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Tunneling into a Luttinger liquid coupled to acoustic phonons out of equilibrium
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The renormalization of conductances in a Y junction of spinless Luttinger-liquid wires additionally coupled to
acoustic longitudinal phonons is investigated in fermionic representation. This system corresponds to geometry
of a tunneling experiment and exhibits the interplay between the Coulomb repulsion and the attractive retarded
interaction mediated by phonons. The retardation effects related to the propagation of phonons through the
junction with arbitrary transmission and reflection amplitudes are taken into account. The appearing logarithmic
corrections to conductances of the junction are treated in a renormalization group approach, and scaling
exponents are calculated up to infinite order in the interaction after RPA-type summation. The fixed points
and corresponding scaling exponents are considered in various nonequilibrium regimes. We show that the
boundary exponent and the bulk anomalous dimension of fermion operator are characterized by two different
Luttinger parameters, referring to the main wire, thanks to nonlocal character of phonon-mediated interaction.
In the limiting case of the junction of only two wires, the scaling exponents found by our method are in exact
correspondence with previous bosonization analysis.

DOI: 10.1103/PhysRevB.101.195404

I. INTRODUCTION

One-dimensional quantum systems with electron-phonon
interactions have been extensively studied in the literature
[1,2] for their remarkable transport properties and practical
implementations in carbon nanotube devices. It is also well
known that embedding a potential impurity into the quantum
wire with the repulsive electronic interactions leads to the
power-law renormalization of its scattering amplitude and
suppression of transparency, as was initially discussed within
two complementary theoretical approaches, bosonization [3]
and conventional fermionic one [4].

Recently, the effect of electron-phonon interactions on
the electrical conductance and transport properties of one-
dimensional strongly correlated electronic systems was dis-
cussed in the context of helical edge states of two-dimensional
topological insulators [5,6], quantum Hall edge states at filling
factor ν = 1 [7] and topological insulator nanowires [8]. It
was emphasized that preserving time-reversal symmetry in-
elastic scattering processes due to phonons can drastically in-
fluence the topologically protected transport properties. Such
dissipative mechanisms induce backscattering in the presence
of the Rashba spin orbit coupling [5] or the spin-polarized
tunneling tip [9] which, in principle, might lead to significant
corrections to measurable conductances or even to the exis-
tence of new fixed points in renormalization group sense.

The later possibility was considered in [10] by means of
the functional bosonization formalism. It was argued that a
Luttinger liquid (LL) with the electron-phonon interaction and
a single impurity exhibits an intermediate state related to the
new unstable fixed point in which the system can flow either

to the metallic or insulating limit, depending on the impurity
strength.

In the present paper, we further investigate the renormal-
ization group structure of one-dimensional electron-phonon
liquids and extend it to the nonequilibrium case with more
complicated geometry. Specifically, we estimate the conduc-
tance scaling of a Y junction of spinless Luttinger-liquid
wires additionally coupled to acoustic longitudinal phonons
as functions of bias voltages applied to three independent
Fermi-liquid reservoirs.

We adopt the fully fermionic approach [4] with naturally
incorporated thermal Fermi reservoirs which allows us to
avoid, by construction, difficulties arising in the bosonization
technique when interactions are considered only within a
finite segment of wires [11–13]. Perturbative fermionic theory
of RG, formulated in the paper [4], has been effectively used
in a variety of problems, for instance for a double barrier
[14,15] and Y junctions in LL [16–19].

The system exhibits the interplay between the Coulomb
repulsion and the attractive, retarded interaction mediated by
the phonons. We take into account nonlocal effects that cor-
respond to the propagation of phonons through the impurity
with arbitrary transmission and reflection amplitudes. In these
conditions, we at first analyze corrections to conductances
due to the electron-phonon interaction at the one-loop level
in the Keldysh formalism and treat the appearing logarithmic
singularities by means of renormalization group scheme de-
veloped in Ref. [20]. Furthermore, we extend our results to an
arbitrary interaction strength by summing an infinite series in
perturbation theory (RPA-type summation).
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FIG. 1. Setup of the Y junction between a main wire (horizontal,
blue) and a tunneling tip (vertical, red). The yellow wave represents
the elastic degrees of freedom (acoustic phonons). The arrows cor-
respond to the matrix elements of electrons and phonons scattering
processes.

In particular, we obtain that the electron-phonon coupling
drastically changes the phase diagram of the system. If the
coupling parameters are sufficiently large then the relevant
and irrelevant parts of the flow diagram interchange and
the different “metallic” scaling behavior appears. Various
nonequilibrium regimes are considered. Scaling exponents for
conductances are calculated in all orders in the perturbation
theory both in the electron-phonon and electron-electron inter-
actions. In the limiting case of a two-wire junction the scaling
exponents found by our method are in exact correspondence
with previous bosonization investigations [21].

We also discuss how the boundary exponent and bulk
anomalous dimension of the fermion operator are modified in
the presence of nonlocal processes associated with phonons
in a Y -junction geometry. Previous studies show [22] that
in the presence of only local interactions it is possible to
independently extract from both of these quantities a single
Luttinger parameter which solely governs renormalization of
conductances. In contrast to that, we demonstrate that in the
tunneling experiments, where the phonons pass unhindered
the vicinity of Y junction, this commonly accepted procedure
is ill-defined and rather requires two effective Luttinger pa-
rameters.

The paper is organized as follows. In Sec. II we formulate
our model for a Y junction in the presence of fermion-phonon
interactions. Nonequilibrium RG equations for conductances
up to the first order of perturbation theory are discussed in
Sec. III along with our general RG formalism. The RPA-type
summation to infinite order in the interaction is described
in Sec. IV. Section V is devoted to the derivation of RG
equations at strong coupling out of equilibrium. The solution
of RG equations at strong coupling is presented in Sec. VI.
Section VII is reserved for conclusion.

II. THE MODEL

A. Scattering state description of one-dimensional fermions

We consider the following setup (see Fig. 1): a system
of spinless fermions in one dimension, interacting via a
short-ranged screened Coulomb interaction in each of three
quantum wires in the regions � < x j < L, j = 1, 2, 3. These

regions are assumed to be adiabatically connected to the
Fermi-liquid leads at x j > L.

There is a junction in the narrow region |x| < �, which
scatters the fermions as described by the unitary S matrix (up
to overall phase factors in the individual wires).

S =
⎛⎝r1 t1 t2

t1 r1 t2
t2 t2 r2

⎞⎠. (1)

Currents flowing towards a junction, Ii, and the chemical po-
tentials, μ j , are related by Ii = Gi jμ j , with the conductances
matrix, Gi j .

In the absence of interactions this quantity is connected
with the S matrix by the Landauer formula Gi j = δi j − |Si j |2.
It follows from this formula that Kirchhoff’s rules are obeyed
due to unitarity of S matrix. The interactions lead to renor-
malization of the conductances which is of the main interest
in this paper.

We study interacting fermions in Tomonaga Luttinger
model, described by the Hamiltonian

HLL =
∫ ∞

0
dx

3∑
j=1

[
H0

j (x) + Hint
j (x)�(x; �, L)

]
,

H0
j (x) = v[ψ†

j,in(x)i∇ψ j,in(x) − ψ
†
j,out (x)i∇ψ j,out (x)],

Hint
j (x) = 2πvg jψ

†
j,in(x)ψ j,in(x)ψ†

j,out (x)ψ j,out (x). (2)

Here v is the Fermi velocity, g j is the interaction constant in
the lead j and �(x; �, L) = 1 in the interval � < |x| < L and
zero elsewhere. The fermionic field operators ψ

†
j,η j

(x) create
particles at position x in scattering states | j, η j ; ω〉 of energy
ω, in wire j and with chirality η j = ±1, labeling incoming
(η j = −1) and outgoing (η j = +1) states. For simplicity we
use the compact definition jη = ( j, η j ). The outgoing fermion
operators are connected with the incoming ones by the S
matrix, ψ j,out (0) = S jkψk,in(0).

B. Coupling to the acoustic phonons

In this paper we consider fermions coupled to one-
dimensional acoustic phonons. We assume that the phonon
spectrum is linear up to a cutoff at the Debye energy ωD.
Phonons are linearly coupled to the electron density and
the electron-phonon interaction takes place within the same
region � < x j < L in each wire and are described by the
following Hamiltonian

Hph =
∫ ∞

0
dx

3∑
j=1

[
H0,ph

j (x) + H el-ph
j (x)�(x; �, L)

]
,

H0,ph
j (x) =

[
1

2
u̇2

j (x) + 1

2
(c∇u j (x))2

]
,

H el-ph
j (x) = √

πvα jc∇u j (x)
∑
η=±1

ψ
†
j,η(x)ψ j,η(x). (3)

Here c is the speed of sound, α j is a dimensionless
electron-phonon coupling constant. The phonons are also
scattered by the vicinity of the junction, which is encoded
below in the Green’s function for the displacement operator
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FIG. 2. The diagram leading to the current correction due to
interaction. Wavy line is the sum of bare Coulomb and electron-
phonon interactions in case of first-order correction computation.

u j (x) in the j wire; see Appendix A for more details. The
effective electron-electron interaction via phonons, with the
energy transfer below the Debye frequency |ω| � ωD, takes
the form

LR,(0)
α,ω (lη, x|mη, y)

= πv
√

αlαm〈c∇ul (x)c∇um(y)〉ret
ω ,

= −πvαlδlmδ(x − y)

− iωπv

2c

√
αlαm

(
ei ω

c |x−y|δlm + ei ω
c (x+y)Blm

)
, (4)

where the retarded Green’s function for the gradients of
deformations was obtained from Eq. (A11). The matrix B
strongly influences the results for the electrical conductance
and is some analog of the squared scattering matrix |Si j |2.

We focus on the symmetric Y -junction geometry which
corresponds to a tunneling experiment: the electron-phonon
interaction is present only in two wires (which together form a
“main wire”). Another wire (“tunneling tip”) contains only the
electron-electron interaction and the role of phonons is negli-
gible there, it implies the absence of phonon transport between
the main wire and the tunneling tip. All these conventions can
be encoded by writing α j = α(1 − δ j3) and by the following
form of the B matrix:

B =
⎛⎝ρ τ 0

τ ρ 0
0 0 1

⎞⎠. (5)

We assume below that the phonon transmission, τ , and re-
flection, ρ, coefficients to be constrained by the “unitarity”
condition τ + ρ = 1 (see Appendix A), which will signifi-
cantly simplify our calculations. However, our formalism is
not restricted to this case and more general form of Eq. (5)
can be used as well.

III. FIRST-ORDER CORRECTIONS TO CONDUCTANCES

A. General formalism

We employ the fermionic approach for the calculation of
interaction-induced corrections to the currents. It was devel-
oped in the paper [23] by using the Keldysh technique for
steady-current, off-equilibrium case of the leads maintained
at nonequal chemical potentials. The first-order corrections to
the currents are described by the diagram in Fig. 2. Solid lines
correspond to the fermions Green functions which in Keldysh

space (denoted by an underbar) have a structure

G =
(

GR GK

0 GA

)
. (6)

The Green’s function in chirality index space have a struc-
ture of 2 × 2 matrix denoted by square brackets and a hat
Ĝηl η j (l, y| j, x) = G(l, ηl , y| j, η j, x),

ĜR
ω(l, y| j, x) = − i

v
θ (τ )eiωτ

[
δl j 0
Sl j δl j

]
,

ĜA
ω(l, y| j, x) = i

v
θ (−τ )eiωτ

[
δl j S∗

jl
0 δl j

]
,

ĜK
ω (l, y| j, x) = − i

v
eiωτ

[
δl jhl S∗

jl hl

Sl jh j S∗
jmSlmhm

]
,

τ = (ηl y − ηx j )/v. (7)

Here, h j (ω) = tanh[(ω − μ j )/2T ] is the equilibrium distribu-
tion function in the lead j with the chemical potential μ j .

