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Persistent spin textures and currents in wurtzite nanowire-based quantum structures
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We explore the spin and charge properties of electrons in wurtzite semiconductor nanowires where radial
and axial confinement leads to tubular or ring-shaped quantum structures. Accounting for spin-orbit interaction
induced by the wurtzite lattice as well as a radial potential gradient, we analytically derive the corresponding
low-dimensional Hamiltonians. It is demonstrated that the resulting tubular spin-orbit Hamiltonian allows us to
construct spin states that are persistent in time and robust against disorder. We find that these special scenarios
are characterized by distinctive features in the optical conductivity spectrum, which enable an unambiguous
experimental verification. In both types of quantum structures, we discuss the dependence of the occurring
persistent charge and spin currents on an axial magnetic field and Fermi energy which show clear fingerprints
of the electronic subband structure. Here, the spin-preserving symmetries become manifest in the vanishing of
certain spin current tensor components. Our analytic description relates the distinctive features of the optical
conductivity and persistent currents to band structure characteristics, which allows us to deduce spin-orbit
coefficients and other band parameters from measurements.
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I. INTRODUCTION

In semiconductor spintronics, it is a central objective to
exert precise and reliable control over the spin polarization
and lifetime. Both properties are essentially determined by
the spin-orbit coupling (SOC), which leads in inversion-
asymmetric systems to momentum-dependent spin rotations.
Although this precession is a useful feature as it allows us to
manipulate the spin orientation, the combination with random
scattering at edges or impurities generates spin decoherence,
a mechanism known as Dyakonov-Perel spin relaxation [1].

Advantageously, the SOC depends on the system config-
uration and can be engineered in a specific way that gives
rise to unique spin structures, which are exceptionally long-
lasting and robust against spin-independent scattering [2,3].
In the underlying symmetry, known as persistent spin helix
(PSH) symmetry, the spin rotation axis is pinned to a certain
crystal direction yielding persistent homogeneous or helical
spin textures. Such conserved spin states have been shown
to exist in planar and curved two-dimensional (2D) electron
and hole systems due to the interplay between the Rashba
and Dresselhaus SOC of the zinc-blende lattice, strain, and
curvature effects [4–10].

Another way to influence SOC and spin lifetime is
achieved by the reduction of the size as is the case in
quantum wires or nanowires. In the mesoscopic regime, the
boundary-induced motional narrowing of the spin precession
can considerably slow down the relaxation process [11–20].
At the same time, though, the corresponding long-lived spin
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textures can possess a very complex helical structure that is
difficult to access experimentally [20]. If the size reduction
structurally confines the carriers to one dimension (1D), the
momentum is fixed to a single axis, which avoids the spin
decoherence and produces extraordinarily long spin lifetimes
[21]. However, in the strict 1D limit, the high relevance
of many-body interactions and disorder presents additional
challenges for the utilization for spintronic devices [22–25].

Nanowires constitute a building block for future generation
spintronic and electronic devices with novel functionalities
and far-reaching applications [26–36]. Modern growth tech-
niques facilitate customization of the structural properties
such as morphology, crystal orientation, and even the crystal
structure [37–43]. In particular, the possibility to find conven-
tional zinc-blende compound semiconductors in the wurtzite
phase has attracted tremendous attention as it allows us to
fabricate narrow-gap materials with large SOC coefficients
but the distinct SOC structure of the wurtzite lattice. Since
the intrinsic SOC and related effects in wurtzite structures
are relatively unexplored, several recent studies were devoted
to this topic. For instance, band structure calculations were
performed in Refs. [44–51], while spin relaxation properties
were theoretically analyzed in Refs. [20,52]. Experimental
works investigated the SOC strength and spin relaxation using
and magnetotransport [53–55] and optical orientation mea-
surements [21,56,57].

The synthesis of nanowires in a bottom-up approach repre-
sents a new sophisticated and alternative route to dimension-
ally scale down semiconductor structures. Other than tradi-
tional low-dimensional electron gases or quantum wires, the
combination of different materials or the intrinsic Fermi-level
pinning allows us to build radial and axial heterostructures
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that form tubular or ringlike quantum systems [58–63]. The
resulting potential landscape has been shown to have a large
impact on the SOC [64–66]. At the same time, the special
transport topology provides an ideal platform for testing spin-
and phase-coherent phenomena [61–63,67].

In this paper, we focus on the tubular and ring-shaped
confinement geometry in wurtzite nanowires and explore the
possibility of finding spin-preserving symmetries. Taking into
account the intrinsic SOC of the wurtzite lattice and the ex-
trinsic SOC due to a radial potential asymmetry, we construct
effective SOC Hamiltonians for the quasi-2D quantum tube
and the quasi-1D quantum ring by projecting on the lowest
radial and axial modes. We demonstrate that the quantum
tube can host persistent spin textures in various situations if
SOC coefficients, confinement widths, and nanowire radius
are suitably matched. The required parameter configurations
are feasible for realistic system dimensions, energy scales, and
materials, which we show explicitly for generic wurtzite InAs
nanowires.

First, without intrinsic SOC and a certain relation between
extrinsic SOC strength and nanowire radius, we recover a
conserved spin quantity that was already predicted in curved
2D electron gases [6]. Second, we encounter a particularly
interesting case where the sole inclusion of the intrinsic SOC
generically allows persistent spin states irrespective of the
nanowire radius. Third, we show that for an appropriately
tuned confinement width the intrinsic SOC cancels, which
makes in principle the first scenario also accessible in wurtzite
nanowires. Unlike in the conventional planar 2D gases, the
PSH symmetry in the quantum tube becomes manifest in
a local spin orientation that is independent of the subband
index and the position. The radial confinement in conjunc-
tion with the azimuthal periodic boundary condition of the
tubular geometry allows a scaling down of the nanowires
while avoiding the aforementioned complications of boundary
scattering. Inspired by an earlier work [68], we show that
experimental evidence of this symmetry can be given by a
study of the optical conductivity spectrum. As a combined
effect of forbidden transitions due to vanishing velocity matrix
elements and the equidistance of certain energy branches,
the absorption spectrum contains only Dirac peaks, which
resembles the absence of SOC. From the discrete transition
frequencies, one can moreover infer SOC strengths and other
band structure parameters.

In the remainder of the paper, we discuss the occurrence
of spontaneously flowing spin and charge currents in a phase-
coherent environment when symmetries are broken [69–74].
In contrast to the space-inversion asymmetry which is intrin-
sically present in these systems, the time-reversal symmetry is
broken by imposing an axial magnetic field. In both quantum
tube and ring, the equilibrium currents are probed as a func-
tion of the Fermi energy and the magnetic flux, which exhibit
characteristics of the underlying band structure. While the
changes in the currents occur rapidly in the quantum ring, the
quantum tube shows smoother variations due to the continuity
of the energy branches. Interestingly, the critical energy and
flux values that initiate these sudden changes are identical in
the quantum tube and ring. These values should be measurable
and allow us to extract parameters of the electronic structure
even in the absence of the PSH symmetry. The presence of

persistent spin textures of the quantum tube becomes here
manifest in the vanishing of spin current tensor components,
where the first PSH case additionally yields flux-dependent
features. Implications of the electron-electron interaction and
impurity scattering should be naturally weaker in the quantum
tube than in the quantum ring due to a larger available phase
space, which makes it a good candidate for an experimental
investigation.

This work is structured as follows. We start in Sec. II
with a formulation of the SOC in cylindrical coordinates
and then derive an effective low-dimensional Hamiltonian for
the quantum tube and the quantum ring. We also compute
the corresponding eigensystem and point out the alterations
thereof in the presence of an axial magnetic field. In Sec. III,
we identify conditions for the spin-preserving symmetries and
analyze the local spin orientations. The persistent charge and
spin currents are discussed in Sec. IV. In the end, in Sec. V,
we demonstrate that special signatures of the PSH symmetries
in the quantum tube are visible in the optical conductivity
spectrum.

