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Structure-specific mode-resolved phonon coherence and specularity at graphene grain boundaries
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In spite of their importance for understanding phonon transport phenomena in thin films and polycrystalline
solids, the effects of boundary roughness scattering on phonon specularity and coherence are poorly understood
because there is no general method for predicting their dependence on phonon momentum, frequency, branch,
and boundary morphology. Using the recently formulated atomistic S-matrix method, we develop a theory of
boundary roughness scattering to determine the mode-resolved phonon coherence and specularity parameters
from the scattering amplitudes. To illustrate the theory, we apply it to phonon scattering in realistic nonsymmetric
graphene grain boundary (GB) models derived from atomic structure predictions. The method is validated by
comparing its predictions with frequency-resolved results from lattice dynamics-based calculations. We prove
that incoherent scattering is almost perfectly diffusive. We show that phonon scattering at the graphene GB is
not diffuse, although coherence and specularity are significantly reduced for long-wavelength flexural acoustic
phonons. Our approach can be generalized to other atomistic boundary models.

DOI: 10.1103/PhysRevB.101.195410

I. INTRODUCTION

Phonon mean free path (MFP) engineering through bound-
ary roughness scattering is a widely used approach to manip-
ulating phonon transport in low-dimensional materials (e.g.,
silicon nanowires [1,2]) for thermoelectric and thermal man-
agement applications [3,4] as well as for investigations into
fundamental phonon phenomena such as phonon hydrody-
namics [5] in layered crystals [6] and ballistic phonons in
graphene [7]. In nanostructures, the reduced thermal conduc-
tivity is also attributed to boundary roughness scattering [8,9].
Nonetheless, in spite of its importance for phonon transport,
a rigorous quantitative description of how phonons undergo
momentum and phase relaxation from boundary roughness
scattering still eludes us [3,9], posing an obstacle to the
systematic use of structural modification to control the phonon
MFP, while a direct characterization of the specularity is
very difficult with current experimental techniques [10]. Al-
though there have been studies using phonon wave packets to
probe boundary scattering [11–15], their use is limited by the
considerable difficulty of deriving mode-resolved reciprocal-
space information from real-space data in addition to the
substantial computational costs.

A major challenge to understanding this mechanism is our
inability to predict accurately for a given boundary model
the probability of the incident phonon undergoing specu-
lar scattering, characterized by the specularity parameter P ,
which plays an important role in many boundary scattering
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models [2,16,17] and should vary with phonon frequency,
momentum, and polarization/branch. In perfectly specular
scattering (P = 1) as shown in Fig. 1(a), the incident bulk
phonon is scattered coherently by a smooth boundary into
well-defined trajectories while, in perfectly diffuse scattering
(P = 0) or the so-called Casimir limit as shown in Fig. 1(b),
the incoming phonon energy is redistributed uniformly over
the entire spectrum of outgoing phonon channels, resulting
in maximum momentum loss in the direction parallel to the
boundary [9]. Another challenge lies in predicting the effect
of boundary roughness on coherent and incoherent scattering,
an unresolved issue in phonon transport in superlattices where
the role of phonon interference in thermal conductivity is still
debated [18–21].

In order to address these challenges, we develop in this
paper a theory of boundary roughness scattering, based on
the recently formulated atomistic S-matrix method [22], to
determine the mode-resolved phonon coherence and specu-
larity parameters for boundary models. Unlike existing ap-
proaches [23,24], our method is fully atomistic, not restricted
to long-wavelength modes, and distinguishes coherent and
incoherent scattering [25–27] by treating boundary roughness
in a statistical manner analogous to the theory of multiple
scattering in disordered systems [25,28–30] and conceptually
similar to the approach in Ref. [31]. We apply this theory
to phonon scattering at the grain boundary (GB) between
armchair- and zigzag-terminated graphene like in Fig. 1(c),
using realistic nonsymmetric low-energy GB models derived
from ab initio-based structure predictions [32]. We validate
our method by comparing its predictions with the less precise
Zhao-Frend method [33] and analyze how the coherence and
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(a) (b)

(c)

FIG. 1. Depiction of (a) perfectly specular versus (b) perfectly
diffuse scattering at a boundary, and (c) the graphene GB between
armchair- and zigzag-edge graphene. The shape and orientation of
their respective Brillouin zones are also shown.

specularity parameters vary with phonon frequency, momen-
tum, and polarization/branch for the graphene GB.