The wavy line in Fig. 2 denotes the full interaction between
fermions in the system. It is diagonal in Keldysh space and
originates from two contributions. The first one is the electron-
electron part of interaction

L̂(0)
g,ω(l, x|m, y) = 2πvglδlmδ(x − y)

[
1 1
1 1

]
. (8)

We consider the junction of a main wire and a tunneling tip
so that we put g1 = g2 = g with g3 �= g. The second contri-
bution is the electron-phonon interaction with the retarded
component Eq. (4). Combining Eqs. (8) and (4) together,
we obtain the full interaction propagator for symmetric Y -
junction geometry in the following form:

LR,(0)
ω (lη, x|mη, y)

= LR,(0)
g,ω (lη, x|mη, y)

+LR,(0)
α,ω (lη, x|mη, y) = λlδ(x − y)δlm

+iωζ
(
ei ω

c |x−y|δlm(1 − δl3) + ei ω
c (x+y)Blm

)
, (9)

where λ1,2 = 2πv(g − α/2), λ3 = 2πvg3, and ζ =
−παv/2c. The parameter ξ = v/c is the ratio of plasmon and
phonon velocities. The advanced component of interaction
propagator is given by

L̂A = (L̂R)†|x↔y. (10)

We emphasize that the Keldysh components of interactions, in
fact, do not produce logarithmic corrections to currents [23]
due to the dominant role of virtual processes in renormaliza-
tion. Moreover, retarded and Keldysh components do not mix
with each other upon the RPA-type summation of higher order
diagrams allowing us to concentrate henceforth only on the
retarded component of the interaction.

Let us now briefly remind a way to calculate a one-loop
correction to the currents. The corresponding diagram is de-
picted in Fig. 2 and can be expressed as

J (1)
jη

(z) = i
∫

dω

2π

∫
dxdy

∑
lη,mη

× TrK [T ω(mη, y|lη, x; jη, z)L(0)
ω (lη, x|mη, y)], (11)

195404-3



NOSOV, NIYAZOV, AND ARISTOV PHYSICAL REVIEW B 101, 195404 (2020)

where we sum over all wire indices, chirality components,
and TrK is the trace over the Keldysh indices. In addition, we
introduced the structural part T of the diagram corresponding
to the triangle of fermion Green’s function

T νμ
ω (mη, y|lη, x; jη, z)

= v j

∫
d�

2π
TrK [γextĜ�( jη, z|mη, y)γ̄ ν

×Ĝ�+ω(mη, y|lη, x)γ μĜ�(lη, x| jη, z)]. (12)

This fermionic triangle T turns out to be a function of two
external points with different wire indices and coordinates
due to the presence of the retarded and matrix parts of the
interaction Eq. (4) (in contrast to the case of the screened
Coulomb interaction out of equilibrium previously discussed
in the literature [20]).

External and interaction vertices are defined as

γ
ext

= i

2

(
1 1

−1 −1

)
,

γ 1 = γ̄ 2 = 1√
2

(
1 0
0 1

)
,

γ 2 = γ̄ 1 = 1√
2

(
0 1
1 0

)
. (13)

The diagram in Fig. 2 should be combined with the one
where the arrows of the fermionic lines are reverted.

Integration over � leads to two generic integrals:∫
d�[h j (� + ω) − h j (�)] = 2ω,∫

d�[1 − h j (� + ω)hp(�)] = 2 f2(ω + μp − μ j ), (14)

where f2(x) = x coth (x/2T ). Calculation shows that T21 =
0 so that the Keldysh component of interaction does not
contribute to the current Eq. (11) as is mentioned above.

We assume that the point z lies outside the interaction
region. In this case the dependence on z in outgoing current
J (1)

j+ (z > L) ≡ J (1)
j disappears, whereas correction to the in-

coming current is absent J (1)
j− (z > L) = 0. One can verify the

charge conservation law
∑

j J (1)
j = 0.

By explicitly evaluating all matrix elements of Eq. (12) one
can show that the infrared (IR) regularized correction to the
current reads

J (1)
j = − Im

∑
mkp

M j
mkp

∫ ω0

ε

dω

4πv2
L(0)

ω,odd(m|k)F (ω,Vmp),

(15)
with

F (ω,V ) = [ f2(ω + V ) − f2(ω − V )],

LR,(0)
ω (m|k) =

∫
dxdyLR,(0)

ω (m−, x|k+, y)ei ω
v

(x+y),

L(0)
ω,odd(m|k) = [

LR,(0)
ω (m|k) − LR,(0)

−ω (m|k)
]
,

M j
mkp = SkmS∗

jmS∗
kpS j p. (16)

Here ω0 = v/� is the ultraviolet (UV) cutoff, ε is the running
IR energy scale, and Vmp = μm − μp is voltage between the
wires m and p.

We stress that there is no contribution in Eq. (15) associ-
ated with identical chiralities at both vertices [compare with
Eq. (16)], despite the fact that the electron-phonon interaction
is independent of chirality and formally contains correspond-
ing nonzero matrix elements. Similarly to standard “g-ology,”
it just means that the forward scattering small-momentum
transfer amplitudes of the phonon-mediated and screened
Coulomb interactions do not participate in the renormalization
of conductances in the dc limit.

B. First order of the interaction

The quantity L(0)
ω,odd, defined in Eq. (16) and calculated

for the interaction Eq. (9), contains several terms of the
form ω−1 sin2 ωt0 with t0 = L/v, L(1 + ξ )/v, 2L(1 + ξ )/v.
The existence of these rapid oscillations ensures convergence
of Eq. (15) at small ω and at the same time all such terms
can be approximated by (2ω)−1 at larger energies, ω � t−1

0 ∼
L−1. Hence, in the limit L → ∞ we can write

L(0)
ω,odd(m|k) = 2π iv2

ω
{[g − ᾱ(1 + ξ )]δmk + ᾱξBmk}, (17)

where ᾱ = α
2(1+ξ )2 .

The remaining integral over energy is logarithmically di-
vergent:

I (ω0, ε,V ) =
∫ ω0

ε

dω

ω
F (ω,V ) = 2V θ (ε − |V |) ln

ω0

ε

+ 2θ (|V | − ε)
[
V − ε sgn(V ) + V ln

ω0

V

]
 2V ln

(
ω0

max{|V|, ε}
)

. (18)

In the last line we neglected the contribution from the region
ε < |V | because its dependence on the running scale ε is only
linear.

The upper limit of integration in Eq. (18) should be used
with caution: in processes involving phonons the UV cutoff
ω0 should be replaced by the characteristic energy scale ωD.
From the RG point of view, it just implies that all divergent
logarithmic contributions proportional to the electron-phonon
coupling constant α should be accompanied by the step func-
tion θD(ε) = θ (ωD − ε).

Summarizing, the first-order correction to the currents
reads as

J (1)
j = −

∑
mkp

((g − ᾱ(1 + ξ ))δmk + ᾱξBmk )

×Vmp Re[M j
mkp] ln

(
ω0

max{|Vmp|, ε}
)

. (19)

It is convenient to introduce two independent currents Ja,b

and two independent bias voltages Va,b as follows:

Ja = 1

2
(J1 − J2), Va = μ1 − μ2, (20)
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FIG. 3. RG flows of conductances in equilibrium regime (g = 0.1, v/c = 1.5): (a) full reflection of phonons, ρ = 1, with electron-
phonon interaction strength α = 0.1, (b) ideal transmission of phonons, τ = 1, with electron-phonon interaction strength α = 0.1, (c) ideal
transmission of phonons, τ = 1, with electron-phonon interaction strength α = 0.4. The blue line delimits the area of the physically available
conductances.

for the main wire and

Jb = 1
3 (J1 + J2 − 2J3) = −J3,

Vb = 1
2 (μ1 + μ2 − 2μ3), (21)

for the tunneling tip. The bare (differential) conductances are
then defined as

Ga = ∂Ja/∂Va, Gb = ∂Jb/∂Vb. (22)

For the symmetric S matrix, Eq. (1), the bare conductances in
noninteracting situation are

G(0)
a = 1

2 (1 − |r1|2 + |t1|2), G(0)
b = 2|t2|2. (23)

Without a loss of generality, we can assume μ3 = 0 and Va,b �
0, so |μ2| � μ1. The unitarity of the S matrix constrains the
domain of allowed conductances in the (Ga, Gb) plane by the
straight line and the parabola 0 � Gb � 4(Ga − G2

a) [17].
Having obtained the corrections to conductances from

Eqs. (19) and (22), and assuming the scaling behavior of
Ga,b (see Ref. [20]) we can differentiate Ga,b with respect to
� = ln(ω0/ε) to obtain a set of perturbative RG equations:

dGa

d�
= 2A1θa(ε) + A2θ+(ε),

dGb

d�
= 2B2θ+(ε), (24)

with

A1 = −[g − ᾱ(1 + 2ξτ )θD(ε)]

[
Ga(1 − Ga) − Gb

4

]
,

A2 = −1

8
[g − ᾱ(1 + ξτ )θD(ε)](1 − Ga)Gb

+ ᾱξτ

8
GaGbθD(ε) − g3

8
(1 − 2Ga)Gb,

B2 = −1

8
[g − ᾱ(1 + ξτ )θD(ε)][2 − 2Ga − Gb]Gb

− g3

4
(1 − Gb)Gb + ᾱξτ

8
θD(ε)(Gb − 2Ga)Gb. (25)

Here, energy scales related to voltages are defined by Heavi-
side θ functions, θa(ε) = θ (ε − Va) and θ+(ε) = θ (ε − μ2) +
θ (ε − μ1). It means that the renormalization occurs in several
steps with different right-hand side of Eq. (24) at each step.
The phonon energy scale appears in θD(ε) = θ (ωD − ε).

First, we consider equilibrium limit Va,b → 0 and ωD →
∞. The RG equations exhibit three fixed points: point N at
Ga = Gb = 0 (complete junction breaking), point A at Ga =
1, Gb = 0 (ideal transport in the main wire and the absence of
the tunneling into the tip), and point M at nonuniversal values
of conductances given by

G(M )
a = g + g3 − ᾱ(1 + ξτ )

g + 2g3 − ᾱ
,

G(M )
b = 1 −

[
g − ᾱ(1 + 2ξτ )

g + 2g3 − ᾱ

]2

. (26)

In the presence of the impurity nontransparent for phonons,
τ = 0, RG flows are similar to those without phonons
[Fig. 3(a)] with a modification of scaling exponents as dis-
cussed below. When the phonons pass the impurity (τ > 0)
the saddle fixed point M appears [Fig. 3(b)]. This M point
exists in the first order in coupling constants even in the
absence of interaction in the tip, g3 = 0, contrary to the
previous case of the pure local electron-electron interaction
[20].

