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We consider a scheme for on-demand teleportation of a dual-rail electron qubit state, based on single-electron
sources and detectors. The scheme has a maximal efficiency of 25%, which is limited both by the shared
entangled state as well as the Bell-state measurement. We consider two experimental implementations, realizable
with current technology. The first relies on surface acoustic waves, where all the ingredients are readily available.
The second is based on Lorentzian voltage pulses in quantum Hall edge channels. As single-electron detection
is not yet experimentally established in these systems, we consider a tomographic detection of teleportation
using current correlators up to (and including) third order. For both implementations, we take into account
environmental effects.
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I. INTRODUCTION

Quantum teleportation was introduced by Bennett et al.
in 1993 [1] and the first experimental implementations, us-
ing photon polarizations, started to appear in the late ’90s
[2,3]. Implementations in other photonic and matter-based
systems have since followed [4–8]. Recent developments
include ground-to-satellite [9] and chip-to-chip [10] telepor-
tation, quantum secret sharing [11], and teleportation in high
dimensions [12]. The objective of quantum teleportation is the
transfer of a quantum state between two parties, Alice and
Bob, using classical communication, shared entanglement,
and local measurements. In addition to directly transferring
quantum states, it may serve as a part of an entanglement
swapping scheme [13,14]. Teleportation has important ap-
plications in quantum communication, quantum computing,
and quantum networks [15–17], enabling important building
blocks such as quantum repeaters [18,19] and state transfer
between propagating photons and solid-state quantum memo-
ries [20,21]. In addition to practical applications, teleportation
experiments provide a simple way to demonstrate control over
quantum systems, since it involves some of the fundamental
building blocks of quantum information: state preparation,
entanglement generation, measurements, and unitary transfor-
mations conditioned on measurement outcomes.

Relying on mature semiconducting technology, electronic
circuits provide a promising avenue for quantum technologies
due to their potential for scalability and integration with
existing devices. Motivated by recent progress in the genera-
tion and manipulation of single-electron states in mesoscopic

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

systems, a field referred to as electron quantum optics
[22–27], we propose a scheme for performing quantum tele-
portation of single-electron states. The scheme is based on
electronic analogs of optical components such as beamsplit-
ters and phase shifters to manipulate electrons in a dual-rail
qubit configuration, which consists of two spatial modes that
an electron can occupy. The (arbitrary) qubit state that is
going to be teleported is prepared by a single-electron source
combined with a tunable beamsplitter and a tunable phase
shifter. The entanglement required for teleportation is gen-
erated by two single-electron sources together with a pair of
50/50 beamsplitters [24,25] and the Bell-state measurement
is implemented using beamsplitters and charge detectors. In
this scheme, the efficiency of teleportation is restricted for
two reasons: First, particle-number superselection renders the
entangled state useless in 50% of the cases. Second, due to the
linearity of the system, the Bell-state measurement has a finite
success rate of 50% [28–30], so the teleportation succeeds
with an overall probability of 25%. We further note that
the efficiency is reduced by another 50% if the final unitary
transformation is not applied.

We consider two possible experimental implementations.
The first one is based on using surface acoustic waves (SAWs)
to transport single electrons between static quantum dots,
which can act as detectors [22,31]. Since maintaining coher-
ence is a challenge in this type of system [22,26], we consider
dephasing due to fluctuating electric fields. The second imple-
mentation is based on levitons traveling in chiral edge states
that occur in the quantum Hall regime. A leviton is a single-
electron excitation on top of the Fermi sea created by apply-
ing a Lorentzian-shaped voltage pulse to a metallic contact
[23,32,33]. Despite promising recent efforts [34,35], single-
electron detection has not been demonstrated yet for this type
of setup. For this reason, we will theoretically demonstrate
how to perform state tomography of Bob’s postmeasurement
state by periodically repeating the experiment and measuring
zero frequency currents and current cross-correlators up to
(and including) order three. A rigorous connection to the
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FIG. 1. Schematic view of the original teleportation protocol (a) and our proposed setup for single-electron teleportation (b). (a) Alice and
Bob are each given one-half of an entangled state |φ〉. Alice also receives an unknown qubit state |ψ〉. She performs a measurement on the
combined state of the qubit and her part of the entangled state and sends the result to Bob. Based on the measurement outcome, Bob performs
a unitary operation on his part of the entangled state to recover the unknown qubit from the postmeasurement state |ψ ′〉. (b) The Si denote
single-electron sources, Gi empty inputs (grounded contacts in the implementation based on levitons). Beamsplitters are labeled by S and
phase-shifters by ϕ and θ . The A and A′ modes propagate to Alice while the B and B′ propagate to Bob. Electrons are detected by Alice at
four detectors at A±

0 and at A±
1 . The aim of the experiment is to transfer a superposition of A′ modes to a superposition of B′ modes. Bob can

perform state tomography on his part of the post-measurement state in order to verify teleportation. He selects which component of the Bloch
vector to measure by adjusting SB and θ .

observables of the idealized single-shot scenario is found at
zero temperature. We also consider how finite temperatures
alter the results. In both of the experimental implementations,
we find that the effect of the environment is to introduce noise
that can be described as phase damping [36].

Chiral edge channels have been considered before for
quantum teleportation [37]. While we propose performing
full-state tomography on Bob’s postmeasurement state, in
Ref. [37] the teleportation is demonstrated by simultaneously
teleporting a hole, in a scheme analogous to entanglement
swapping [13], and verifying that the resulting electron-hole
pair is entangled by measuring low-frequency current cor-
relators. Furthermore, our scheme relies on single-electron
sources to provide teleportation on demand. Other telepor-
tation schemes in solid-state systems include teleporation
of electron spins [38–40], transmon qubits [8], nitrogen-
vacancy-center qubits [41], and teleportation from photons to
solid-state quantum memories [20,21]. Finally, we note that
our results are in complete agreement with a simultaneous and
independent work [42].