II. THEORY AND MODEL

A. Grain boundary model and S matrix

To treat phonon scattering by the rough (32,32)|(56,0)
graphene GB statistically, we need to generate the various
possible GB configurations and their interatomic force con-
stant (IFC) matrices. Each (32,32)|(56,0) graphene GB con-
figuration, which consists of an undulating line of pentagon-
heptagon defect pairs like in Fig. 1(c), is constructed from
an eight-unit random sequence of the two lowest-energy
(4,4)|(7,0) graphene GB configurations [GB-II and GB-III
in Fig. 2(a)] in Ref. [32], with open-system and periodic
boundary conditions in the x and y direction, respectively,
to yield 28 = 256 unique GB configurations. Given the large
size of the GB models, we use the program GULP [34] and
the empirical Tersoff potential [35], with parameters from
Ref. [36], to model the C-C interatomic forces instead of more
expensive ab initio methods and to compute the IFC matrices
needed for the atomistic S-matrix calculations as described in
Refs. [22,37], with details of the GB structure generation and
optimization given in Sec. S1 of the Supplemental Material
[38]. The scheme of our calculations is shown in Fig. 2(b).

Using our code which implements the atomistic S-matrix
method [22], we compute at each frequency ω = nω0, where
n = 1, . . . , 25 and ω0 = 1013 rad/s, the unitary N (ω) × N (ω)
matrix S(ω) which describes the mapping of the N (ω) incom-
ing bulk phonon modes to the N (ω) outgoing bulk phonon
modes on both sides of the boundary, for each GB con-
figuration. Details of the S-matrix calculations are given in
Sec. S2 of the Supplemental Material [38]. In the general
scattering picture [22,37], S(ω), which relates the incoming
phonon state �in to the outgoing phonon state �out via the
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FIG. 2. (a) Atomistic structure of the (4,4)|(7,0) GB-II and GB-
III interfaces. (b) Schematic of atomistic S-matrix calculation with
the scattering region comprising the (32,32)|(56,0) grain boundary
(GB). We generate an ensemble of 256 GB configurations derived
from structure predictions. Each GB configuration is inserted into
the scattering region between the left and right leads and its corre-
sponding S matrix is computed using Ref. [22].

relation �out = S(ω)�in, encodes the amplitude and phase
changes. Numerically, �in and �out, which represent a su-
perposition of N (ω) bulk phonon modes, are column vectors
with the mth element of �in (�out) equal to the complex flux
amplitude of the mth incoming (outgoing) phonon channel
and represented by [�in]m = �(km) and [�out]m = �(km)
for m = 1, . . . , N (ω) with the momentum km and branch
νm associated with the mth phonon channel. We can thus
interpret |�(k′)|2 and |�(k)|2 as the intensity of the incoming
k′ and the outgoing k phonon flux, respectively. Hence the
matrix element [S(ω)]mn = S(km, k′

n) is equal to the scattering
amplitude from the nth incoming to the mth outgoing phonon
channel, i.e.,

⎛
⎜⎝

�(k1)
...

�(kN )

⎞
⎟⎠ =

⎛
⎜⎝

S(k1, k′
1) . . . S(k1, k′

N )
...

. . .
...

S(kN , k′
1) . . . S(kN , k′

N )

⎞
⎟⎠

⎛
⎜⎝

�(k′
1)

...
�(k′

N )

⎞
⎟⎠,

(1)

where {k1, . . . , kN (ω)} and {k′
1, . . . , k′

N (ω)} denote the mo-
menta of the outgoing and incoming modes, respectively.

The evaluation of Eq. (3) requires a configurational ensem-
ble of S matrices computed using the method described in
Ref. [22], with each matrix describing a boundary configu-
ration. For simplicity, we choose the (32,32)|(56,0) graphene
GB as our boundary model which we construct from the
two lowest-energy (4,4)|(7,0) GB configurations [GB-II and
GB-III in Fig. 2(a)] in Ref. [32] found using the ab initio ran-
dom structure searching method [39]. Each (32,32)|(56,0) GB
configuration comprises eight (4,4)|(7,0) GBs, a permutation
of GB-IIs and GB-IIIs, forming a continuous line of pentagon-
heptagon defect pairs. This construction method yields 28 =
256 unique GB configurations. We set the direction of the
phonon flux and the GB to be parallel to the x and y axis,
respectively, and impose periodic boundary conditions in the
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y direction. Given the large size of the GB models, we use
the empirical Tersoff potential [35], with parameters from
Ref. [36], to model the C-C interatomic forces instead of
more expensive ab initio methods. The program GULP [34]
is used to optimize each GB configuration and to generate
its force-constant matrices HCL, HC, and HCR needed for
the S-matrix calculations. We also compute the force-constant
matrices H00