If the electron-phonon coupling is strong enough, it is
possible for M point to first move to the top of the parabola of
allowed conductances and further pass to the left side of the
RG diagram. This is accompanied by the “metal-insulator”
transition [10] when the stability of the fixed points N and A
is interchanged [see Fig. 3(c)]. The marginal situation with the
M point located exactly at Ga = 1/2 and Gb = 1 corresponds
to the existence of the whole line of fixed points at Gb = 0.
This fixed line does not exist for any g, g3 > 0 in the absence
of the electron-phonon interaction.

Nonequilibrium regimes of our system show variety of
RG flows. There are three energy scales related with two
bias voltages and one phonon energy scale. Depending on
the running energy scale, ε, different terms in the RG
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FIG. 4. Conductances RG flows in nonequilibrium regime in
limit of zero temperature and voltages but finite Debye energy
ωD/ω0 = 0.2, 0.07, 0.03, 0.01 (from top to bottom) for phonons
ideal transmission case, τ = 1, with interaction constants α = 0.4
and g = 0.1, v/c = 1.5 and the bare conductances Ga(ω0) = 0.43,
Gb(ω0) = 0.37.

equations may contribute the behavior of conductances. The
main difference from the previous nonequilibrium study of
the Y junction [20] is the presence of the Debye scale: for
the running energy ε below ωD, phonons start to contribute to
the effective interaction.

The importance of the intermediate scale, ωD, (we assume
that ωD < ω0 here and below) is perhaps best illustrated by
the change in the position of M point, which is not universal
and is determined by the values of the coupling constants.
Indeed, at high energies (temperatures or voltages greater than
the Debye frequency ωD) there are no phonon contributions to
RG, and the position of the M point is determined exclusively
by the constants g and g3. However, as the energy decreases
below ωD, the phonon corrections shift the M point or even
lead to its appearance in case g3 = 0. This situation results in
the nonmonotonic RG flow depicted in Fig. 4, and, potentially,
to a change in its direction for strong enough electron-phonon
interaction.

The effects of finite voltages were discussed previously in
the literature and remain qualitatively the same. As before, the
hierarchy of energy scales is important. For example, in the
regime Va < ε < μ2 � μ1 < ωD the RG flows for conduc-
tance Gb terminate. Fixed points in this case form the parabola
curve. The direction of flows is defined by the “metallic” or
“insulator” character of the main wire.

C. Fixed-point analysis

Let us first discuss the N fixed point. Linearizing Eq. (24)
and introducing Gc = Ga − 1

4 Gb, we arrive at the following
set of RG equations:

dGc

d�
= −2[g − ᾱ(1 + 2ξτ )θD(ε)]Gcθa(ε),

dGb

d�
= − 1

2

[
g + g3 − ᾱ(1 + ξτ )θD(ε)

]
Gbθ+(ε). (27)

The renormalization occurs in several steps with different β

functions at each step. In addition to three different regimes
discussed in Ref. [20] the new scale ωD gives rise to further
possible behavior of conductances.

What concerns the behavior of Gc, one can easily obtain
the solution for Va < ωD in the similar way as it was done in
Ref. [20]. The renormalization of this quantity stops at ε < Va,
so that

Gc(0) = Gc(ω0)

(
Va

ω0

)2g

, ωD < Va,

= Gc(ω0)

(
ωD

ω0

)κN,1
(

Va

ω0

)γN,1

, Va < ωD, (28)

with scaling exponents γN,1 = 2g − 2ᾱ(1 + 2ξτ ) and κN,1 =
2g − γN,1.

The behavior of Gb is more involved, depending on the
relation between ωD and Vb+ = μ2. Solving the corresponding
equation for Gb in case of ωD > μ2 > |μ1| one gets

Gb(0)

Gb(ω0)
=

(
ωD

ω0

)κN,2
(√

μ1μ2

ω0

)γN,2

, (29)

with γN,2 = g + g3 − ᾱ(1 + ξτ ) and κN,2 = g + g3 − γN,2. In
the opposite case μ2 > ωD > |μ1| we obtain

Gb(0)

Gb(ω0)
=

(
μ2

ωD

)− κN,2
2

(√
μ1μ2

ω0

) γN,2|α=0

. (30)

Let us now describe the infrared character of this fixed
point in equilibrium. For γN,1 > 0 and γN,2 > 0, the fixed
point N is attractive, and the instability with respect to the for-
mation of a charge density wave (CDW) renormalizes Friedel
oscillations at the junction until all three wires are completely
separated [17]. It is the situation when the M point is on
the right-hand side of the parabola of allowed conductances.
Moreover, renormalization of the tunneling density of states
leads to the vanishing of the conductance of the tunneling
probe at μ1 = μ3 = 0 or μ2 = μ3 = 0.

For γN,1γN,2 < 0, the fixed point N is a saddle point. The
point M moves to the left-hand side of the RG diagram, but
has not yet merged with the N point. Because we always
have γN,1 < 0 < γN,2, the zero-bias anomaly still suppresses
the conductance in the third wire, however Ga starts to grow
below a certain scale. For γN,1 < 0 and γN,2 < 0 the point N
becomes unstable, because M passed through the N point at
γN,2 = 0.

Next we analyze the nonequilibrium scaling near the A
fixed point, Ga = 1, Gb = 0. We introduce the small displace-
ment G̃a = 1 − Ga and the combination G̃c = G̃a − 1

4 Gb and
obtain

dG̃c

d�
= 2[g − ᾱ(bτ + bρ )θD(ε)]G̃cθa(ε),

dGb

d�
= − 1

2

[
g3 + ᾱbτ θD(ε)

]
Gbθ+(ε). (31)

This set of equations has the same structure as Eq. (27),
thus one can easily obtain renormalized Gc and Gb by simply
replacing all scaling exponents to the following correspond-
ing quantities: γA,1 = −γN,1, κA,1 = −κN,1, κA,2 = −ᾱξτ ,
and γA,2 = g3 − κA,2. Introduced coefficients obey several
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symmetry relations such as γN,1 = 2(γN,2 − γA,2) and κN,1 =
2(κA,2 + κN,2).

One can notice that the presence of the repulsive interaction
g3 in the tunneling tip affects the renormalization in the same
way as the phonon attraction in the main wire. Thus, to obtain
a nontrivial M point in the lowest order RG consideration,
the interaction in the tip is not required at all and phonon
exchange through the junction in the main wire effectively
induces competition between the instability with respect to the
formation of a charge density wave in the main wire and the
renormalization of the tunneling density of states. Therefore,
the A point in the presence of the electron-phonon interaction
is either a saddle point or attractive (when the electron-phonon
interaction is strong enough).

IV. RPA-TYPE SUMMATION TO INFINITE ORDER
IN THE INTERACTION

So far we have obtained the β functions for the conduc-
tances in the Y junction of quantum wires in the first order
of perturbation theory with respect to the coupling constant of
the electron-phonon interaction α Eq. (24). The solution of the
resulting RG equations is equivalent to summing the leading
sequence of logarithms of the form αn lnn(ω0/ε). We now
turn to the investigation of higher-order corrections describing
relevant scale-dependent contributions to conductances. Our
goal is to include strong-coupling screening effects to the
RG equations in framework of “RPA-type approximation,”
as proposed in Ref. [23] for the case of the short-range
interactions out of equilibrium. The result of this procedure
allows us to take into account the subleading logarithmic
contributions from higher orders of perturbation theory.

The RPA-type approximation involves dressing the local
bare interaction with polarization fermionic loops. In systems
with translational invariance, such a series of diagrams is re-
duced to geometric series and is easily summed up. However,
in the scattering states formalism employed here the momen-
tum is not conserved, and the summation of this RPA-like
sequence is rather nontrivial. In the presence of interactions
with nonlocal character and retardation effects, Eq. (4), the
summation procedure becomes even more involved due to the
complicated form of the bare bosonic propagator.

The explicit form of the integral equation which describes
the summation of the RPA sequence of the diagrams is as
follows:

L̂R(x|y) = L̂(0)(x|y) −
∫

dz1dz2 L̂(0)(x|z1)

×
[
�(−z1| − z2)1 0
�(z1| − z2)Y �(z1|z2)1

]
L̂R(z2|y), (32)

where Yi j = |Si j |2, and L̂(0)(x|y) is defined in Eq. (9).
We dropped all unimportant labels here and introduced
a dynamical factor �(x|z) = (2πv2)−1[vδ(x − z) + iωθ

(x − z)ei ω
v

(x−z)]. The kernel in Eq. (32) corresponds to the
fermionic loop calculated with Green’s functions Eq. (7) (see
Ref. [23] for details).

This section is devoted to exact solution of the integral
Eq. (32), which allows us to analyze the strong-coupling limit.

The result of this rather cumbersome calculation is given by
Eqs. (54) and (59) below.

As a first step of our calculation we set Yi j = 0 in Eq. (32),
thus discarding all contributions containing matrix elements
of the S matrix. The remaining sum defines an auxiliary inter-
action C, which incorporates strong-coupling effects taking
place far away from the junction. In contrast to the previously
studied cases of short-ranged interactions [23], the quantity
C cannot be fully attributed to the “bulk” of the main wire
because of the presence of the boundary terms in Eq. (32)
proportional to the B matrix. These terms describe phonon
scattering processes in the vicinity of the junction and lead
to the off-diagonal structure of C in wire space. In terms of
this new propagator, the full dressed interaction L̂R can be
represented as

L̂R(x|y) = Ĉ(x|y) −
∫

dz1dz2 Ĉ(x|z1)

×
[

0 0
�(z1| − z2)Y 0

]
L̂R(z2|y). (33)

Since the integral kernel for Ĉ is diagonal in wire indices
and the bare line itself does not connect the main wire and the
tip, then the equation is essentially split. It allows us to focus
on the main wire in the analysis of Ĉ and assume all matrices
reduced to their 2×2 subblocks (and set λ1,2 = λ). Further we
note that Ĉ does not depend on the chiral structure, and we can
write Ĉ = C(̂τ 0 + τ̂ 1). It is helpful to introduce the symmetric
combination

�s(x|y) = �(x|y) + �(−x| − y)

= 1

2πv2

(
2vδ(x − y) + iω ei ω

v
|x−y|), (34)

in terms of which the integral equation acquires the form

C(x|y)

= L(0)(x|y) − λ

∫
dz�s(x|z)C(z|y)

−iωζ

∫
dz1,2�

s(z1|z2)
(
ei ω

c |x−z1|1 + ei ω
c (x+z1 )B

)
C(z2|y),

(35)

with dz1,2 = dz1dz2. Thus, we have reduced the initial prob-
lem to the set of two integral Eqs. (33) and (35) with a
transparent physical meaning: Eq. (35) describes screening
processes in the bulk of the main wire, and Eq. (33) includes
scattering events at the junction encoded in the Y matrix.

Before proceeding further, let us highlight two main dis-
tinctive features of these integral equations as compared to
purely local interactions (α = 0) discussed in Ref. [23]. First
of all, the bare interaction L0 depends on coordinates and fre-
quencies in a nontrivial way capturing retardation effects due
to scattering on phonons. This fact complicates the integral
Eq. (35) in the “kinematic” sense.

