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The realization of mixtures of excitons and charge carriers in van der Waals materials presents a frontier
for the study of the many-body physics of strongly interacting Bose-Fermi mixtures. In order to derive an
effective low-energy model for such systems, we develop an exact diagonalization approach based on a discrete
variable representation that predicts the scattering and bound state properties of three charges in two-dimensional
transition metal dichalcogenides. From the solution of the quantum mechanical three-body problem we thus
obtain the bound state energies of excitons and trions within an effective mass model which are in excellent
agreement with quantum Monte Carlo predictions. The diagonalization approach also gives access to excited
states of the three-body system. This allows us to predict the scattering phase shifts of electrons and excitons
that serve as input for a low-energy theory of interacting mixtures of excitons and charge carriers at finite
density. To this end we derive an effective exciton-electron scattering potential that is directly applicable for
quantum Monte Carlo or diagrammatic many-body techniques. As an example, we demonstrate the approach
by studying the many-body physics of exciton Fermi polarons in transition-metal dichalcogenides, and we show
that finite-range corrections have a substantial impact on the optical absorption spectrum. Our approach can
be applied to a plethora of many-body phenomena realizable in atomically thin semiconductors ranging from

exciton localization to induced superconductivity.
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I. INTRODUCTION

Interacting mixtures of fermions and bosons are at the heart
of many paradigms of condensed matter physics, ranging from
phonon and magnon-mediated superconductivity, mixtures of
helium-3 and helium-4, polaron mobility, to electrons coupled
to dynamical gauge fields. Recent progress in the trapping and
manipulation of ultracold quantum gases made cold atoms
a promising platform to study physics of strongly interact-
ing quantum mixtures [1,2]. As a key aspect these systems
feature bosons that do not appear as collective excitations
of the many-body system, such as magnons or phonons, but
instead represent pointlike particles which interact with the
fermions by coupling terms that are nonlinear in their creation
operators. Exploiting this fact made it possible to realize
interactions of bosons and fermions in the strong-coupling
regime that goes beyond the paradigm of the Frohlich model
[3-5], leading to the recent observation of strong coupling
Bose polarons [6-8].
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In contrast, typical solid state realizations of Bose-Fermi
mixtures, concern pointlike fermions (electrons) that interact
with bosonic degrees of freedom which are collective, low-
energy excitations of either the crystal lattice (phonons) or
the electronic system itself (e.g., plasmons or magnons). In
order to realize a good representation of pointlike bosons
one faces the challenge to ensure that the density of the
fermions, as characterized by their Fermi energy €y, remains
sufficiently dilute as compared to the extent of the bosonic
particle which is characterized, for instance, by its binding
energy or internal excitation energies. While this condition
is well satisfied in cold atoms, where typical Fermi energies
are on the order of ~h x kHz, and thus tiny compared to
atomic transition frequencies, ~THz, the creation of such a
large scale separation is a key challenge for the solid-state
realization of atomlike Bose-Fermi mixtures.

One prime example for atomlike bosons in solid state
matter are excitons, which allowed for the realization of
Bose-Einstein condensation of excitons and the observation
of superfluidity [9-11]. In order to promote these systems to
Bose-Fermi mixtures the semiconductor can be doped with
charge carriers. Excitons in bulk semiconductors are bound by
a binding energy on the order of 10 meV [12]. Fermi energies
of interest are, however, of the same order which invalidates
the picture of well-defined Bose-Fermi mixtures.

Atomically thin transition metal dichalcogenides (TMDs)
offer a way around this limitation. Indeed, in the last two
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decades the ingeniously simple process of mechanical ex-
foliation allowed us to explore the vast playground of van
der Waals materials ranging from gapless graphene [13-15],
large band gap insulators [16], superconductors [17], twisted
bilayer graphene [18-21], and ferromagnets [22,23]. With
transition metal dichalcogenides a new class of atomically
thin semiconductors with potential technological applications
has emerged [24] that provides a novel platform to real-
ize strongly interacting mixtures of pointlike bosons and
fermions. In contrast to their bulk counterparts, in atomically
thin materials screening of Coulomb forces is reduced owing
to the absence of an all-encompassing dielectric environment.
This leads to the existence of tightly bound excitons with a
binding energy €x on the order of hundreds of meV [25]. As
a consequence it is possible to reach the desired regime of
large energy separation where excitons remain well-defined
atomlike particles even in the presence of a substantial elec-
tron Fermi energy, i.e., €5 /€x < 1. Moreover, the existence of
a trion bound state with binding energy er & 30 meV opens a
window to the strong coupling regime, where the interaction
energy, characterized by €7, competes with the kinetic energy
of the charge-carrier Fermi gas, i.e., €5 /er ~ 1. Besides the
potential technological applications ranging from light emit-
ting diodes [26] to solar cells [27], these features make TMDs
a serious new competitor to cold atomic systems as a platform
to study paradigm many-body models of condensed matter
theory in a controlled, nanoscopic environment.

First examples that explored the rich physics of strongly
interacting Bose-Fermi mixtures of excitons and electrons in
two-dimensional (2D) semiconductors addressed the regime
of low boson density [28,29]. Here the physics of Fermi po-
larons [30-32], single mobile quantum impurities immersed
in a Fermi gas, is realized [33-37] which has been a long-
standing problem in theoretical physics that touches upon
questions about the existence of quasiparticles [38,39] and
fundamentals of transport [40]. More recently, it was demon-
strated that the scattering of electrons and excitons provides a
new pathway towards cooling of exciton-polaritons leading to
enhanced optical gain of 2D materials [41]. Exploiting further
the interactions of electrons mediated by exciton exchange has
been proposed to enable induced superconductivity [42,43]
and the realization of supersolids [44].

In order to obtain a reliable theoretical description of
the physics of Bose-Fermi mixtures in TMDs, an effective
model of the scattering physics of electrons and excitons
is paramount. On the one hand, such a low-energy descrip-
tion should be sufficiently simple to be a viable input for
many-body techniques ranging from quantum Monte Carlo
to diagrammatics. On the other hand, the interaction model
has to provide a quantitatively accurate description. Since the
relevant many-body scales—set by the Fermi energy, exciton
density, or temperature—are substantially smaller than the
exciton energy one would like to derive a model where high-
energy scales down to the exciton energy have been integrated
out, so that only a direct interaction between excitons and
electrons has to be considered.

In this work we use exact diagonalization to derive an ef-
fective, accurate interaction model for excitons and electrons
in transition metal dichalcogenides. To this end we solve ex-
actly the quantum mechanical problem of three charge carriers

in TMDs in an effective mass model. Using a discrete variable
representation and exploiting the factorizable structure of the
kinetic part of the three-body Hamiltonian [45] our approach
yields trion energies that are in excellent agreement with
quantum Monte Carlo (QMC) calculations. Moreover, we find
exotic excited trion bound states, not previously discussed
in the literature, and which correspond to the binding of
electrons to Rydberg excitons in a p-wave configuration where
the constituent particles possess opposite angular momenta.

