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Tunable exciton condensates exhibit anomalous Hall transport owing to mutual Coulomb coupling and have
been widely studied in two-dimensional electron gas systems under a strong magnetic field. Here, we explore
another framework using topological flat band models in the absence of Landau levels for realizing the many-
body exciton phases of two-component fermions under strong intercomponent interactions. By developing a new
diagnosis based on the state-of-the-art density-matrix renormalization group and exact diagonalization, we show
the theoretical discovery of the emergence of the Halperin (111) quantum Hall effect at a total filling factor
ν = 1 in the lowest Chern band under strong Hubbard repulsion, which is classified by the unique ground state
with bulk charge insulation and spin superfluidity, The topological nature is further characterized by one edge
branch of chiral propagating Luttinger modes with level counting 1, 1, 2, 3, 5, 7, consistent with the conformal
field theory description. Moreover, with nearest-neighbor repulsions, we propose the Halperin (333) fractional
quantum Hall effect at a total filling factor ν = 1/3 in the lowest Chern band.
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I. INTRODUCTION

As extensions of the Laughlin wave function, Halperin
proposed the two-component quantum Hall effect, which
is described by (mmn) wave functions [1] or, equivalently,
captured by the K = (m n

n m) matrix within the framework
of the field theory [2–6]. Two-component quantum Hall ef-
fects, where the phrase “two-component” represents a generic
label for a spin or pseudospin (bilayer, double well, etc.)
quantum number, can exhibit tremendously richer physics
than single-component systems, attributable to intercompo-
nent interaction in two-component systems. Experimentally,
two-component integer and fractional quantum Hall states
at ν = 1 and ν = 1/2 in the lowest Landau level have been
confirmed [7,8], consistent with several theoretical proposals
of Halperin’s (111) exciton superfluid [9–11] and (331) frac-
tional quantum Hall state [12–15].

To gain a better understanding of the internal structure of
multicomponent quantum Hall states, it is highly desirable to
investigate the diagonal and off-diagonal elements of the K
matrix, which describe intracomponent and intercomponent
Chern-Simons gauge-field couplings, respectively, and can
be derived from the inverse of the Chern number matrix
for gapped quantum Hall states [16–19]. Distinguished from
the usual (mmn) states with m �= n, a peculiar property of
Halperin (mmm) quantum Hall states is that they host inter-
component tunneling and counterflow transport anomalies in
Hall resistance measurements [20], due to the superfluidity
of exciton condensates in which particles in one component
are coupled to holes in the other component. Such coherent
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exciton transport, which serves as a hallmark signature of
the Halperin (111) quantum Hall effect, has inspired a series
of motivating quantum Hall drag measurements in different
setups [21–27]. The intercomponent Coulomb drag transport
in most recent experiments also serves as a primary proof in
searching for new types of correlated many-body topological
states in two parallel graphene layers [28,29].

Recently the development of topological flat band mod-
els has fostered an exciting new platform for studying the
quantum Hall effect without the conventional Landau level
[30–35]. (See the recent reviews in Refs. [36] and [37]
for extended discussion.) On the experimental side, realiza-
tion of a topological Haldane-honeycomb band provides a
highly tunable system to explore intercomponent correlated
states of two-component quantum fermionic 40K gases with
strong Hubbard repulsion [38], and two-component corre-
lated charge pumping can be implemented using spin- and
density-resolved microscopy [39]. Moreover, various types
of topological bands have been proposed in multilayer het-
erostructures, such as moiré flat bands in twisted multilayer
graphene [40–43] with tunable correlated ferromagnetism
observed [44], and some fractionalized interacting phases
in such topological bands, dubbed “fractional Chern insula-
tors,” have been experimentally observed [45]. These related
experimental advances, enabling the control and study of
multilayered systems, could open up new relevant prospects
across a broader class of two-component Halperin (mmm)
quantum Hall effects for interacting fermions in topological
lattice models, where compelling theoretical evidence of them
is still lacking and demanding; this is the focus of our work.