The rest of the paper is structured as follows: In Sec. II,
the teleportation scheme is introduced and we derive results
for the teleportation efficiency. Section III contains the con-
sidered experimental implementations, where Secs. III A and
III B are devoted to the SAW and leviton implementations,
respectively. We conclude the article in Sec. IV.

II. TELEPORTATION WITH ELECTRONS

Here we present a scheme for performing quantum tele-
portation with dual-rail electron qubits, provided by two
orthonormal spatial modes. The scenario considered in this
section relies on single-electron emission and detection. The
setup is presented in Fig. 1(b) and consists of four parts. The

region denoted state preparation prepares the state that is
going to be teleported from Alice to Bob. The entanglement
generation region is used to generate a state that is entangled
between Alice and Bob. Alice performs a measurement as
a part of the teleportation protocol in the electron detection
region. In the state tomography region, Bob performs state
tomography on the state that he received to determine how
well the protocol worked. The scattering matrix describing the
complete setup is given in Appendix A.

Before turning to teleportation with electrons, we briefly
recapitulate the original scheme for teleportation [1], pre-
sented schematically in Fig. 1(a). Alice receives the state
|ψ〉 that is to be teleported. Additionally, she and Bob are
each in possession of one-half of an entangled state |φ〉,
usually taken as one of the four Bell states. Alice performs
a combined measurement in the Bell basis on |ψ〉 and her
part of the entangled state. After the measurement, Bob’s
part of |φ〉 will be left in the state U |ψ〉, where U is a
unitary transformation determined by the outcome of Alice’s
measurement. Alice then communicates the outcome of her
measurement to Bob, who can use the information to apply the
inverse transformation U † to his postmeasurement state. Bob
is then left with the state |ψ〉 and the protocol is completed.

A. State preparation and entanglement generation

The first step in the protocol is the preparation of the state
that is going to be teleported as well as the shared entangled
state. To this end, three single-electron sources, denoted by
Sψ and Sφ

j , j = 0, 1, emit single electrons, which will travel

toward a first set of beamsplitters, Sψ and Sφ
j . This can be

described by the state

|�〉 = a†
Sψ a†

Sφ
0

a†
Sφ

1

|�〉. (1)
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Here the a†
i are fermionic creation operators that populate

mode i with an electron, and |�〉 denotes the vacuum or the
Fermi sea, see below. The beamsplitters are described by the
scattering matrices

Sψ =
(

i
√

Re−iϕ
√

De−iϕ√
D i

√
R

)
(2)

and

Sφ
j = 1√

2

(
i 1
1 i

)
, (3)

where R is the reflection probability and D the transmission
probability, with R + D = 1, and ϕ is a phase difference.
Using Eqs. (2) and (3), |�〉 can be expressed as

|�〉 = 1
2

(
i
√

Re−iϕa†
A′

0
+

√
Da†

A′
1

)(
ia†

A0
+ a†

B′
0

)
× (

ia†
A1

+ a†
B′

1

)|�〉.
(4)

The A0 and A1 modes represent electrons traveling from the
Sφ

0 and Sφ

1 sources, respectively, to Alice’s detector regions.
A′

0 and A′
1 modes instead represent electrons created at Sψ .

The B′
0 and B′

1 modes correspond to electrons traveling to
Bob. Each mode is illustrated in Fig. 1(b).

It is instructive to consider the state that is to be teleported
and the shared entangled state individually. Tracing over the
A and B′ modes yields

TrAB′ (|�〉〈�|) = |ψA′ 〉〈ψA′ |, (5)

where

|ψA′ 〉 = (
i
√

Re−iϕa†
A′

0
+

√
Da†

A′
1

)|�A′ 〉 (6)

is the dual-rail qubit that we wish to teleport. Here |�A′ 〉
refers to the vacuum state associated with the A′ modes. If
we instead trace over the A′ modes, the result is

TrA′ (|�〉〈�|) = |φAB′ 〉〈φAB′ |, (7)

where

|φAB′ 〉 = 1
2

(
ia†

A0
+ a†

B′
0

)(
ia†

A1
+ a†

B′
1

)|�AB′ 〉, (8)

where |�AB′ 〉 is the vacuum state associated with the A and B′
modes. The above state is entangled between Alice and Bob
and can be used to violate a Bell inequality [24,25]. However,
the parts of |φAB′ 〉 that correspond to Bob having zero or two
electrons cannot be used for teleportation in our setup, where
the particle number is conserved. In those cases, Bob does not
receive a dual-rail qubit. From Eq. (8), we see that this reduces
the success probability for teleportation by 50%.

Since we consider teleportation of dual-rail qubit states,
it is instructive to consider the subspace spanned by these
states (i.e., the subspace where there is exactly one electron
in modes A, A′, and B′, respectively). States projected onto
this subspace will be denoted by |⧽. Since the state to be
teleported already is a dual-rail qubit state, we find |ψA′⧽ =
|ψA′ 〉. Introducing a†

Ak
a†

B′
l
|�〉 = |kA, lB′⧽, we find

|φAB′⧽ = i

2
(|0A, 1B′⧽ − |1A, 0B′⧽) = i√

2
|ψ−

AB′⧽, (9)

where |ψ−
AB′⧽ denotes one of the Bell states {|ψ±

AB′⧽, |φ±
AB′⧽},

see Appendix B for expressions in terms of creation operators.
The total state is therefore projected onto

|�⧽ = i√
2
|ψA′ , ψ−

AB′⧽ = −i

2
√

2
(|ψ−

A′A, ψB′⧽

+ |ψ+
A′A, σzψB′⧽ − |φ+

A′A, σxψB′⧽ + |φ−
A′A, iσyψB′⧽).