Most importantly, however, our approach also gives access
to the structure of three-body envelope wave functions as
well as scattering states above the trion dissociation thresh-
old. From this we show that the picture of exciton-electron
scattering and thus the description in terms of Bose-Fermi
mixtures is well justified. The scattering physics of excitons
and electrons is universally captured by the energy-dependent
2D scattering phase shift §(E). We extract §(E) directly from
the full spatial structure of the three-body wave functions by
including up to 10° basis states in the exact diagonalization.
The results show that contact interaction models for excitons
and electrons are insufficient for many key observables such
as polaron energies or transition temperatures to supercon-
ducting phases induced by exciton exchange.

The work is structured as follows. In Sec. II we introduce
the Hamiltonian that describes the motion and interactions of
three charge carriers in two-dimensional TMDs in an effective
mass approximation, and we detail how the exact diagonaliza-
tion approach is applied. In Sec. III we focus on the analysis
of the trion ground state and the structure of its envelope
wave function. We then discuss the excitation spectrum of
the system including excited trion states and scattering states.
Section IV is devoted to the calculation of the scattering
phase shifts of electrons and excitons and the derivation of an
effective low-energy model for exciton-electron interactions.
In Sec. V we demonstrate the applicability of this interaction
model by analyzing the optical absorption spectra of n-doped
MoSe,. We summarize our findings in Sec. VI and outline
future directions.

II. EFFECTIVE MASS MODEL

To describe exciton-electron scattering and the properties
of trions in atomically thin semiconductors, we employ an
effective mass model for three charged pointlike particles in
two dimensions. Each particle has a coordinate R;, a parabolic
band mass m; and carries a charge ¢; (i = 1, 2, 3); for an
illustration see Fig. 1(a). Similar to the studies [46,47] we
introduce relative coordinates r; and r, that describe the
spatial relative vectors between the particles i = 1, 2 and the
particle i = 3. The center-of-mass motion can be separated
and the remaining Hamiltonian for the internal three-body
dynamics reads

A 1 1 1
H= - Ay, — A, = —Vy - Vp,
2p 22 ms

+ q193Vk (1) + 4293V (r2) + g1 42V (Ir1 — 12]), (1)

where u; = m;ms/(m; + ms) are the reduced masses.
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FIG. 1. (a) Parametrization of the three-body system with radial
degrees of freedom r; = |ry|, r, = |r;|, and the relative angle 6. The
angle « is defined with respect to the angle bisector of 8. It describes
the orientation of the trion in the xy plane and corresponds to the
total angular momentum of the three-body complex. The masses of
the charge carriers are m;, m,, and mj3. (b) Schematic illustration of
an intervalley trion in the band structure around the K and K’ points.
The spin-orbit splitting of the valence bands Ag.. is significantly
larger than the splitting of the conduction bands A§..

The interactions among the charge carriers are modeled
with the Keldysh potential [46,48,49]

Vi(r) = o—[Ho(r/ro) — Yo(r/ro)l, (@)

2

where Hj and Y, are the Struve function and the Bessel func-
tion of the second kind, and the screening length ry = 27 x2p
is linked to the 2D polarizability x,p of the planar material.
Equation (2) describes to a good approximation deviations
from a Coulomb potential at short distances arising due to
dielectric screening, while at large distances the Coulomb’s
law is recovered, V (r) — 1/r. Note, while further corrections
to Eq. (2) exist, e.g., due to finite width of the TMD layer [50]
or dynamical screening [51], we restrict us here to this specific
form in order to enable a direct comparison of our results for
trion and exciton energies with QMC calculations [52].

For the effective masses and the screening lengths we
employ material parameters obtained from DFT band struc-
ture calculations [52] as stated in Table I. A corresponding
sketch of the band structure in TMDs around the energetically
degenerate K and K’ points of the Brillouin zone is presented
in Fig. 1(b). The two valence bands A and B are subject

TABLE I. Exciton and trion binding energies for various TMDs
obtained from exact diagonalization. Material parameters are taken
from DFT computations [52]. Energies are compared to the path-
integral Monte Carlo simulations presented in Ref. [52] and varia-
tional results [54].

MOS2 MOSCZ WSZ WSCZ

Material parameter [52]

ro (A) 44.6814 53.1624 40.1747 47.5701
m, 0.47 0.55 0.32 0.34
my, A band 0.54 0.59 0.35 0.36

Exciton energy
Present work (meV)
Variational [54] (meV)
QMC [52] (meV)
Trion energy

Present work (meV) 31.7 27.7 342 28.4
QMC [52] (meV) 32.03) 27.73) 33.1(3) 28.5(3)

5260 4767 5086  456.0
525.985 476.699 508.554 456.023
526.5(2) 476.9(2) 509.8(2) 456.4(2)

to a spin-orbit splitting of approximately 100 meV and the
effective band masses of charge carriers in these bands are
significantly different. The splitting of the conduction band
A§ o is roughly 10-100 times smaller than Ag,~ and also the
mass difference is typically less pronounced so that we use
an electron mass m, that is averaged over these two, almost
degenerate bands. However, our approach allows one also to
deduce eigenstates of Hamiltonians (1) with different masses
for spin-up and spin-down electrons, i.e., @ # U, as for
instance predicted in [53].

As illustrated in Fig. 1 we focus on configurations that are
composed of two electrons and a single hole. The Hamiltonian
(1) of this system can be further simplified by introducing
the polar coordinates r; = |ry|, r, = |r2|, 8, and o which
parametrize the coordinates r; and r;, see Fig. 1(a). In these
coordinates we express the wave function in the form

u(ry, 2, 0)
N2

where u(ry, r», 6) is normalized as

o0 00 2
/ / / dridry dOlu(ry, ra, )% = 1. 4)
V1=0 r2=0 6=0

Since Eq. (1) is invariant under in-plane rotations described
by the angle o, the angular momentum m is conserved. In
this work we focus exclusively on m = 0, for the resulting,
reduced Hamiltonian see Appendix A.

To compute the eigenstates of the Hamiltonian (1) we
follow an exact diagonalization scheme. To this end we con-
struct the Hamiltonian in a discrete variable representation
(DVR) for each degree of freedom (DOF). As basis functions
for the radial DOF, e.g., r; (analogous for r;), we employ
dn(r1) = N/ri/on) expl—r1/Qlo)IL, _,(r1/lp) with the gen-
eralized Laguerre polynomials L! (r), n € N, and a length
scale parameter /y that controls the spatial resolution [55]. The
radial basis functions satisfy the boundary condition ¢, (r|) o
/11 for ri — 0. For the angular variable 6 the basis functions
V1727 exp(il®) with | € Z satisfy 27 periodic boundary
conditions.

