude also applies to
cases of n 
= n′, according to the understanding we have drawn
from Eq. (10). Second, the term in I (NBE)

nn that participates
in the cancellation, given by π2[εn,max − εn,max]/(8βn), has a
unity order of magnitude. Third, according to our derivation of
In in Eq. (18) (Appendix B), we see that the term participating
in the cancellation is resulted from the integration over the
entire q region. In contrast, the at-the-band-edge results in
I (0)
nn + I (π )

nn pick up their values only at the band-edge energies.
This large difference in the range of energy, from which the
at-the-band-edge and the non-band-edge cancellation terms
accumulate their values, strongly hints that the cancellation
terms could be affected differently should other effect, such
as multiple scattering, be included. The subsequent disruption
to the exact cancellation and the large change in the values of
Inn it might lead to now seems not as surprising as it would
initially sound.
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The calculation of In0n0 is carried out by substituting βn0 =
1
2 into Eqs. (11) and (16), with εn0,max = 2 and εn0,min = 0, to
get

In0n0 = −2π

[
1

4

∫ π

0
dq

sin(2qL)

cos(q/2)
+ π

4

]
. (19)

Inside the square brackets in Eq. (19), the first term equals
−∑2L−1

m=0
(−1)m

2m+1 [43], the second term is reexpressed by the

identity
∑∞

m=0
(−1)m

2m+1 = π/4, and we have

In0n0 = −2π

∞∑
m=0

(−1)m

4L + (2m + 1)
. (20)

The summation over m in Eq. (20), apart from a factor −2π ,
can be further simplified, for L > 5, by assuming the summa-
tion to be proportional to L−1, given by C/L. We obtain from
the explicit summation form in Eq. (20) the relation

1

4L + 1
− C

L + 1/2
= C

L
, (21)

from which we obtain

C = L(2L + 1)

(4L + 1)2
∼= 1

8
. (22)

In summary, we have

J (1)
eff = −4J2

π
ϕ2

n0
(1, 2)

∞∑
m=0

(−1)m

4L + (2m + 1)

∼= − J2

2π L
ϕ2

n0
(1, 2) for L > 5. (23)

This analytic expression for J (1)
eff has included only the Inn term

for n = n0, the gapless subband of the metallic AGNR. That
this expression is good for L > 5 has been discussed above,
and is confirmed in Fig. 3, when the analytic J (1)

eff results for
AA-type (red triangles) and AB-type (red half-filled circles)
magnetic-impurity pairs compare remarkably with the numer-
ical J (1)

eff results, given by black triangles and black half-filled

FIG. 3. Plot of Jeff/J2 versus L for three values of J . Both Jeff

and J are in units of t0. The AGNR (W = 20) has two magnetic
impurities at M1 = M2 = 7, and a longitudinal separation L (in units
of

√
3a). Both AA (triangles) and AB (half-filled circles) types are

shown, for J = 10−3 (green), 10−2 (dark blue), and 10−1 (light blue).
Also shown are the LO-RKKY results J (1)

eff /J2, amplified by 102, both
numerical (black) and analytical (red).

circles, respectively. The numerical J (1)
eff results are the direct

evaluation of Eqs. (10) and (7). The L−1 dependence, the
ferromagnetic coupling feature, and the order of magnitude
of J (1)

eff agree well with the Jeff calculation that made use of
an effective (near zero-energy) Hamiltonian [30]. However, in
this work, the full tight-binding Hamiltonian has been used.
This nice correspondence manifests the fact that the gapless
subband dominates the contribution to J (1)

eff . Note that J (1)
eff has

been multiplied by 102 in Fig. 3.
The key result in this section, which we want to stress again

here, is to turn our attention toward the gapped subbands.
We establish, for incident electrons in an nth subband (n 
=
n0), the concept of severe cancellation between contributions
to J (1)

eff from the at-the-band-edge states and the non-band-
edge states, and of the same order of magnitude these two
cancellation terms are to the LO-RKKY coupling J (1)

eff .

B. Different-site type J (1),AB
eff

In this section, we consider a different-site-type magnetic-
impurity pair on AGNRs. For the sake of specificity for
our discussion, we choose the I = 1 (I = 2) impurity to be
located at the A (B) site. The different-site-type LO-RKKY
coupling J (1),AB

eff is obtained from Eq. (6) when CA(γ εkn ) =
1/

√
2 and CB(γ εkn ) = γ h∗(kn)/(

√
2εkn ) is used, to give

J (1),AB
eff = 2J2

π2

∑
n,n′

ϕn(1, 2) ϕn′ (1, 2) IAB
nn′ ,

IAB
nn′ =

∫ π

0
dq Re

[
g12

n′,AB(−εkn )
]

f AB
n (q), (24)

where

f AB
n (q) =

[
cos(qL) − 2βncos(q|L12 − 1|) ]

εkn

. (25)

Here, g12
n′,AB(−εkn ) is given by Eq. (A2). For the sake of

notation simplicity, no subscripts or superscripts will be used
to indicate same-site-type physical parameters, whereas su-
perscripts or subscripts (AB) will be used to indicate different-
site-type physical parameters.