In this work, we theoretically propose two-component
Halperin (mmm) quantum Hall effects emerging in topo-
logical flat bands through state-of-the-art density-matrix
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renormalization-group (DMRG) and exact diagonalization
(ED) simulations with strong interactions and elucidate the
interaction controlling the topological exciton condensates of
two-component systems. We have studied the characteristic
topological degeneracy, excitation gap, topologically invari-
ant Chern number, charge pumping, off-diagonal long-range
order, and entanglement spectrum of the ground states, which
depict the topological information from the K matrix.

This paper is organized as follows. In Sec. II, we give
a description of the model Hamiltonian of interacting two-
component fermions in different topological lattice models,
such as π -flux checkerboard and Haldane-honeycomb lat-
tices. In Sec. III, we study the many-body ground states
of these two-component fermions in the strongly interacting
regime, presenting detailed numerical results of the Halperin
(111) state at filling ν = 1 in Sec. III A and further discussing
the topological signatures of the Halperin (333) state under
nearest-neighbor repulsion at filling ν = 1/3 in Sec. III B.
Finally, in Sec. IV, we summarize our results and discuss
future directions for the investigation of topological exciton
condensates in two-component systems.

II. MODEL AND METHOD

Here, we start from the following Hamiltonian of interact-
ing spinful fermions in two typical topological lattice models,
the π -flux checkerboard (CB) lattice,

HCB =
∑

σ

⎡
⎣−t

∑
〈r,r′〉

eiφr′r c†
r′,σ cr,σ −

∑
〈〈r,r′〉〉

t ′
r,r′c†

r′,σ cr,σ

−t ′′ ∑
〈〈〈r,r′〉〉〉

c†
r′,σ cr,σ + H.c.

⎤
⎦ + Vint, (1)

and the Haldane-honeycomb (HC) lattice,

HHC =
∑

σ

⎡
⎣−t

∑
〈r,r′〉

c†
r′,σ cr,σ − t ′ ∑

〈〈r,r′〉〉
eiφr′r c†

r′,σ cr,σ

−t ′′ ∑
〈〈〈r,r′〉〉〉

c†
r′,σ cr,σ + H.c.

⎤
⎦ + Vint, (2)

where c†
r,σ is the particle creation operator of spin σ =↑

,↓ at site r, and 〈. . .〉, 〈〈. . .〉〉, and 〈〈〈. . .〉〉〉 denote
the nearest-neighbor, next-nearest-neighbor, and next-next-
nearest-neighbor pairs of sites, respectively. The flat band
limit is taken with the tunnel couplings t ′ = 0.3t, t ′′ =
−0.2t, φ = π/4 for the checkerboard lattice [46] and t ′ =
0.6t, t ′′ = −0.58t, φ = 2π/5 for the honeycomb lattice
[34]. We take the on-site and nearest-neighbor interactions
with SU(2) symmetry,

Vint = U
∑

r

nr,↑nr,↓ + V
∑
σ,σ ′

∑
〈r,r′〉

nr′,σ ′nr,σ , (3)

where nr,σ is the particle number operator of spin σ at site r.
Here, U is the strength of the on-site interaction, while V is
the strength of the nearest-neighbor interaction.

FIG. 1. Numerical ED results for the low-energy spectrum of
two-component fermionic systems ν = 1 with U(1) × U(1) symme-
try in different topological lattices at U � t , V = 0 for (a) a π -flux
checkerboard lattice and (b) a Haldane-honeycomb lattice.