Starting from these basis functions, we follow the DVR
approach (for a review see [56]), and diagonalize the position
operators 7y, 75, and cos(8/2 — 6y) with an appropriately
chosen offset 6y. This procedure leads to a new set of wave
packet basis states that are strongly localized on a spatial
grid and thus provide a discrete representation of position
space. The potential V is diagonal in this new basis and
can therefore be evaluated efficiently. Note that while the
angular grid is spaced equidistantly, the radial grid becomes
increasingly dense at short distances which is beneficial to
resolve the short-range structure of the three-body complexes
in great detail. The extents of the radial grids r{"** and rJ"** are
determined by [y as well as the size of the radlal basis set. For
each DOF, we typically employ 60 basis functions; for checks
of convergence, however, a total of up to 10° basis states is
included.

The modified Laguerre polynomials ¢,(r) have also been
employed successfully as basis functions for variationally
optimized diagonalization of exciton Hamiltonians [54]. In
contrast to this method, the DVR approach is in general

Y(ry, rn,b,a) = exp(ima), 3)
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nonvariational [56] but has the advantage that it does not
require the evaluation of matrix overlap integrals with the
interaction operators, which is beneficial when dealing with
multiple degrees of freedom.

The obtained eigenfunctions u(ry, r», 8) = u(ry, ry) can be
interpreted as the envelope functions of the Bloch solution
of the three-body system in the crystal Vs, s, s, (Ri, Rz, R3)
where the collective index S; characterizes the charge carriers
in the band structure. For instance, the negatively charged
intervalley trion depicted in Fig. 1(b) has S| = {K, 1}, S» =
{K’, |}, and S5 = {K, 1}. Taking into account spin statistics,
its Bloch state can be approximated as [47]

iKoRo

e
¥s,.5.5 (R, Ry, R3) = TMS3 R3)

x [u(ry, r2)Us, (R1)Us, (R2)
—u(ry, r))Us, R)Us, (R2)],  (5)

with the normalization constant A/, the single particle Bloch
functions Us, (R;), and the center-of-mass coordinate and wave
vector Ry and Ko, respectively. Although not stated explicitly
in Eq. (5), it is implied that the envelop u(r;, r;) depends
also on the combined spin and valley indices S;, i.e., for a
given set S;, one determines u(ry, r», 6) based on Eq. (1) with
corresponding effective masses m;. Note, in the present work,
in order to make direct comparison to state-of-the-art QMC
predictions [52], we do not take into account short-range
Coulomb exchange [47,57,58] as well as the nonzero Berry
curvature in TMD structures [59]. However, both effects can
be included in our approach.

III. EXCITONS, TRIONS, AND THEIR
EXCITATION SPECTRUM

First we study excitons and trions which are the ground
states of the two- and three-body problem, respectively.
Specifically, we focus on the example of negatively charged
trions that consist of one hole and two electrons. Depend-
ing on the spin and valley index, the hole is situated in
either the A or B valence band, leading to A and B trions
(and excitons). For simplicity we focus here exclusively on
holes in the energetically higher A band; for an illustration
see Fig. 1(b). Since for equal conduction band masses the
Hamiltonian (1) is invariant under exchange of r; and r;, one
can choose a basis of eigenstates u(ry, r,, 6) that are either
symmetric u(ry, ra, 0) = u(ry, r;, —0) or antisymmetric func-
tions u(ry, ra, 0) = —u(rp, ri, —0). This symmetry is closely
related to the electron spin degrees of freedom present in the
total wave function in Eq. (5), which, owing to spin statistics,
is, by construction, antisymmetric under electron exchange.
For the particular configuration presented in Fig. 1(b), sym-
metric (antisymmetric) wave functions u(ry, r», ) thus corre-
spond to electron-spin singlet (triplet) states. In our numerical
approach we treat these symmetry spaces not separately but
obtain spatially symmetric and antisymmetric solutions from
a single diagonalization. Note that the spatial exchange sym-
metry of u(ry, r, 8) will be lost when taking into account spin
dependence of the effective electron masses with m; # m;
[53]. In this case the total Bloch state (5), however, will still
be antisymmetric under electron exchange.

(lal?),, ,,

@ % (b)
0.15 —
0.10 e
04 .
0.05 V

0.00
0 50 100 150 200 250 300 00 05 10 15 20
r1 (A) 0/m

FIG. 2. Charge-carrier density of the MoS, ground state trion.
(a) The reduced density (|u|2),2ﬁ(r1) obtained from the average over
variables r, and 6 (blue circles). The inset depicts the probability
density of the radial configuration (|u|?) ¢(r1, r2). (b) The probability
density of the angular configuration (|u|2),] ., (0) with an illustration
of the spatial structure of the trion as inset.

Ground states—In our simulations the trion ground state is
always spatially symmetric and we do not find zero-angular-
momentum states with an antisymmetric envelop u(ry, r», 9)
below the exciton line. This agrees with results based on
variational wave functions that predict spatially antisymmet-
ric trions only for nonzero angular momentum [47,60]. The
resulting binding energies of excitons and trions are presented
in Table I for different classes of TMDs. All energies are in ex-
cellent agreement with path-integral Monte Carlo simulations
[52] and variationally optimized diagonalization [54]. Fur-
thermore, the predicted trion energies lie within the range of
experimental results [61]. An even more accurate agreement
with experiments can be achieved by, for instance, accurately
incorporating the influence of the dielectric environments in
TMD heterostructures [25,62,63].

We now turn to the study of the real-space structure of the
three-body wave function. In models describing the many-
body physics of excitons and electrons the trion is typically
regarded as the bound state of an exciton and an additional
charge carrier [28,34,35]. This picture can be tested with our
approach where the full spatial structure of the three-body
wave function u(ry, r», 0) is accessible. In order to visualize
the dependence of this wave function on its three variables,
we show reduced densities that are obtained by averaging
|u(ry, ra, 9)|2 over one or more coordinates. As an example,
we show the predicted trion ground state density for MoS, in
Fig. 2.

In the formation of the trion the two electrons compete for
the tight binding with the hole. This becomes evident in the
inset of Fig. 2(a) showing the reduced charge-carrier density
(|lu|*)4(r1, rp) after an average over the angular coordinate
6. Although electron-hole separations are most likely around
ri = ry ~ 15 A, it is also possible to have large separations in
one coordinate, e.g., r; ~ 40 A, under the condition of tight
binding in the other coordinate, e.g., r, ~ 10 A.