Again, as was discussed in the previous subsection, the
form of Eq. (24) warrants the separation of the IAB

nn into at-the-
band-edge and non-band-edge terms for gapped nth subbands.
That the sum of the two terms gives very small result can be
easily seen from an alternate form of Eq. (24), in which IAB

nn′ is
replaced by a new expression

IAB
nn′ =

∫ π

0
dq

∫ π

0
dq′ f AB

n (q) f AB
n′ (q′)

εkn + εk′
n′

. (26)

The form of IAB
nn′ in Eq. (26) can be identified by substituting

into Eq. (24) the expression of g12
n′,AB(−εkn ), and perform

interchanging of the subband indices (n ↔ n′) and the in-
tegration variables (q ↔ q′) to the expression for J (1),AB

eff in
Eq. (24). With this no-pole form in the integrand of IAB

nn′ ,
the argument we had in the previous subsection applies here
so that only the gapless subband (n = n0) dominates the
contribution to J (1),AB

eff .
Note, however, that there is a sign difference between Inn′

in Eq. (10) and IAB
nn′ in Eq. (26). This sign comes from the
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g12
n′,AB(−εkn ) in Eq. (24), where its expansion consists of a

summation over γ ′, allowing a factor γ ′ from the CB(kn, γ
′)

coefficient to come into play.
Performing the integral in Eq. (26) (see Appendix C) we

get

J (1),AB
eff = J2

2π (L + 1/2)
ϕ2

n0
(1, 2), (27)

for the case when impurity I = 2 has a larger longitudinal
coordinate than the impurity I = 1, that is L12 = −L.

III. RKKY COUPLING: MULTIPLE SCATTERING

The numerical evaluation of Jeff is from obtaining
〈V 〉(S1S2) in Eq. (4), for the case when full multiple scattering
is incorporated, and using the relation

Jeff = 1
2 [〈V 〉(↑↑) − 〈V 〉(↑↓)]. (28)

To obtain for Eq. (4) the scattering wave function �kn,ν,ν (I )
at the site of the magnetic impurity, we use Eq. (3) to get

�kn,ν,ν (I ) = ψkn (I ) + νJ GII (−εkn )�kn,ν,ν (I )SI

+νJ GII (−εkn )�kn,ν,ν (I )SI, (29)

where I ∈ 1, 2 denote a magnetic-impurity pair and I refers
to the partner of the magnetic impurity I. Solving the set of
equations in Eq. (29) gives

�kn,ν,ν (I ) = ψkn (I ) − νJSI
[
GI Iψkn (I ) − GI Iψkn (I )

]
D(−εkn )

,

(30)

where

D(−εkn ) = 1 − νJ[ GIISI + GI ISI ]

+ J2SISI[GIIGI I − GIIGII]. (31)

All the Green’s functions in Eqs. (30) and (31) are functions
of −εkn .

We show in the following that �kn,ν,ν (I ) is finite, or even
zero, when E = −εkn is at the nth subband band edge. To
see this, we first note that within the square brackets in the
numerator of Eq. (30), GI Iψkn (I ) − GI Iψkn (I ) no longer
carries the singular nature of the Green’s function at the
nth subband band edge. This observation can be reached by
substituting into Eq. (30) the at-the-band-edge behavior of the
Green’s function, given by Eq. (A11), and the expression for
ψkn , given by Eq. (A4).

Turning to the denominator of Eq. (30), or Eq. (31), we can
show similarly as in the previous paragraph that the coefficient
of J2SISI , given by GIIGI I − GIIGII exhibits cancella-
tion that reduces its singular nature, from that of the square
of a Green’s function to that of a Green’s function, at the nth
subband band edge. The coefficient of the other term, which is
proportional to νJ and given by GIISI + GI ISI , carries the
singular nature of a Green’s function at the nth subband band
edge either when SI = SI , or when SI = −SI and M1 
= M2.
And we will have �kn,ν,ν (I ) = 0. However, for the case when
SI = −SI and M1 = M2, the term proportional to νJ becomes
finite at the nth subband band edge. This will give rise to a
zero �kn,ν,ν (I ), through the J2SISI term in the denominator,

or to a finite �kn,ν,ν (I ), for cases of very small J . To sum
up what we have discussed here, we see that �kn,ν,ν (I ), the
total wave function corresponding to an incident state |ψkn〉
and at the sites of the magnetic impurities, are either zero or
finite in all possible cases at the nth subband band edge. This
is the result of multiple scatterings. More importantly, this
has removed completely the at-the-band-edge contribution to
Jeff . In other words, the numerical evaluation of 〈V 〉(S1S2), in
Eq. (4), can be carried out by merely performing the k integral
in the non-band-edge region only.