We perform ED calculations on the many-body ground
state of the model Hamiltonian, Eqs. (1) and (2), in a finite
system of Nx × Ny unit cells (the total number of sites is Ns =
2 × Nx × Ny), up to Ns = 20. The total filling of the lowest
Chern band is ν = ν↑ + ν↓ = 2(N↑ + N↓)/Ns, where N↑ and
N↓ are the particle numbers with U(1) × U(1) symmetry.
With translational symmetry, the energy states are labeled by
the total momentum K = (Kx, Ky) in units of (2π/Nx, 2π/Ny )
in the Brillouin zone. For larger systems, we exploit both the
finite and the infinite DMRG on the cylindrical geometry.
We keep the maximal bond dimension up to M = 8000 in
the infinite DMRG, which leads to excellent convergence
for the results we report here. In the infinite DMRG, the
geometry of cylinders is open boundary conditions in the x
direction and periodic boundary conditions in the y direction.
Our comprehensive DMRG and ED studies can access large
system sizes to establish the emergence of quantum Hall states
at filling factors ν = 1/m for two-component fermions (odd
m = 1, 3).

III. MANY-BODY GROUND STATES

In this section, we first systematically present results for
the topological properties of many-body ground states at
ν = 1, U � t, V = 0, where an easy-plane ferromagnetic
Halperin (111) state is most favored. Following this, we
describe numerical studies of the Halperin (333) state at ν =
1/3, U,V � t .

A. Halperin (111) state

For a Halperin quantum Hall state characterized by the
K = (1 1

1 1) matrix, the charge channel remains insulating,
and the system displays the quantized Hall effect, similar to
the usual ν = 1 integer quantum Hall effect. However, the
spin channel condenses and the system becomes a gapless
superfluid [47]. First, we demonstrate the unique ground-state
degeneracy on a periodic lattice under strong on-site Hubbard
repulsion U � t, V = 0. In Figs. 1(a) and 1(b), for different
topological systems in a strongly interacting regime, we find
that there exists a well-defined single ground state separated
from higher energy levels by a robust gap. In spin notation,
a variational ansatz describing the particle-hole pairs of the
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FIG. 2. Numerical results for the charge-hole gap �q and spin
excitation gap �s of two-component fermionic systems ν = 1 at
U � t , V = 0 for (a) a π -flux checkerboard lattice and (b) a
Haldane-honeycomb lattice. Results are obtained using ED for Ns =
16 and 20, and results are obtained using the DMRG for Ns = 24, 32,
and 40.

Halperin (111) state can be written as

|ψ〉 =
∏

k

1√
2

(χ†
k,↑ + eiϕχ

†
k,↓)|0〉, (4)

where χ
†
k,σ creates a Bloch fermion of spin σ and momentum

k in the lowest Chern band and ϕ is the phase for particle-
hole pairs, which can take a certain value without any en-
ergy cost. For strong Hubbard repulsion U � t , each of the
single-particle orbitals in the lowest Chern band is occupied
with only one particle at ν = 1 and the total momentum
K = (

∑N
i=1 ki

x,
∑N

i=1 ki
y) of the ground state can be easily

determined, consistent with the ED results in Figs. 1(a) and
1(b). Meanwhile, we calculate the charge-hole gap in the
charge channel, �q = (E0(N↑ + 1, N↓) + E0(N↑ − 1, N↓) −
2E0(N↑, N↓))/2, and the magnon spin gap in the spin channel,
�s = E0(N↑ + 1, N↓ − 1) − E0(N↑, N↓), for different system
sizes. As shown in Figs. 2(a) and 2(b), the finite-size scaling
of �q remains a large finite value for different system sizes,
which serves as a primary signature of an incompressible
charge Hall phase, while the finite-size scaling of �s goes to
a vanishing small value in the thermodynamic limit, signaling
a compressible spin superfluid.