Performing an additional average over the coordinate r,
one arrives at the probability density (|u|2),2’9 (r1) of having
one electron-hole pair at a separation r;. As shown in the main
panel of Fig. 2(a), this density is peaked at around 10 A. Its
first moment (r;) ~ 16 A provides an estimate for the spatial
extent of the trion, which is larger than the mean binding
length of the corresponding X;, exciton ~10 A.
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FIG. 3. Energy spectrum of the lowest 60 eigenstates for the
MoS, three-body system obtained from exact diagonalization on a
grid of length r™* = r7™ = 300 A. Red (blue) dots correspond to
bound trions (exciton-electron scattering states, see pictorial repre-
sentation in the inset). The colored horizontal lines show the energies
of the MoS, excitons including Rydberg states of low angular
momentum.

In addition to these radial properties, the angular struc-
ture of the trion is characterized by the angular density
(|u|2),1’,2 (0) presented in Fig. 2(b). On top of an isotropic
background distribution with 1/(27) ~ 0.16 the density is
peaked around the linear configuration with # = 7 and sup-
pressed around 6 = 0. This is a consequence of Coulomb
interactions that leads to a polarization of the tightly bound
excitonic substructure of the trion due to the presence of the
additional charge carrier (see illustration in Fig. 2).

Excited states—Having discussed the trion ground state of
the three-body system, we turn next to excited states. Figure 3
presents the energy spectrum of the lowest 60 eigenstates of
the three-body Hamiltonian for MoS,. The colored horizontal
lines indicate the energy of the Xj; exciton as well as the
two energetically lowest exciton Rydberg states X5, and X,.
The binding energy of the trion ~32 meV appears here as the
energy difference between the lowest three-body state and the
Is exciton.

The energies of the next higher eigenstates lie above the
X exciton energy. As shown in Fig. 4(a) for the first to
third excited eigenstate, these states are not bound, which is
reflected in the fact that their radial densities (|u|2),2’9(r1) do
not decay exponentially with r; independently of system size.
The nature of these excited states becomes evident from the
fact that electrons are only weakly correlated: as can be seen
from the inset in Fig. 4(a), one electron is close to the hole,
while the other electron is very distant and delocalized. As
illustrated in the inset in Fig. 3, these states thus correspond
to scattering states of a quasifree electron which scatters off
the 1s exciton. The latter statement is further supported by
the fact that the electron density at short distances closely
resembles the density profile of a single 1s exciton state in the
absence of an additional charge carrier. Moreover, the angular
densities in Fig. 4(b) are nearly homogeneous and exhibit
only small polarization effects. Due to the finite extent of the
radial grids (here 300 A) the energies of the scattering states

<‘u‘2>7_),() (a) <‘“‘2>7'1~"2 (b)
5 0.20
S
™ 0.15
010 — 1st (antisymmetric)
..... 2nd (symmetric
0.05 ( ]

-—-=3rd (antisymmetric)

= 0.00
0 50 100150200250300 0.0 05 1.0 15 20
r1 (A) 0/m

FIG. 4. Probability densities of the three energetically lowest
exciton-electron scattering states of the MoS, three-body system.
(a) Reduced probability distribution (|”|2>r2,9 as a function of the
electron-hole separation r;. The third state (dashed-dotted green
line) displays one more radial node than the first and second state
(solid blue and dashed red line, respectively). The latter can be
distinguished via their symmetry under electron exchange. This
becomes evident in the inset contour plots of the radial correlation
(|u|*)o(ry, r2) [first state (left) and second state (right)]. Due to its
symmetry the antisymmetric first state has a vanishing density along
the diagonal. (b) The angular distributions (|u|2),1_,2 (0) of the three
states are almost identical and nearly homogeneous (on this scale).

are discrete. However, in the limit of very large spatial grids
the spectrum becomes dense and one recovers the quadratic
dispersion relation of the scattered electron (as already visible
in Fig. 3). In addition, the scattering states appear always
as doublets of energetically almost degenerate states. Each
doublet has the same number of radial nodes but different
spatial symmetry under coordinate exchange (antisymmetric
vs symmetric). Their symmetry can be readily obtained by
evaluation of the character of the numerical wave functions
u(ry, rp, 0). For instance, the second eigenstate in Fig. 4(a) has
one radial node and is symmetric. Its radial density (inset with
red filling) is finite close to r; = r, = 0 which is necessarily
forbidden for antisymmetric states as can be seen for the first
excited, antisymmetric eigenstate (inset with blue filling).

As the eigenenergies approach the energy of the X, Ry-
dberg exciton at £ ~ 300 meV, the quadratic dispersion re-
lation becomes modified. Here an additional scattering chan-
nel opens up that corresponds to the scattering between an
X5, exciton and an electron of finite angular momentum. It
turns out that these scattering states represent the dissociation
continuum of two new trion bound states that appear in the
spectrum. These bound states, shown as red dots in Fig. 3, lie
approximately 25 meV (11 meV) below the X,, exciton and
have a symmetric (antisymmetric) wave function u(ry, r,, 0).
Their bound state character is visible in the exponential en-
velop in the reduced densities shown in Fig. 5(a). Moreover,
as can be seen from the angular densities in Fig. 5(b), these
states are excited along the 6 direction. Since the fotal angular
momentum m is zero, these states can be regarded as 2p
trions composed of a rotating electron that is bound to a
counter-rotating X, exciton.

A special property of the antisymmetric 2p trion is that
it is the energetically lowest state satisfying u(ry, r2,6) =
—u(ry, rp, —0). Parity with respect to 0 is a subsymmetry
of the Hamiltonian and the antisymmetric 2p trion is, con-
sequently, the ground state of the odd parity sector. For
this reason it is protected against couplings to continuum
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FIG. 5. Rotational MoS, trion with spatially symmetric and an-
tisymmetric wave functions (solid blue vs dashed red lines). The
reduced probability densities are obtained by averaging out one or
two degrees of freedom. (a) Probability density (|u|2),2,9(r1) as a
function of electron-hole separation r|. The insets display the radial
correlations (|u|?),(ry, r2) for the spatially symmetric (left) and
antisymmetric (right) state. (b) Corresponding angular probability
density (|u[?),, ,, ().

states and corresponding decay processes. In contrast, the
symmetric 2p trion has even parity under 6 reflections and
possesses a finite admixture of the X state. This admixture is
visible as a small enhancement of the radial density at short
distances and it contributes to the characteristic shape of the
density (|u|?),(r1, r2) resembling a devil-fish silhouette. As a
consequence of the resulting coupling to continuum states, it
is expected that the lifetime of the symmetric 2p trion will be
decreased.