Second, the bare interaction L0 is now nondiagonal in wire
index due to the propagation of phonons through the junction
with transmission and reflection amplitudes, Blm (generally
independent of electrons amplitudes, Slm). This property has
important consequences as discussed below. Figure 5 depicts
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FIG. 5. Integral equations for the auxiliary quantity C are shown
in the“main wire” space: indices corresponds to wire labels. Vertical
lines 1-1, 2-2 correspond to the “local” processes in the same wire.
Horizontal lines 1-2 are proportional to the nondiagonal elements
of B matrix Eq. (5) and correspond to the “nonlocality” of the
phonon-mediated interaction. Fermionic loops contain only diagonal
components with Y = 0.

concrete nondiagonal processes taken into account in Eq. (35).
We employed there the following diagrammatic rules: all ver-
tical lines (loops) correspond to diagonal matrix elements of
propagators (polarization operators) with the same wire index,
and horizontal lines represent off-diagonal contributions due
to nonzero τ in Eq. (5). The integration over positions is
assumed for each vertex.

A. Reduction to the linear differential equation

Despite the apparent complexity of Eq. (35), it can be
reduced to the linear ordinary differential equation by repeated
differentiation with respect to x. As an intermediate step we
introduce the following integral quantities:

Iβ =
∫

dz ei ω
β
|x−z|C(z|y), Jβ =

∫
dz ei ω

β
(x+z)BC(z|y),

Q =
∫

dz1,2ei ω
v
|z1−z2|(ei ω

c |x−z1|1 + ei ω
c (x+z1 )B

)
C(z2|y),

(36)
with the omitted explicit coordinate dependence in I, J, and
Q. One can verify the following relations for the derivatives

∂2
x Iβ = −ω2

β2
Iβ + 2iω

β
C, ∂2

x Jβ = −ω2

β2
Jβ,

∂2
x Q = −ω2

c2
Q + 2iω

c
Iv. (37)

Using these relations, we can express the integral Eq. (35) in
the compact way as

2πv2d̃2C = 2πv2L0 − iωλIv − 2iωvζ (Ic + Jc) + ω2ζQ,

(38)

where d̃2 = 1 + 2g̃ and g̃ = g − α/2.
We notice that the kernel in Eq. (38) has a jump in its

derivative at x = z, which we use by twice differentiating it
with respect to x. We thus arrive at a second-order integro-
differential equation

2πv2C(2) = 2πv2
(
L0

)(2) + 4ω2γ C + 2iω3 γ

v
Iv

−ω2c−2
[−2iωvζ (Ic + Jc) + ω2ζQ

]
, (39)

where, for simplicity, we introduced γ = λ/2v + ζv/c. The
label (n) in C(n) stands for the n-th derivative with respect
to x. The combination in the square brackets in Eq. (39) is
eliminated by using Eq. (38) and we obtain

2πv2d̃2C(2) = 2πv2
(
L0

)(2) + 2πω2v2L0c−2

+ω2
(
4γ − χc−2

)
C + iω3

(
2γ v−1 − λc−2

)
Iv.

(40)

The last equation still contains Iv . Differentiating it again
twice, we find

2πv2C(4)

= 2πv2
(
L0

)(4) + 2πω2v2
(
L0

)(2)
c−2

+ω2
(
4γ − χc−2

)
C(2) − 2ω4/v

(
2γ v−1 − λc−2

)
C

−iω4v−2
(
2γ v−1 − λc−2

)
Iv. (41)

We can eliminate Iv here by expressing it from Eq. (40).
Then we finally arrive at a linear inhomogeneous ordinary
differential equation of fourth order

d̃2C(4) + ω2

(
2g

c2
+ 1

c2
+ 1

v2

)
C(2) + ω4

v2c2
C

= (
L0

)(4) + ω2

(
1

v2
+ 1

c2

)(
L0

)(2) + ω4

v2c2
L0. (42)

Remarkably, this equation can be represented in terms of
differential operators Dv = ∂2

x + ω2/v2 in the very compact
form

Dv+Dv−C(x|y) = d̃−2DvDcL0(x|y). (43)

A key feature of the obtained differential equation is that
its homogeneous solution can be expressed as the sum of
exponents e±iωx/v± with characteristic velocities given by

v2
± = 1

2

[
d2v2 + c2 ±

√(
d2v2 − c2

)2 + 4αv2c2
]
, (44)

where d2 = 1 + 2g. The obtained characteristic velocities
[Eq. (44)] are nothing else but two hybridized polaron modes
that arise in the nonperturbative bosonization treatment of the
problem [10].

In passing, the structure of the electron-electron interaction
Eq. (8) in chirality indices implies that g4 = g2 = g in g-ology
vocabulary of one dimensional studies. The above renormal-
ization factor of the Fermi velocity has a well known form
d2 = (1 + g4)2 − g2

2, and for g4 = 0 one obtains d2 = 1 − g2

in full agreement with Ref. [22].
We now turn to the analysis of the nonhomogeneous solu-

tion of the Eq. (42). First, we find the explicit expression for
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its right-hand side (see Appendix B for further details):

DvDcL0(x|y)

= λδ(4)(x − y)1 + ω2

(
λ

v2
+ λ

c2
− 2ζ

c

)
×δ(2)(x − y)1 + ω4

(
λ

c2v2
− 2ζ

cv2

)
δ(x − y)1. (45)

We seek the solution C̃(x|y) of the inhomogeneous differential
Eq. (43) in the form

C̃(x|y) = κ0δ(x − y)1 + iπω

d̃2

∑
σ=±

κσ ei ω
vσ

|x−y|1. (46)

After some algebra we obtain coefficients κi explicitly as

κ0 = 2πvg̃

d̃2
, κ± = v2

∓
c2

(
v2 − v2

±
v2± − v2∓

)
(gv2

± − g̃c2)

vv±
. (47)

Accordingly, the full solution for Eq. (43) reads as

C(x|y) = κ0δ(x − y)1 + iπω

d̃2

∑
σ=±

κσ ei ω
vσ

|x−y|1

− iπω

d̃2

∑
σ,g=±

Aσg(y) eg i ω
vσ

x, (48)

with yet unknown matrices Asg which should be determined
from the initial integral Eq. (35). The first two terms in
Eq. (48) are translationally invariant and, thus, independent
of the junction and should be associated with bulk effects.
However, the last term has a factorized coordinate dependence
and originates not only from the fermionic S matrix in Eq. (7)
but also from the phonons’ B matrix.

Now we substitute the ansatz Eq. (48) into the initial
Eq. (38) and compare coefficients corresponding to different
linearly independent x-functions. This procedure is straight-
forward, albeit cumbersome, so we just present the result-
ing linear equations here. Further details are given in the
Appendix C.

We find that the matrices Aσg satisfy the following set of
boundary conditions:∑

σ,g=±
χ̃

v,gvσ

1 Aσg(y) =
∑
σ=±

κσ χ̃
v,−vσ

1 ei ω
vσ

y1,

∑
σ,g=±

χ̃
v,gvσ

2 Aσg(y) =
∑
σ=±

κσ χ̃
vvσ

2 e−i ω
vσ

y1,

∑
σ,g=±

φσ
g+Aσg(y) =

∑
σ=±

κσφσ
++e−i ω

vσ
y1,

∑
σ,g=±

B̃σ
g Aσg(y) =

∑
σ=±

κσ B̃σ
−ei ω

vσ
y, (49)

with the following scalar coefficients:

χ̃
β1β2
1 = β1β2

β1 − β2
, χ̃

β1β2
2 = χ̃

β1,−β2
1 e

iωL
(

1
β1

+ 1
β2

)
,

φσ
gs = χ̃

c,gvσ

2 + s
c2

v2

χ̃v,−sc
1 χ̃

v,gvσ

1 χ̃
v,gvσ

2

χ̃v,−c
1 χ̃v,−c

2

. (50)

A matrix entering the last equation in Eq. (49) is defined as

B̃σ
g = φσ

−g,+egi ω
vσ

L1 − φσ
g,−e−gi ω

vσ
LB. (51)

Despite the apparent progress, the linear system Eq. (49)
still looks rather complicated. Further progress is achieved by
diagonalizing all matrices in the wire space with the unitary
transformation

U = 1√
2

(
1 1
1 −1

)
, UBU =

(
ρ + τ 0

0 ρ − τ

)
. (52)

After that the diagonal Aσ j (y) can be replaced by its corre-
sponding diagonal matrix element Aσ j (y). Next simplification
comes from the representation

Aσ j (y) =
∑

s,g=±
κsb

sg
σ j eg i ω

vs
y. (53)

Indeed, for the new variables, bsg
σ j , the system Eq. (49) fac-

torizes into four decoupled sectors parametrized by indices s
and g. The appearing sets of algebraic equations can be easily
solved by means of computer algebra methods (for instance,
in Mathematica). The explicit form of all coefficients bsg

σ j is
presented in Appendix D.

The final expression for C which solves Eq. (35) exactly
for an arbitrary set of parameters is given by

C(x|y) = κ0δ(x − y)1 + iπω

d̃2

∑
σ=±

κσ ei ω
vσ

|x−y|1

− iπω

d̃2

∑
σ, j=±

e j iωx
vσ

∑
s,g=±

κsUbsg
σ jU eg iωy

vs , (54)

where bsg
σ j = diag [bsg

σ j |B→ρ+τ
, bsg

σ j |B→ρ−τ
], see Appendix D.

Summarizing this subsection, we have solved the integral
Eq. (35) for the main wire. We stress that the resulting “bulk”
propagator has a nondiagonal form, Eq. (54), which should
be understood as a 2×2 subblock of the full 3×3 matrix C.
The remaining diagonal matrix element corresponds to the
tunneling tip and can be obtained from Eq. (54) by setting
α = 0 and replacing g by g3.

B. Full equation for L

Now we have everything at hand to solve Eq. (33) exactly.
The nondiagonal structure of C significantly complicates the
set of scattering processes contributing to the fully dressed
propagator L which is depicted in Fig. 6. The diagrammatic
rules here are slightly more complicated compared to Fig. 5
because we include interwire parts of polarization loops pro-
portional to fermionic transmission and reflection amplitudes
encoded in Y. As before, we use vertically orientated objects
(propagators and loops) to describe processes diagonal in
wire indices, and horizontally oriented (or tilted) ones for off-
diagonal contributions. The full Eq. (33) mixes contributions
from different wires, including a tunneling tip, which was
previously decoupled in Eq. (35), therefore we also consider
diagrams with tunneling processes through a third wire, see
caption of Fig. 6 for additional details.

195404-9



NOSOV, NIYAZOV, AND ARISTOV PHYSICAL REVIEW B 101, 195404 (2020)

FIG. 6. Integral equations for the fully dressed bosonic propagator L in the wire-space representation. The double-dashed line is the
auxiliary quantity C given by the integral Eq. (35). Vertical lines 1-1, 2-2 correspond to the “local” interaction in the same wire screened by
all bulk effects. Horizontal lines 1-2 are proportional to the nondiagonal elements of B matrix Eq. (5). In addition, horizontal and diagonal
fermionic loops represent scattering processes of the junction. The label “Y” stands for the contributions to the fermionic loop originated from
matrix elements of Y. Square brackets represent the processes involving tunneling into the third wire. Explicitly shown equations should be
accompanied by one extra equation with a similar structure for the 1-3 components of the propagator L.