(10)

Here |ψ+
A′A, σzψB′⧽ denotes a state where the dual-rail qubits

at A′ and A encode the Bell state |ψ+
A′A⧽ and the qubit at

B′ is described by the state σz|ψB′⧽, with σ j , j = x, y, z,
denoting the Pauli matrices. Expressions in terms of creation
operators are given in Appendix B. The state |�⧽ is (up to
the normalization) equivalent to the premeasurement state
in conventional quantum teleportation schemes [1,36]. We
note that mapping fermionic states onto qubit states can be
problematic [43,44], in particular, when taking partial traces.
Here we perform all calculations using fermionic states, and
merely use the qubit notation (e.g., |0A, 1B′⧽) for illustrative
purposes.

B. Electron detection

Next, Alice performs her measurement. To this end, any
electron traveling to Alice passes through another set of
beamsplitters, SA

0 and SA
1 . These are also described by the

scattering matrix defined in Eq. (3). Then, Alice performs
single-electron detection, determining the number of electrons
in each mode A±

j . The state prior to Alice’s measurement can
be written as

|�〉 = 1

2
|T 〉 +

√
3

2
|R〉, (11)

where we have introduced the normalized and orthogonal
states |T 〉 and |R〉. In terms of creation operators, |T 〉 has the
form

|T 〉 = 1
2

[(
a†

A+
0

a†
A+

1
+ a†

A−
0

a†
A−

1

)(
i
√

Re−iϕa†
B0′ +

√
Da†

B1′
)

− i
(
a†

A+
0

a†
A−

1
− a†

A−
0

a†
A+

1

)(
i
√

Re−iϕa†
B′

0
−

√
Da†

B′
1

)]|�〉,
(12)

and it is the part of |�〉 that is useful for teleportation in the
considered scenario. In terms of the B′

0 and B′
1 modes, the

terms in |T 〉 have a similar structure to |ψ〉. The terms in
|R〉 correspond to cases where Bob cannot receive a coherent
dual-rail qubit state after Alice’s measurement. This may
happen, if Bob receives zero or two electrons, or if Alice
detects both electrons at A0 (A1) such that the remaining
electron necessarily is at B′

1 (B′
0). The form of |R〉 is discussed

further in Appendix A. We note that |T 〉 �= |�⧽ since not all
terms in |�⧽ are useful for teleportation. This is due to a
limitation in the measurement discussed below. We note that
lifting the constraint of particle-number superselection, |R〉
may also be useful for teleportation [42].

The electron detection can be described by a positive-
operator-valued measure (POVM) with elements {E (X )} as-
sociated to the set of measurement outcomes {X }. Bob’s post-
measurement state ρB(X ) can then be found by taking the
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partial trace over the A±
j modes

ρB(X ) = 1

p(X )
TrA± (E (X )ρ), (13)

where ρ = |�〉〈�| and p(X ) = 〈�|E (X )|�〉 is the probabil-
ity that the result of Alice’s measurement is X .

Equation (12) suggests that there are four outcomes of
Alice’s measurement for which Bob’s postmeasurement state
is related to the original input qubit via a unitary transforma-
tion. We will therefore focus on these outcomes, writing X =
(s0, s1), si ∈ {+,−}, for the outcomes where one electron
is detected at As0

0 and one at As1
1 . Appendix C contains the

definition of the full POVM for Alice’s measurement.
Applying Eq. (13) for the considered outcomes yields

ρB(+,+) = ρB(−,−) = |ψ〉〈ψ |,
ρB(+,−) = ρB(−,+) = σz|ψ〉〈ψ |σz,

(14)

where σz = NB′
0
− NB′

1
and Nk = a†

k ak . Each of these out-
comes occurs with a probability of 1/16. This means that
the teleportation scheme is successful 25% of the time, if a
feed-forward mechanism is implemented to apply σz when
Alice measures +− or −+. This unitary can be implemented
by introducing a π phase shift between the B′

0 and B′
1 modes.

Without an active feed-forward, the efficiency drops to 12.5%,
which corresponds to the ++ and −− outcomes of Alice’s
measurement.

The protocol therefore requires Alice to send one of three
messages, which can be communicated using two classical
bits, to Bob. When she measures ++ or −−, Bob should do
nothing to his state; if she measures +− or −+ he should
apply the phase shift. For all other outcomes the protocol
failed. In the absence of the feed-forward, it is sufficient to
send a single classical bit to communicate if teleportation was
successful (outcomes ++ and −−) or not. The feasibility
of implementing the feed-forward in practice will depend on
the specifics of the experimental implementation. Of the two
implementations that will be discussed in Sec. III, the SAW
seems more suited for this because the feed-forward requires
single-electron detection.

To connect to the standard teleportation protocol, we
consider how the electron detection looks in the dual-rail
qubit subspace. In the standard teleportation protocol, Alice
measures her qubits in the Bell basis and sends the result
to Bob. In the dual-rail qubit subspace, the electron detec-
tion corresponds to the measurement basis |ψ−

A′A⧽ (outcomes
++, −−), |ψ+

A′A⧽ (outcomes +−, −+), and 1/
√

2(|φ+
A′A⧽ ±

|φ−
A′A⧽) (two electrons at A0 or A1), see Appendices B and C.

Therefore, Alice’s measurement cannot distinguish between
|φ+

A′A⧽ and |φ−
A′A⧽, and the Bell state measurement is incom-

plete. Consequently, the measurement will only result in a
useful outcome half of the time. This restriction is general for
linear systems [28–30], but can be overcome using additional
entangled degrees of freedom [45,46]. Combined with the
50% chance to find the state in the dual-rail qubit subspace,
we arrive at an overall efficiency of the protocol of 25%
(including feed-forward), in agreement with the discussion
above.