Similarly to the excited trions, the exciton-electron scat-
tering states above the X5, threshold have a mixed excitonic
X5, X2p, and even Xy, character. This indicates that nonelastic
scattering processes between the corresponding asymptotic
scattering states are possible, similar to the collisions of
rovibrationally excited molecules. This highlights TMDs as
a new frontier to emulate the physics of molecular collisions
in two dimensions in a solid-state setting. We note that in our
calculations we do not find evidence for stable 2s trions, i.e.,
bound state between a X,; exciton and an electron of zero an-
gular momentum [64]. This is consistent with previous studies
showing that negatively charged 2s trions are only stable
if m, > my, when considering pure Coulomb interactions in
2D [65].

IV. ELECTRON-EXCITON SCATTERING

As discussed in Sec. III the energetically low-lying excited
states of the three-body Hamiltonian above the Xj; exciton
line correspond to electrons with zero angular momentum
that are scattered off X5 excitons. Compared to free electrons
their wave functions are subject to an s-wave scattering phase
shift induced by an effective exciton-electron interaction. In
consequence, the radial densities (|u|2),279(r1) of these s-wave
scattering states with an energy E > 0 relative to the exciton
energy satisfy for large ry,

(ul)ry.0(r1) & krila(k)o(kr) + BUOYo(kr)). (6)

Here Jy and Yj are the Bessel functions of the first and second
kind and the wave number k satisfies E = k2 /(2Meq) Where
Meq = memy /(m, + my) is the reduced mass of the exciton-
electron system with exciton mass my = m, + my,.

TABLE II. Parameters Vp, r*, and o for the model potential in
Eq. (8) that reproduce the exciton-electron s-wave phase shifts (sym-
metric or antisymmetric) for the different TMD materials specified in
Table I. We employ a hardcore short-range cutoff, i.e., V) — oo, for
the antisymmetric channel, while we use finite-depth potentials for
the symmetric channel that reproduce also the trion binding energy.
The a.u. of polarizability is 10722 eV /(m/ V).

MOSZ MOSGQ W82 WSez
Symmetric scattering
r* (A) 34 33 43 42
Vo (meV) —58.5 =517 —-60.2 529
Antisymmetric scattering
r* (A) 0.265 0.26 0.35 0.36
Exciton polarizability
a (10° a.u.) 52 61 69 88

For each scattering state the coefficients «(k) and B(k) are
determined from a fit of Eq. (6) to the numerical solution.
Performing this fitting procedure separately for symmetric (S)
and antisymmetric (A) states allows us to extract the energy-
dependent s-wave phase shifts §%/4(k) = arctan[— B (k) /a(k)].
The resulting phase shifts for MoS, are depicted in Fig. 6
as green squares. The energy range 0 < E < 60 meV is
chosen to be comparable to typical Fermi energies (measured
from the conduction band edge) realized in gate-doped TMD
heterostructures [28,47,66].

To put these results into context, we compare them to the
universal low-energy behavior of s-wave phase shifts in two-
dimensional systems [67,68]

1, E
coté ~ 7~ In—, 7)
E,
where the energy scale E| = "2 /2Mreda§D defines the two-
dimensional scattering length a,p. If a weakly bound state
(i.e., a trion) exists in the spectrum close to the exciton-
electron scattering threshold, E;| agrees with its binding en-
ergy. Importantly, this holds, however, only as long as its
energy remains much smaller than the energy scale eg =
i /Mieqry given by the range ry of interactions. In particular,
for zero range, i.e., contact interactions, Eq. (7) becomes
exact.

In Fig. 6 we show the zero-range phase shifts (blue dashed
lines) as obtained from Eq. (7) for the symmetric and anti-
symmetric channel. For symmetric states we show the results
for the parameter E; taken as the trion energy obtained from
our numerical calculation (E; = Er = 31.7 meV). While the
phase shift at low momenta [inset in Fig. 6(a)] is well de-
scribed by Eq. (7), already for energies larger than 1 meV
substantial deviations become apparent. For the antisymmet-
ric channel in Fig. 6(b), these deviations are even more
pronounced. This comparison between the zero-range phase
shifts and the numerical result (green symbols) clearly shows
that contact interaction models can provide only a rather crude
approximation for exciton-electron scattering in TMDs.

Effective exciton-electron scattering model—The previous
analysis reveals that for a reliable description of interacting
Bose-Fermi mixtures in 2D semiconductors composed of
excitons, electrons, and trions effective low-energy models are
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FIG. 6. Energy-dependent symmetric phase shifts §5(E) (a) and antisymmetric phase shifts §7 (E) (b) for exciton-electron scattering in
MoS,. Numerical three-body results from exact diagonalization (green squares) are compared to the phase shifts resulting from the effective
exciton-electron pseudopotential Eq. (8) (solid orange line) with parameters * and V;, given in Table II. Additionally, phase shifts for contact
interactions, see Eq. (7), are shown as dashed-dotted blue lines with E; = 31.7 meV (a) and E; = 4 eV (b). These parameters have been chosen
to match the low-energy scaling of the three-body results. This is illustrated in the inset in (a) that shows the rescaled phase shifts exp (7 cot §%)
which are expected to scale «E in the limit of very small energies, see Eq. (7). Only for the symmetric channel E, is related to the binding
energy of the trion, whereas, for the symmetric channel, it does not correspond to any bound-state property.

required that go beyond contact interactions. Ideally such a
low-energy description should capture not only the relevant
universal physics but also remain sufficiently simple to be
viable as an input for efficient many-body calculations, for
instance, using diagrammatics [42,44], QMC [69,70], varia-
tional [28], or field theoretical approaches [71].

We find that the model

Vo, if r <r*,

Ve =1, (aveo\? ®)
—5<#> . else.

provides such an accurate description of the effective low-
energy X-electron scattering in the symmetric (S) or antisym-
metric (A) interaction channel. Here the short-range physics
is determined by the depth V; and the length scale r* charac-
teristic for the channel S or A. The long-range part in turn is
fully determined by the polarizability « of the exciton which
we calculate from first principles in our approach, see Table II.

The form of Eq. (8) can be understood from the observation
that the scattering of an electron and an exciton is governed
by the electrostatic interaction of a charge (the electron) and
a neutral polarizable object (the exciton). First, the presence
of the charge of the scattered electron induces an electric
dipole moment d = oE with |E| ~ dVk/dr. Since the en-
ergy of an electric dipole d in a field E scales as ~d - E,
the form of Eq. (8) follows. Naturally, at large separation
r, or in absence of dielectric screening, one recovers the
familiar scaling Vx.(r) - —a/ @r*) of charge-induced dipole
interactions. Note that in the context of quantum chemistry,
potentials similar to Eq. (8) are successfully applied in the
description of the scattering of electrons with charge-neutral
atoms [72] which leads to the electron-mediated binding of
Rydberg molecules [73,74].