L and H01
L (H00

R and H01
R ) describing the armchair-

edge (zigzag-edge) graphene in the left (right) lead. At each
frequency ω = nω0 (n = 1, . . . , 25 and ω0 = 1013 rad/s),
we compute an N (ω) × N (ω) matrix Sα (ω) for the αth GB
configuration (α = 1, . . . , 256).

B. S-matrix theory of boundary roughness scattering

For a nonideal boundary that consists of a deterministic
part corresponding to the smooth boundary and a stochastic
part describing the boundary roughness, �out can be parti-
tioned into its deterministic and stochastic components in a
manner akin to the treatment of randomly scattered wave
fields [25–27], i.e.,

[�out]m = 〈[�out]m〉 + [δ�out]m, (2)

where 〈[�out]m〉 and [δ�out]m are its deterministic and
stochastic components, respectively, and 〈. . .〉 represents
the configurational average [40] assuming that every
configuration is equally probable. Similarly, the deter-
ministic and stochastic components of S(ω) are de-
fined via the expression [S(ω)]mn = 〈[S(ω)]mn〉 + [δS(ω)]mn,
where 〈[�out]m〉 = ∑N

n=1〈[S(ω)]mn〉[�in]n and [δ�out]m =∑N
n=1[δS(ω)]mn[�in]n. For any given [�in]n, the determin-

istic component 〈[�out]m〉 and hence 〈[S(ω)]mn〉 preserve
the coherent amplitude and phase information from direct
averaging.

It follows from Eq. (2) that 〈[δ�out]m〉 = 0, i.e., the
amplitude fluctuations of the outgoing phonon state
average to zero, and thus 〈[δS(ω)]mn〉 = 0. However, the
configurational average of |[�out]m|2, the probability of the
phonon being scattered to the mth outgoing phonon channel,
is 〈|[�out]m|2〉 = |〈[�out]m〉|2 + 〈|[δ�out]m|2〉, implying
that the transition probability fluctuations associated
with boundary roughness are not necessarily zero since
〈|[�out]m|2〉 � |〈[�out]m〉|2. Hence the configurational
average of the transition probability is given by
〈|[S(ω)]mn|2〉 = |〈[S(ω)]mn〉|2 + 〈|[δS(ω)]mn|2〉, which we
rewrite as [W total(ω)]mn = [W coh(ω)]mn + [W incoh(ω)]mn,
where W total, W coh, and W incoh are the total, coherent, and
incoherent transition probability matrices, respectively, with
their matrix elements given by

[W total(ω)]mn = 〈|[S(ω)]mn|2〉, (3a)

[W coh(ω)]mn = |〈[S(ω)]mn〉|2, (3b)

[W incoh(ω)]mn = 〈|[S(ω)]mn|2〉 − |〈[S(ω)]mn〉|2. (3c)

[W total(ω)]mn represents the total transition probability be-
tween the nth incoming and the mth outgoing channel while
[W coh(ω)]mn and [W incoh(ω)]mn correspond to its coherent and
incoherent components.

C. Definition of mode-resolved phonon
coherence and specularity

To characterize the coherence and specularity of the nth
incoming phonon channel, we use the transition probabilities
from Eq. (3) to define the phonon coherence Cn,

Cn(ω) =
N (ω)∑
m=1

[W coh(ω)]mn, (4)

the sum of the coherent transition probabilities, as its prob-
ability of being coherently scattered. Equation (4) satisfies
0 < Cn � 1 and can be interpreted as the proportion of the
incoming phonon flux redistributed to the outgoing phonon
channels after coherent scattering. We recall that the specu-
larity parameter is the probability that the incident phonon
is scattered into the outgoing phonon channels associated
with specular scattering by an ideal boundary. Given that
the structural randomness of the rough boundary results in
both coherent and incoherent scattering, we can characterize
the specularity of each type of scattering independently. To
estimate the specularity parameter associated with each type
of outscattering from the nth incoming phonon channel at
frequency ω, we propose a statistical characterization of the
“spread” in the transition probabilities, given by