Next we extract the Chern number matrix C = (C↑↑ C↑↓
C↓↑ C↓↓)

for a two-component system, related to the Hall conductance
[48–50]. With twisted boundary conditions ψ (rσ + Nα ) =
ψ (rσ ) exp(iθα

σ ), where θα
σ is the twisted angle for spin-σ

particles in the α direction, the Chern number of the many-
body ground-state wave function ψ is defined in the parameter
plane (θ x

σ , θ
y
σ ′ ) as

Cσ,σ ′ =
∫ ∫

dθ x
σ dθ

y
σ ′

2π
F xy

(
θ x
σ , θ

y
σ ′

)
,

where F xy = Im(〈 ∂ψ

∂θ x
σ
| ∂ψ

∂θ
y
σ ′

〉 − 〈 ∂ψ

∂θ
y
σ ′

| ∂ψ

∂θ x
σ
〉) is the Berry curva-

ture and the off-diagonal part C↑↓ is related to the drag Hall
conductance between spin ↑ and spin ↓. With θ x

↑ = θ x
↓ = θ x

and θ
y
↑ = θ

y
↓ = θ y, the charge Chern number, related to the

charge Hall conductance, reads Cq = ∑
σ,σ ′ Cσ,σ ′ = ν. Simi-

larly, with θ x
↑ = −θ x

↓ = θ x and θ
y
↑ = −θ

y
↓ = θ y, we can also

define the spin Chern number of the many-body ground-state

0

0.5

1

0

0.5

1
0

0.005

0.01

0.015

0.02

θx
↑
=θx

↓
=θx/2πθy

↑
=θy

↓
=θy/2π

F qxy
Δθ

x Δ
θy /2

π

(a) Ns=20,K=(π,0),Cq=1 quantized

0

0.5

1

0

0.5

1
−0.5

0

0.5

θx
↑
=−θx

↓
=θx/2πθy

↑
=−θy

↓
=θy/2π

F sxy
Δθ

x Δ
θy /2

π

(b) Ns=20,K=(π,0),Cs
nonquantized

FIG. 3. Numerical ED results for Berry curvatures
F xy�θ x

σ �θ
y
σ ′/2π of the K = (π, 0) ground state of the

two-component fermionic systems N↑ = N↓ = 5 and
Ns = 2 × 2 × N↑ at U � t, V = 0 on a checkerboard lattice
in the parameter plane: (a) (θ x

↑ = θ x
↓ = θ x, θ

y
↑ = θ

y
↓ = θ y ) and

(b) (θ x
↑ = −θ x

↓ = θ x, θ
y
↑ = −θ

y
↓ = θ y ).

wave function, related to the spin Hall conductance, as Cs =
C↑,↑ + C↓,↓ − C↑,↓ − C↓,↑.

For the single ground state of two-component fermions,
by numerically calculating the Berry curvatures using m ×
m mesh squares in the boundary phase space with m � 10
we obtain the quantized topological invariant Cq = 1 with a
well-defined smooth Berry curvature and the nonquantized
topological invariant Cs with a strongly fluctuating Berry
curvature, as indicated in Figs. 3(a) and 3(b), respectively,
consistent with the gapped charge insulation and gapless spin
superfluidity of the bulk.

For larger system sizes, we further calculate the charge
pumping under the insertion of a flux quantum on infinite
cylinder systems in connection with the quantized Hall con-
ductance using the DMRG [51]. For the Halperin (111) state,
it is expected that a quantized charge will be pumped from
the right side to the left side by inserting a charge flux θ

y
↑ =

θ
y
↓ = θ from θ = 0 to θ = 2π . The net transfer of the total

charge from the right side to the left side of the cylinder is
encoded by Q(θ ) = NL

↑ + NL
↓ = tr[̂ρL(θ )Q̂] (̂ρL is the reduced

density matrix of the left part). In order to quantify the spin
Hall conductance, we also define the spin transfer �S by
S(θ ) = 0.5 × (NL

↑ − NL
↓ ) = tr[̂ρL(θ )̂S], in analogy with the

charge transfer. As shown in Fig. 4(a), a unit charge �Q =
Q(2π ) − Q(0) 
 Cq = 1 is pumped without spin pumping,
�S = 0, upon the threading of one flux quantum θ

y
↑ = θ

y
↓ = θ

for two-component fermions, verifying the robustness of the
quantized charge Hall effect at ν = 1.