We present in Fig. 3 Jeff/J2 versus L for J = 10−1 (light
blue), 10−2 (dark blue), and 10−3 (green). Both AA- (tri-
angles) and AB-type (half-filled circles) magnetic impurity
pairs are shown. The transverse locations of the two magnetic
impurities are at M1 = M2 = 7 and the AGNR has W = 20
carbon chains. Also shown are the LO-RKKY results, J (1)

eff /J2

versus L, albeit multiplying a factor 102, where the numerical
results (black), Eq. (10), and the analytical results (red),
Eq. (23), are plotted for comparison.

First of all, it is clear that the J (1)
eff results in Fig. 3 make

their presence evident only after multiplying by a factor
of 102. The correspondence between the numerical and the
analytical results of J (1)

eff has been remarkable for L > 5.
Decent correspondence is shown even in the L ≈ 5 region.
All these results firmly support the physical picture that we
have developed in the LO-RKKY coupling, namely, that there
is severe cancellation between contributions from the at-the-
band-edge and non-band-edge states in gapped subbands, and
that the dominant contribution is from the gapless subband.
Furthermore, the AA-type (BB-type) magnetic-impurity pair
exhibits ferromagnetic (antiferromagnetic) coupling.

The Jeff curves in Fig. 3 show drastically different physical
characteristics from that of the J (1)

eff . Apart from the afore-
mentioned much larger magnitude in Jeff than that in J (1)

eff ,
magnetic-impurity pairs of both sublattice site types exhibit
similar characteristics in Jeff . This is to contrast with J (1)

eff ,
where coupling is ferromagnetic (antiferromagnetic) for the
AA (AB) sublattice-site type. The Jeff ’s for both sublattice-site
types are antiferromagnetic for sufficiently low J and L. In
the small-L region, the slopes of the Jeff/J2 curves are more
negative for larger J . It is interesting to see that Jeff can change
from antiferromagnetic to ferromagnetic as L increases. As is
shown in Fig. 3 by the J = 10−1 curve, Jeff changes sign at
around L = 20.

In Fig. 4 we present the J dependence of Jeff/J2 for L = 14,
28, and 42. System parameters are the same as those in Fig. 3.
The RKKY coupling of both sublattice-site types exhibits
similar characteristics, as we have obtained in the L depen-
dence of Jeff . The slope of Jeff/J2 versus J is more negative for
larger L. For a given L, the coupling characteristics can change
from antiferromagnetic to ferromagnetic when J increases.
This is shown by the L = 42 curve, where Jeff changes sign
at around J = 005.

Analytic expressions of Jeff

In this section, we derive analytic expressions for Jeff in
the small-J (J � 1) regime, and for both the same-site and
different-site type magnetic-impurity pairs. These analytic
results allow us to compare with our full numerical results,
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FIG. 4. Plot of Jeff/J2 versus J for three values of L. The AGNR
(W = 20) has two magnetic impurities at M1 = M2 = 7. Both AA
(triangles) and AB (half-filled circles) types are shown, for L =
14, 28, and 42, in units of

√
3a.

and also to extract better physical understandings from our full
numerical results. To make connection with the LO-RKKY
results, it is more convenient to express the full wave function
�knν,ν (I ) in the form

�knν,ν (I ) = ψkn (I ) + �SC
kn

(I ), (32)

where the expression for �SC
kn

(I ) can be obtained from
Eq. (30). The average 〈V 〉, according to Eq. (4), hence takes
on two terms

〈V 〉 = U1 + U2, (33)

where

U1 = 2J
∑
I

∑
kn,ν

′ Re
[
ψ∗

kn
(I )�SC

kn
(I )

]
νSI,

U2 = J
∑
I

∑
kn,ν

′∣∣�SC
kn

(I )
∣∣2

νSI . (34)

Here, the primed kn summation denotes summing over the
non-band-edge states only, as have been discussed above in
this section.

Our goal is to extract from U1 a term, denoted by U11, akin
to the LO-RKKY [given by Eq. (5)] expression but include
only the non-band-edge incident states. Toward this end, the
strategy is to remove the ν dependence in the denominator
D(−εkn ) of �SC

kn
(I ) and perform the extraction to get

U1 = U10 + U11 + U12. (35)

Here, U10 depends only on S2
I and does not contribute to Jeff .

Expressions for the other two terms are given by

U11 = 8J2S1S2

∑
kn

′ Re[G12] Re
[
ψ∗

kn
(1)ψkn (2)

]
(36)

and

U12 = 4J2
∑

kn

′ Re

[
ζn1(−εkn ) + ζn2(−εkn )

D(−εkn )

]
, (37)

where

D = 1 − J2
∑
I,I ′

GII ′GI ′I SISI ′ + J4S2
1S2

2�G2 (38)

and

ζn1 = (1 − D)
∑
I,I ′

SISI ′GII ′ Re
[
ψ∗

kn
(I )ψkn (I ′)

]
,

ζn2 = J2�GS2
1S2

2

∑
I,I ′

(−1)δII′ GII ′ Re
[
ψ∗

kn
(I )ψkn (I ′)

]
.