To which extent the scattering of excitons and electrons
takes place in the symmetric or in the antisymmetric scat-
tering channel is closely related to the spin and valley de-
grees of freedom of both electrons. In typical experiments,
electrons have a well-defined valley and spin index but are
not necessarily pure singlet or triplet states. For instance in
the case depicted in Fig. 1(b) one has S} ={K, 1}, $» =
{K’, |} which has contributions from both singlet and triplet

states. Consequently, the scattered electrons have, in general,
to be considered as being in a superposition of singlet and
triplet scattering states and the exciton-electron interaction is
expressed as Vx.(r) = Vi, (rPs + V4 (r)(1 — Ps) with Py the
projector onto the electron-spin singlet channel. This implies
that exciton-electron collisions can effectively induce spin
flips, in the sense that an initially free | electron in the K’
valley may form—after the collision with the K-intravalley
exciton—a bound intervalley exciton with the hole in the K
valley, leaving behind the formerly bound 7 electron in the K
valley in a scattering state, given that energy and momentum
conservation are satisfied. Additional Coulomb exchange can
modify this process by opening or closing scattering channels,
since it lifts the energetic degeneracy of intra- and intervalley
configurations [47,57,58].

In Fig. 6 we compare phase shift for MoS, obtained by
diagonalization to the result based on the model potential
Eq. (8) for the parameters Vj, r* and « given in Table II. Here
the polarizabilities « are directly obtained from first principles
by a calculation of the quadratic Stark spectra of excitons in a
homogeneous electric field via our diagonalization technique.
This approach to obtain « is similar to the analysis [34] and
yields polarizabilities consistent with [75]. The parameters V;
and r* are obtained by fitting the numerically calculated phase
shifts and binding energies.

In fact, we find that one already achieves good agreement
for the antisymmetric scattering phase shift when using a
hard wall barrier at short distances, i.e., Vo — 00, see solid
orange line in Fig. 6(b). This implies that even simple single-
parameter models are sufficient to obtain a reliable description
of the exciton-electron scattering above threshold. Due to the
absence of bound states, the choice of r* is not unique and
different hard wall positions can produce identical low-energy
phase shifts. This is different for the symmetric scattering
where using the finite depth Vy as a further parameter, one
is additionally able to accurately reproduce the trion binding
energy, cf. the solid, orange line in Fig. 6(a). We note that
the scattering phase shifts cannot be accurately described by
pure hard-sphere potentials for which the phase shifts cot§ =
Yo(kr*)/Jo(kr*) are analytically known [67] and ignore the
long-range tail of interactions.
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While we show explicit results for §(E) only for MoS,, we
also provide the effective model parameters for other TMD
materials in Table II. In all cases we find that accounting for
the long-range polarization potential is essential to obtain a
reliable low-energy scattering model.

V. OPTICAL ABSORPTION SPECTRUM OF
CHARGE-DOPED MoSe,

By featuring excitons that remain well-defined particles
even under substantial electron doping, TMDs allow one to
study the regime where a low density of excitons is immersed
in a bath of electrons [24,28,34,35]. This represents a real-
ization of the many-body problem of Fermi polarons, where
one considers the interaction of a single mobile impurity
(the exciton) with a sea of fermions (electrons) [32,76-80].
The dressing of the impurity by particle-hole excitations of the
Fermi bath leads to renormalized properties of the impurity
which becomes a quasiparticle, the Fermi polaron [76,77,81].
Key signatures of polaron formation are a renormalized mass,
a reduced absorption line strength, and a shift of the impu-
rity energy. The formation of attractive and repulsive Fermi
polaron branches has been predicted for two-dimensional
systems in [33] and were observed first in the radio-frequency
response of ultracold atomic gases [82].

Recently, signatures of Fermi polarons in TMDs were
reported in [28] where polaron energy shifts were measured in
gate-tunable monolayer MoSe, for variable Fermi energies e
in the range of 0 < € < 40 meV. As predicted and observed
in the context of ultracold atoms, also in TMDs two polaron
branches exist. The so-called attractive polaron branch corre-
sponds to the exciton being dressed by the virtual occupation
of the trion state in addition to particle-hole excitations of
the Fermi sea. In the limit of low charge-carrier density this
branch emerges in the absorption spectrum at the trion energy.
In contrast, the so-called repulsive polaron corresponds to the
exciton being dressed predominately by particle-hole excita-
tions of the Fermi sea. This leads to a repulsive blueshift of
the bare exciton line as more charge carriers are inserted into
the system.

Previous analysis compared the experimentally observed
absorption spectrum with a many-body model that as-
sumes contact interactions between electrons and excitons
[28,34,35]. Under this assumption experimental absorption
line shifts were found to be in relatively good agreement with
a variational calculation that takes into account the dressing
of the exciton by single particle-hole excitations of the Fermi
sea [76].

While theory and experiment agree well at low charge-
carrier doping, at higher Fermi energies increasing deviations
are found in particular for the attractive polaron branch when
€r > 20 meV [28]. One possible source for discrepancies,
which is strongly suggested by our analysis, are finite-range
corrections of the exciton-electron interaction. Our results for
the phase shifts in Sec. IV show that these corrections become
increasingly important at larger Fermi energies.

In order to estimate the role and extent of the finite-
range corrections on polaron energies we apply here Fumi’s
theorem, which links the energy shift of absorption lines
to the phase shifts of the electron-impurity interactions

E (meV)
[ |— 3-body results
[ |--= contact
30 interactions
0 25 E(meV)

repulsive polaron

Lo o a1 S, S, S|
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er(meV)

-10

attractive polaron

-
-
20 2 &
- —-—-—
==

-30

FIG. 7. Energies of the attractive and repulsive polaron for a
single exciton impurity in electron-doped monolayer MoSe, as a
function of the Fermi energy €. We compare theoretical predictions
based on Fumi’s theorem (9) and employ exciton-electron phase
shifts resulting either from our three-body simulations (solid black
lines) or from contact interactions (dashed-dotted magenta lines).
Deviations of these predictions characterize the impact of finite-
range corrections on the polaron. Information on the line shape and
line strength of the polaron resonances is provided by the simulated
polaron absorption spectrum A(E') (blue shading). We obtain A(E)
employing the FDA and the model potential Eq. (8) that accounts
for finite-range corrections. The inset shows a cut of A(E) for fixed
doping € = 20 meV. Optical absorption measurements [28] in gate-
tuneable monolayer MoSe, (red dots) are shown for comparison. All
theoretical energies are shifted by 0.8 €.

via [37,83,84]

¢ dE
Exten == [ o),

att GF dE
Eo(€r) = Ere — € — 73(E)- ©)]
0

Here the Fermi energy €r is measured from the conduction
band edge, Er; is the trion binding energy, and 8(E) is the
exciton-electron phase shift. For simplicity and in order to
allow comparison to [28,34], the spin dependence of the phase
shifts is neglected. Hence interactions take place exclusively
in the single scattering channel that supports the trion state.
Fumi’s theorem becomes exact for an infinite impurity mass,
while for the present case it is an approximation that neglects
recoil but includes infinitely many particle-hole excitations of
the Fermi sea.