The integral Eq. (33), however, has a separable kernel and
we can easily solve it by rewriting it as

L̂R(x|y) = Ĉ(x|y) +
∫

dz1,2 Ĉ(x|z1)Ŷ (z1|z2)Ĉ(z2|y), (55)

where we introduced the summation of all fermionic loop
contributions proportional to Y with the propagator C as a new
kernel

Ŷ (x|y) = − iω

2πv2
ei ω

v
(x+y)

[
0 0
Y 0

]
− iω

2πv2
e

iωx
v

[
0 0
Y 0

]
×

∫
dz1,2 e

iωz1
v Ĉ(z1|z2)Ŷ (z2|y). (56)

The full solution to Eq. (56) has a form

Ŷ (x|y) = − iω

2πv2
ei ω

v
(x+y)Y

(
1

1 + iω
2πv2 CsY

)[
0 0
1 0

]
, (57)

where the integrated quantitiy Cs is

Cs =
∫

dxdy C(x|y)ei ω
v

(x+y), (58)

and label “s” standing for“simplified.” We note that the
full propagator does not depend on chirality indices L̂R =
LR(σ̂ 0 + σ̂ 1), so we can analyze LR.

As a result, the fully dressed interaction propagator is
obtained in the following form

LR(x|y) = C(x|y) − iω

2πv2
V(x) Y

(
1

1 + iω
2πv2 CsY

)
Ṽ(y),

(59)
with V(x) = ∫

dz C(x|z)e
iωz
v and Ṽ(y) = ∫

dz C(z|y)e
iωz
v . In-

stead of the full form Eq. (59), we can use its simplified form
integrated over the coordinates similarly to Eq. (58),

LR
s =

(
1

1 + iω
2πv2 CsY

)
Cs. (60)

The quantity LR
ω(m|k) introduced in Eq. (16) and entering the

equation for currents Eq. (15), is simply given by the corre-
sponding matrix element (LR

s )mk . Schematically, this formula
has the same structure as reported in Ref. [23] for the case
α = 0, although the main difference lies in the concrete form
of Cs.

The quantity LR
ω(m|k) allows the decomposition

LR
s = −2iπv2

ω
U3

(
1

P−1 + U3YU3

)
U3, (61)

where we diagonalized Cs by means of the unitary transfor-
mation

U3 = 1√
2

⎛⎝1 1 0
1 −1 0
0 0

√
2

⎞⎠,

P = iω

2πv2
U3CsU3 = diag [P1, P2, P3].

(62)

From Eqs. (54) and (C14) we obtain the explicit form of Pi:

Pi = 1

2v2d̃2

∑
σ,g,s=±

κσ θ̃
vvs
2 χ̃

v,−gvσ

1

( ∑
j

bσg
s j − δsσ δg+

)
, (63)

where θ̃
vvs
2 is defined in Appendix D. The only ω-dependence

of Pi comes from coefficients bσg
s j containing oscillatory expo-

nents e±iωL/v± both in their numerator and denominator.

V. RG EQUATIONS FOR CONDUCTANCES

Let us briefly summarize the progress that we have done
so far. The main result of Sec. IV is the resummation of an
infinite series of relevant scale-dependent contributions to the
bare bosonic propagator LR,(0)

ω introduced in Eq. (9). The most
general expression for this quantity is given in Eq. (59).

Now let us make use of the general formalism described in
Sec. III B to extend the perturbative treatment of corrections
to the currents into the strong coupling regime. Specifically,
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FIG. 7. (a) The diagram leading to the current correction due to
the self-energy renormalized interaction. Double-wavy line is the
solution of the integral Eq. (33) depicted in Fig. 6. (b) The typical
diagram included in Eq. (64) in terms of bare interaction propagators
(wavy lines) and fermionic loops.

we substitute the bare propagator LR,(0)
ω in Eq. (15) by its

fully dressed version which corresponds to the self-energy
renormalized one-loop contribution. The resulting expression
takes the form

Jj =
∑
mkp

Re [M j
mkp]

∫ ω0

ε

dω

ω
F (ω,Vmp)

× Re

(
U3

(
1

P−1 + U3YU3

)
U3

)
mk

, (64)

where we took into account that P depends on frequency ω

only through exponents and, thus, P(−ω) = P∗(ω). All other
parts of this equation were defined in Sec. III B. Diagram-
matically, this correction can be represented as Fig. 7(a). Ac-
cordingly, the typical diagram included in this resummation is
depicted in Fig. 7(b).

We want to evaluate the integral in Eq. (64) with log-
arithmic accuracy in the limit L → ∞ and at T = 0. The
most problematic part here is related to the incommensurate
oscillations in P with several characteristic frequencies. It
implies that the averaging over one period of oscillations,
presented in Ref. [23] for a single characteristic frequency
v/L, is not useful in our case since P is not truly periodic.

However, this difficulty can be overcome by shifting the
contour of integration in the upper half-plane ω → ω + iδ,
with δ � v/L → 0. Upon this deformation we do not en-
counter any poles in the upper half-plane of complex ω in
view of the retarded nature of propagator and of the possibility
to use the analytic digamma function ψ[−ix/2πT ] instead of
coth(x/2T ) in F (ω,V ) in Eq. (16).

More precisely, we note that Eq. (64) initially contained
the integration over negative and positive ω. The odd-in-ω
property of F (ω,V ) leads to picking the odd-in-ω component
of LR

s , Eq. (61). The oddness of latter quantity allows one
to add an even function to F (ω,V ) without changing the
result of integration. On the real axis of ω we use the iden-
tity x coth(x/2T ) = 1/2 + x Im ψ[−ix/2πT ] and eventually
replace Im ψ[−ix] by ψ[−ix], because Re ψ[−ix] leads to
even-in-ω term in F (ω,V ) which is integrated to zero.

By examining Eq. (63) we notice that upon this shift, ω →
ω + iδ, the dominant contribution to P in the denominator
of Eq. (64) will be determined by terms with the exponents
e−iωL(1/v−+1/v+ ), acquiring additional factor eLδ(1/v−+1/v+ ) �
1. The overall factor ω−1 gives a logarithmic divergence at
low energies, which is regulated by F (ω,Vmp) with the voltage
|Vmp| acting as an infrared cutoff scale.

Therefore, the leading logarithmic divergence is simply
given by Eq. (64) with the following replacement:

Pi → P̃i = 1

2v2d̃2

∑
σ s

κσ θ̃
vvs
2 χ̃

v,−vσ

1

(
b̃σ+

s+ − δsσ

)
, (65)

and the only reduced matrix elements which survived the pro-
cedure described above are given as b̃++

++ = (F̃ 1)−1F 1, b̃++
−+ =

(F̃ 1)−1F3, b̃−+
++ = −(F̃ 1)−1F3|v+→v− , and b̃−+

−+ = (F̃ 1)−1F̃1

(see Appendix D for definition of Fi). After some algebra one
can obtain the following transparent form of these eigenval-
ues:

P̃1 = K|τ=0 − 1

K|τ=0 + 1
, P̃2 = K − 1

K + 1
, P̃3 = K3 − 1

K3 + 1
, (66)

where K3 = (1 + 2g3)−1/2, and we introduced the modified
Luttinger parameter

K = K

[
τ (K̃ + ξ ) + (1 − τ )W K̃

τW K + (1 − τ )(K + ξ K̃/K )

]
, (67)

which is expressed in terms of original Luttinger parameters,

K = 1√
1 + 2g

, K̃ = 1√
1 + 2g − α

, (68)

where K̃ is the Luttinger parameter in the absence of retar-
dation effects, which formally corresponds to the limit of the
infinite phonon velocity with ξ = 0. We also defined one extra
combination W = (v+ + v−)/c which can be represented as

W =
√(

1 + K−1ξ
)2 + 2ξ

(
K̃−1 − K−1

)
. (69)

It will be convenient to use a different parametrization of the
form

P̃ = − diag
{
q−1

1 , q−1
2 , q−1

3

}
(70)

to match the notation introduced in Ref. [24].
Thus, we only need to evaluate the logarithmic divergence

in the remaining integral over frequency identical to that we
discussed in Eq. (18).

Finally, we obtain

Jj = 2
∑
mkp

[
U3

(
1

P̃−1 + U3YU3

)
U3

]
mk

×Vmp Re[M j
mkp] ln

(
ω0

max{|Vmp|, ε}
)

, (71)

where P̃ is given in Eq. (66).
We note that in case of finite temperatures the large

logarithms remain finite even for ε = 0, as the low-energy
cutoff is provided by the function F (ω,V ) taken at finite
T . Then Eq. (18) should be replaced by I (ω0, T,V ) ≈
2V θ (T − c∗|V |) ln ω0

2πT , where c∗ is a number of the order of
unity given in Ref. [20].

The corrections to the currents, Eq. (71), translate into
the corresponding corrections for conductances Eq. (22). The
conductances scaling hypothesis allows us to write nonpertur-
bative RG equations in the same way as in the first-order case
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(see Sec. III B):

dGa

d�
= 2A1θa(ε) + A2θ+(ε),

dGb

d�
= 2B2θ+(ε), (72)

where the strong-coupling counterparts of Eq. (25) are given
by

A1 = −2
Ga(1 − Ga) − Gb/4

q2 − (1 − 2Ga)
,

A2 = −Gb

8

[
1

q2 − (1 − 2Ga)
+ 4(1 − 2Ga)

Q − (1 − 2Gb)

]
,

B2 = −Gb

4

[
1 − 2Ga

q2 − (1 − 2Ga)
+ 4(1 − Gb)

Q − (1 − 2Gb)

]
, (73)

and we defined (compare with notation in Ref. [22])

Q = 4q1q3 − 2q1 − 3q3 + 1

2q1 + q3 − 3
. (74)

We note that in the fully nonequilibrium setting the electron-
phonon coupling constant α encoded in Eq. (73) is assumed
to be proportional to the step function θD(ε) = θ (ωD − ε), in
agreement with our convention introduced in Sec. III B.

General β functions Eqs. (72) and (73) derived for arbitrary
parameters of our model (such as electron-phonon coupling
constant, coefficients of B and S matrices, etc.) describe renor-
malization of dc conductances due to interaction effects. This
is the central result of our derivation. In the next section we
will discuss physical implementations of these RG equations
in different limiting cases.

It is worth to comment here on the completeness of the
derived set of RG Eq. (72). Based on the intuitive similarity
of the fermionic S matrix and the phonon B matrix, one might
ask if it is necessary to construct analogous RG equations for
the B matrix as well. Somewhat related questions were raised
in Ref. [21], where it was proposed that phenomenologically
imposed correlations between fermion and phonon scattering
matrix elements could potentially lead to the existence of
new unstable RG fixed points. In our formalism, we didn’t
find any contributions to the phonon propagator that could
be interpreted as separate scale-dependent corrections of the
phonon B matrix. Logarithmic corrections to the phonon
propagator emerge from diagrams containing fermion loops,
they correspond to iteration of RG equation for the S matrix
together with the above RPA-type summation. Hence, no
additional scaling equations for the B matrix are required.

VI. SCALING EXPONENTS AT STRONG COUPLING

The above calculation provided us with the nonequilib-
rium strong-coupling RG equations for conductances. As we
show now, they are in agreement with all previously known
limiting cases: electron-electron strong coupling in equilib-
rium regime for Y -junction [22], electron-electron weak cou-
pling in nonequilibrium regime for Y -junction [20], electron-
electron strong coupling in nonequilibrium regime for impu-
rity case (when the tip is absent) [23], electron-phonon strong
coupling in equilibrium regime for impurity case near the
conductances fixed points [21].