II. MODEL HAMILTONIAN

A. Bulk electrons in the wurtzite lattice

The bulk electrons in the �7c conduction band of a
wurtzite-type semiconductor with SOC are described by the
Hamiltonian

H = Hkin + Hint
so + Hext

so . (1)

The kinetic part of the Hamiltonian is axially symmetric and
reads

Hkin = h̄2k2
⊥

2m⊥
+ h̄2k2

z

2mz
, (2)

where k2
⊥ = k2

x + k2
y , mz denotes the effective electron mass

along the z axis, and m⊥ the according perpendicular com-
ponent. In this notation, the z axis corresponds to the [0001]
wurtzite crystal axis (c axis) and, at the same time, the
nanowire axis. The SOC yields the intrinsic (int) and extrinsic
(ext) contributions [20,46,48,75,76]

Hint
so = [

λint
1 + λint

3

(
bk2

z − k2
⊥

)]
(kyσx − kxσy), (3)

Hext
so = λext

1 E · (σ × k), (4)

with the material-specific parameters λint
1,3, λ

ext
1 , and b, and

the Pauli matrices σx,y,z. The first expression, Eq. (3), results
from the lack of inversion symmetry in the wurtzite lattice.
The second expression, Eq. (4), arises from local potential
asymmetries characterized by an electric field E and can be
externally controlled, e.g., by gating or band gap engineering.
In the following, we assume that the electric field has the form
E = Er r̂, where r̂ is the radial unit vector in the cross-sectional
(xy) plane. This type of field can, for instance, be a result of
Fermi level surface pinning (here typically Er < 0), different
material compositions in, e.g., core/shell structures, or due to
a wrap-around gate [64,77].
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B. Bulk model in the cylindrical coordinate representation

Under the assumption that the nanowires are cylindrical,
it is practical to perform a coordinate transformation of the
bulk Hamiltonian. The Cartesian and cylindrical coordinates
are related through the equations

r =
√

x2 + y2, φ = arctan
( y

x

)
, (5)

where the inverse tangent is suitably defined to take the
correct quadrant of (x, y) into account. Correspondingly, the
wave vector k = (kx, ky, kz )� and the vector of Pauli matrices
σ = (σx, σy, σz )� are written as

k = r̂ kr + φ̂ kφ + ẑ kz, (6)

σ = r̂ σr + φ̂ σφ + ẑ σz, (7)

with kr = −i∂r , kφ = − i
r ∂φ , kz = −i∂z, the orthonormal unit

vectors in the Cartesian basis

r̂ =
⎛
⎝cos(φ)

sin(φ)
0

⎞
⎠, φ̂ =

⎛
⎝− sin(φ)

cos(φ)
0

⎞
⎠, ẑ =

⎛
⎝0

0
1

⎞
⎠, (8)

and the polar Pauli Matrices

σr =
(

0 e−iφ

eiφ 0

)
, σφ =

(
0 −ie−iφ

ieiφ 0

)
. (9)

We identify the operator Lz = h̄ lz with lz = r kφ as the z
component of the orbital angular momentum operator L.
An important consequence of the cylindrical representation
is the occurrence of both position and momentum operators
in the Hamiltonian. As a result, the commutativity of the
wave vector components with each other (in the absence of
magnetic fields) as well as with the Pauli matrices as seen in
the Cartesian coordinates is no longer given in cylindrical co-
ordinates. Aside from that, the radial wave vector component
is non-Hermitian, i.e., k†r = kr − i

r .
The utilization of above definitions yields for the kinetic

part

Hkin = h̄2

2m⊥

(
k2

r − i

r
kr + k2

φ

)
+ h̄2k2

z

2mz
, (10)

and for the SOC contributions

Hint
so = σr

[
λint

1 kφ + λint
3

(
i

r
kφkr − kφk2

r − k3
φ + b kφk2

z

)]

+ σφ

[
− λint

1 kr + λint
3

(
k3

r + k2
φkr + 2i

r
k2
φ

− i

r
k2

r + 1

r2
kr − b krk2

z

)]
, (11)

and

Hext
so = λext

1 Er (σφkz − σzkφ ). (12)

Notably, the intrinsic SOC is axially symmetric in wurtzite
in contrast to the zinc-blende lattice [66,78]. Also, note that

0

R

y

L/2

−L/2

z ≡ c

x

〈r|R0〉V (r)

FIG. 1. Illustration of the geometry of the quantum tube that is
embedded in a nanowire of length L grown along the [0001] wurtzite
crystal axis (c axis). The lowest radial mode 〈r|R0〉 in a harmonic
potential V (r) ∝ (r − R)2 is centered at the radial distance r = R
from the nanowire z(c) axis.

in the kinetic part the solitary terms k2
r and − i

r kr are non-
Hermitian but the sum of both is.

C. Quantum tube Hamiltonian

Hereafter, we derive an effective Hamiltonian to describe a
quasi-2D tubular system, also referred to as a quantum tube. It
is constructed by radially confining the electron wave function
and projecting on the bound state which is lowest in energy.
The procedure is equivalent to our recent derivation of the
tubular Hamiltonian for zinc-blende nanowires [66,79]. This
method has traditionally been employed to describe planar
quantum rings in the presence of SOC and perpendicular
magnetic fields [71,80,81].

Figure 1 provides an illustration of the quantum tube ge-
ometry, the radial confinement potential, and the lowest radial
mode. We consider a radially harmonic potential V (r) =
V (r) = 1

2 m⊥ω̃2(r − R)2, which confines the electron wave
function to a narrow region around the cylinder radius R.
The utilization of a harmonic potential is not essential but
convenient since most of the matrix elements take a simple
form. Also, the continuity of the potential avoids spurious
solutions that would arise in a hard-wall confinement due to
the cubic SOC terms [82,83]. The potential is assumed to be
sufficiently steep that the electrons populate only the lowest
radial eigenmode |R0〉. If we, furthermore, demand that the
radial extent of the wave function be much smaller than the
radius R, we can neglect the term 1

r kr in comparison with k2
r

in the kinetic Hamiltonian. In this case, the lowest radial mode
can be well approximated by

〈r|R0〉 =
(

γ√
πR

)1/2

exp

[
−γ 2

2
(r − R)2

]
, (13)

where γ = √
m⊥ω̃/h̄ and γ R � 1.

The quantum tube Hamiltonian is now derived by project-
ing on the lowest radial mode, i.e., H2D ≡ 〈R0|H|R0〉. The
projections of the relevant products of radial position and
wave vector operators, r and kr , are given in Appendix B [84].
Making use of the precondition of a large radius but a small
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confinement width and the assumption that SOC is a small
correction to the kinetic energy, we retain terms on the order
of O(R−1) in the SOC Hamiltonian. Disregarding a constant
energy shift, the kinetic part reads

H2D
kin = h̄2l2

z

2m⊥R2
+ h̄2k2

z

2mz
, (14)

and the expressions for the SOC Hamiltonians become partic-
ularly simple:

Hint,2D
so = ξ

(
σr

lz
R

− σφ

i

2R

)
= ξ

2R
{lz, σr}, (15)

Hext,2D
so = α

(
σφkz − σz

lz
R

)
, (16)

where ξ = λint
1 + λint

3 (b k2
z − γ 2/2) and α = λext

1 Er .
Without the intrinsic SOC due to the wurtzite lattice, the

result is equivalent to the Hamiltonian for a rolled-up 2D
electron gas [6]. The terms ∝ k2

z cause a rescaling of the SOC
parameter ξ similarly to the case in planar 2D systems [10].
At zero temperature, this renormalization is determined by the
Fermi wave vector kF, which is in the quantum tube subband
dependent, in contrast to the conventional 2D electron gases.
However, for systems with dominant linear SOC and/or at
small electron densities, this subband dependence can safely
be ignored. In Appendix D, we give a general estimate for
realistic parameter configurations and discuss the example of
a wurtzite InAs nanowire. For simplicity, we will assume that
the kz dependence is negligible and treat ξ as a constant in
the following. Remarkably, in this situation, it is in principle
also possible to engineer the radial confinement such that
λint

1 ≈ λint
3 γ 2/2 and the prefactor ξ , and therewith the intrinsic

SOC, vanishes.

D. Quantum ring Hamiltonian

To construct the quantum ring from the tubular Hamilto-
nian, we consider additional confinement along the z direc-
tion. We replace all occurring operators kz with their expecta-
tion value with respect to the lowest bound state |z0〉. Noting
that 〈z0|kz|z0〉 = 0, the Hamiltonian reduces to

H1D
kin = h̄2l2

z

2m⊥R2
, (17)

Hint,1D
so = ξ̃

(
σr

lz
R

− σφ

i

2R

)
, (18)

Hext,1D
so = −ασz

lz
R

, (19)

where ξ̃ = λint
1 + λint

3 (b 〈z0|k2
z |z0〉 − γ 2/2) and we dropped a

constant energy shift. While for the quantum tube these terms
lead to an electron-density dependence of ξ , in quantum rings
the rescaling depends on the longitudinal confinement along
the z axis. It is useful to notice that the Hamiltonian of the
quantum ring corresponds to the quantum tube if one sets
kz = 0 (apart from the definition of the prefactors ξ and ξ̃ ).
Therefore, we can often view the results for the quantum ring
as a special case of the tubular system where kz vanishes.