Figure 7 shows a comparison of polaron energies obtained
from Eq. (9) using either the complete three-body result
8S(E) (solid black line) as input or the contact interaction
Eq. (7) (dashed-dotted magenta line). The impact of finite-
range corrections is visible in the difference between the
two predictions. While both energies coincide at low Fermi
energies €, there are increasing deviations for larger € with
the zero-range approximation systematically underestimating
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the polaron energy. For instance for ez = 40 meV, deviations
are on the order of 5 meV. Note, for a comparison with the
experiment and following [28] all theoretical energies are
shifted by 0.8 €, see below.

In addition to polaron energies one can also predict
the spectral line shape using the model potential (8) and
the functional determinant approach (FDA); for details see
Appendix B. The resulting spectrum A(E) is shown in Fig. 7
as blue shading together with a cut of A(E) for e = 20 meV
in the inset. Similar to Fumi’s theorem the FDA neglects im-
purity recoil but includes finite-range effects of the underlying
interaction as well as infinitely many particle-hole excitations.
As a consequence, peak positions of A(E) coincide with the
energies predicted by Eq. (9) for the numerically exact phase
shifts (solid black line). While the signal strength of the
repulsive polaron decreases and broadens rapidly as a function
of ep, the visibility of the attractive polaron increases, in good
agreement with alternative theoretical models [28,34].

For comparison we present in Fig. 7 also polaron energies
experimentally obtained in Ref. [28] (red dots). The measured
energy positions agree overall well with our results. Further-
more, the larger spread of experimental data for the repulsive
polaron at € = 8 meV is consistent with the reduced signal
strength predicted by the FDA. As noted above all theoretical
energies are shifted by the linear function 0.8 € which was
determined in Ref. [28] to account for the combined effects of
phase-space filling, screening, and band gap renormalization
[85,86].

In conclusion our analysis based on Fumi’s theorem and
the FDA demonstrates that finite-range corrections have in-
deed a significant impact on polaron energies at typical
charge-carrier densities and need to be taken into account for
a correct description of the corresponding optical response.
Furthermore, our results provide an illustrative example of
how the exciton-electron phase shifts and the interaction
potentials derived in this work can be incorporated into many-
body theories to account for a detailed description of electron-
electron scattering.

We note that more accurate descriptions of polaron spec-
tra in TMDs should consider also the impurity recoil as
well as phase-space filling, band gap renormalization, and
static and dynamical screening [51,85,87]. Moreover, at Fermi
energies larger than the splitting of the conduction bands,
e.g., ~20 meV for MoSe, [53], scattering between the K-
valley exciton and electrons in the same valley can become
relevant which we neglected here for simplicity and to allow
for comparison with the theoretical model in Refs. [28,34].
This scattering will provide an additional interaction channel
contributing to Fumi’s theorem by the scattering phase shift
84 shown in Fig. 6(b), and thus will lead to an additional,
yet smaller, energy shift of the polaron. Finally, as the Fermi
energy exceeds the spin-orbit splitting A§,~ of the conduction
bands, see Fig. 1, additional charge carriers start to interact
with the exciton and will contribute to further shifts of the po-
laron lines in absorption and photoluminescence experiments.

VI. CONCLUSIONS

In this work we introduced an exact, discrete vari-
able representation-based diagonalization approach to the

scattering of electrons and holes in two-dimensional transition
metal dicalchogenides. We predicted the trion and exciton
binding energies which are in excellent agreement with QMC
predictions [52], and that can serve as benchmarks for vari-
ational approaches [46,47,85,88]. The diagonalization yields
also the spectrum and wave functions of excited states which
makes the approach an alternative to other methods such as
Faddeev equation formalism [89], variational optimization
[46,47,85,88], diagrammatics [90], or path-integral and dif-
fusion Monte Carlo [52]. The excited states fall into two
categories: bound excited trions and spatially extended states
that correspond to electrons scattering with tightly bound
excitons. Using asymptotic wave functions we predicted the
energy-dependent scattering phase shifts which determine the
strength of exciton-electron interactions in TMDs.

Our investigation shows that contact interaction models
are insufficient to describe these phase shifts. However, still
relatively simple scattering models can be derived, and we
introduce a model potential that can accurately capture the
predicted scattering phase shifts over a large range of energy
scales. The potential may be used as a reliable input for many-
body models of Bose-Fermi mixtures consisting of electrons
and excitons in TMDs and we provide numerical parameters
for monolayers of MoS,, MoSe,, WS,, and WSe,. As an
application, we showed that the prediction for the optical
absorption spectra of n-doped MoSe, based on the potential,
yields good agreement with recent experiments that explored
Fermi polaron formation [28,29].

In this work we focused on introducing the exact diago-
nalization approach and on providing a benchmark of exact
diagonalization against QMC. Hence, various effects were not
included that yield further quantitative corrections, such as
the effect of Berry curvature, band warping, or electron-hole
exchange. All of these effects can in principle be included in
our Hamiltonian approach. Moreover, we employed the sim-
ple Keldysh potential Eq. (2) to describe the interactions be-
tween charge carriers. From the field solutions of the Laplace
equation with appropriate boundary conditions more accurate
potentials can be derived that account for a finite material
thickness and the presence of various dielectric environments
[63]. Our approach can be extended to include magnetic fields
[91,92] and defects [93] and it provides means to explore
multilayer heterostructures that hold promise to exhibit strik-
ing many-body physics. In particular, depending on material
stacking, exciton and trion energies can be manipulated and
scattering phase shifts may exhibit strong-coupling behavior.

We finally emphasize that the exact diagonalization ap-
proach is generally applicable to systems where bound states
emerge in the scattering of multiple particles. Our approach
allows one to generically derive effective low-energy models
for the description of the many-body physics and scattering
of the resulting composite objects, ranging from dimer forma-
tion in cold atomic systems [94] to dephasing in storage-of-
light experiments induced by multibody Rydberg molecules
[73,95,96].
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APPENDIX A: KINETIC HAMILTONIAN IN
VALENCE COORDINATES

We consider three particles (i = 1, 2, 3) in two dimensions
with masses m; and coordinates R;. The kinetic Hamiltonian
reads

(AD

In order to separate the center-of-mass motion we trans-
form r = Rl — R3, r, = R2 — R3, and rcom = Iit/](mlRl +
myRy + m3R3). The resulting kinetic Hamiltonian reads

. i 2 2 i
Hyin = —Z—MArl - 2_'u2Al‘z - m—SVrl +Vr, — mArcow

(A2)

with the total mass M = m; 4+ m; + ms and the reduced
masses wy = mims/(my +msz) and py = moms/(mo + m3).
The center-of-mass motion can be separated since all inter-
action potentials are independent of rcoy.