(39)

Here, �G = G11G12 − G2
12 and δII ′ is the Kronecker delta

function. All the Green’s functions in Eqs. (38) and (39) are
functions of −εkn , which have been kept implicit for our
presentation purposes.

The evaluation of U11 for the same-site type magnetic-
impurity pairs is facilitated by identifying, from comparing
Eqs. (36) and (5), that it is the non-band-edge term of the
LO-RKKY results. Contributions from the n 
= n0 subbands
are obtained from Eqs. (16) and (18), whereas contribution
from the n0 subband is obtained from Eqs. (23) and (14).
Putting these results together gives

U11 = J2S1S2

[
−ϕ2

n0
(1, 2)

2πL
+

∑
n

ϕ2
n (1, 2)�εn

4βn

]
, (40)

where �εn = εn,max − εn,min. It is important to note that the
first term of Eq. (40), having a L−1 dependence, is of opposite
sign to the second term, which is L independent. More impor-
tantly, the second term is much larger than the first term, and
this causes the RKKY to change from ferromagnetic coupling
in J (1)

eff to the antiferromagnetic coupling in Jeff , when full
multiple scattering is implemented.

The evaluation of U AB
11 , the U11 for the case of different-

site-type magnetic-impurity pairs, is facilitated similarly by
seeing that it is the LO-RKKY result, from comparing
Eqs. (36) and (24), albeit keeping only the non-band-edge
term. For gapped subbands, we use the fact IAB

nn ≈ 0 to see
that the non-band-edge term of Eq. (24) equals the minus of
the at-the-band-edge terms. Another fact at the band edges,
when q = 0 (q = π ) or E = EBE = −εn,min (EBE = −εn,max),
that the reduced Green’s functions of the different-site and the
same-site types satisfy the relation[

g12
n,AB(E ) f AB

n (q)
]

E=EBE
= [

g12
n (E )cos(qL)

]
E=EBE

, (41)

causes the at-the-band-edge terms of Inn and IAB
nn to be the

same. Together, we see that the non-band edge Inn equals
that of IAB

nn for gapped subband n. For the gapless subband,
we calculate the non-band edge In0n0 directly. Derivation of
Eq. (41) can be obtained at q = 0 (or 0 < q < α) by using
the different-site- (same-site-) type reduced Green’s function
expression (A12) [Eq. (A6)]. Here, z< = z− and z± = 1 ±
i
√

q2 − iεn,min η/βn, where
√

z is taken to be in quadrants I
and IV. Similarly, at q = π (or π − α < q < π ), the reduced
Green’s function expression is obtained for z< = z− and z± =
−1 ± i

√
q̃2 + iεn,min η/βn. Here, q = π − q̃. Drawing on all

we have from the above, we obtain

U AB
11 = J2S1S2

[
ϕ2

n0
(1, 2)

2π
(
L + 1

2

) +
∑

n

ϕ2
n (1, 2)�εn

4βn

]
. (42)

It is clear that U11 and U AB
11 are very close to each other, with

a relative small difference arising from the gapless subband,
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namely, from the first term inside the square brackets of U11

and U AB
11 .

For the derivation of the small-J behaviors of U12

and U2 in the following, we consider the case M1 = M2.

In this case, we have G11 = G22. Furthermore, we drop
the J4 term in D(−εkn

) of Eq. (38), and obtain
the integral form of the same-site type U12, given
by

U12 = 2J4

π

∑
n

ϕn(1, 1)
∫ π−α

α

dq Re

[[
(1 + 2S1S2)G2

11 + G2
12

]
G12 cos(qL) + G11

[
(1 + 2S1S2)G2

12 + G2
11

]
1 − 2J2

(
G2

11 + S1S2G2
12

)
]
. (43)

The integral form of the same-site type U2 is given by

U2 = −4S1S2J4

π

∑
n

ϕn(1, 1)
∫ π−α

α

dq
Re

[−G∗
11G2

12 + S1S2
(
G2

11 − G2
12

)
G∗

12 cos(qL)
]

| 1 − 2J2
(
G2

11 + S1S2G2
12

) |2 . (44)

To get a reasonable approximation scheme for both the U12

and U2 above, we see first of all that the integrands contain
third (second) power in the Green’s function in the numerator
(denominator), and these Green’s functions are all functions
of −εkn . Therefore, as the integration variable q approaches its
band edges, the nth subband term in these Green’s functions
will increase in its magnitude, leading also to the magni-
tude increasing of the integrand. Therefore, it is reasonable
to expect that significant contributions are from integration
regions in the vicinity of band edges. This is supported by
observing that all the terms in the numerators contain G12 and
its higher power product, and thus are rapidly oscillating with
argument qL and its harmonics. The oscillatory nature helps
limiting the significant contribution to the vicinity of the band
edges (with a q width of order of J). As for the G12 in the
denominator, we convert the denominator into its magnitude
square form and then take the qL � 1 approximation. We also
comment that the integrand becomes finite again at q = α (or
q = π − α). This is resulted from taking only the real part of
the integrand for the integral. Thus, our approximation scheme
is to perform the integral in the vicinity of each subband band
edge while replacing the Green’s function by its nth subband
term at the corresponding band edge, and taking qL � 1 in
the denominator D (J4 term neglected) appropriately. After
some lengthly calculation we obtain the same-site type Jeff ,
defined by Eq. (28), to give