Ptotal
n (ω) =

√∑N (ω)
m=1 |[W total(ω)]mn|2∑N (ω)
m=1 [W total(ω)]mn

, (5a)

Pcoh
n (ω) =

√∑N (ω)
m=1 |[W coh(ω)]mn|2∑N (ω)
m=1 [W coh(ω)]mn

, (5b)

Pincoh
n (ω) =

√∑N (ω)
m=1 |[W incoh(ω)]mn|2∑N (ω)
m=1 [W incoh(ω)]mn

, (5c)

where Pcoh
n , Pincoh

n , and Ptotal
n represent the coherent, inco-

herent, and total specularity, respectively. Equation (5) cor-
responds to the normalized second moment of the transition
probabilities, satisfying 0 < Ptotal

n , Pcoh
n , Pincoh

n � 1, and is re-
lated to the inverse participation ratio used to characterize
disordered eigenstates in Anderson localization theory [41].
The numerator in Eq. (5) counts the effective number of out-
going channels over which the scattered energy is distributed
and measures how evenly it is spread across the outgoing
(transmitted and reflected) channels in different branches.
The specularity parameters are related to the coherence from
Eq. (4) through the compact expression

(
Ptotal

n

)2 = C2
n

(
Pcoh

n

)2 + (1 − Cn)2
(
Pincoh

n

)2
. (6)

We motivate Eq. (5) from the advantages and consistency
of its asymptotic (N → ∞) behavior with expected P values
under well-defined conditions [9]. In the Casimir (P = 0)
limit where the incoming phonon energy is diffused uniformly
over all N outgoing phonon channels, we have Ptotal

n = N−1/2

so that limN→∞ Ptotal
n = 0. For perfectly specular reflection

(P = 1), there is only one outgoing phonon channel with
a transition probability of unity (i.e., [W total(ω)]mn = 1 for
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some m) and Ptotal
n = 1 as expected. For partially specular

scattering (P = p) where there is one dominant outgoing
phonon channel with transition probability p and the transition
probability to each remaining channel is 1−p

N−1 , we obtain
limN→∞ Ptotal

n = p.

III. RESULTS AND DISCUSSION

A. Comparison with Zhao-Freund specularity parameter

In addition to its consistency under well-defined condi-
tions, we also validate Eq. (5) by comparing its predictions to
the lattice dynamics-based approach from Ref. [33] in which
Zhao and Freund define a frequency-dependent specularity
parameter p(ω), which lacks modal resolution and we may
consider as the specularity parameter averaged over all the
modes in all phonon branches at the frequency ω, based on
the relative value of the actual phonon transmission to the
transmission functions predicted from the acoustic mismatch
model (AMM) and diffuse mismatch model (DMM). As we
can resolve the phonon branch, we generalize the Zhao-
Freund estimate to define the more precise frequency- and
branch-dependent specularity parameter [33] for the left-lead
α-branch phonons as

pα,L(ω) = �α,L(ω) − �
(DMM)
α,L (ω)

�
(AMM)
α,L (ω) − �

(DMM)
α,L (ω)

, (7)

where α = LA (longitudinal acoustic), TA (transverse acous-
tic), ZA (flexural acoustic), LO (longitudinal optical), TO
(transverse optical), or ZO (flexural optical), and �α,L,
�

(AMM)
α,L , and �

(DMM)
α,L are the transmission functions calcu-

lated with the atomistic S-matrix, AMM, and DMM method,
respectively, as described in Sec. S3 of the Supplemental
Material [38]. We also define the analogous branch-averaged,
frequency-dependent total specularity parameter

Pα,L(ω) =
∑N (ω)

n=1 Ptotal
n (ω)�(v′

x,n)δν ′
n,α∑N (ω)

n=1 �(v′
x,n)δν ′

n,α

(8)

by averaging Ptotal
n from Eq. (5) over all the incoming left-

lead α-branch phonon channels. The comparison between
Eqs. (7) and (8) is made over the frequency range in which
we have long-wavelength phonons with momentum k satisfy-
ing |k| < kcutoff, where the cutoff momentum kcutoff is set as
half of the distance between the � and K point in the first
Brillouin zone (BZ).