Moreover, we calculate the off-diagonal long-range or-
der 〈c†

0,↑c0,↓c†
r,↓cr,↑〉, describing an exciton condensate as a

fermion of spin ↑ bound to a hole of spin ↓, forming an
exciton pair. The nonvanishing finite value of 〈c†

0,↑c0,↓c†
r,↓cr,↑〉

in the long-distance r � 1 is the hallmark signature of the
emergence of Bose-Einstein condensation of excitons with
a symmetry-broken order parameter 〈ψ |c†

r,↑cr,↓|ψ〉 from the
variational wave function in Eq. (4), as indicated in Fig. 4(b).
Alternatively, in terms of the transverse spin-flip operator
S+

r ∝ c†
r,↑cr,↓, it indeed describes the long-range order of

quantum Hall ferromagnetism in the XY easy plane. At frac-
tional fillings, another distinct Ising type of quantum Hall
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FIG. 4. (a) Charge and spin transfers for two-component
fermions on an Ny = 4 cylinder at ν = 1, U � t, V = 0 with in-
serting flux θ

y
↑ = θ

y
↓ = θ for both topological checkerboard and

honeycomb lattices. (b) Off-diagonal long-range order of the
particle-hole pair 〈c†

0,↑c0,↓c†
r,↓cr,↑〉 versus the lattice distance r along

the x direction. As the maximal bond dimension is increased,
〈c†

0,↑c0,↓c†
r,↓cr,↑〉 tends to a finite large value for r � 1 when the

DMRG results are more and more converged.

ferromagnets is discussed for Chern bands with a high Chern
number [52].

Another “fingerprint” of the Halperin (111) state is the
characteristic chiral edge mode, which can be revealed
through a low-lying entanglement spectrum in the bulk [53].
Differently from the usual two-component (mmn) quantum
Hall states with m �= n, one of the eigenvalues of K = (1 1

1 1)
is positive while the other is 0, that is, the Halperin (111)
state hosts only one chiral branch of the edge mode [47,54].
Here we examine the structure of the momentum-resolved
entanglement spectrum for different cylinder widths, Ny = 4
and 6. On the Ny = 4 cylinder, we observe only one forward-
moving branch of the low-lying bulk entanglement spectrum
with the level counting 1, 1, 2, 3 for different charge and spin
sectors. Similarly, as shown in Figs. 5(a) and 5(b), only one
forward-moving branch of the low-lying bulk entanglement
spectrum with the level counting 1, 1, 2, 3, 5, 7 is obtained for
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FIG. 5. Chiral edge mode identified from the momentum-
resolved entanglement spectrum for two-component fermions on an
Ny = 6 cylinder at ν = 1, U � t, V = 0. The horizontal axis shows
the relative momentum �K = Ky − K0

y (in units of 2π/Ny). Numbers
below the dashed red line label the nearly degenerating pattern with
different momenta—1, 1, 2, 3, 5, 7,. . . —for different charge and spin
sectors: (a) �q = 0, �S = 0 and (b) �q = 0, �S = 1.
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FIG. 6. Numerical ED results for the low-energy evolution of
two-component fermionic systems as a function of t ′′ in differ-
ent topological lattices at ν = 1, U � t, V = 0 for (a) a π -flux
checkerboard lattice and (b) a Haldane-honeycomb lattice.

different charge sectors on the Ny = 6 cylinder. Nevertheless,
this level counting is consistent with SU(2)1 Wess-Zumino-
Witten conformal field theory with central charge c = 1,
implying the gapless nature of chiral edge modes.