Jeff = J2

[
−ϕ2

n0
(1, 2)

2πL
+

∑
n

ϕ2
n (1, 2)�εn

4βn

]

− J

16L

∑
n

ϕn(1, 1)[ϑ (λnπ ) − ϑ (λn0)], (45)

where

ϑ (x) = 4x[7 − e−6x − 3e−4x − 3e−2x]

+ [−13x + 10x(1 + 2x)e−4x + 3x(1 + 4x)e−8x]

+ 4x[1 − e−8x2 + 8x2] − 16x2e−4x (46)

and

λn0 = LJϕn(1, 1) εn,min

4βn
,

λnπ = LJϕn(1, 1) εn,max

4βn
. (47)

Of the four terms in Eq. (46), the first two terms are associated
with U12 for S1S2 = 1, the third term is associated with U12 for
S1S2 = −1, and the fourth term is associated with U2.

Taking the x � 1 limit, when ϑ (x) ≈ 48x2, we have

Jeff ≈ J2

[
−ϕ2

n0
(1, 2)

2πL
+

∑
n

ϕ2
n (1, 2)�εn

4βn

]

− 3LJ3

2

∑
n

ϕ3
n (1, 1)

βn
. (48)

Both Eqs. (45) and (48) are our key analytic results in
this work, which are in the LJ < 1 and LJ � 1 regimes,
respectively. Comparison of the full numerical same-site-type
Jeff results with the analytic results in Eq. (45) is shown in
Fig. 5. The matching of the two results in the small-J regime
is remarkable, both in the values as well as the slopes. That
the range of matching has a larger-q range for a smaller L is
consistent with the LJ � 1 condition of the analytic result.

Of the two terms in Eq. (48), the second term (non-square-
bracketed term) correctly gives the negative slope in the Jeff

versus L behavior in the small-L region, as shown in Fig. 3.
The same term also correctly gives the negative slope in the

FIG. 5. Comparing full numerical results and small-J analytic
results of Jeff/J2 versus J for three values of L. The AGNR (W = 20)
has a same-site type magnetic-impurity pair at M1 = M2 = 7. Full
numerical results for L = 14 (red), 28 (blue), and 42 (green) are
shown. Analytic results for the corresponding L values are depicted
by gray symbols.
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FIG. 6. Comparing the Jeff/J2 analytic results to the full numeri-
cal results in light of their dependence on LJ . The data are the same
as in Fig. 5. The agreement shown is remarkable, with appreciable
deviation occurring at LJ ∼ 1.0 and greater values.

Jeff/J2 versus J behavior in the small-J region, as shown in
Fig. 5. Finally, the role of LJ in the above comparison between
the numerical and the analytical [Eq. (45)] results is presented
in Fig. 6. The agreement shown is remarkable, in the LJ < 1
region, and with appreciable deviation occurs at LJ ∼ 1.0 and
greater values.

Derivation of the different-site-type RKKY couling, de-
noted by JAB

eff , in the LJ � 1 regime, can be proceeded simi-
larly to give

JAB
eff ≈ J2

[
ϕ2

n0
(1, 2)

2π
(
L + 1

2

) +
∑

n

ϕ2
n (1, 2)�εn

4βn

]

− 3LJ3

2

∑
n

ϕ3
n (1, 1)

βn
. (49)

The difference between the analytic expressions of Jeff and
JAB

eff is in the contribution from the n0th subband, that is, the
first term inside the square-bracketed term. This difference
leads only to a very small relative deviation, and is consistent
with our full numerical results for Jeff and JAB

eff , as is shown in
Fig. 4.

IV. CONCLUSION

In conclusion, we have described the RKKY coupling Jeff

for a magnetic-impurity pair on metallic AGNRs with multi-
ple scattering of the mediating electrons fully implemented.
We have derived an analytic expression for Jeff in the LJ < 1
regime. The remarkable matching of this analytic expression
to that of the full numerical results confirms us the physical
picture that significant gapped subband contributions to Jeff

are from incident states in the non-band-edge region that is in
the vicinity of the subband band edges. Thus, all the subbands,
including the gapless and the gapped subbands, are contribut-
ing to Jeff , and are roughly speaking on the same weighting.
Key results obtained are that Jeff is found to be much larger
than the Born approximation results, the LO-RKKY coupling
J (1)

eff results, by up to two orders of magnitude, and that the
RKKY coupling is insensitive to the sublattice-site type of
the magnetic-impurity pairs. Furthermore, Jeff is found to
exhibit an antiferromagnetic to ferromagnetic coupling transi-

tion when L is increasing for a given J , or when J is increasing
for a given L.