E. Eigensystem of the quantum tube and ring

The Hamiltonian for the quantum tube commutes with the
z component of the total angular momentum operator Jz =
Lz + Sz with Sz = h̄

2 σz. Therefore, we can label the eigenen-
ergies and eigenvectors with an index j ∈ {± 1

2 ,± 3
2 , . . . } cor-

responding to the eigenvalue h̄ j of Jz. The eigenvalues read
as

Ej,±(kz ) = ε0

(
R2κ2k2

z + j2 + 1

4

)
+ α

2R
± f j (kz ) (20)

with

f j (kz ) =
√√√√ j2

[(
ε0 + α

R

)2
+

(
ξ

R

)2
]

+ α2κ2k2
z , (21)

where ε0 = h̄2/(2m⊥R2) and the parameter κ = m⊥/mz ac-
counts for effective mass anisotropies. The respective normal-
ized eigenvectors can be written as

ψ j,±(kz ) = 1√
N

eikzz

( [ jξ
R − iακkz

]
ei( j− 1

2 )φ{
j
[
ε0 + α

R

] ± f j (kz )
}
ei( j+ 1

2 )φ

)
, (22)

where Jzψ j,± = h̄ jψ j,± and with an appropriate normaliza-
tion constant N ≡ 〈ψ j,±(kz )|ψ j,±(kz )〉. Both states ψ j,+ and
ψ j,− have the same total angular momentum quantum number
but different energy as they originate from different orbital
angular momenta and spin quantum numbers. In accordance
with time-reversal symmetry, the eigenenergies are degenerate
with respect to the inversion of j and kz. An additional de-
generacy appears if f j (kz ) = 0, which happens for ξ = kz = 0
and α = −ε0R. The eigenenergies for the lowest subbands
are shown in Fig. 2(a, i–iv) for different values of the SOC
strengths.

There exist cases in which the eigenvectors can be further
factorized into an orbital and a spinor part where the latter no
longer depends on the magnitude of the wave vector. In the
quantum ring, this is trivially given since the wave vector kz

is essentially absent in the SOC terms. On the contrary, in the
quantum tube, there are two peculiar situations in which this
can be realized. (i) For ξ = 0 and α = −ε0R, the eigenvectors
can be factorized as

ψ j,±(kz ) ∝ eikzzei jφχ±
sgn(kz ), (23)

where the spinors depend only on the sign of kz, i.e.,

χ±
sgn(kz ) =

(
ie− i

2 φ

±sgn(kz )e
i
2 φ

)
. (24)

(ii) Similarly, for α = 0, the corresponding eigenspinor de-
pends only on the sign of j and reads as

χ±
sgn( j) =

(
ξ

R e− i
2 φ{[

ε0 + α
R

] ± sgn( j) f1(kz )
}
e

i
2 φ

)
, (25)

to be evaluated at α = 0, which is, thus, independent of kz.
[Equation (25) also represents the eigenspinor for the quantum
ring when setting kz = 0 and α can be arbitrary.] In each of
these cases, the spinor has the property χ±

sgn(kz ) = χ∓
sgn(−kz ) or

χ±
sgn( j) = χ∓

sgn(− j), respectively. As it becomes clear later in
Sec. III A, in both situations the corresponding spin states
constitute a constant of motion. The disentanglement of the
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FIG. 2. The first graphics row (a, i–iv) shows the energy dispersion Ej,±(kz ), Eq. (20), of the lowest subbands in the quantum tube for
different SOC strengths, where we selected in column (a–b, i) ξ = 0.7ε0R, α = 0, (a–b, ii) ξ = 0.7ε0R, α = 0.3ε0R, (a–b, iii) ξ = 0, α =
0.4ε0R, and (a–b, iv) ξ = 0, α = −ε0R. The horizontal grid lines label the eigenenergies at kz = 0. The vertical grid lines mark the subband-
dependent Fermi wave vectors at given Fermi energy, here EF = 2.5ε0. The second graphics row (b, i–iv) illustrates the azimuthal spin texture in
the nanowire with respect to the subband-dependent Fermi wave vector, where the increasing circle diameter (from bottom to top) corresponds
to the increasing Fermi wave vector. The blue (black) arrows represent the corresponding spin orientations 〈σ〉 j,± (kz ), Eq. (34), for positive
(negative) j and kz. Panels (a–b, iv) and (a–b, i) correspond to the PSH cases (i) and (ii) [Eqs. (30) and (31)], respectively.

spin and orbital part in the eigenfunctions is one essential
feature thereof. Another important observation is that in the
above-mentioned cases (i) and (ii) the energy gap between
certain subbands becomes independent of the wave vector
kz, which is generically valid in the absence of SOC. We
address this in more detail in Sec. V, where we demonstrate
that this property leads to distinctive features in the optical
conductivity spectrum.

F. Ramifications of an axial magnetic field

We can account for the effect of a homogeneous mag-
netic field on the orbital motion of the electrons by minimal
coupling k → k + e

h̄ A to a vector potential A. For a mag-
netic field along the symmetry axis, i.e., B = Bẑ, the vector
potential can be chosen as A = (BR/2)φ̂. In the effective
Hamiltonian for the quantum tube and ring, this yields a
replacement of the (unitless) angular momentum operator
lz → lz + �/�0, where � = BR2π denotes the magnetic flux
and �0 = h/e the flux quantum. For large magnetic fields, the
Zeeman term should be also taken into account. Neglecting
the Zeeman term, the eigensystem is equivalent to the one
defined in Sec. II E when replacing j → j + �/�0 apart
from the exponent in the eigenvectors. Correspondingly, the
energies are degenerate with respect to the substitution j +
�/�0 ↔ − j − �/�0. The implications of the axial magnetic
field are discussed in Sec. IV in view of spontaneously emerg-
ing persistent charge and spin currents in the quantum tube
and ring.

III. SPIN PROPERTIES OF THE QUANTUM
TUBE AND RING

A. Persistent spin states

The time evolution of a general spin quantity � follows
the Heisenberg equation d�/dt = i

h̄ [H, �]. In the case that
the commutator vanishes, � describes a constant of motion.

1. Quantum tube

Employing the model Hamiltonian for the quasi-2D tubular
system as defined in Sec. II C, we find the following coupled
differential equations for the Pauli matrices:

dσr (t )

dt
= i

h̄

⎛
⎜⎜⎜⎜⎝

σ0

σr (t )

σφ (t )

σz(t )

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

0

ε0 + α/R

−2i(ε0 + α/R)lz(t )

−2iακkz

⎞
⎟⎟⎟⎟⎠, (26)

dσφ (t )

dt
= i

h̄

⎛
⎜⎜⎜⎜⎝

σ0

σr (t )

σφ (t )

σz(t )

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

iξ/R

2i(ε0 + α/R)lz(t )

ε0 + α/R

2i(ξ/R)lz(t )

⎞
⎟⎟⎟⎟⎠, (27)

dσz(t )

dt
= i

h̄

⎛
⎜⎜⎜⎜⎝

σ0

σr (t )

σφ (t )

σz(t )

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

0

2iακkz + ξ/R

−2i(ξ/R)lz(t )

0

⎞
⎟⎟⎟⎟⎠, (28)
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and the z component of the orbital angular momentum
operator:

dlz(t )

dt
= i

h̄

⎛
⎜⎝

σ0

σr (t )
σφ (t )
σz(t )

⎞
⎟⎠ ·

⎛
⎜⎝

0
−iακkz − ξ/(2R)

i(ξ/R)lz(t )
0

⎞
⎟⎠. (29)

Here, all operators are represented in the Heisenberg picture,
where, exclusively, the Pauli matrices σr,φ,z and the orbital
angular momentum operator lz are time dependent.