TABLE I. The phase and beamsplitter settings required for the
different state tomography measurements.

Measurement D′ θ

r′
x 1/2 π/2

r′
y 1/2 0

r′
z 1 0

C. State tomography

To verify that teleportation occurred, Bob can perform
quantum-state tomography on his part of the state after Alice
has performed her measurement. The Bloch vector r that
describes |ψ〉 has components r j = 〈ψ |σ j |ψ〉, where σ j de-
notes the j Pauli matrix in the dual-rail qubit space (see
Appendix B for expressions in terms of creation operators).
The Bloch vector of Bob’s post measurement state is given
by r′

j = Tr(σ jρB), where we have here chosen to focus on the
++ outcome, ρB = ρB(+,+). The Bloch vector component
r j can be measured by determining the occupation of the
modes B0, B1 after an additional beamsplitter and phase shift
θ , described by the scattering matrix

SB =
( √

D′e−iθ −i
√

R′

−i
√

R′e−iθ
√

D′

)
, (15)

where D′ and R′ are the transmission and reflection probabil-
ities. A sketch of the tomography setup is shown in Fig. 1(b).
The settings for SB that are needed to perform all three
measurements required for state tomography are provided in
Table I.

It is illustrative to give r′ in terms of the POVM for Alice’s
electron detection,

r′
i = 〈�i|E (+,+)σi|�i〉

p(+,+)

=
〈
NA+

0
NA+

1

(
NB0 − NB1

)〉
i〈

NA+
0

NA+
1

(
I − NA−

0
+ NA−

1

)〉 ,
(16)

where the expectation values are with respect to the full
state of the system (prior to Alice’s measurement) and the
subscript i denotes that SB uses the settings for measuring
the i component of the Bloch vector r′. Equation (16) shows
how state tomography can be performed by measuring occu-
pation numbers. Since the teleportation setup contains only
three electrons, terms that contain more than three number
operators will not contribute and have been dropped in the
final expression.

III. EXPERIMENTAL IMPLEMENTATIONS

The picture presented so far is idealized in the sense
that environmental effects are neglected and that it assumes
that single-electron detection is readily available. We will
now present two possible experimental implementations and
study how the picture changes when environmental effects
are included. The first implementation uses quantum dots to
isolate single electrons and then SAWs to transport them.
Single-electron detection is available for this approach [31].
We will consider environmental effects by including random
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fluctuations in the electric field surrounding the itinerant
electrons. In the second implementation, we consider levitons
in the chiral edge states of the integer quantum Hall effect.
Work toward single-electron detection in chiral edge states
has been performed, but it has not been achieved yet [34,35].
This prevents the implementation of single-shot teleportation.
However, ensemble averages for a given outcome of Alice’s
measurement are available by measuring low-frequency cur-
rent correlators. We consider the influence of finite tempera-
tures in this implementation.

A. Surface acoustic waves

SAWs are sound waves that travel on the surface of a
material. If the material in question is piezoelectric, the SAW
will create a comoving disturbance in the electric potential
that can be used as a moving quantum dot. If a single electron
is trapped in a quantum dot and a SAW train is launched
at the dot, the electron can be transferred from the static to
the moving dot. It is then possible to transfer single electrons
between static quantum dots by connecting them with a SAW
channel [31,47,48]. The electron traveling with the SAW can
be captured in a static dot, where its presence can be detected
[31]. The possibility of performing single-electron detection
is an advantage of the SAW approach. A beamsplitter for
SAW-based single-electron devices has been demonstrated
recently [26] and phase shifters could be implemented us-
ing side-gates. Realizing phase-coherent transport of single
electrons using SAWs is an ongoing research topic [22].
Including decoherence is thus important to describe a real-
istic implementation of the teleportation scheme. To describe
decoherence, we use a phase averaging procedure, where in
each arm of the teleportation setup we introduce a fluctuating
phase representing fluctuating voltages felt by the scattering
electrons [49,50]. Alternative approaches to decoherence are
provided by dephasing and voltage probes [51,52].

As in Sec. II C, we will focus only on the ++ outcome of
Alice’s measurement, since this is sufficient to demonstrate
the teleportation protocol. Since fluctuations in the electric
field alter the energy of the propagating electrons, the phase
accumulated while propagating in the field will also fluctuate.
We therefore model the effect of fluctuating electric fields by
random phases that are introduced for the A0,1, A′

0,1 and B′
0,1

modes, see Fig. 1(b). We assume that the voltages are constant
during each run of the experiment. For a fixed value of the
fluctuating phases, Bob’s postmeasured state reads

ρB(ϕ′) =
(

R i
√

RDe−i(ϕ+ϕ′ )

−i
√

RDei(ϕ+ϕ′ ) D

)
, (17)

where

ϕ′ = ϕA′
0
+ ϕA1 + ϕB0 − (

ϕA′
1
+ ϕA0 + ϕB1

)
. (18)

We now assume that the individual phases ϕ j follow Gaus-
sian distributions with vanishing average and variance σ 2

j .
The total phase ϕ′ will be a Gaussian random variable with
vanishing average, and variance σ 2 = ∑

j σ
2
j . Bob’s post-

measurement state is given by an average over the random

phases:

ρB = 1√
2πσ 2

∫ ∞

−∞
dϕ′e−ϕ′2/2σ 2

ρB(ϕ′)

=
(

R i
√

RDe−iϕ−σ 2/2

−i
√

RDeiϕ−σ 2/2 D

)
. (19)