The above insights are closely tied to detail analysis we
have performed for the subband contributions to the LO-
RKKY coupling J (1)

eff . Analytic expressions are obtained for
contributions from the gapless subband and, separately, from
the at-the-band-edge and non-band-edge terms of a gapped
subband. Severe cancellation between the at-the-band-edge
and non-band-edge terms of a gapped subband is demon-
strated analytically, leading to the fact that the gapless sub-
band is the sole contributor to J (1)

eff . This explains why that
the J (1)

eff expression in this work agrees basically with the
J (1)

eff calculated from a near-zero-energy effective Hamiltonian
[30], and on three shared features. The shared features of J (1)

eff
are the order of magnitude, the L−1 dependence, and the cou-
pling characteristics: ferromagnetic (antiferromagnetic) for
the same-site- (different-site-) type magnetic-impurity pairs.
Yet, our key result is to bring our attention to the gapped
subbands, by showing that the at-the-band-edge terms are
each of the same order of magnitude as the J (1)

eff , and that
the at-the-band-edge term is suppressed when full multiple
scattering is implemented, thus opening up large contributions
from gapped subbands to the RKKY coupling.

The dramatic enhancement in RKKY due to multiple
scattering found in this work hinges on the fact that the
density of states is singular at subband band edges. Quasi-
one-dimensional systems such as AGNRs, carbon nanotubes,
bilayer graphene nanoribbons, and nanoribbons form from
novel two-dimensional systems all fall into this category.
Thus, it is of great interest to explore the manifestation of
our RKKY features in these candidate systems. Furthermore,
recent study on Bernal bilayer graphene system has found
logarithmic-singularity feature in the real-space propagator
that involves sites in the bilayer that are on top of each other
[27]. It would be of interest also to explore this system for the
multiple scattering effects on the RKKY coupling.

We would like to comment on the possible experimental
way to observe our large RKKY coupling results. Recent
observation of π magnetism of a single carbon vacancy on
graphene using scanning tunneling spectroscopy (STS) [44]
is an exciting development. The measurement of the spin-
split density of states in the nearest and next-nearest sites
from the vacancy is a direct measure of the π magnetism
of the single carbon vacancy. This novel technology could
be further developed to probe the spin-split density of states
in the vicinity sites of the two magnetic impurities for the
study of the nature of the coupling, be it antiferromagnetic
or ferromagnetic.
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APPENDIX A: AGNR GREEN’S FUNCTION

The analytical expression of the AGNR Green’s function
GJJ ′ (E ) facilitates both the illustration of the key physics
in this work and the efficiency in our numerical calculation.
Thus, we opt, for completeness, to highlight some GJJ ′ (E )
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expressions in the following, even though GJJ ′ (E ) had been
obtained previously by one of the authors and his collaborator
[45]. In addition, we present the GJJ ′ (E ) expression in the
at-the-bandedge regime, a regime that had not been discussed
previously [45], which corresponds to E aligning right at an
AGNR subband band edge.

Starting with GJJ ′ (E ) = 〈J |[E − H + iη]−1|J ′〉, for H
described by the AGNR tight-binding Hamiltonian and J =
( j, s) = (R j, s), the lattice-site coordinate depicted by the
unit-cell position R j and the site-type index s (A/B type), we
have

GJJ ′ (E ) = 1

2π

∑
n

ϕn( j, j′) gJJ ′
n (E ), (A1)

and the nth subband reduced Green’s function gJJ ′
n (E ) is

given by

gJJ ′
n (E ) =

∫ π

−π

dq
∑

γ

eiqLj j′ Cs(kn, γ )Cs′ ∗(kn, γ )

E − γ ε(kn) + iη
. (A2)

Here, n denotes the subband index and ϕn( j, j′) is associated
with the nth subband amplitudes at the two lattice sites J and
J ′, given by

ϕn( j, j′) = 4

W + 1
sin

[
nπ (Mj + 1)

W + 1

]
sin

[
nπ (Mj′ + 1)

W + 1

]
.

(A3)

The wave vector kn = (knx, k) where knxa = nπ/(W + 1),
and W denotes the width of the AGNR formed from W carbon
chains with an interchain spacing a = 1.23 Å such that the
unit-cell position R j = Mjax̂ + Nj

√
3aŷ. Across the width

of the AGNR, the coordinate 0 � M � W − 1. A metallic
AGNR has W = 3p + 2 for integer p. The subband index n is
chosen to take on values W/2 + 1 � n � W , for even W , so
that k in a subband spans a fuller range, namely, |k√

3a| � π .
In Eq. (A2), η is an infinitesimal positive quantity,

γ denotes the sign of the subband energy E (kn, γ ) =
γ ε(kn) = γ |h(kn)|, where h(kn) = 1 + 2 cos(knxa) e−iq and
q = k

√
3a. All energies are in units of t0 = 2.66 eV, the

hopping constant of graphene. In addition, Lj j′ = Nj − Nj′ ,
pseudospin coefficients CA(kn, γ ) = 1/

√
2 and CB(kn, γ ) =

γ h∗(kn)/(
√

2 ε(kn)), and γ = −γ . The wave function
〈J |ψkn〉 for an AGNR subband state is given by

〈J |ψkn〉 = 2 eiqNj sin
[ nπ (Mj+1)

W +1

]
√

(W + 1)Ny

⎛
⎝CA(kn, γ )

CB(kn, γ )

⎞
⎠, (A4)

where Ny are the total unit cells along ŷ in the system (Ny is
even for an AGNR), and γ is kept implicit in |ψkn〉 for notation
simplicity.