0.0 0.2 0.4 0.6 0.8
0.9

1.0

1.1

1.2

1.3

FIG. 8. The modified Luttinger parameter K for τ = 0 (blue line)
and for τ = 1 (orange line) for g = 0.1 and ξ = 1.5.

Nonequilibrium RG equations in the first order of in-
teraction were discussed to some length in Sec. III B. The
sophisticated summation of Sec. IV does not qualitatively
change the above off-equilibrium picture. So let us to focus
instead on the equilibrium case: Va,b → 0 and ωD → ∞,
where nonperturbative treatment of interactions reveals new
phenomenon.

A. Wire with an impurity

Earlier, the case of the wire with the impurity was studied
by the bosonization technique in the presence of electron-
phonon interaction [21]. For Y junction this means the de-
coupled tip: t2 = 0, r2 = 1 for S matrix (1), i.e., Gb = 0
[Eq. (23)]. The only RG equation in this case is

dGa

d�
= 2A1 = − 4Ga(1 − Ga)

q2 − (1 − 2Ga)
. (75)

Only two fixed points exist: N point, Ga = 0, and A point,
Ga = 1. In the vicinity of these points the linearized equations
have the standard form

dGa

d�
= 2(1 − K−1)Ga, Ga � 1,

dG̃a

d�
= 2(1 − K)G̃a, G̃a = 1 − Ga � 1. (76)

This result is in exact correspondence with Yurkevich et al.
[21]. The fixed point N corresponds to the total loss of
conductance. It is stable for K < 1, while the fixed point A
corresponds to the ideal transmission case and is stable in the
opposite situation, K > 1. The renormalization is absent for
K = 1, though the coupling constants might not be zero in this
case; see Fig. 8. Another interesting point is that in a certain
range of parameters the modified Luttinger parameter can be
K < 1 for τ = 0, while by increasing τ one can continuously
increase K up to the values greater than one.

Without the electron-phonon interaction, α = 0, one has
the well-known result K̃ = K with the scaling exponents
K and 1/K for the weak scattering and weak link limits,
respectively. In this case K < 1 for the repulsive interac-
tion between electrons, g > 0, and K > 1 for the attractive
electron-electron interaction, g < 0.
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Let us also discuss the role of the kinetic asymmetry
between bosonic and fermionic modes. For ξ = 0 (phonon
velocity tending to infinity) we get K = K̃ which corresponds
to the absence of any retardation effects (purely screened
local interactions). In the opposite case ξ → ∞ (phonon
velocity tending to zero) one obtains K = K and phonons
are incapable to modify renormalization. In the intermediate
regime K is a monotonic function of ξ .

B. Y junction

In the equilibrium limit the strong coupling RG equations
read as

dGa

d�
= 2A1 + 2A2,

dGb

d�
= 4B2, (77)

with the above definition Eq. (73). Two universal fixed points
of this RG system, N and A, can be characterized by two
independent scaling exponents corresponding to different di-
rections in the space of conductances, (Ga, Gb): along the line
Gb = 0, and along the boundary Gb/4 = Ga(1 − Ga). In ad-
dition to above fixed points at the line Gb = 0 (corresponding
to the detached tip), the saddle-type fixed point M appears. As
discussed in Sec. III B the position of the latter point M at the
parabola of allowed conductances is not universal. In this case,
the associated scaling exponents are naturally related to two
directions, one along the parabola and another perpendicular
to it. Their exact form is rather cumbersome and given by Eqs.
(33) and (35) in Ref. [22] where parameters q and Q (which is
a function of q and q3) should be replaced by our expressions
for q2 and Q (as a function of q1 and q3), given by Eqs. (70)
and (74), respectively.

The first set of exponents for the fixed points N and A can
be read from Eq. (76) and is given by

γN,1 = 2(K−1 − 1),

γA,1 = 2(K − 1). (78)

The second set of scaling exponents is found as

γN,2 = K−1
3 + 1

2
(K−1

∣∣
τ=0 + K−1) − 2,

γA,2 = K−1
3 + 1

2
(K−1

∣∣
τ=0 + K) − 2, (79)

and additional exponents defined in Eqs. (28) and (29) can
be obtained as κp, j = γp, j |α=0 − γp, j with p = N, A and j =
1, 2. In the weak coupling regime, these scaling exponents
coincide with the ones presented in Sec. III C.

Let us discuss Eq. (79). The fixed point N is characterized
by the exponent γN,2, determined by the sum of the boundary
exponent for the third wire K−1

3 and the new combination
�edge = 1

2 (K−1|τ=0 + K−1). We will refer to this combination
as an effective boundary exponent for the main wire. The
fixed point A has the exponent γA,2, which is controlled
by the boundary exponent of the third wire K−1

3 and the
effective bulk anomalous dimension of the fermion operator
�bulk = 1

2 (K−1|τ=0 + K). This quantity corresponds to the
well-known zero-bias anomaly and controls the suppression

FIG. 9. The boundary exponent �edge = 1
2 (K−1|τ=0 + K−1)

(blue line) and the bulk exponent �bulk = 1
2 (K−1|τ=0 + K) (orange

line) for g = 0.1, τ = 1, and ξ = 1.5. The fixed point M exists when
�edge > 1 and �bulk > 1.

of the tunneling density of states [17]. Both exponents are
depicted on Fig. 9 as a function of the electron-phonon
coupling constant α. We note in passing that the condition for
the existence of M point reads as γN,2γA,2 > 0.

The way how two modified Luttinger parameters K−1|τ=0
and K enter scaling exponents can be understood as follows.
The first term in expressions for �edge and �bulk is always
associated with the direct tunneling processes from one of the
arms of the main wire to the tip, and thus, has a characteristic
form of the weak link exponent, i.e. is inversely proportional
to the Luttinger parameter. Additionally, since in our model
we assume the absence of phonon transport between the
main wire and the tunneling tip, then undergoing this process
fermions are not affected by the interwire interactions associ-
ated with the transmission coefficient τ , which in turn results
in K−1|τ=0 for both fixed points. The second contribution to
the boundary and bulk exponents corresponds to scattering
processes within the main wire and has a tunneling or weak-
scattering form for N and A points, respectively. However,
in both cases propagating fermions can interact through the
exchange of phonons across a junction, and consequently, this
term comes fully dressed with nonzero τ .

An important statement is the following. Contrary to what
was obtained in the previous studies of Y junctions in the
absence of phonons, the scaling exponents now can not be
written in terms of a single modified Luttinger parameter. This
fact may have consequences for possible attempts to recover
the strength of interaction from two experimentally observed
exponents, �edge and �bulk. In the anticipated situation of non-
interacting tip, K3 = 1, one can naively extract the effective
Luttinger parameter from two alternative definitions [25]:

K (edge)
eff = 1

�edge
,

1

2

(
1

K (bulk)
eff

+ K (bulk)
eff

)
= �bulk. (80)

These effective Luttinger parameters are depicted on
Fig. 10 as a function of τ . They coincide only for the phonon
ideal reflection case, τ = 0. However, in the tunneling ex-
periments where the phonons pass through the vicinity of
Y junction, τ �= 1, our Eq. (79) show that in the physically

195404-13



NOSOV, NIYAZOV, AND ARISTOV PHYSICAL REVIEW B 101, 195404 (2020)

0.0 0.2 0.4 0.6 0.8 1.0
0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

FIG. 10. Two effective Luttinger parameters K (edge)
eff (blue line)

and K (bulk)
eff (orange line) [see Eq. (80)] as a function of τ for α = 0.2,

g = 0.1, and ξ = 1.5. They do not coincide for τ > 0, contrary to
naive expectation following from all previously known Y -junctions
studies.

relevant range of parameters K (bulk)
eff is smaller than K (edge)

eff , and
thus, Keff should be determined differently.

In fact, in certain experimentally studied low-dimensional
systems exhibiting LL-type behavior the similar mismatch
between measured Luttinger parameters was observed. For
instance, in artificial atom chains [26] K (edge)

eff extracted from
experimental data was found to be larger than K (bulk)

eff , in
agreement with our predictions. Our calculation shows that
the difference between two Luttinger parameters Eq. (80)
can be at least partially due to the strong electron-phonon
interaction.

Instead of a single effective Luttinger parameter we pro-
pose to characterize tunneling experiments in Luttinger liq-
uids by using both K−1|τ=0 and K which can be determined
from observable boundary and bulk exponents as follows:

K−1
∣∣
τ=0 = �bulk + �edge −

√
1 + (�bulk − �edge)2 ,

K = �bulk − �edge +
√

1 + (�bulk − �edge)2 .(81)

Thus, experimental measurements of the conductances
scaling behavior near the two fixed points N and A (i.e., for
two different junction regime: ideal reflection and transmis-
sion case, correspondingly) allow us to obtain interwire inter-
actions contribution to the electron transport in the junction.

It worth noting that the boundary and bulk exponents can
be equal to each other on some nontrivial surface in the
parameter space (for τ = 0 or without phonons it can happen
only in the noninteracting case K = 1). This situation is
accompanied by the M point being located exactly on the top
of the parabola of allowed conductances and the emergence
of the line of fixed points located at Gb = 0 as was discussed
in Sec. III B. We note that these two exponents equal to each
other (�edge = �bulk) exactly at the point where the condition
K = 1 is satisfied.

It is straightforward to show that scaling exponents pre-
sented in this section can be easily generalized to account for
the additional electron-phonon interaction present in the third
wire (α3 �= 0) with the same B matrix [Eq. (5)]. Physically,

it corresponds to the situation when an ideal tunneling tip is
replaced by an electrode made from the same material as a
main wire with large electron-phonon coupling. The Luttinger
parameter K3 then should be simply replaced by K3 with
τ = 0 (since the corresponding matrix element is B33 = 1).

Finally, we note that although the scaling exponents de-
rived within our approach are significantly modified in the
presence of the electron-phonon interaction, the RG Eq. (77)
do not exhibit any new fixed points in addition to already
described cases [22]; see also Ref. [21]. It can be understood
in terms of the full integral Eq. (32). The bare interaction
propagator plays a role of the “starting point” for the RPA
dressing procedure (see Sec. IV). If one starts with just a
local interaction, then already the first iteration of the integral
equation results in the new kernel with the form structurally
resembling the phonon propagator where B matrix is replaced
by matrix elements of the fermionic S matrix. Thus, away
from N and A fixed points, then conductances are finite, this
decoration of the interaction potential effectively “smoothens”
the difference between initial bare bosonic propagators. As
a result, the standard classification of fixed points applies.
However, in the proximity of the fixed point N the corre-
sponding tunneling matrix element t2 renormalizes to zero,
and the terms proportional to τ in Eq. (59) are the only
nondiagonal contributions that survive and drastically change
scaling exponents.

VII. CONCLUSIONS

In this work, we have studied the effect of the electron-
phonon interaction on the renormalization of conductances in
the Y junction of the Luttinger liquids out of equilibrium. This
problem setup corresponds to the geometry of a scanning tun-
neling microscopy experiment of one-dimensional quantum
systems, for example, carbon nanotubes [27] or helical edge
states of topological insulators [28,29].