The effect of the voltage fluctuations on the Bloch vector of
the teleported state is to shrink the x and y components by a
factor e−σ 2/2,

r′ =
⎛
⎝e−σ 2/2rx

e−σ 2/2ry

rz

⎞
⎠, (20)

and therefore corresponds to phase damping [36]. To quantify
the effect on the teleportation protocol, we calculate the tele-
portation fidelity Ftel, which is the fidelity [53] between the
input state and the output state averaged over all input states,
with perfect teleportation resulting in Ftel = 1. The fidelity
between two qubits with Bloch vectors r and r′ is given
by [53]

F = 1
2 {1 + r · r′ + [(1 − ‖r ‖2)(1 − ‖r′ ‖2)]1/2}. (21)

The Bloch vector for the input state, given by the prepared
state in the absence of decoherence, is

r =
⎛
⎝ 2

√
RD sin ϕ

−2
√

RD cos ϕ

R − D

⎞
⎠. (22)

We note that the state that reaches Alice may differ from
the input state, as it has already been subject to fluctuating
phases while propagating toward Alice. Equations (20)–(22)
then give the fidelity for each input state as

F = 1 + 4e−σ 2/2RD + (R − D)2

2
. (23)

Using D = 1 − R and averaging the input state over the Bloch
sphere results in a teleportation fidelity of

Ftel = 2 + e−σ 2/2

3
. (24)

If we consider a classical teleportation scheme where Alice
measures the occupation of the A′ modes and sends the result
to Bob for him to prepare as the output state, the fidelity
will be 2/3. This value is the maximum value that can be
achieved using classical strategies [54]. Therefore, a fidelity
above 2/3 implies that quantum resources are utilized [15].
Equation (24) shows that for σ → 0, we recover the idealized
picture Ftel → 1, while Ftel approaches the classical limit as
σ → ∞. In this limit, we lose any information about ϕ, just
like in the classical scheme.

B. Levitons and chiral edge states

Here we discuss a second experimental implementation,
based on levitons traveling in chiral edge states. Such edge
states do not host single modes, as considered above, but
rather a continuum of modes that can be labeled by their
energy. At zero temperature, all modes with energy below the
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FIG. 2. Illustration of the experimental setup using levitons in
chiral edge states, using a Corbino disk geometry. Electrons are
generated at the sources (red) and travel along the edges of the disk,
with the possible trajectories indicated by lines. The QPCs (blue)
act as beamsplitters and facilitate scattering between the two edges.
Phase differences ϕ and θ are introduced along two of the paths and
their sum, which is what the observables of interest depend on, can
be tuned by a magnetic flux �. Current measurements are performed
at six different detectors (purple). We note that the same physical
contacts may serve as the grounded contacts (green) and the detectors
(purple).

chemical potential are occupied and represent the Fermi sea.
Levitons are single-electron excitations above the Fermi sea
generated by applying Lorentzian voltage pulses to metallic
contacts [32,33]. Since transport occurs in a restricted range
of energies around the chemical potential, we can assume
all electrons to travel at the same velocity and the scatter-
ing induced by the beam-splitters to be energy independent
[55]. The considered setup, which relies on a Corbino disk
geometry, is sketched in Fig. 2. Since single-electron detection
is challenging for this type of setup, we provide a way to
perform the state tomography measurements by measuring
direct currents and zero frequency cross-correlators up to (and
including) order three. This is enabled by a correspondence
between these correlators and the observables in the idealized
picture, allowing us to determine average values of these ob-
servables without access to single-shot detection. To generate
the currents, the teleportation experiment will be repeated
by periodically injecting levitons at each of the sources. The
relevant quantities can be calculated using Floquet scattering
theory [56]. Quantum point contacts (QPCs) act as beamsplit-
ters and a magnetic flux � can be used to tune the sum ϕ + θ ,
replacing the phase shifters required for the preparation and
tomography steps. The geometry in Fig. 2 is analogous to
the one for the N-particle Aharonov-Bohm effect with N = 3
[57,58], where the N th order zero frequency cross correlators
oscillate as a function of � because the combined paths of N
electrons enclose the flux.

1. Periodic driving

Since we are interested in periodically generating levitons,
the voltage applied to the source contacts is described by
a train of Lorentizan pulses of width � separated by the
period T

eV(t ) =
∞∑

j=−∞

2h̄�

(t − jT )2 + �2
. (25)

The electrons in the contact will pick up a time-dependent
phase φ(t ) = − 1

h̄

∫ t
−∞ dt ′eV(t ′). This can be interpreted as the

electrons exchanging energy quanta h̄� with the voltage drive,
where � = 2π/T . The probability amplitude for exchanging
n quanta is given by the Fourier coefficients of the phase
factor [56]

S(n) = 1

T

∫ T

0
dtein�t eiφ(t ). (26)

The resulting amplitudes for Lorentzian pulses are

S(n) =
⎧⎨
⎩

−2e−n�� sinh(��) n > 0
e−�� n = 0
0 n < 0.

(27)

The excitations that are created by the voltage pulses are
single-particle excitations called levitons. At zero temper-
ature, they can be described by the following annihilation
operator [33]:

Aα =
√

2�
∑
E>μ

e(itα−�)E/h̄aα (E ), (28)

where tα is the time at which the leviton is created and μ

denotes the chemical potential of the contact.
The Floquet scattering matrix connects incoming states

with energy E in lead β to outgoing states in lead α with
energy En = E + nh̄� [56]. For our system, it is given by

SF (En, E )αβ = SαβSβ (n), (29)

where Sβ (n) = S(n) if β is a source contact and Sβ (n) = δn,0

for the grounded contacts. The scattering matrix Sαβ describes
the setup presented in Sec. II, see Eq. (A1).