In view of the current Haldane-honeycomb experiment,
where t ′′ is negligible and the topological band becomes
significantly dispersive [38], it is natural and important to take
into account the effect of dispersive band structures controlled
by the weak next-next-nearest-neighbor tunnel coupling t ′′
on the stability of this exciton condensate under strong Hub-
bard repulsion. As shown in Figs. 6(a) and 6(b), when t ′′
is tuned down away from the flat band limit, we observe
that the unique ground state evolves smoothly and persists
with a moderately large protecting energy gap, of the order
of 0.1t , even in the weakly tunneling regime |t ′′| � t, t ′ at
ν = 1, U � t . The robustness of the Halperin (111) state,
regardless of the longer-range hopping or band dispersion
in different topological lattices, makes it very promising and
straightforward to detect in experiments through the Hall drag
transport or the transverse drifting motion of the center of
mass under an external longitudinal field gradient [55].

B. Halperin (333) state

We now analyze the possible emergence of a Halperin
fractional quantum Hall state characterized by the K = (3 3

3 3)
matrix at ν = 1/3 under both strong on-site and nearest-
neighbor Hubbard repulsions U,V � t , hosting fractional-
ized quasiparticles in analogy with the Laughlin fractional
quantum Hall state. For small finite system sizes, Ns = 12
and 18, our ED calculations give threefold quasidegenerate
ground states at the total momentum Ky + NyKx given by
the generalized Pauli exclusion principle [35]; i.e., no more
than one particle is allowed to occupy any consecutive three
orbitals in the lowest Chern band, as indicated in Fig. 7(a).
We numerically confirm that under the insertion of three flux
quanta, the system returns to itself, and the ground state hosts
a fractionally quantized Chern number Cq = 1/3 in the pa-
rameter plane (θ x

↑ = θ x
↓, θ

y
↑ = θ

y
↓), demonstrating its one-third

fractional quantization of quasiparticles. For larger system
sizes, as indicated in Fig. 7(b), our DMRG simulation of the
total charge pumping under the insertion of the flux quantum
θ

y
↑ = θ

y
↓ in infinite cylinder systems gives a well-quantized
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FIG. 7. (a) Numerical ED results for the low-energy spectrum
of two-component fermionic systems in a topological checkerboard
lattice at ν = 1/3, U,V � t . The dashed red box depicts threefold
quasidegeneracy. (b) Charge transfer for two-component fermions on
an Ny = 3 cylinder at ν = 1/3, U,V � t with inserting flux θ

y
↑ =

θ
y
↓ = θ for both topological checkerboard and honeycomb lattices.

value, �Q 
 1/3 = Cq, consistent with the analysis in the ED
study.

IV. CONCLUSION

In summary, we have proved numerically that two-
component fermions in topological lattice models can realize
Halperin (mmm) quantum Hall states at commensurate partial
fillings ν = 1/m (odd m = 1, 3) in the lowest Chern band,
with topological properties characterized by the K = (m m

m m)
matrix. For the Halperin (111) state, we demonstrate that it
is an intercomponent exciton condensate of particle and hole
pairs bound by the effective attractive interaction between

particles and holes, when the on-site Hubbard interaction
between intercomponent particles is repulsive, along with
integer quantized Hall conductance and one chiral edge mode.
For the Halperin (333) state, we qualitatively identify its
fractionally quantized topological nature from the degenerate
ground-state manifold and one-third quantized Hall conduc-
tance, similar to the Laughlin ν = 1/3 fractional quantum
Hall effect. On the experimental side, our two-component
flat band models are paradigmatic examples of a Hamiltonian
featuring topological exciton condensation driven purely by
local interaction, which is sufficiently feasible to be realized
in current optical Haldane-honeycomb lattice experiments in
cold atoms. We believe that this work could offer an alterna-
tive route for the study of exotic topological excitonic insu-
lators on designed band structures [56,57] and inspire more
extensive investigation of the fate of topological exciton con-
densates in many other topological band systems, such as the
moiré exciton [58–60] in twisted multilayer graphene when
a strong electronic correlation is introduced. The fractional
quantum Hall state of excitons in two-component systems is
another direction for future study [61,62].
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