Selecting a general spin operator �, we can identify two
possibilities to realize a PSH symmetry, which are

(i): α = − ε0R and ξ = 0, (30)

(ii): α = 0 and ξ ∈ R. (31)

We will use these labels (i) and (ii) consistently throughout
the entire paper. (i) For α = −ε0R and ξ = 0 the tangential
component is conserved, i.e., � = σφ . This solution has al-
ready been discussed in Ref. [6] for curved 2D electron gases
with Rashba SOC. Notably, this situation can also be achieved
in wurtzite wires, where an appropriate radial confinement
yields ξ = 0 and the electron density dependence of ξ can
be neglected. (ii) For pure intrinsic SOC, i.e., α = 0, a new
conserved spin quantity can be realized. It has the form

� ∝ ξ σr − ε0R σz, (32)

and the corresponding spin state has a radial as well as an axial
component. In Appendix D, we demonstrate in detail that
these persistent spin textures are accessible in typical wurtzite
nanowires in a wide parameter regime and discuss the specific
example of a wurtzite-phase InAs nanowire.

2. Quantum ring

In the case of a quantum ring, i.e., setting in Eqs. (26)–(28)
kz → 0 and ξ → ξ̃ , the result is more general. We find that
the spin quantity

� ∝ ξ̃ σr − (ε0R + α)σz (33)

is conserved in the presence of both SOC Hamiltonians. The
situation is similar to that in a straight 1D quantum wire where
the SOC-induced effective magnetic field is pinned to a single
axis which avoids spin randomization due to scattering [12].
Here, the confinement potential fixes the momentum to the
azimuthal direction while respecting the axial symmetry of
the SOC Hamiltonian causing position-independent local spin
orientations. It is interesting, however, that the conserved spin
quantity can in principle be tuned from � ∝ σr for α = −ε0R
to � ∝ σz for ξ̃ = 0. A special situation occurs when both
relations α = −ε0R and ξ̃ = 0 hold simultaneously. In this
case, an arbitrarily oriented spin quantity does not precess
because the local spin rotations due to the ring curvature and
the extrinsic SOC cancel each other exactly.

B. Local spin orientation

The local spin expectation values 〈s〉 j,± (kz ) of an eigen-
state ψ j,±(kz ) are given by s j,±(kz ) = h̄

2 〈σ〉 j,± (kz ), where the
vector 〈σ〉 j,± (kz ) = 〈ψ j,±(kz )|σ|ψ j,±(kz )〉 describes the local
spin orientation. The global spin expectation value 〈S〉 j,± (kz )

can be obtained by averaging over the periphery φ, i.e.,
〈S〉 j,± (kz ) = ∫ 2π

0 dφ 〈s〉 j,± (kz )/(2π ). Due to the axial sym-
metry of the SOC, the radial and tangential components of the
global spin expectation value vanish and the z component is
identical to the local spin expectation value.

1. Quantum tube

For the tubular system, the local spin orientation reads as

〈σ〉 j,± (kz ) = ± 1

f j (kz )

(
jξ

R
, ακkz, − j

[
ε0 + α

R

])�
, (34)

in the cylindrical basis {r̂, φ̂, ẑ}. Notice that in the special
case where f j (kz ) = 0 the eigenstates are degenerate and
the local spin orientation is not well defined. Due to time-
reversal symmetry, we have the general relation 〈σ〉 j,± (kz ) =
−〈σ〉− j,± (−kz ). Also, for fixed j and kz the states 〈σ〉 j,+ (kz )
and 〈σ〉 j,− (kz ) are antiparallel but the corresponding eigenen-
ergies differ by 2 f j (kz ). Remarkably, all components can
be tuned by adjusting the system parameters ξ , α, and R,
which account for SOC strengths and curvature of the tubular
conductive channel. As typically many subbands are occupied
by the electrons, the subband-dependent spin orientation at a
given Fermi energy (dependence on the quantum number j
and kz) in conjunction with disorder scattering causes spin de-
phasing. Subband-independent spin orientation is, therefore,
one characteristic feature of spin-preserving symmetries. We
discuss certain special scenarios in the following.

(i) Without intrinsic SOC, i.e., ξ = 0, and α = −ε0R the
spin orientation has only a tangential component and is deter-
mined by the sign of kz:

〈σ〉 j,± (kz ) = ∓ sgn(kz )(0, 1, 0)�. (35)

(ii) With only intrinsic SOC, i.e., α = 0, the tangential com-
ponent vanishes and the orientation is independent of kz and
the magnitude of j:

〈σ〉 j,± = ± sgn( j)√
ε2

0 R2 + ξ 2
(ξ, 0,−ε0R)�. (36)

(iii) For α = −ε0R, the z component vanishes. (iv) Without
intrinsic SOC, i.e., ξ = 0, the radial component vanishes,
which was also seen in Ref. [64].

The cases (i) and (ii) correspond to the PSH symmetries
[Eqs. (30) and (31)], where at a fixed Fermi energy the spin
states in every subband have the same spin orientation. In
scenario (ii), the kz dependence of ξ yields slight fluctuations
of the local spin orientation. Yet, in Appendix D we demon-
strate that in realistic systems, with the aid of a prototypic
wurtzite InAs nanowire, wide parameter regimes exist where
these fluctuations are negligible. The eigenenergies for the
lowest-lying subbands together with the spin orientation of
the states at a given Fermi energy are shown in Fig. 2 for
different values of SOC strengths. Panels (a–b, iv) and (a–b, i)
correspond to the PSH cases (i) and (ii), respectively.

2. Quantum ring

In the quantum ring, the local spin orientation is indepen-
dent of the magnitude of j and the tangential component is
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absent. It generally corresponds to a persistent spin state and
reads as

〈σ〉 j,± = ± sgn( j)√
(ε0R + α)2 + ξ̃ 2

(ξ̃ , 0,−[ε0R + α])�. (37)

For α = −ε0R or ξ̃ = 0, the spin orientation has either only
a radial or only an axial component, respectively. If both
relations are fulfilled, the spin orientation is not well defined
due to degeneracy.

IV. PERSISTENT CHARGE AND SPIN CURRENTS

The special geometries of the quantum tube and the quan-
tum ring imply the presence of spontaneously emerging equi-
librium currents if the inversion symmetry is broken [69–74].
In particular, the breaking of time-reversal symmetry gives
rise to persistent charge currents, whereas the breaking of
space-inversion symmetry leads to persistent spin currents
(and therewith associated magnetization currents). As these
currents exhibit characteristics of the electronic structure, we
investigate the possibility to obtain measurable signatures
of the SOC strength and fingerprints of the spin-preserving
symmetries.

A. Fundamental definitions

The components of the charge (c) and spin (s) current
density operators jc/s are defined as [71,73]

jc
n(r′) = − e

2
{vn, δ(r − r′)}, (38)

js
n,q(r′) = h̄

4
{vn, σqδ(r − r′)}, (39)

where e > 0 is the elementary charge, vn is the nth component
of the velocity operator v = i

h̄ [H, r], and the anticommutator
ensures the result being real valued. For a given normalized
state �(r) the current density expectation values become〈

jc
n(r)

〉
�

= −e �†(r) vn�(r), (40)

〈
js
n,q(r)

〉
�

= h̄

4
�†(r){vn, σq}�(r). (41)

The state-dependent charge or spin current through a cross
section A (given by integration over the area element dA) is
obtained via [70](

Ic/s
n,(q)

)
�

=
∫
A

dAn
〈
jc/s
n,(q)(r)

〉
�

. (42)

To obtain the total current Ic/s
n,(q), we need to sum the respective

state-dependent counterpart over all occupied states. Here, we
can encounter two different physical situations in experiment
[74]. (I) The quantum structure is isolated and contains a
fixed particle number. As a result, the currents are distinct for
even or odd particle numbers [70]. The flux-dependent jumps
appear at the energy-level crossings with the same spin ori-
entation. (II) The quantum structure is coupled to a reservoir,
which yields a constant chemical potential (or Fermi energy at
zero temperature). Here, the particle number is irrelevant and
the flux-dependent jumps appear at the intersections of energy
levels with the chemical potential. In this work, we focus on
the situation (II).