We observe excellent agreement between PLA,L and pLA,L

over the entire frequency range in Fig. 3. The agreement
between PTA,L and pTA,L is also remarkably good although
the two quantities diverge at higher frequencies, possibly
because of the deviation of the TA phonon frequencies from
the linear dispersion implicitly assumed in �

(AMM)
α,L in Eq. (7)

for estimating pTA,L. The sensitivity of the agreement between
Eqs. (7) and (8) to the phonon dispersion linearity is also
reflected in the poor agreement between PZA,L and pZA,L for
ZA phonons, which have a quadratic phonon dispersion in the
long-wavelength limit in graphene [42], although the general
trend of the ZA phonon specularity increasing with frequency
is captured. The close agreement between Eqs. (7) and (8) for

FIG. 3. Comparison of the Zhao-Freund specularity parameters
pα,L (dashed lines) from Eq. (7) with the branch-averaged specular-
ity parameters Pα,L (solid lines) from Eq. (8) for α = LA (green
symbols), TA (red symbols), and ZA (blue symbols) phonons in
armchair-edge graphene.

long-wavelength LA and TA phonons supports our approach
for estimating the specularity parameters in Eq. (5).

B. Specularity and coherence of graphene phonons

In Fig. 4, we analyze the reciprocal-space distribution
of the phonon coherence (Cn) and the total, coherent, and
incoherent specularity parameters (Ptotal

n , Pcoh
n , and Pincoh

n ) for
the ZA, TA, and LA phonon modes over the entire first BZ in
armchair-edge graphene, computed from Eqs. (5) and (4) over
the frequency range of ω = ω0 to 25ω0 rad/s in intervals of
ω0 = 1013 rad/s, using the method described in Ref. [22]. The
mode-resolved data over the entire BZ is obtained by plotting
the mode-resolved data at each frequency and then sweeping
over the aforementioned frequency range. The corresponding
results for zigzag-edge graphene are omitted here but given in
Sec. S4 of the Supplemental Material [38]. The convergence
of Cn and Ptotal

n with respect to GB width is also discussed in
Sec. S5 of the Supplemental Material [38].

In Fig. 4(d), we observe that Cn for ZA phonons increases
as kn decreases, suggesting that long-wavelength ZA phonons
are more sensitive to GB roughness, against conventional ex-
pectations that boundary roughness scatters short-wavelength
phonons more strongly [9]. In contrast, Figs. 4(e) and 4(f)
show that Cn for LA and TA phonons decreases as kn in-
creases, indicating that long-wavelength LA and TA phonons
are less incoherently scattered. The trend in Fig. 4(d) is con-
sistent with the Ptotal

n distribution in Figs. 4(g) to 4(i), which
show Ptotal

n decreasing for LA and TA phonons but increasing
for ZA phonons as kn increases. We speculate that this is
related to the significantly higher point-defect scattering rates
of ZA phonons in graphene [43]. The greater GB scattering
of ZA phonons implies that, in suspended polycrystalline
graphene, the in-plane LA and TA phonons play a more
significant role in heat conduction than the out-of-plane ZA
phonons which are said to dominate thermal transport in
pristine graphene [42]. It has also been proposed by Soffer
[14,44] that the specularity parameter should vary anisotropi-
cally as P = exp[−(2ηkx )2], where η is the root-mean-square

195410-4



STRUCTURE-SPECIFIC MODE-RESOLVED PHONON … PHYSICAL REVIEW B 101, 195410 (2020)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(d)

(e)

(f)

(a)

(b)

(c)

FIG. 4. (a)–(c) Phonon dispersion, (d)–(f) coherence (Cn) and the estimated (g)–(i) total, and (j)–(l) coherent and (m)–(o) incoherent
mode-resolved specularity parameters (Ptotal

n , Pcoh
n , and Pincoh

n ) for the ZA, TA, and LA phonons in armchair-edge graphene impinging on the
grain boundary. The modes in the incoming phonon flux are filled circles colored according to their numerical value, while the modes in the
outgoing flux are hollow squares. The frequency range is ω = ω0 to 25ω0 where ω0 = 1013 rad/s, with the maximum frequency (ωmax) for the
ZA, TA, and LA phonons equal to 12ω0, 21ω0, and 25ω0, respectively. The isofrequency contours are indicated in intervals of 
ω = ω0 in
(d)–(o) using solid gray lines. The phonon dispersions in (a)–(c) are indicated with color contours in intervals of 
ω = ω0/2.

surface roughness, and has no ky dependence. However, we
do not observe such anisotropy for Ptotal

n in Figs. 4(g) to 4(i),
indicating a disagreement with Soffer’s formula. Furthermore,
in the long-wavelength limit, the Ptotal

n for ZA phonons does
not converge to unity as suggested by the formula.