Within the fermionic approach enforced by the Keldysh
diagrammatic technique, corrections to charge currents were
calculated at the infinite order of the perturbation theory in
the electron-phonon coupling constant, and scale-dependent
logarithmic contributions were determined. This allowed us
to apply the renormalization group formalism and derive the
β functions at strong coupling for two characteristic conduc-
tances Ga and Gb, which correspond to the current in the
main wire and the tunneling tip, respectively. The obtained
renormalization-group equations were solved analytically in
the vicinity of the fixed RG points, and the corresponding
scaling exponents, as well as various nonequilibrium regimes,
were analyzed in details.

The system exhibits two typical transport behaviors in cor-
respondence with two possible fixed points for the RG flows
in the plane of conductances. When the attractive electron-
phonon interaction is small enough in comparison with the re-
pulsive Coulomb interaction then the conductance Ga tends to
zero (fixed point N , “insulator” behavior), in opposite case for
certain parameters Ga tends to ideal conductance value (fixed
point A, “metal” behavior). Additionally, there is a saddle-type
fixed point M. The physical reason for the appearance of
the nonuniversal M point in the absence of electron-phonon
interaction was the competition between the renormalization
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of the tunneling density of states and the instability with
respect to the formation of a charge density wave in the
main wire [17]. We show that the influence of phonons on
M point is twofold. One effect is induced attraction between
electrons, which in the absence of interaction in the tip would
lead to disappearance of M point, see Fig. 4 in Ref. [22].
Another effect favors the existence of M point and concerns
the nonlocality of phonon-mediated interaction, in particular
the interaction over the barrier, τ > 0. We emphasize that,
although the repulsive interaction in the tunneling tip, g3,
leads to the appearance of M point [20], it cannot move the
fixed point M to the left half of the RG diagram. In case of
only two quantum wires with an impurity (limit Gb = 0), the
calculated scaling exponents for fixed points coincide with
those reported in Ref. [10] within the bosonization framework.

We also demonstrated that the presence of an additional
ultraviolet scale in the model, determined by the Debye fre-
quency ωD, enriches nonequilibrium transport regimes. As a
result, rather complicated RG trajectories may exist: conduc-
tances RG flow can change the direction from the fixed point
N (insulating behavior) to the fixed point A (metallic behavior)
with running energy ε decreasing due to the nonuniversal
position of the M point. Specifically, at high energies (temper-
ature or voltages greater than the Debye frequency ωD), the
contribution originating from the electron-phonon coupling
is irrelevant, and the M point is located on the right side
of the RG diagram. At energies lower than the Debye scale,
the contributions of inelastic scattering with phonon transfer
begin to play a crucial role in renormalization. If the junction
is transparent for phonon transport τ > 0, then the tunneling
density of states is suppressed, and the M point changes its
position and affects the directions of RG flows (see Fig. 4). As
a result, the dependence of conductances on the infrared cutoff
(for example, temperature) turns out to be nonmonotonic.

Finally, we show that the scaling of conductances of Y
junction is governed by two effective Luttinger parameters, re-
lated to the main wire. For the geometry of the Luttinger liquid
wire with impurity (detached tunneling tip) only one Luttinger
parameter, K, appears in equations. Rather unexpectedly,
the scaling exponents for the tunneling tip conductance are
defined by both the previous K, and K|τ=0, calculated in ge-
ometry of Y junction impenetrable for phonons. It means that
the Luttinger parameter, K, naively extracted from the bulk
tunneling exponent of tip conductance will show systematic
deviation, due to phonons, from K, determined in other types
of experiment.
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APPENDIX A: PHONON PROPAGATOR WITH A SINGLE
IMPURITY

For simplicity we consider a mass defect model of impu-
rity, while similar calculations can be performed for the pin-

ning or elastic defects [30]. We introduce the causal Green’s
function for the lattice deformations u(x). In the (ω, x) repre-
sentation it reads

U 0(ω, x, x′) = − i

2c|ω|ei |ω|
c |x−x′|. (A1)

We solve the Lippmann-Schwinger equation accounting for
multiple phonon scattering. The solution has the following
form:

U (ω, x, x′) = U 0(ω, x, x′)

− �m/m

F (ω)
ω2U 0(ω, x, 0)U 0(ω, 0, x′), (A2)

for x, x′ �= 0. The appearing pole corresponds to the localized
vibrational mode

F (ω) = 1 + �m

m
ω2U 0(ω, 0, 0) = 1 − i

|ω|
ωm

, (A3)

with the characteristic frequency ωm = 2mc/�m. In the main
text we use the mixed wire and (ω, x) representation, so bare
phonon propagator reads

U 0
ω (l, x|m, x′) = − i

2c|ω|
(

ei |ω|
c |x−x′|σ 0

lm + ei |ω|
c (x+x′ )σ 1

lm

)
,

(A4)
for x, x′ > 0. The complete solution is

Uω(l, x|m, x′)

= − i

2c|ω|
(

ei |ω|
c |x−x′|σ 0

lm

−ρ(|ω|)ei |ω|
c (x+x′ )σ 0

lm + τ (|ω|)ei |ω|
c (x+x′ )σ 1

lm

)
, (A5)

and the reflection and transmission coefficients have the form

ρ(|ω|) = − i|ω|/ωm

1 − i|ω|/ωm
, τ (|ω|) = 1 − ρ(|ω|). (A6)

There are two simple limiting cases: first, if �m = 0, then we
obtain ρ = 0, τ = 1; and second, if �m = +∞, then we get
ρ = 1, τ = 0.

We notice the continuity condition at x = 0 of the Green
function of deformations

Uω(1, x|1, 0+) = Uω(1, x|2, 0+) (A7)

and for the full reflection case (ρ = 1) we obtain the following
boundary condition:

Uω(1, x|1, 0+) = 0 ↔ u(0) = 0. (A8)

For the electron-phonon interactions we need to consider
the Green’s function for the gradients of deformations,

D̃(x, t, x′, t ′) = −i
〈
T c∇u(x, t )c∇u(x′, t ′)

〉
= c2∂x∂x′U (x, t, x′, t ′), (A9)

for x, x′ �= 0. This definition can be reformulated in terms of
our mixed wire and (ω, x) representation as

D̃ω(l, x|m, x′) = c2(σ 0
lm − σ 1

lm)∂x∂x′Uω(l, x|m, x′), (A10)

for x, x′ > 0. Therefore, we obtain the following expression
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for the Green’s function:

D̃ω(l, x|m, x′) = −δ(x − x′)σ 0
lm

− i|ω|
2c

(
ei |ω|

c |x−x′|σ 0
lm + Blmei |ω|

c (x+x′ )); (A11)

here the phonon B matrix is an analog of electron |Si j |2 matrix

B =
(

ρ τ

τ ρ

)
, τ + ρ = 1. (A12)

The retarded Green’s functions is given by Eq. (4) in the main
text.

APPENDIX B: USEFUL OPERATOR IDENTITIES FOR Dv

In this section we present several useful identities for
differential operators Dv defined in the main text as Dv =
∂2

x + ω2/v2.
We are mostly interested in the result of action of Dv on

various exponential functions because of the structure of our
bare bosonic propagator in the mixed frequency-coordinate
representation Eq. (9). For instance, one can easily derive

Dv ei ω
V x = ω2

(
1

v2
− 1

V 2

)
ei ω

V x,

Dv ei ω
V |x| = 2iω

V
δ(x) + ω2

(
1

v2
− 1

V 2

)
ei ω

V |x|. (B1)

Another important simplification is coming from the com-
bination D2 = Dv+Dv− introduced in Eq. (43). By using
Eq. (B1) one can obtain

D2 ei ω
V x = ω4

(
1

v2−
− 1

V 2

)(
1

v2+
− 1

V 2

)
ei ω

V x, (B2)

and we get

D2 ei ω
V |x| = 2iω

V
δ(2)(x) + 2iω3

V

(
1

v2+
+ 1

v2−
− 1

V 2

)
δ(x)

+ω4

(
1

v2−
− 1

V 2

)(
1

v2+
− 1

V 2

)
ei ω

V |x|. (B3)

It is useful to derive how D2 operator acts on a δ function:

D2 δ(x) = δ(4)(x) + ω2

(
1

v2+
+ 1

v2−

)
δ(2)(x) + ω4

v2−v2+
δ(x).

(B4)
Now let us consider these relations for the specific case of
v±. From Eq. (B2) one can see that D2 vanishes on the
propagating exponents ei ω

x v± :

D2 ei ω
v+ x = D2 ei ω

v− x = 0. (B5)

Moreover, we obtain

D2 ei ω
v± |x| = 2iω

v±
δ(2)(x) + 2iω3

v±v2∓
δ(x). (B6)

Finally, we consider the case with V = c:

D2 ei ω
c x = ω4

(
1

v2−
− 1

c2

)(
1

v2+
− 1

c2

)
ei ω

c x, (B7)

D2 ei ω
c |x| = 2iω

c
δ(2)(x) + 2iω3

c

(
1

v+2
+ 1

v2−
− 1

c2

)
δ(x)

+ω4

(
1

v2−
− 1

c2

)(
1

v2+
− 1

c2

)
ei ω

c |x|. (B8)

APPENDIX C: BOUNDARY CONDITIONS FOR
MATRICES Aσg

In this section we outline important steps in the derivation
of the set of equations for matrices Aσg(y) [Eq. (49)]. As
it was explained in the main text, we can use the ansatz
Eq. (48) for the integral Eq. (38) and compare coefficients
corresponding to different linearly independent x-functions.
Thus, it is convenient to first evaluate integrals Eq. (36) in
terms of matrices Aσg by using Eq. (48). We obtain

Iβ (x|y) = κ0ei ω
β
|x−y| + iπω

d̃2

∑
σ=±

κσ gβvσ
(x|y)

− iπω

d̃2

∑
σ,g=±

Aσg(y) fβ,gvσ
(x), (C1)

Jβ (x|y) = κ0ei ω
β

(x+y)B + iπω

d̃2
ei ω

β
x
∑
σ=±

κσ gβvσ
(0|y)B

− iπω

d̃2
ei ω

β
x

∑
σ,g=±

BAσg(y) fβ,gvσ
(0), (C2)

where we used the notation

gβvσ
(x|y) =

∫
dz ei ω

β
|x−z|ei ω

vσ
|z−y| = θ

β1β2
1 ei ω

β1
|x−y|

+ θ
β1β2
2 ei ω

β2
|x−y| + θ

β1β2
3 e

iω
(

x
β1

+ y
β2

)

+ θ
β1β2
4 e

−iω
(

x
β1

+ y
β2

)
, (C3)

with coefficients

θ
β1β2
1 = 2iβ2

1β2

ω(β2
1 − β2

2 )
, θ

β1β2
2 = θ

β2β1
1 = −β2

β1
θ

β1β2
1 ,

θ
β1β2
3 = − iβ1β2

ω(β1 + β2)
, θ

β1β2
4 = θ

β1β2
3 e

iωL
(

1
β1

+ 1
β2

)
. (C4)

In these calculations we set the lower limit of integration
to zero a = 0 because all diagrams are IR finite. We also
introduced

fβ1β2 (x) =
∫

dz ei ω
β1

|x−z|ei ω
β2

z = θ
β1β2
2 ei ω

β2
x

+ θ
β1,−β2
3 ei ω

β1
x + θ

β1β2
4 e−i ω

β1
x
. (C5)

The last remaining integral in Eq. (36) reads as

Q(x|y) =
∫

dz
(

gcv (x|z) + Bei ω
c x fvc(z)

)
C(z|y)

= θ cv
1 Ic(x|y) + θ cv

2 Iv (x|y) + ei ω
c xθvc

1 Jc(0|y)

+ ei ω
c xθvc

4 J−v (0|y) + ei ω
c x

[
θ cv

3 B−1 + θv,−c
3

]
Jv (0|y)

+ e−i ω
c xθ cv

4 B−1J−v (0|y), (C6)

where we used the property gβ1β2 (0|y) = fβ2β1 (y).