B. Persistent currents in the quantum tube and ring

In the tubular system, the azimuthal and axial velocity
components are given by

vφ = 1

h̄
(2ε0Rlzσ0 + ξσr − ασz ), (43)

vz = 1

h̄
(2ε0R2κkzσ0 + ασφ ). (44)

For an eigenstate ψ j,±(kz ), we obtain for the expectation value
of the charge current densities

〈
jc
z

〉
j,± = −eκkzR2

V h̄

[
2ε0 ± α2

R2 f j (kz )

]
, (45)

〈
jc
φ

〉
j,± = −e jR

V h̄

[
2ε0 ±

(
ε0 + α

R

)2 + (
ξ

R

)2

f j (kz )

]
, (46)

and the spin current densities

〈
js
z,q

〉
j,± = ε0κkzR

V f j (kz )
×

⎧⎪⎨
⎪⎩

± jξ, q = r,

α
(

f j (kz )
2ε0κkzR ± κkzR

)
, q = φ,

∓ j(ε0R + α), q = z,

(47)

〈
js
φ,q

〉
j,± = ε0κkzR

V f j (kz )
×

⎧⎪⎨
⎪⎩

ξg j,±(kz ), q = r,

±α, q = φ,

−(ε0R + α)g j,±(kz ), q = z,

(48)

with

g j,±(kz ) = f j (kz ) ± 2 j2ε0

2ε0κkzR
, (49)

the effective volume of the quantum tube V = 2πRL, and
we suppressed the argument (kz ) in the current density for
compactness. The axial and azimuthal spin current density
tensor components 〈 js

z,q〉 j,± and 〈 js
φ,q〉 j,± for q ∈ {r, φ, z}

show analogous behavior to the local spin orientation with
respect to the SOC parameters, meaning that the r com-
ponent vanishes for ξ = 0, the φ component vanishes for
α = 0, and the z component vanishes for α = −ε0R. The
inclusion of an axial magnetic field requires the substitution
j → j + �/�0 in the expressions for the current densities
(cf. Sec. II F).

At zero temperature, the total equilibrium current Ic/s
n,(q) is

obtained by summing over all states below the Fermi energy,
that is,

Ic/s
n,(q) = AnL

2π

∑
j,±

∫
dkz�[EF − Ej,±(kz )]

〈
jc/s
n,(q)

〉
j,± , (50)

where � denotes the Heaviside function and we have Aφ = L
for an azimuthal current and Az = 2πR for an axial current.
The kz mirror symmetry of the eigenenergies implies that only
current density components that are even in kz remain, i.e.,
〈 jc

φ〉
j,± for the charge current density and 〈 js

z,φ〉
j,±, 〈 js

φ,r〉 j,±,
and 〈 js

φ,z〉 j,± for the spin current density. The same holds for
the j summation unless the axial magnetic field is present.
Hence, if the magnetic field is zero, the total equilibrium
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charge current vanishes in agreement with time-reversal sym-
metry. On the contrary, the spin current is nonzero even in the
absence of the magnetic field as it results from space-inversion
symmetry breaking. The contributing terms are the same as
without magnetic field.

In the case of a quantum ring, the above expressions for
the azimuthal current densities remain valid if we set kz = 0
and identify the effective volume as the circumference of
the ring, i.e., V = 2πR. The total azimuthal current at zero
temperature is given by Ic/s

φ,(q) = ∑
j,±(Ic/s

φ,(q) ) j,±�[EF − Ej,±]

where (Ic/s
φ,(q) ) j,± = 〈 jc/s

φ,(q)〉 j,±. Equivalently, for a nonvanish-

ing axial magnetic field, we can also utilize the formulas
[70]

(
Ic
φ

)
j,± = −∂Ej,±

∂�
, (51)

(
Is
φ,q

)
j,± = h̄

2e

∂Ej,±
∂�

〈σq〉 j,± , (52)

with the eigenenergies and local spin orientations of the
quantum ring (cf. Secs. II E and III B).

C. Fermi energy and magnetic flux dependence
of the persistent currents

We demonstrate now that both physical systems, quan-
tum tube and quantum ring, show characteristic features of
the band structure in the current dependence on the Fermi
energy as well as the magnetic flux. While the changes in
the currents occur rapidly for the ring, the continuous en-
ergy branches of the quantum tube yield smoother variations.
The fingerprints result from the underlying band structure
where, interestingly, the critical energies or magnetic fluxes
are identical in the tube and the ring. Apparently, in the
quantum tube, the characteristics are determined by the band
structure at kz = 0, which coincides with the (discrete) energy
levels of the quantum ring. These commonalities allow us
to point out general relations that hold for both systems at
the same time. For simplification, we assume ξ = ξ̃ in the
following.

We start by discussing the case without a magnetic field,
where only spin currents remain. In such an experimental
situation, the modulation of physical parameters is focused
on SOC coefficients and Fermi energy, where the latter con-
forms to the carrier density. In Fig. 3, we demonstrate the
dependence of the spin currents on the Fermi energy for the
quantum ring (a) and the quantum tube [(b), (c)]. For the latter,
we ignored the small dependence of ξ on the Fermi energy.
In Fig. 3(d), the respective energy dispersion for the quantum
tube is shown, where the vertical grid lines emphasize the sub-
band minima Ej,±(kz = 0) [cf. Eq. (20)]. Kinks appear when
the Fermi energy surpasses an eigenenergy value Ej,±(kz = 0)
of the quantum tube, or, equivalently, an energy level of the
quantum ring.

Now, we turn to the persistent charge and spin current
dependence on the magnetic flux. An example is given in
Fig. 4 together with the corresponding flux dependence of
the energy spectrum at kz = 0. Primarily, the structure of the
currents is �0 periodic. In the energy spectrum, Fig. 4(f), we
find this periodicity in the neighboring branches with the same

FIG. 3. Fermi energy dependence of the axial [(a), (b)] and
azimuthal (c) persistent spin current at zero magnetic field and
temperature for α = 0.5ε0R, ξ = ξ̃ = 0.7ε0R, and κ = 1. Panel
(a) corresponds to the quantum ring, (b) and (c) to the quantum
tube. In panel (d) the respective energy dispersion for the quantum
tube is displayed where the vertical grid lines emphasize the subband
minima Ej,±(kz = 0).

slope. Within one period we recognize several substructures,
where the energy levels intersect with the Fermi energy. The
jumps or kinks depend, on the one hand, on the magnitude of
the Fermi energy, on the other hand, on the SOC strength. For
a given Fermi energy EF they occur at

�

�0
= u + 1

2
±

√
EF

ε0
+ α2 + ξ 2

4ε2
0 R2

± 1

2

√(
1 + α

ε0R

)2

+
(

ξ

ε0R

)2

, (53)
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FIG. 4. Magnetic flux dependence of the persistent charge [(b),
(e)] and spin [(a), (c), (d)] currents for α = −0.1ε0R, ξ = ξ̃ =
0.7ε0R, κ = 1, and EF = 2.5ε0 at zero temperature, where I0 =
ε0/�0. Panels [(a), (b)] correspond to the quantum ring, [(c)–(e)]
to the quantum tube. Panel (f) shows the eigenenergies Ej,±(�,

kz = 0).

with any combination of the occurring signs and u ∈ Z
accounting for the �0 periodicity. In the special situation
that ξ = 0 and α = −ε0R [PSH case (i)], the eigenenergies
Ej,±(kz = 0) are degenerate and the critical flux values as-
sociated with the different signs of the last term in Eq. (53)
become identical.

With regard to the spin currents, we find that generally only
the tensor components Is

φ,r, Is
φ,z, and Is

z,φ are allowed. Apart
from this, we obtain the following special cases depending on
the SOC coefficients holding for both quantum structures with
or without magnetic flux if applicable. (i) For ξ = 0 and α =
−ε0R all spin currents vanish. (ii) For α = 0, the φ component
is zero, i.e., Is

z,φ = 0. (iii) For α = −ε0R, the z component is
zero, i.e., Is

φ,z = 0. (iv) For ξ = 0, the r component is zero,
i.e., Is

φ,r = 0. [Notice that (i) and (ii) correspond to the PSH
case in the quantum tube.]

We conclude that the sudden changes in the persistent
currents with respect to the modulation of the Fermi energy
or the magnetic flux are directly related to characteristics of
the electronic band structure. These signatures are visible in
the quantum ring as well as the quantum tube and allow
us to extract band parameters such as SOC strengths. The
PSH symmetries (i) and (ii) of the quantum tube become
manifest in the vanishing of spin current tensor components.
The PSH case (i) exhibits also flux-dependent features due to
the additional band degeneracy at vanishing wave vectors.