C. Coherent vs incoherent specularity parameters

It is widely assumed [19,23,24] that coherent (incoher-
ent) scattering is perfectly specular (diffuse), i.e., Pcoh

n = 1
(Pincoh

n = 0), although there is no direct evidence for this rela-
tionship. Underlying this assumption is the idea that the per-
fect interface is smooth although, at the atomistic level, lattice
imperfections must occur because of the crystallographic dis-
continuity. Given this assumption, it follows from Eq. (6) that
coherence is equivalent to specularity (Cn = Ptotal

n ). We exploit
our ability to distinguish coherent from incoherent scattering
to analyze how specularity actually depends on coherence,
by comparing the Pcoh

n and Pincoh
n distributions in Figs. 4(j)

to 4(o). The corresponding Pcoh
n and Ptotal

n distributions gen-
erally have similar kn dependence, with Pcoh

n > Ptotal
n because

incoherent scattering is strongly diffuse (Pincoh
n � 1) with no

significant kn dependence for ZA, TA, and LA phonons, as

can be seen in Figs. 4(m) to 4(o), and Eq. (6) implies that
Ptotal

n < max{Pcoh
n , Pincoh

n }. The near uniform small value of
Pincoh

n over the entire BZ in Figs. 4(m) to 4(o) also suggests
that the diffuse character of incoherent scattering is captured
by Eq. (5c).

Like in Fig. 4(g), the Pcoh
n distribution for ZA phonons

in Fig. 4(j) is significantly smaller than unity, indicating
that even coherent scattering is not fully specular for out-of-
plane polarized phonons. The Pcoh

n distribution for LA and
TA phonons in Figs. 4(k) and 4(l) shows that the coherent
specularity diverges from unity as we move away from the BZ
center. To explain the reduced ZA phonon specularity (Ptotal

n ),
we compare the main scattering transitions for an incoming
armchair-edge graphene (a) ZA and (b) TA phonon at normal
incidence (ky = 0) to the boundary at a single frequency of
ω = 5ω0 rad/s in Fig. 5. The incoming ZA phonon is forward
scattered to several outgoing channels while the incoming TA
phonon is forward scattered to a single outgoing channel on
the zigzag-edge side. The distinctive periodic arrangement in
the distribution of the main outgoing ZA phonon channels,
separated by an interval of 
ky, is due to diffraction by the
smooth part of the boundary which has a periodicity equal
to WGB the width of the constituent (4,4)|(7,0) GB such that

ky = 2π/WGB. For a clear representation of diffraction by
the “smooth” boundary with the aforementioned transverse
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(a)

(b)

FIG. 5. Main scattering transitions for an incoming (a) ZA and
(b) TA phonon, labeled �in, at normal incidence to the grain bound-
ary from the armchair-edge graphene on the left at ω = 5 × 1013

rad/s. The bulk LA, TA, and ZA phonon channels on the armchair-
edge (left subpanel) and zigzag-edge (right subpanel) graphene side
are displayed within their respective first Brillouin zones. The color
scales indicate the transition probability from W total(ω) for the domi-
nant outgoing channels, with the transitions indicated by dotted lines
and transition probabilities written in italic font.

periodicity, we plot the equivalent scattering transitions for
the pure GB-II and GB-III boundaries in Sec. S6 of the
Supplemental Material [38]. A similar effect has also been

reported for molecular dynamics simulations of symmetric
graphene GBs [45]. This diffractive scattering is seen for other
ZA phonon channels but none of the in-plane LA and TA
phonons.

IV. SUMMARY

We have formulated an S matrix-based theory of boundary
roughness scattering to predict the mode-resolved coherence
and specularity parameters and applied it to the (32,32)|(56,0)
graphene GB. The predicted specularity parameters are shown
to be consistent with those of Zhao and Freund [33]. We find
that phonon scattering is predominantly coherent for graphene
GBs although, contrary to expectations, coherence and spec-
ularity are lowest for long-wavelength ZA phonons because
of diffractive scattering by the GB, while the opposite trend
is seen for LA and TA phonons. Our results also demonstrate
that incoherent scattering is much more diffuse than coherent
scattering and that coherence and specularity are not necessar-
ily equivalent. Given its generality, our method can be applied
in a straightforward manner to analyze phonon coherence and
specularity in other atomistic boundary models.
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