The AGNR Green’s function, as given by Eqs. (A1) and
(A2), has the nice symmetry property

GJJ ′ (E ) = GJ ′J (E ) (A5)

for both the same-site (ss′ = AA or BB) type or different-site
(ss′ = AB or BA) type. Equation (A5) can be obtained by
changing, in Eq. (A2), the integration variable q → −q while
making use of the fact that ε(kn) and CA(kn, γ ) remain the
same but CB(kn, γ ) → CB∗(kn, γ ).

The same-site-type nth subband reduced Green’s function
gJJ ′

n (E ) is found to be

gJJ ′
n (E ) = πE z

|L j j′ |
<

βn(z< − z>)
, (A6)

where z< (z>) refers to one of z± that has its magnitude
less (greater) than unity. Expressed in terms of z = eiq to the
equation (E + iη)2 − ε(kn)2 = 0, its roots denoted by z± are
given by

z± =
(

cosQ − 2iEη

4βn

)
±

√(
cosQ − 2iEη

4βn

)2

− 1. (A7)

Here, Q is a dimensionless longitudinal wave vector, repre-
senting E via the relation E2 = 1 + 4β2

n − 4βncosQ, wherein
βn = −cos(knxa) is positive. The band-edge energies of the
nth subband are given by εn,min = |1 − 2βn| at Q = 0, and
εn,max = 1 + 2βn at Q = π . Q becomes complex when |E | <

εn,min (or |E | > εn,max), given by Q = iQI (or Q = π + iQI).
The form given in Eqs. (A6) and (A7) is sufficient for numer-
ical evaluations of gJJ ′

n (E ) for any E .
Two regimes, namely, the at-the-band-edge and the non-

band-edge regimes, are of interest in this work. Equally
importantly, the use of these two regimes are crucial when
we want to perform analytical analysis. They are defined
according to the values of E (or Q) with respect to the subband
band edges. The at-the-band-edge regime is when E aligns
right at a band edge, or more precisely, Q falls within a
Q interval, centered at either Q = 0 or π , with an interval
width of order

√
η. The non-band-edge regime is when Q

does not fall within the at-the-band-edge interval. Should
analytical analysis be needed, simplification of Eq. (A7) will
be undertaken differently depending on which regimes we are
working on at hand.

In the non-band-edge regime, Eq. (A7) can be simplified by
expanding out the square-root term, up to first order in η. By
this we have taken η to be the smallest energy scale. This gives
us, for the case of the nth subband reduced Green’s function
and for real Q (or εn,min < |E | < εn,max), the expression

gJJ ′
n (E ) = ∓ iπE

2βn

e±iQL

sinQ
, (A8)

where the upper (lower) sign corresponds to positive (nega-
tive) E , and L = |Lj j′ |. Note that the factor e±iQL in Eq. (A8)
gives the expected form of an outgoing wave. Furthermore,
Eq. (A8) clearly shows that gJJ ′

n (E ) grows in magnitude as Q
approaches a band edge. A summation of, say, gJJ ′

n (E ), over
all incident energy E , or more appropriately over Q, leads to
an integral of the form

∫
dQ gJJ ′

n (E ), which might appear
to be diverging had we allowed the integration to go all the
way to the band edge. A correct way of performing the Q
integral, however, is to separate it into two integration regions:
the non-band-edge and the at-the-band-edge regions, with the
two regions separated by a Q of order equal to tens of

√
η.

In the at-the-band-edge regime, we do not expand out the
square-root term in Eq. (A7) but, rather, expand about Q with
the form Q = Q̃ (at εn,min) or Q = π − Q̃ (at εn,max). Here,
Q̃ represents a small deviation. This gives us the at-the-band-
edge gJJ ′

n (E ) expression, for E within the subband energy
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and at εn,min,

gJJ ′
n (E ) = ∓ iπE

2βn

e±i
√

Q̃2+iEη/βn L√
Q̃2 + iEη/βn

, (A9)

and at εn,max,

gJJ ′
n (E ) = ∓ (−1)L iπE

2βn

e∓i
√

Q̃2−iEη/βn L√
Q̃2 − iEη/βn

, (A10)

where, again, the upper (lower) sign corresponds to positive
(negative) E .