V. SIGNATURES OF SPIN-PRESERVING SYMMETRIES
IN THE OPTICAL CONDUCTIVITY

The realization of persistent spin states becomes manifest
in outstanding features in quantum transport such as the
crossover from weak anti- to weak localization [85], the ab-
sence of the Zitterbewegung [86], the cancellation of plasmon
damping [87], or the vanishing of the spin Hall conductivity
[88,89]. We explore here another option to detect signatures
of the spin-preserving symmetries, namely, in the optical
conductivity spectrum. This idea is motivated by Ref. [68],
where it was demonstrated for 2D electrons with Rashba and
linear Dresselhaus SOC that in the case of a PSH symmetry
the longitudinal interband light absorption vanishes.

A. Kubo formula for the longitudinal optical conductivity
in the quantum tube

The application of a time-dependent weak electric
field δE (t ) generates a contribution δ j(t ) to the charge
current density. Within linear response theory, the
frequency-dependent optical conductivity tensor σμν (ω)
relates the Fourier-transformed AC quantities [current density
δ jμ(ω) and electric field δEν (ω)] via the linear relation
δ jμ(ω) = σμν (ω) δEν (ω).

The Kubo formula for a generic conductivity tensor σμν

as linear response to a spatially homogeneous AC electric
field δE (t ) = limη→0+ δE (ω) exp[−i(ω + iη)t] is expressed
in terms of the set of single-particle eigenstates {|n〉}. In the
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frequency domain it reads as [79,90]

σμν (ω) = ih̄e2

V lim
η→0+

∑
n,m

〈n|vμ|m〉 〈m|vν |n〉
h̄ω + εn − εm + iη

f (εn) − f (εm)

εm − εn
,

(54)

with the volume V , the components of the velocity operator v,
and the single-particle eigenenergies εn. The function f (εn) =
{1 + exp[β(εn − μ̃)]}−1, where β = 1/(kBT ), represents the
Fermi-Dirac distribution with the Boltzmann constant kB,
the temperature T , and the chemical potential μ̃. Here, one
usually distinguishes an intraband (n = l) contribution, which
determines the DC Drude conductivity, and an interband (n �=
l) contribution, which determines the optical absorption at fi-
nite frequencies. The effect of disorder can be incorporated by
replacing η → h̄/(2τp) with the finite momentum relaxation
time τp. We are interested in the dissipative part, which is
given by the real part of the conductivity tensor Re[σμν (ω)].

Although the optical conductivity has been studied in
numerous different contexts, there exist only few studies that
focus on nanowires. For instance, Ref. [91] studies the effect
of size quantization on the optical conductivity in metallic
wires and Refs. [92,93] discuss the impact of the interplay
between a magnetic field and Rashba SOC on the optical
properties in 1D or quasi-1D wires. Here, we neglect magnetic
field effects and focus on the emergence of features in the
optical conductivity that arise from the PSH symmetry in
the tubular nanowires. These are described by the quasi-2D
quantum tube Hamiltonian with the eigenenergies Ej,±(kz )
and corresponding eigenstates ψ j,±(kz ) (cf. Sec. II E).

Considering an AC-biased nanowire, the AC electric field
δEz(t ) along the nanowire z axis leads to a dissipative AC
charge current density δ jz(t ) described by the longitudi-
nal tensor component Re[σzz(ω)] in the clean limit, i.e.,
τp → ∞, as

Re[σzz(ω)] = σ ′ h̄ sinh(β h̄ω/2)

2Rω

∑
j, j′,λ,λ′

∫
dkz

| 〈ψ j,λ(kz )|vz|ψ j′,λ′ (kz )〉 |2 δ[h̄ω − Ej′,λ′ (kz ) + Ej,λ(kz )]

cosh{β[Ej,λ(kz ) + Ej′,λ′ (kz ) − 2μ̃]/2} + cosh(β h̄ω/2)
, (55)

where σ ′ = e2/h. In this equation, the sum is to be
taken over all subbands with quantum numbers j, j′ ∈
{±1/2,±3/2, . . .} and λ, λ′ ∈ {±}. In the presence of disor-
der, the δ distribution is substituted by a Lorentzian of finite
widths, i.e., δ(E ) → δτ (E ) = Eτ [2π (E2 + E2

τ /4)]−1 with the
disorder energy Eτ = h̄/τp.

B. Distinctive features of the spin conservation in the optical
conductivity spectrum

The disappearance of the longitudinal optical conductivity
in planar zinc-blende 2D electron gases as shown in Ref. [68]
is based on the fact that the corresponding interband velocity
matrix elements vanish in the case of PSH symmetry. Simi-
larly, the integrand in Eq. (55) involves matrix elements of the
velocity operator vz, given in Eq. (44), in the eigenbasis of
the quantum tube Hamiltonian. As discussed in Sec. III A 1,
depending on the SOC parameters the quantum tube allows
for two distinct scenarios, (i) and (ii), of PSH symmetry
[Eqs. (30) and (31), respectively]. In both situations, we find
that certain inter-subband matrix elements of vz disappear, that
is, if

(i): λ �= λ′, (56)

(ii): (λ �= λ′ ∧ j j′ > 0) ∨ (λ = λ′ ∧ j j′ < 0). (57)

The corresponding absorption peaks are absent in the optical
conductivity spectrum, which could be used as an indication
of persistent spin states. However, other inter-subband matrix
elements remain finite and the vanishing of the optical con-
ductivity does not apply for the entire frequency range in the
quantum tube. In particular, due to the degeneracy of energies
with positive and negative total angular momentum j, for each
disappearing transition in case (ii) there is always a state with
the same energy and finite transition probability. For instance,
if the transition vanishes for a certain configuration j, λ, j′, λ′,

the transition for the configuration − j, λ, j′, λ′ is in general
nonzero and occurs at the same frequency in the absorption
spectrum.

Nevertheless, there exists another band-structure-related
property in the quantum tube that, in conjunction with the
aforementioned forbidden transitions, makes the optical con-
ductivity spectrum exceptional in the presence of the PSH
symmetry and resembles the case without SOC. In all three
cases [PSH cases (i) and (ii) and vanishing SOC], the tran-
sition frequencies ω

j, j′
λ,λ′ (kz ) = [Ej′,λ′ (kz ) − Ej,λ(kz )]/h̄ for the

residual allowed transitions are independent of the wave vec-
tor kz. As a striking result, the optical conductivity spectrum
consists solely of δ peaks (or Lorentzian peaks in the presence
of disorder). These peaks can only appear, presuming that
the chemical potential permits it, at the allowed transition
frequencies

(i): ω
j, j′
λ,λ′ = ε0

h̄

(
j′2 − j2

)
, (58)

(ii): ω
j, j′
λ,λ′ = ε0

h̄

(
j′2 − j2

) + 1

h̄

√
ε2

0 + ξ 2

R2

(
λ′| j′| − λ| j|),

(59)

and in absence of SOC (α = ξ = 0) at

ω
j, j′
λ,λ′ = ε0

h̄

[(
j′2 − j2

) + (
λ′| j′| − λ| j|)]

. (60)

To visualize the special structure of the optical conductivity
spectrum induced by the PSH symmetry, we plot it for differ-
ent exemplary SOC parameters. We select a small disorder
energy of Eτ = 0.04ε0, yielding only weak impurity broad-
ening of the δ distribution in Eq. (55), a chemical potential
of μ̃ = 7ε0, which allows for a filling of several subbands,
and β = 50 /ε0 causing a sharp Fermi edge, and we neglect
effective mass anisotropy for simplicity, i.e., κ = 1.
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FIG. 5. Optical conductivity spectrum for vanishing intrinsic
SOC (ξ = 0), disorder energy Eτ = 0.04ε0, chemical potential μ̃ =
7ε0, β = 50 /ε0, and different values of the extrinsic SOC parameter
α. Panel (a), where α = 0, displays the absorption spectrum for a
nanowire without SOC which shows only discrete transitions. For a
finite extrinsic SOC parameter α = 0.5ε0R in panel (b), the optical
absorption is allowed in a wide frequency range. In the PSH case
(i) where α = −ε0R [panel (c)], the spectrum consists solely of δ

peaks of width given by the disorder energy Eτ . The emergence of
one δ peak with the transition to the PSH symmetry is illustrated in
panel (d).