Next we parametrize the internal degrees of freedom
r; = ri[cos(o + %)ex + sin(a + %)ey] and r; = rp[cos(o —
g)ex + sin(a — %)ey] via the two radii r;, r» and the two
angles 6 and «, see Fig 1(a). The resulting kinetic Hamiltonian
(without center-of-mass motion) is

o K2 9, 02 R 9, 02
ARV = — r+—+L)-—(+2+2L
2,u1 1 r 2o ) rs

i cos032 (3, )\ .
— —|cos00,,0,, — — | — 4+ — | sinfoy
m3 rr r r

_h_2<3_5_@)_h_2<ﬁ+@>
2 41’12 rl2 2un 4r§ r%
"2 [cos@ 3,00 91,0,
32 +sing —— — =) |.
2m3 2rir r r
In the case of m; = m, the kinetic Hamiltonian is invariant
under exchange of r; and r, which corresponds to the trans-
formation ry +— rp, 1, > r, and 6 —> —6.
If all interactions do not depend on the angle
o, it is convenient to express the wave function as
5 ’9 . .
v(ry, rn,b,a) = % exp(ima) where m is a con.ser\./ed
angular momentum quantum number. The normalization

(A3)

condition is

/ / / / dridry dodar |y (r, 12, 6, )
r=0 Jr=0 Jo= o=

=/ / / dridry dOlu(ry, 1, 0> = 1. (A4)
r1=0 r2=0 0=0

The purely vibrational (m = 0) Hamiltonian which acts on
u(ry, ra, 0) is, finally, given by

AYb = s 82+1+ag i a+1+82
e 4 1) 2w 4r3

P11 /1
— —|——| > cos8 — dycosB9y | + cosH,, 0y,
m3 | rnrn 4

&N
2 mn

APPENDIX B: POLARON ABSORPTION SPECTRUM
FROM A FUNCTIONAL DETERMINANT APPROACH

0 . .
—2> (sin 69y + 9y sin 6)}. (A5)
r

To predict the spectral function A(E) shown in Fig. 7,
we employ a functional determinant approach (FDA) which
is exact for bilinear Hamiltonians and relies on a mapping
of expectation values of exponentiated many-body operators
to determinants of single-particle operators [37,97-99]. We
employ the Hamiltonian

A= 5e
k

where A is the system area, uy, = (my, + m.)m,/(my, + 2m,)
is the reduced exciton-electron mass, and Vx.(q) is the two-
dimensional Fourier transform of the exciton-electron in-
teraction V;‘Z) (r) given in (8) with material parameters for
MoSe, as specified in Table II. The Hamiltonian (B1) is an
approximation of the full many-body Hamiltonian, since it
neglects nonbilinear couplings terms due to finite mass ratio of
the electron and exciton masses [100]. However, H becomes
exact in the limit my; > m, and has been shown to be in
excellent agreement with polaron spectra of heavy impurities
in ultracold fermionic atomic gases [101] as well as Rydberg
impurities in Bose gases [8].

Following the FDA, the polaron spectral function
A(E) is given by the Fourier transform A(E,e€fp) =
2Re[ fooo S(t)exp (iEt)dt] of the Loschmidt echo S(z) =
det[l1 —a+n exp(zhot) exp(—zht)] which depends on single-
particle operators ho, h, and 7 [37], given by ho K%/ Quxe)
and h = hy + V(S)(r) describing the relative dynamics of a
single exciton-electron pair without or with exciton-electron
interactions, respectively. Furthermore, G(fzo — €r) is the oc-
cupation operator of the noninteracting Fermi gas at zero
temperature, where 6 is the Heaviside step function. The time
evolution and evaluation of S(t) is performed by diagonalizing
h and fzo in a circular box of radius 10°ay in the subspace of
conserved zero angular momentum using a radial DVR grid.
Finally, the resulting polaron spectrum is shifted according to
A(E)— A(E — 0.8¢r + 1.2 meV) in order to account for the
difference between the experimentally observed trion energy
of 26.5 meV and our ab initio prediction of 27.7 meV, see

RO N
cltck + o 2 Vee@el a0 (BD
kq
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FIG. 8. Comparison between radial densities of numerically
obtained scattering states (dots) and fitted scattering solutions
Eq. (6) (solid line). Shown are the first (blue), second (orange),
and the eighth (red) excited eigenstate that correspond to differ-
ent eigenenergies E. The fits are obtained by finding parameters
a(k) and B(k) that optimally match the numerical densities at
sufficiently large distances (here r; > 60 a.u.). The length of the
radial grid is 400 A and we use 61 grid points for each degree of
freedom.

Table I, and, in order to include the experimentally determined
corrections due to phase space filling, screening and band gap
renormalization [28].

APPENDIX C: ASYMPTOTIC FITTING OF PHASE SHIFTS

We obtain energy-dependent phase shifts of exciton-
electron scattering by fitting scattering solutions (6) to the
probability densities of numerically determined scattering
states; for an example see Fig. 4. To illustrate additional

details of this fitting procedure we present in Fig. 8 densities
of numerically obtained scattering states (colored dots) with
a focus on their oscillatory long-range part. Due to the mag-
nification of the long-range part, the density peaks visible at
small distances in Fig. 4, are cut off in Fig. 8.

The presented densities belong to the first, second, and
eighth excited state of the Hamiltonian (AS) with model
parameters for MoS; and a length of the radial DVR grid of
400 A. The spatial symmetry and the energies of these states
E are given in Fig. 8. All energies lie above the exciton energy
Ex = —526.0 meV, with the energy difference corresponding
to the collision energy with associated wave number k. These
numerical densities are compared to fitted scattering solutions
(6) (gray lines) with fitting parameters « (k) and B(k). As can
be seen, the long-range part of the densities agrees typically
well with the scattering solutions and allows for a robust
extraction of phase shifts.

Reasons for deviations between numerical results and their
fit are the following. First the numerical densities deviate from
scattering solutions at distances r; shorter than 40 A. This
length scale is related to the range of the exciton-electron
interaction. For this reason we restrict the fitting to the asymp-
totic region r; > 60 A where interactions are approximately
negligible. Second, there is another less pronounced deviation
of the fit function which is visible for the eighth excited state
at r; ~ 400 A. This error is a finite-size effect that becomes
important for grid points lying close to the radial boundary,
here at r; =400 A. It is a consequence of the asymptotic
behavior of the radial DVR basis ¢,(r; — 00) = 0 which is
incompatible with the periodic long-range behavior of scatter-
ing states. However, this error has no significant impact on the
obtained fitting parameters « (k) and §(k) due to the relatively
small number of affected grid points.
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