2. Observables and zero temperature results

To demonstrate that teleportation can be achieved in this
architecture, we express the desired observables in terms of
the zero frequency correlators

Iα = 1

T

∫ T

0
dt〈Îα (t )〉,

Pαβ = 1

T

∫ T

0
dt

∫ ∞

−∞
dτ 〈�Îα (t )�Îβ (t + τ )〉,

Qαβγ = 1

T

∫ T

0
dt

∫ ∞

−∞
dτβ

∫ ∞

−∞
dτγ 〈�Îα (t )

×�Îβ (t + τβ )�Îγ (t + τγ )〉, (30)

where Îα (t ) is the current operator in lead α and �Îα (t ) =
Îα (t ) − 〈Îα (t )〉. The averages are calculated by assuming that
the electrons in each of the contacts are distributed according

195403-6



QUANTUM TELEPORTATION OF SINGLE-ELECTRON … PHYSICAL REVIEW B 101, 195403 (2020)

to the Fermi distribution:

fα (E ) = 1

eE/kBT + 1
. (31)

We assume that all the contacts are kept at the same temper-
ature T and at vanishing chemical potential. In this section,
we will treat the case T = 0, while the picture at finite
temperature is presented in the following section.

The number of excess electrons in lead α within one period
is given by

Nα = 1

e

∫ T

0
dt Îα (t ). (32)

Under the assumption that only electrons within the same
period are correlated, the higher moments of this operator
are determined by the zero frequency current correlators.
The explicit form of the correspondence is, defining �Nα =
Nα − 〈Nα〉,

〈Nα〉 = T
e

Iα,

〈�Nα�Nβ〉 = T
e2
Pαβ,

〈�Nα�Nβ�Nγ 〉 = T
e3
Qαβγ , (33)

which is shown in Appendix D. These expressions are ex-
pected to be valid if the voltage pulses are well separated so
that consecutive wave packets have small overlap. Note that
connecting state tomography observables to measurements of
current correlators has been suggested previously, see, e.g.,
Refs. [59,60].

To make the correspondence between the Floquet correla-
tors and tomography observables concrete, we write out Bob’s
Bloch vector in terms of current correlators using Eqs. (16)
and (33),

r′
i = J

K
, (34)

where we have defined

J = T
e3

(
QA+

0 A+
1 B0

− QA+
0 A+

1 B1

) + T 2

e3

[
PA+

0 A+
1

(
IB0 − IB1

) + IA+
1

(
PA+

0 B0
− PA+

0 B1

) + IA+
0

(
PA+

1 B0
− PA+

1 B1

)]

+ T 3

e3
IA+

0
IA+

1

(
IB0 − IB1

)
,

K = T 2

e2
IA+

0
IA+

1

(
1 − T

e

(
IA−

0
+ IA−

1

)) − T 2

e3

[
IA+

0

(
PA−

0 A+
1

+ PA+
1 A−

1

) + IA+
1

(
PA+

0 A−
0

+ PA+
0 A−

1

)]

− T
e3

(
QA+

0 A+
1 A−

0
+ QA+

0 A+
1 A−

1

)
. (35)

The zero temperature expressions for the correlators in-
volved in Eqs. (35), for each of the three settings of the
tomography setup, can be found in Table II and we recover

r′ = r. Note that K gives the value of p(+,+), equal to 1/16
at zero temperature. This demonstrates that teleportation with
levitons is achieved at zero temperature.

TABLE II. Expressions for the currents and correlators that are needed to demonstrate teleportation in the leviton architecture. The
expressions are given for the three different tomography measurements required to determine Bob’s state. The last column gives the temperature
dependence for each quantity.

Quantity D′ = 1/2, θ = π/2 D′ = 1/2, θ = 0 D′ = 1, θ = 0 T dep.

IA+
0

, IA−
0

e
T

(
1
4 + R

2

)
e
T

(
1
4 + R

2

)
e
T

(
1
4 + R

2

)
1

IA+
1

, IA−
1

e
T

(
1
4 + D

2

)
e
T

(
1
4 + D

2

)
e
T

(
1
4 + D

2

)
1

IB0 , IB1
e

2T
e

2T
e

2T 1

PA±
0 A±

1
− e2RD

4T − e2RD
4T − e2RD

4T F (T )

PA+
0 B0

, PA+
1 B1

− e2

16T − e2

16T − e2

8T F (T )

PA+
0 A−

0
, PA+

1 A−
1

− e2

T
(

1
16 − RD

4

) − e2

T
(

1
16 − RD

4

) − e2

T
(

1
16 − RD

4

)
F (T )

PA+
0 B1

, PA+
1 B0

− e2

16T − e2

16T 0 F (T )

QA+
0 A+

1 B0

e3

T

√
RD sin ϕ

16 − e3

T

√
RD cos ϕ

16 0 A(T )

QA+
0 A+

1 B1
− e3

T

√
RD sin ϕ

16
e3

T

√
RD cos ϕ

16 0 A(T )

QA+
0 A−

0 A+
1

e3

T
RD(R−D)

8
e3

T
RD(R−D)

8
e3

T
RD(R−D)

8 A(T )

QA+
0 A+

1 A−
1

e3

T
RD(D−R)

8
e3

T
RD(D−R)

8
e3

T
RD(D−R)

8 A(T )
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3. Finite temperature results

At finite temperatures, thermal excitations complicate the
simple picture of teleportation that has been presented so far.
These additional excitations imply that we no longer have a
qubit system but a more complicated many-body state. The
POVM that was defined for Alice’s electron detection is no
longer appropriate to describe the situation, since it assumes
that there are no more than three electrons present. Further-
more, since each edge state hosts a continuum of modes, Ni

can no longer be treated as an operator with eigenvalues 0 and
1. Nevertheless, the definition in Eq. (34) can be extended to
finite temperatures. At low temperatures, where the number of
additional excitations is small, we find the situation to be well
described by noisy teleportation.