To begin with, we look in Fig. 5 at the case where the
intrinsic SOC is absent, i.e., ξ = 0. The spectrum in Fig. 5(a)
depicts a nanowire without SOC where transitions occur only

FIG. 6. Optical conductivity spectrum for ξ = 0.5ε0R, Eτ =
0.04ε0, μ̃ = 7ε0, β = 50 /ε0, and different values of the extrinsic
SOC parameter α. In panel (a) where α = 0.6ε0R, the optical ab-
sorption is allowed in a wide frequency range. In contrast, in the case
of PSH [panel (b)], where α ≈ 0, the spectrum consists purely of δ

peaks of width given by the disorder energy Eτ .

at discrete energies. In Figs. 5(b)–5(d) the crossover to PSH
case (i) is demonstrated. While generally the SOC allows
transitions in a broad frequency range [cf. Fig. 5(b) for an
exemplary value of α = 0.5ε0R], the PSH symmetry for α =
−ε0R leads to δ-shaped absorption peaks of width of the dis-
order energy Eτ [Fig. 5(c)]. Apart from the distinct absorption
frequencies, this case resembles the situation without SOC.
The emergence of one single δ peak of Fig. 5(c) in the PSH
case is emphasized in Fig. 5(d).

Analogously, in Fig. 6, the crossover to the PSH case (ii)
is presented; that is, we choose an arbitrary value for the
intrinsic SOC parameter ξ = 0.5ε0 and vary the extrinsic SOC
parameter α. Again, we see that in contrast to the general case
[Fig. 6(a)], where spin states are not preserved and the optical
conductivity spectrum is continuous, the transitions are only
allowed for discrete frequencies for α = 0 corresponding to
PSH case (ii) [Fig. 6(b)].

In both Figs. 5 and 6, the gray vertical grid lines mark
the allowed transition frequencies given by the formulas in
Eqs. (59) and (60) under the precondition that the configura-
tions according to Eqs. (56) or (57) are forbidden and at least
one of the corresponding subbands lies below the chemical
potential.

Thus, we find that the optical conductivity spectrum gives
clear evidence of spin-preserving symmetries and enables us
to infer SOC parameters from the frequency values of the
discrete transition peaks. Deviations of the PSH characteristic
features are directly linked to the breaking of the PSH sym-
metry and can be also indicative of other effects that limit
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the spin lifetime. As a future prospect, this might, in addition,
be used to study the impact of higher angular harmonics in
the intrinsic SOC field which destroy the PSH symmetry as
shown for 2D electron gases in Ref. [94]. Minor implications
of the here neglected kz dependence of the intrinsic SOC
coefficient ξ are discussed in more detail in Appendix D for
the specific example of a wurtzite InAs nanowire. It is shown
that parameter configurations can be chosen such that the
distinctive features of the spin conservation are well retained.

VI. SUMMARY

In this work, we have derived effective low-dimensional
Hamiltonians that describe the SOC in tubular and ringlike
quantum structures that are embedded in a wurtzite nanowire.
We determined the corresponding eigensystems and the local
spin orientations. Special configurations in the quantum tube
were identified that allow for spin textures whose lifetimes
are not limited by the Dyakonov-Perel type spin relaxation.
In particular, this requires either (i) pure extrinsic SOC due
to a radial potential asymmetry with a certain relation to the
nanowire radius, or (ii) pure intrinsic SOC of the wurtzite
lattice. Additionally, for a suitably tuned radial confinement
width the intrinsic SOC can be suppressed which makes op-
tion (i) also realizable in wurtzite nanowires. These persistent
spin states show clear fingerprints in the spectrum of the
optical conductivity where only singular absorption peaks
appear and unambiguously allow us to verify their existence.
We provide analytical formulas for the discrete transition
frequencies, which then enable us to infer parameters of
the electronic structure when compared with experimental
measurements. The experimental feasibility is discussed using
general arguments as well as the specific example of a realistic
wurtzite InAs nanowire.

Aside from this, we studied the spontaneously emerging
equilibrium spin currents due to the inversion asymmetry of
the wurtzite lattice and charge currents due to an additionally
applied axial magnetic field. We show that the spin and
charge current characteristics with respect to modulations
of Fermi energy and magnetic flux show discontinuities for
the quantum ring and nondifferential points for the quantum
tube. The respective Fermi energy and magnetic flux values
of both systems were found to coincide and to be related
to band structure characteristic features. These allow further
experimental extraction of band parameters even in the ab-
sence of PSH symmetry. The latter becomes manifest in the
vanishing of certain spin current tensor components, where
the PSH case (i) also yields flux-dependent characteristics due
to additional degeneracies. The quantum tube appears to be an
excellent candidate for such measurements since impurity and
interaction effects are expected to be less pronounced than in
a quantum ring due to the larger available phase space.
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APPENDIX A: COMMUTATOR RELATIONS
OF POLAR OPERATORS

The nonvanishing commutator relations of polar Pauli ma-
trices as well as position and wave vector operators in the
absence of magnetic fields read as

[kφ, cos(φ)] = (i/r) sin(φ), (A1)

[kφ, sin(φ)] = −(i/r) cos(φ), (A2)

[kφ, σφ] = (i/r)σr, (A3)

[kφ, σr] = −(i/r)σφ, (A4)

[kr, 1/r] = i/r2, (A5)

[kr, kφ] = (i/r)kφ. (A6)

APPENDIX B: RADIAL GROUND STATE EXPECTATION
VALUES

The projections of products of radial position and wave
vector operators on the lowest radial mode |R0〉 are

〈1/r〉 = 1/R, (B1)

〈1/r2〉 = 1/R2, (B2)

〈kr〉 = i/(2R), (B3)〈
k2

r

〉 = γ 2/2, (B4)〈
k3

r

〉 = 3iγ 2/(4R) = 3 〈kr〉
〈
k2

r

〉
, (B5)

〈(1/r)kr〉 = 0, (B6)〈
(1/r)k2

r

〉 = γ 2/(2R). (B7)

We point out that the relation Eq. (B3) is independent of
the form of the confinement potential which we prove in
Appendix C.

APPENDIX C: UNIVERSALITY OF THE RADIAL WAVE
VECTOR EXPECTATION VALUE IN THE GROUND STATE

In this section, we prove that it is not substantial to choose
an harmonic radial confinement to obtain 〈kr〉 = i/(2R). A
similar proof was demonstrated in Ref. [80]. Let |R0〉 be
the lowest radial mode of the Hamiltonian with an arbitrary
potential V (r) that confines the wave function 〈r|R0〉 ≡ ρ0 to
a region around r = R. As a bound state we can select the
wave function ρ0 to be real and demand it to vanish exactly at
the limits r = 0 and r → ∞. We now define |R0〉 ≡ |R′

0〉 /
√

r
and obtain〈

R′
0

∣∣∣∣1

r
∂r

∣∣∣∣R′
0

〉
=

〈
R0

∣∣∣∣∂r + 1

2r

∣∣∣∣R0

〉
= 〈∂r〉 + 1

2R
. (C1)

On the other hand, integration by parts gives〈
R′

0

∣∣∣∣1

r
∂r

∣∣∣∣R′
0

〉
=

∫ ∞

0
dr (ρ ′

0)∗
dρ ′

0

dr

= |ρ ′
0|2

∣∣∣∞
0

−
∫ ∞

0
dr ρ ′

0

(
dρ ′

0

dr

)∗
. (C2)

Since ρ ′
0 is real, we have〈
R′

0

∣∣∣∣1

r
∂r

∣∣∣∣R′
0

〉
= 1

2
|ρ ′

0|2
∣∣∣∣
∞

0

= r

2
|ρ0|2

∣∣∣∣
∞

0

= 0. (C3)
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FIG. 7. Fluctuations due to the dependence of ξ on kz in wurtzite
InAs nanowires for different typical radii R and Fermi energies EF.
(a) Maximum fluctuation angle θ between the local spin orientations
〈σ〉 (kz ), Eq. (36), at the two wave vector extrema kz = 0 and kz =
kmax

F ≈ √
EF/ε0/R for γ ≈ 0.3 nm−1 as an estimate for a 10 nm

wide radial quantum well. (b) Mean value ξ̄ = ∫ kmax
z

0 |ξ (kz )|dkz/kmax
z

for γ ≈ 0.67 nm−1 corresponding to a 4.5 nm wide radial quantum
well where ξ (0) = 0. Inset in [(a), (b)] shows the fulfillment of the
relation γ R � 1 for the corresponding radii.