195404-16



TUNNELING INTO A LUTTINGER LIQUID COUPLED TO … PHYSICAL REVIEW B 101, 195404 (2020)

Now we are ready to combine all contributions originating
from integrals J, I, and Q together in the integral Eq. (38).

Prefactors before the exponents with modified velocities
v± egi ω

vσ
x are exactly zero. The only contributions that remain

intact in the Eq. (38) are related to exponents e±i ω
v

x and e±i ω
c x.

By matching factors in front of exponents e±i ω
v

x we obtain
two equations for matrices Aσg:∑

σ,g=±
θ

v,−gvσ

3 Aσg(y) =
∑
σ=±

κσ θ
vvσ

3 ei ω
vσ

y1,

∑
σ,g=±

θ
v,gvσ

4 Aσg(y) =
∑
σ=±

κσ θ
vvσ

4 e−i ω
vσ

y1.
(C7)

Similarly, in the case of e±i ω
c x we obtain two additional

equations,∑
σ,g=±

θ
c,−gvσ

3 Aσg(y) =
∑
σ=±

κσ θ
cvσ

3 ei ω
vσ

y1 − T1(y),

∑
σ,g=±

θ
c,gvσ

4 Aσg(y) =
∑
σ=±

κσ θ
cvσ

4 e−i ω
vσ

y1 − T2(y)1,
(C8)

where we introduced quantities T1(y) and T2(y) which should
be evaluated explicitly in terms of matrices A. The rest of this
Appendix is devoted to simplification of Eq. (C8).

The contribution for the first equation in Eq. (C8) that we
need to calculate is given by two terms,

T1(y) = id̃2c(v − c)

2πv2ω
B−1Jv (0|y) + T(1)

1 (y), (C9)

where the first term is proportional to the identity matrix
[check the definition Eq. (C2)]. In contrast, the second term
is linear in B and defined as

T(1)
1 (y) = id̃2/π

ωθ cv
1 − 2iv

[
θvc

2 Jc(0|y) + θv,−c
3 Jv (0|y)

+ θvc
4 J−v (0|y) + 2π iv2ei ω

c yB/ω − 2ivJc(0|y)/ω
]
.

(C10)

For the last term in the second equation in Eq. (C8) we obtain

T2(y) = id̃2c(v − c)

2v2πω
eiωL( 1

c + 1
v )B−1J−v (0|y). (C11)

We can further simplify Jβ by making use of the first two
Eq. (C7) as follows:∑

σ,g=±
Aσg(y) fv,gvσ

(0) =
∑

σ,g=±
θ

vvσ

2 Aσg(y)

+
∑
σ=±

κσ θ
vvσ

3 ei ω
vσ

y +
∑
σ=±

κσ θ
vvσ

4 e−i ω
vσ

y.

(C12)

We notice that f−β1,β2 (0) = e−i ω
β1

L fβ1β2 (L) and obtain∑
σ,g=±

Aσg(y) f−v,gvσ
(0) =

∑
σ,g=±

θ
v,vσ

2 Aσg(y)e
iωL

(
g

vσ
− 1

v

)

+
∑
σ=±

κσ θ
vvσ

3 ei ω
vσ

y + e−2i ω
v

L
∑
σ=±

κσ θ
vvσ

4 e−i ω
vσ

y.

(C13)

Substituting Eqs. (C12) and (C13) into Eq. (C2) one can show
that

id̃2

πω
B−1Jv (0|y) =

∑
σ,g=±

θ
vvσ

2 Aσg(y) −
∑

σ

κσ θ
vvσ

2 ei ω
vσ

y,

(C14)
and consequently

id̃2

πω
B−1J−v (0|y) = e−i ω

v
L

∑
σ,g=±

θ
vvσ

2 Aσg(y)egi ω
vσ

L

− e−i ω
v

L
∑

σ

κσ θ
vvσ

2 ei ω
vσ

(L−y). (C15)

These two relations allow us to simplify T2(y) defined in
Eq. (C11). Rearranging all terms in the second equation in
Eq. (C8) we represent it in the form∑

σ,g=±
Aσg(y)ϕσ

g =
∑
σ=±

κσϕσ
+e−i ω

vσ
y, (C16)

where we introduced ϕσ
g = θ

c,gvσ

4 + c(v−c)
2v2 θ

vvσ

2 eiωL( 1
c + g

vσ
).

Finally, we are ready to address the first equation in
Eq. (C8). All terms containing ei ω

c y are exactly canceled there.
The rest of T(1)

1 can be simplified with the use of Eqs. (C12)
and (C13) so that we arrive to the following compact repre-
sentation

iωv

c
T(1)

1 (y) =
∑
σg

[
c2

v3
θ

vvσ

1 − ϕσ
g e

−iωL
(

1
c + g

vσ

)]
BAσg(y)

−
∑
σg

κσ

[
c2

v3
θ

vvσ

1 − ϕσ
−e

−iωL
(

1
c − 1

vσ

)]
Bei ω

vσ
y.

(C17)
Now we are in a position to combine the results of this section
together. For clarity we redefine all coefficients as χ̃

β1β2
1 =

−iωθ
β1,−β2
3 , χ̃

β1β2
2 = −iωθ

β1β2
4 , and φσ

g+ = −iωϕσ
g . After a

series of straightforward algebraic manipulations equations
(C7), (C16), (C8), and (C17) can be reduced to Eq. (49) in
the main text.

APPENDIX D: FULL FORM OF THE SOLUTION FOR bsg
σ j

In this section we present the explicit form of all matrix
elements bsg

σ j . They are classified by four distinctive sectors
which do not mix with each other in the integral Eqs. (33) and
(35). We first describe our notation and then define all sectors.

The common factor appearing in all matrix elements has
the form

X = e
iωL

(
− 1

v− + 1
v+

)
F 1F̃ 2 − e

iωL
(

1
v− + 1

v+

)
F1F̃2

− e
iωL

(
− 1

v− − 1
v+

)
F̃ 1F 2 + e

iωL
(

1
v− − 1

v+

)
F̃1F2 + F0.

(D1)

Four quantities Fi are defined as

F1 = 2v2
∑

σ

σ χ̃
v,−v−σ

1

(
χ̃

c,−vσ

1 − Bχ̃
c,vσ

1

)
+ c

∑
σ

σ θ̃
v,v−σ

2 χ̃
v,−vσ

1

[
(B + 1)c + (B − 1)v

]
,
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F2 = 2v2
∑

σ

σ χ̃
v,σvσ

1 χ̃
c,−σv−σ

1 + c
∑

σ

σ θ̃
vvσ

2 χ̃
v,−σv−σ

1 (c − v),

F3 = 2v2
∑

σ

σ χ̃
c,σv+
1

(
χ̃

v,σv+
1 B + χ̃

v,−σv+
1

)
+ cθ̃vv+

2

∑
g

gχ̃v,gv+
1

[
(B + 1)c + (B − 1)v

]
,

F0 = 8c3v3v+v−d̃2

αχ̃v,c
1

(
v2 − c2

gv2 − c2g̃

)2

[(B + 1)c + (B − 1)v],

where θ̃
β1β2
2 = −iωθ

β1β2
2 , and B corresponds to one of the

eigenvalues of the B matrix; i.e., it can be either ρ + τ or
ρ − τ .

In addition, we defined two operations acting on quantities
Fi:

F i = Fi|χ̃β,v−
1 ↔χ̃

β,−v−
1

, F̃i = Fi|χ̃β,v+
1 ↔χ̃

β,−v+
1

. (D2)

The first sector corresponds to g = +, s = +, and the
matrix elements have the following form:

Xb++
++ = e

iωL
(

1
v− − 1

v+

)
F1F2 − e

iωL
(
− 1

v− − 1
v+

)
F 1F 2,

Xb++
+− = e

iωL
(
− 1

v− + 1
v+

)
F 1F̃ 2 − e

iωL
(

1
v− + 1

v+

)
F1F̃2

− F3 F2|v+→v− ,

Xb++
−+ = −e

iωL
(
− 1

v− − 1
v+

)
F3F 2 − F1 F2|v−→v+ ,

Xb++
−− = e

iωL
(

1
v− − 1

v+

)
F3F2 + F 1 F2|v−→v+ .

The second sector is represented by the choice of indices g =
−, s = +, and the matrix elements are defined as

Xb+−
++ = e

iωL
(
− 1

v− + 1
v+

)
F 1F̃ 2 − e

iωL
(

1
v− + 1

v+

)
F1F̃2

− F3|v+→v− F2|v−→v+ ,

Xb+−
+− = −e

iωL
(
− 1

v− + 1
v+

)
F̃ 1F̃ 2 + e

iωL
(

1
v− + 1

v+

)
F̃1F̃2,

Xb+−
−+ = e

iωL
(
− 1

v− + 1
v+

)
F3|v−→v+ F̃ 2 + F̃1 F2|v−→v+ ,

Xb+−
−− = −e

iωL
(

1
v− + 1

v+

)
F3|v−→v+ F̃2 − F̃ 1 F2|v−→v+ .

The third sector is defined by indices g = +, s = −. The
corresponding matrix elements are given by

Xb−+
++ = e

iωL
(
− 1

v− − 1
v+

)
F3|v+→v−F 2 + F1 F2|v+→v− ,

Xb−+
+− = −e

iωL
(
− 1

v− + 1
v+

)
F3|v+→v− F̃ 2 − F̃1 F2|v+→v− ,

Xb−+
−+ = e

iωL
(
− 1

v− + 1
v+

)
F1F̃ 2 − e

iωL
(
− 1

v− − 1
v+

)
F̃1F 2,

Xb−+
−− = −e

iωL
(

1
v− + 1

v+

)
F1F̃2 + e

iωL
(

1
v− − 1

v+

)
F̃1F2

− F3|v+→v− F2|v−→v+ .

Finally, the last sector for matrix elements with g = +, s = −
has the form

Xb−−
++ = −e

iωL
(

1
v− − 1

v+

)
F3|v+→v−F2 − F 1 F2|v+→v− ,

Xb−−
+− = e

iωL
(

1
v− + 1

v+

)
F3|v+→v− F̃2 + F̃ 1 F2|v+→v− ,

Xb−−
−+ = −e

iωL
(

1
v− + 1

v+

)
F1F̃2 + e

iωL
(

1
v− − 1

v+

)
F̃1F2

− F3|v−→v+ F2|v+→v− ,

Xb−−
−− = e

iωL
(

1
v− + 1

v+

)
F 1F̃2 − e

iωL
(

1
v− − 1

v+

)
F̃ 1F2.
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