For finite temperatures, the current is unaffected, while
the second- and third-order correlators each pick up a
temperature-dependent factor

Pαβ (T ) = F (T )Pαβ (0),
(36)

Qαβγ (T ) = A(T )Qαβγ (0),

where

F (T ) =
∞∑

n=1

n

(
coth

nh̄�

2kBT
− 2

kBT

nh̄�

)
|S(n)|2,

A(T ) =
∞∑

n=1

n

(
coth2 nh̄�

2kBT
+ 1

2
csch2 nh̄�

2kBT

− 3
kBT

nh̄�
coth

nh̄�

2kBT

)
|S(n)|2, (37)

with S(n) given in Eq. (27). Using the above expressions to
calculate the right-hand side of Eq. (34) at finite temperatures
results in

r′ =
⎛
⎝q(T )rx

q(T )ry

rz

⎞
⎠, q(T ) = A(T )

F (T )
. (38)

As q(T ) � 1, this is equivalent to teleportation affected by
phase damping, just as in the SAW architecture when voltage
fluctuations are included. For the input state r, we again con-
sider the state that is prepared in the absence of environmental
effects, i.e., at zero temperature. At finite temperatures, the
prepared state is a mixed state, which can be interpreted as
a state preparation that may fail, reducing the teleportation
fidelity. The teleportation fidelity for levitons is then given by

Ftel = 2 + q(T )

3
. (39)

Figure 3 shows Ftel as a function of temperature for different
leviton widths. As the temperature is increased, the fidelity
decreases and approaches the classical limit. This happens
faster for broad levitons because a narrow leviton has a wider
energy spectrum than a broad leviton. It will thus stand out
more against the thermal excitations, which are relevant on a
scale of kBT around the Fermi energy.

FIG. 3. Teleportation fidelity for the ++ outcome as a function
of temperature for different leviton widths. The horizontal line
denotes the classical limit of Ftel = 2/3.

IV. CONCLUSIONS

We have theoretically demonstrated a scheme for quantum
teleportation of flying single-electron qubits. The efficiency
of the scheme was studied in an idealized scenario, where we
considered quantum state tomography of Bob’s postmeasure-
ment state. The scheme is successful 25% or 12.5% of the
time, depending on the presence or absence of a feed-forward
scheme. We considered two experimental implementations
based on SAWs and levitons in chiral edge states respec-
tively. Single-electron detection is available for the SAW
architecture, while it is currently not available for levitons.
For the SAW approach, we studied the effect of decoherence
due to voltage fluctuations. For the leviton approach, we
showed how state tomography can be performed using low-
frequency current correlators and we considered the effect of
finite temperatures. In both implementations, the effect of the
environment is captured well by phase damping. As charge
couples to the environment through the Coulomb interaction,
environmental effects may be comparably large when per-
forming teleportation with electrons. However, voltage gates
can be used to influence the Coulomb interaction, providing
an avenue for mitigating environmental effects [61].

Promising future avenues include the implementation of
other protocols from quantum information using single-
electron states, as well as an investigation of more efficient
teleportation protocols by relaxing the particle number supers-
election [42], which could be achieved using superconductors.
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APPENDIX A: FULL SCATTERING MATRIX

The total scattering matrix for the idealized teleportation setup, including the state tomography part of the setup, reads

⎛
⎜⎜⎜⎜⎜⎜⎝

aA+
0

aA−
0

aA+
1

aA−
1

aB0

aB1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1√
2

i√
2

0 0 i
√

Re−iϕ
√

De−iϕ

i√
2

1√
2

0 0 −√
Re−iϕ i

√
De−iϕ

0 0 −1√
2

i√
2

√
D i

√
R

0 0 i√
2

1√
2

i
√

D −√
R√

D′e−iθ i
√

D′e−iθ −i
√

R′ √
R′ 0 0

−i
√

R′e−iθ
√

R′e−iθ
√

D′ i
√

D′ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

aSφ
0

aGφ
0

aSφ
1

aGφ
1

aSψ

aGψ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A1)

APPENDIX B: STATES AND OPERATORS IN SECOND QUANTIZATION

The Bell states {|ψ±
AB′⧽, |φ±

AB′⧽} can be written in terms of creation operators as

|ψ+
AB′⧽ = 1√

2

(
a†

A0
a†

B′
1
+ a†

A1
a†

B′
0

)|�〉, |ψ−
AB′⧽ = 1√

2

(
a†

A0
a†

B′
1
− a†

A1
a†

B′
0

)|�〉,
|φ+

AB′⧽ = 1√
2

(
a†

A0
a†

B′
0
+ a†

A1
a†

B′
1

)|�〉, |φ−
AB′⧽ = 1√

2

(
a†

A0
a†

B′
0
− a†

A1
a†

B′
1

)|�〉.
(B1)

Next we give the second quantization representation of the states appearing in Eq. (10)

|ψ−
A′A, ψB′⧽ = 1√

2

(
a†

A′
0
a†

A1
− a†

A′
1
a†

A0

)(
i
√

Re−iϕa†
B′

0
+

√
Da†

B′
1

)|�〉,
|ψ+

A′A, σzψB′⧽ = 1√
2

(
a†

A′
0
a†

A1
+ a†

A′
1
a†

A0

)(
i
√

Re−iϕa†
B′

0
−

√
Da†

B′
1

)|�〉,
|φ+

A′A, σxψB′⧽ = 1√
2

(
a†

A′
0
a†

A0
+ a†

A′
1
a†

A1

)(√
Da†

B′
0
+ i

√
Re−iϕa†

B′
1

)|�〉,
|φ−

A′A, iσyψB′⧽ = 1√
2

(
a†

A′
0
a†

A0
− a†

A′
1
a†

A1

)(√
Da†

B′
0
− i

√
Re−iϕa†

B′
1

)|�〉.