Equations (A9) and (A10) show that, as far as the η

dependence is concerned, the Q (or Q̃) width is of order
√

η

and the gJJ ′
n (E ) is not diverging, but has large values of the

order of 1/
√

η. Hence, the aforementioned Q integral in this
at-the-band-edge region becomes finite, and is independent of
η. It is important to note that when E is in the at-the-band-edge
regime of the nth subband, GJJ ′ (E ) is dominated by the
contribution from the nth subband. Taking, for instance, the
same-site-type case when E = εn,min, and J 
= J ′, we have,
from Eqs. (A1) and (A9),

GJJ ′ (εn,min) � ϕn( j, j′) Gn(εn,min) + �G(n, j, j′, L),
(A11)

where the first term is the dominating term with Gn(E ) =
∓ i

√
E/[ 4

√
iβnη ], and the second term �G(n, j, j′, L) is the

collection of all remaining terms, including the summation
of n′ 
= n subbands in Eq. (A1) and the expansion of the
exponential factor in Eq. (A9). Similar form can be identified
for E = εn,max. Finally, the form in Eq. (A11) will be used in
this work for the tracing of the dominating term.

The ifferent-site-type nth subband reduced Green’s func-
tion gJJ ′

n (E ) (for ss′ = BA), now adopted an explicit index-
ing notation gj j′

n,BA(E ), is found to be

gj j′
n,BA(E ) = − π z

|L j j′ |
<

βn(z< − z>)
+ 2π z

|L j j′+1|
<

(z< − z>)
. (A12)

The case of gj j′
n,AB(E ) can be obtained from Eq. (A12) by

changing the exponent |Lj j′ + 1| in the second term to |Lj j′ −
1|. The expressions of gj j′

n,BA(E ) in the at-the-band-edge and
the non-band-edge regimes, not shown here, could be obtained
similarly as have been illustrated above for the same-site-type
case.

APPENDIX B: EVALUATION OF In

Evaluation of Eq. (17) is facilitated by adding the same
integral In, but with a change in the integration variable q =
π − q′, to give

In =
√

1 + 4β2
n

2

∫ π

0
[
√

1 − bncosq −
√

1 + bncosq]

× sin(2qL)

sinq
dq, (B1)

where bn = 4βn/(1 + 4β2
n ). Making use of the identity

√
1 − x − √

1 + x = −
∞∑

k=0

x2k+1

(2k + 1)!(2k)!

(4k)!

24k
, (B2)

and the result

∫ π

0
cos2k+1q

sin(2qL)

sinq
dq = π

22k+1

L+N∑
j=0

(2k + 1)!

(L + k − j)!

× 1

(k + 1 − L + j)!
, (B3)

where N = k if 0 � k � L − 1 and N = L − 1 if L � k, we
get

In = −π
√

1 + 4β2
n

2

⎡
⎣L−1∑

k=0

k∑
m=−(k+1)

+
∞∑

k=L

L−1∑
m=−L

⎤
⎦

× (4k)! b2k+1
n

(2k)!26k+1(k − m)!(k + m + 1)!
. (B4)

In the first term in Eq. (B4), we replace the finite-k sum-
mation by an infinite-k summation plus a compensating term.
The infinite-k summation term is called In1, while the sum
of the compensating term and the second term in Eq. (B4) is
called In2. As such, In = In1 + In2, where

In1 = −π
√

1 + 4β2
n

2

∞∑
k=0

(4k)! b2k+1
n

(2k)!24k (2k + 1)!
. (B5)

In1 can be further simplified, using Eq. (B2), to the form

In1 = π
√

1 + 4β2
n

2
[
√

1 + bn −
√

1 − bn]

= −π [εn,max − εn,min]

2
. (B6)

In2 can be simplified, by noticing that the terms for m and
−m − 1 in the m summation are the same, and can be shown
equal to the second term in Eq. (18).

APPENDIX C: EVALUATION OF IAB
n0n0

The method of evaluation of the integral IAB
n0 n0

could follow
what we have used in Sec. II A for In0 n0

, which result is given
in Eq. (23). Here, however, we outline an alternate method
of evaluation that starts from the no-pole form in Eq. (26).
This alternate evaluation can be shown to produce the same
result, in Eq. (23), for the case of the LO-RKKY coupling J (1)

eff
in the L > 5 region. The method is based on the expectation,
according to the form of Eq. (26), that the most significant
contribution to IAB

n0 n0
comes from the linear dispersion relation

region (small-q region) of the gapless subband n = n0, while
larger-q region dies out rapidly due to the L-dependent oscil-
lations.

For n = n0 we have βn0 = 1
2 such that f AB

n0
(q) =

{cos(qL) − cos[q(L + 1)]}/q ≈ sin[q(L + 1/2)], and
εkn0

≈ q. Here, we have used the q � 1 and L12 = −L
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conditions. The equation for IAB
n0 n0

becomes

IAB
n0 n0

∼=
∫ ∞

0
dq

∫ ∞

0
dq′ sin[q(L + 1/2)] sin[q′(L + 1/2)]

q + q′

=
∫ ∞

0
dq

∫ ∞

0
dq′ sin[q(L + 1/2)] sin[q′(L + 1/2)]

∫ ∞

0
e−(q+q′ )τ dτ

= π

4(L + 1/2)
. (C1)
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