APPENDIX D: REALIZABILITY OF PERSISTENT SPIN
STATES IN WURTZITE NANOWIRES

In this section, we discuss the realizability of the persistent
spin states in wurtzite nanowires. We focus initially on the
PSH type (ii), Eq. (31), in the wurtzite quantum tube without
radial potential asymmetry. Parameter constraints are evoked
by the wave-vector-dependent term ∝ k2

z in the intrinsic
SOC coefficient ξ = λint

1 + λint
3 (b k2

z − γ 2/2), Eq. (15), which
yields distinct local spin orientations in each subband. Hence,
we must demand that either the SOC parameter λint

1 dominate
over the remaining terms in ξ or the relation γ 2/2 � |b|k2

z
hold true. Under the presupposition that only the last condition

FIG. 8. Optical conductivity spectrum for a wurzite InAs
nanowire of radius R = 50 nm at temperature T = 0.1 K (β =
47.8/ε0) with a chemical potential of μ̃ = 10ε0 = 4.1 meV. We
assume an approximately 10 nm wide radial quantum well width
(γ = 0.3 nm−1) in [(a), (d)] yielding ξ ≈ 1.1ε0R = 0.24 eV Å, and
an approximately 4.5 nm wide radial quantum well width (γ =
0.67 nm−1) in [(b), (c)], where the intrinsic SOC ξ nearly vanishes.
Here, we explicitly take into account the small kz dependence of ξ

in the energy dispersion. The spectrum is shown in the special case
where (a) the PSH type (ii) is realized, i.e., α = 0, (b) the total SOC
is suppressed, i.e., ξ ≈ α = 0, and (c) the PSH type (i) is achieved,
i.e., α = −ε0R = −0.21 eV Å. Panel (d) displays a general scenario,
where we selected α = −0.8ε0R = −0.16 eV Å. In all plots, we
selected a small disorder energy of Eτ = 0.04ε0 = 16 μeV.
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can be fulfilled, we point out that at zero temperature the
maximum value of kz is determined by the wave vector
kmax

F at the Fermi energy EF in the lowest subband, i.e.,
E1/2,−(kmax

F ) = EF. Neglecting the small correction from the
SOC in the eigenenergy, we can estimate the pertaining Fermi
wave vector to be kmax

F ≈ √
EF/ε0/R. Consequently, the Fermi

energy in the nanowires has to be chosen according to

EF � ε0
(γ R)2

2|b| . (D1)

Previous ab initio calculations found for typical novel wurtzite
materials an anisotropy factor b on an order of magnitude of
∼1 [46]. Since, furthermore, the model for the quantum tube
demands that γ R � 1 be fulfilled, the above precondition
should be readily achievable. Apart from this, a similar restric-
tion on the Fermi energy is already imposed by the radial sub-
band separation, where the harmonic potential implies for the
quasi-2D approximation to hold that EF � h̄ω̃ = 2(γ R)2ε0,
where ω̃ = h̄γ 2/m⊥.

Remarkably, in such a scenario, it is possible to engineer
the radial quantum well in a way that the SOC coefficient
ξ becomes negligible, i.e., by choosing γ 2 = 2λint

1 /λint
3 . The

absence of SOC obviously supports spin preservation but, at
the same time, the suppression of ξ also enables the realization
of the PSH type (i) even in nanowires made from compound
semiconductors, without center of inversion, aside from el-
emental semiconductors. In this case, the SOC coefficient
α = λext

1 Er induced by a radial potential asymmetry has to
fulfill the relation α = −ε0R = −h̄2/(2m⊥R), which depends
on the effective mass of the material and the curvature of
the tubular conductive channel. The sign of α corresponds
to a negative radial potential gradient that is intrinsically
present in nanowires with Fermi level surface pinning as,
e.g., in InAs [60]. Lastly, we stress that the existence of the
PSH type (i) relies on the form of the extrinsic SOC Hamil-
tonian, Eq. (16). Thus, this PSH symmetry can be broken
by additional symmetry-allowed extrinsic SOC terms due to
the radial electric field as well as contributions arising from
nonlinearities in the radial potential gradient or interfaces. The
relevance of such contributions should be discussed from the
perspective of a multiband k · p Hamiltonian.

Example: Wurtzite InAs nanowire

As a concrete example, we take a look at the prominent
wurtzite InAs nanowire, which has recently been given spe-
cific attention [47,48,53–55]. We employ the effective mass
m⊥ = 0.037m0, where m0 denotes the bare electron mass, as
well as the intrinsic SOC coefficients λint

1 = 0.3 eV Å, λint
3 =

132.5 eV Å3, and b = −1.24 [46–48]. If we, moreover, as-
sume that at the edges of the radial quantum well the electron
probability density |〈r|R0〉|2 has decayed to 10% of its peak
value, a quantum well of 10 nm width corresponds to γ ≈
0.3 nm−1. The dependence of ξ on kz induces fluctuations in
the local spin orientation 〈σ〉 (kz ), Eq. (36). Here, we sup-
pressed the indices j and ± which only cause sign changes.

In Fig. 7(a), we display the maximum fluctuation angle θ

between the two spin orientation extrema where kz = 0 and
kz = kmax

F , i.e., θ = arccos[〈σ〉 (0) · 〈σ〉 (kmax
F )], for different

nanowire radii and Fermi energies. Obviously, the angle θ

exhibits only small variations for a wide range of parameters.
The inset shows that the relation γ R � 1 is fulfilled for the
selected nanowire radii. Hence, we see that feasible parameter
configurations exist to achieve persistent spin textures of type
(ii) in realistic wurtzite nanowires.

In such a configuration, we can estimate the necessary con-
finement width that leads to a cancellation of ξ . For kz = 0, we
find γ ≈ 0.67 nm−1, which corresponds to an approximately
4.5 nm wide quantum well, using again the above definition.
In Fig. 7, the mean value ξ̄ = ∫ kmax

z

0 |ξ (kz )|dkz/kmax
z is plotted

against the nanowire radius and Fermi energy. Apparently,
the remaining contribution of ξ due to the kz fluctuations is
insignificant, in particular, in comparison with the magnitude
of α = −ε0R, i.e., ξ̄ /(ε0R) ∼ 10−2. The required extrinsic
SOC coefficient becomes α ≈ −10.3 eV Å × (nm/R). For
the usual nanowire radii, the order of magnitude conforms
to experimentally extracted SOC strengths in gated InAs
nanowires [53,66,77]. Therefore, the type (i) persistent spin
states are also accessible in wurtzite nanowires in a broad
parameter regime.

Now, we take a look at the spectrum of the longitudinal
optical conductivity Re[σzz(ω)] (cf. Sec. V) in each of these
specific scenarios for a wurtzite InAs nanowire of radius
R = 50 nm, which is displayed in Fig. 8. Here, we assume
a temperature of T = 0.1 K corresponding to β = 47.8/ε0, a
chemical potential of μ̃ = 10ε0 = 4.1 meV, and a small dis-
order energy of Eτ = 0.04ε0 = 16 μeV. The kz dependence of
ξ in the energy dispersion is here explicitly taken into account.
For simplicity, we ignore, however, minor implications arising
from additional small terms vz ∝ [z, ξ (kz )] in the velocity
operator, Eq. (44), as they only affect the size of the absorption
peaks. Figures 8(a) and 8(d) correspond to a 10 nm wide
radial quantum well (γ = 0.3 nm−1), which yields an in-
trinsic SOC ξ ≈ 1.1ε0R = 0.24 eV Å. Figures 8(b) and 8(c),
on the contrary, represent the case of a 4.5 nm wide radial
quantum well (γ = 0.67 nm−1), where the intrinsic SOC ξ

is negligible. The optical conductivity spectrum is plotted in
the special situations where (a) PSH type (ii) is realized, i.e.,
α = 0, (b) the total SOC is negligible, i.e., ξ ≈ α = 0, and
(c) the intrinsic SOC is negligible and, thus, PSH type (i)
is achieved by setting α = −ε0R = −0.21 eV Å and ξ ≈ 0.
The gray vertical grid lines at the characteristic frequencies of
the absorption peaks result from the formulas in Eqs. (58)–
(60) under the precondition that transitions according to
Eqs. (56) and (57) are forbidden and at least one of the
corresponding subbands lies below the chemical potential.
Influences of the kz dependence of ξ on the discrete transi-
tion frequencies are insignificant. The last figure, Fig. 8(d),
shows, for comparison, a generic case, where α = −0.8ε0R =
−0.16 eV Å and spin relaxation is not suppressed. Here,
optical transitions occur over a continuous frequency
range.
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