(B2)

The explicit form of the |R〉 state introduced in Eq. (11) reads

|R〉 = 1√
3

{
− i

√
Re−iϕ

√
2

(
ia†

A+
0
a†

A−
0

a†
A+

1
+ a†

A+
0

a†
A−

0
a†

A−
1

) +
√

D√
2

(
ia†

A+
0
a†

A+
1

a†
A−

1
+ a†

A−
0

a†
A+

1
a†

A−
1

)

+ 1√
2

[
i
√

Re−iϕ
(
a†

A+
0

+ ia†
A−

0

) +
√

D
(
a†

A+
1

+ ia†
A−

1

)]
a†

B′
0
a†

B′
1
−

√
Re−iϕa†

A+
0

a†
A−

0
a†

B′
1
− i

√
Da†

A+
1

a†
A−

1
a†

B′
0

}
|�〉. (B3)

As mentioned in Sec. II B, this part of |�〉 is not useful for teleportation purposes with our setup. The terms in |R〉 do not
generate measurement outcomes where Bob is left with a dual-rail qubit when Alice has performed her measurement. Some
terms correspond to having all particles at Alice’s location, which defeats the purpose of trying to send a qubit state to Bob.
Others have two particles at the same A j , which means that Bob cannot have a superposition of his two modes. In the remaining
cases, Bob ends up with two of the particles, which means that both of Bob’s modes will be occupied, and he can therefore not
have a dual-rail qubit.

The Pauli matrices in the dual-rail qubit space in terms of B′ modes read

σx = a†
B′

1
aB′

0
+ a†

B′
0
aB′

1
,

σy = i
(
a†

B′
1
aB′

0
− a†

B′
0
aB′

1

)
,

σz = a†
B′

0
aB′

0
− a†

B′
1
aB′

1
.

(B4)

APPENDIX C: THE POVM

A general POVM element describing the detection of the
particle number of each mode at A is given by

E
(

jA+
0
, jA−

0
, jA+

1
, jA−

1

) =
∏

i

N ji
i (I − Ni )

(1− ji ), (C1)

where ji ∈ {0, 1} is the number of electrons detected in mode
i, with i ∈ {A+

0 , A−
0 , A+

1 , A−
1 }. Ni = a†

i ai is the particle num-
ber operator for mode i. The factor N ji

i (I − Ni )(1− ji ) in the

POVM will project states onto the subspace with ji particles
in mode i. For the POVM elements used in the main text, we
have E (+,+) = E (1, 0, 1, 0) etc. That the operators defined
by Eq. (C1) are positive follows from the fact that they are
products of operators with eigenvalues 0 and 1. A straightfor-
ward calculation shows that∑

X

E (X ) = I, (C2)

with X ∈ {( jA+
0
, jA−

0
, jA+

1
, jA−

1
)| ji ∈ {0, 1}}.
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We can write the POVM elements in the dual-rail qubit
space by using the projection operator

Pdrq =
∑

j

| j⧽⧼ j| (C3)

where the | j⧽ states are the Bell-states from Eq. (B1). Defining
Edrq(X ) as

Edrq(X ) = PdrqE (X )Pdrq, (C4)

we find that the projections of the POVM elements corre-
sponding to finding two electrons at A are

Edrq(1, 0, 1, 0) = Edrq(0, 1, 0, 1) = 1
2 |ψ−

A′A⧽⧼ψ
−
A′A|,

Edrq(1, 0, 0, 1) = Edrq(0, 1, 1, 0) = 1
2 |ψ+

A′A⧽⧼ψ
+
A′A|,

Edrq(1, 1, 0, 0) = 1
2 (|φ+

A′A⧽ + |φ−
A′A⧽)(⧼φ+

A′A| + ⧼φ−
A′A|),

Edrq(0, 0, 1, 1) = 1
2 (|φ+

A′A⧽ − |φ−
A′A⧽)(⧼φ+

A′A| − ⧼φ−
A′A|).

(C5)

APPENDIX D: CURRENT AND NUMBER OPERATORS

Here we prove the relations given in Eqs. (33). From the
definitions in Eqs. (30) and (32), the expectation value for Nα

is seen to be

〈Nα〉 = T
e

Iα. (D1)

With �Nα = Nα − 〈Nα〉, we find

〈�Nα�Nβ〉 = 1

e2

∫ T

0
dt

∫ T

0
dt ′〈�Îα (t )�Îβ (t ′)〉. (D2)

We now assume that �Îα (t ) and �Îβ (t ′) are uncorrelated
when t and t ′ lie in different periods, i.e., 〈�Îα (t )�Îβ (t ′)〉 = 0
for �t/T � �= �t ′/T �, where �x� is the floor function. This
assumption is expected to be valid if the Lorentzian voltage
pulses have small widths, such that subsequent pulses do not
overlap significantly. We can then extend the integral over t ′
to range from −∞ to ∞. A change of variables, t ′ = t + τ ,
results in

〈�Nα�Nβ〉 = T
e2
Pαβ. (D3)

For 〈�Nα�Nβ�Nγ 〉, we get

〈�Nα�Nβ�Nγ 〉 = 1

e3

∫ T

0
dt

∫ T

0
dτβ

∫ T

0
dτγ 〈�Îα (t )

× �Îβ (τβ )�Îγ (τγ )〉.
(D4)

Under the assumption that 〈�Îα (t )�Îβ (t ′)�Îγ (t ′′)〉 vanishes
unless t , t ′ and t ′′ all lie in the same period, we can again
extend the integrals and change the integration variables to
show

〈�Nα�Nβ�Nγ 〉 = T
e3
Qαβγ . (D5)
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