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Density functional calculations for structures and energetics of atomic steps and their implication
for surface morphology on Si-face SiC polar surfaces
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We perform large-scale density-functional calculations using the real-space finite-difference scheme endorsed
by the Gordon Bell prize in 2011 that reveal detailed atomic and electronic structures of atomic steps on silicon
carbide (SiC) polar surfaces for the first time. The accurate structural optimization elucidates characteristic
atomic reconstruction among the upper and lower edge atoms, which is peculiar to compound semiconductors
having both covalent and ionic nature. The calculated formation energies of all the possible atomic steps lead
us to unequivocally identify the abundant atomic steps on the Si-face SiC polar surfaces. The energetics thus
obtained for the atomic steps provides a natural and persuasive microscopic reason for the difference in the step
morphology observed experimentally, i.e., the meandering and straight step edges depending on the inclined
direction on the polar vicinal SiC surfaces. Electron states caused by those atomic steps are also calculated,
which assists in the identification of the atomic steps by future experiments.
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I. INTRODUCTION

Atomic steps are ubiquitous on surfaces of matters and
exhibit various morphology, in particular, on semiconductor
surfaces [1,2]. Such nanometer-scale structures occasionally
accompanied by low dimensionality provide stages for new
phenomena [3] such as flat-band magnetism on surfaces of
nonmagnetic materials [4–6]. The surface steps also provide
stages for materials syntheses: The epitaxial growth of thin
films which is a central process of the fabrication of the
electron devices occurs through the atomic reactions near the
step edges [7,8]; even new materials emerge from surface
steps, such as graphene from the silicon carbide (SiC) step
through thermal decomposition [9–12]. The variation of the
surface morphology involving the atomic steps has been dis-
cussed phenomenologically in terms of the surface kinetics
[13,14]. Yet to unveil the underlying rationale behind the
phenomena related to the atomic steps on the surface, the
identification of abundant step structures and the clarification
of the energetics of various atomic steps are indispensable
and highly demanded in both science and technology. Up to
now, however, only a few reports are available [15,16] which
discuss the relation between the energetics of the atomic steps
and the step morphology based on quantum theory.

In this paper, taking SiC as an example, we clarify the
atomic and electronic structures and the energetics of the
atomic steps on the basis of the first-principles calculations,
and then reveal the atom-scale reason for the observed mor-
phology variation.

SiC is a material studied for more than a century [17,18]
and is widely used as hard ceramics. It is now emerging as
a material for power electronics in semiconductor technology
due to its superior properties such as the wide band gap, the

high electric break-down voltage, and the robustness under
the harsh environment, compared to the current principal
material, Si [8]. Actually, SiC metal-oxide-semiconductor
field-effect transistors (MOSFETs) are already on the market.
However, the performance of the current SiC-MOSFETs is
still lower at present than what is expected from its intrinsic
superior properties. The reason is presumably the lack of
high-quality thin films.

Hexagonal SiC(0001) and cubic SiC(111) surfaces, which
are the Si-face SiC polar surfaces, are commonly used for the
SiC epitaxial growth. Many experiments revealed interesting
characteristics in the step morphology on SiC(0001) and
SiC(111) surfaces. The epitaxial growth is usually performed
on the vicinal surface in which the low Miller-index surface
is inclined by several degrees off toward a certain direction
and there are variations of the step morphology depending on
the inclined direction [19–22]. When the SiC(0001) surface is
inclined toward the 〈11̄00〉 direction, the step edge is straight.
On the other hand, when the SiC(0001) surface is inclined
toward the 〈112̄0〉 direction, the step edge is meandering.

Despite the importance of the steps on SiC surfaces in
science and technology, microscopic understanding from the
theoretical side of the atomic and electronic structures of the
steps is almost lacking: Only a few studies have been per-
formed for the stepped SiC surfaces by using first-principles
calculations so far, owing to the system size or its complexity
of the modeling [6,16,23,24].

The aim of the present work is thus twofold. First, we
perform total-energy electronic structure calculations that pro-
vide detailed atomic structures of all the possible atomic
steps on SiC(0001) surfaces, the energetics of those steps,
and the resulting electron states induced by the steps. The
understanding obtained here is a firm theoretical framework
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to consider the phenomena related to the atomic steps of SiC
surfaces. Second, we reveal the reason for the morphology
difference of atomic steps between 〈112̄0〉 and 〈11̄00〉 inclined
(0001) vicinal surfaces. Our calculations clearly show that the
energetics of the atomic steps is the reason for the observed
morphology, indicating that the kinetic hindrances such as
the diffusion barriers play minor roles in determining the
morphology.

We recently reported the structure and the energetics of
the distinct steps on SiC [25]. In this paper, we provide
detailed explanations of the modeling and the calculations and
present new results on the atomic and electronic structures.
The rest of the present paper is organized as follows. Section II
describes the theoretical methods applied and the modeling
of atomic steps. In Sec. III, the results of the first-principles
calculations including structural properties, energetics, and
electronic properties are presented. In this section, we also
present the reason for meandering step morphology during
the SiC epitaxial growth and discuss the effect of the terrace
reconstruction on the step edges. Section IV concludes the
paper.

II. APPROACHES AND COMPUTATIONAL METHODS

A. Density-functional calculations

All calculations are performed on the basis of the density-
functional theory (DFT) [26,27] within the generalized gra-
dient approximation (GGA) introduced by Perdew, Burke,
and Ernzerhof (PBE) [28]. We use the real-space DFT (RS-
DFT) program code [29–31]. The RSDFT code is based on
the real-space finite-difference pseudopotential method [32]
and is powerful for parallel and large-scale calculations,
as is evidenced by the Gordon Bell prize in 2011 [30].
Norm-conserving pseudopotentials are generated following
the scheme of Troullier and Martins [33] to simulate nuclei
and core electrons. In the real-space scheme, discrete grid
points are introduced in real space, and the Hamiltonian in the
Kohn-Sham (KS) equation in the DFT is expressed as a matrix
represented at the grid points. The grid-point space of 0.20 Å,
which is equivalent to a cutoff energy of ∼68 Ry in the plane-
wave-basis-set calculations, is found to suffice the present
required accuracy. The geometry optimization is performed
until the remaining forces on the atoms become less than
50 meV/Å. The Brillouin-zone integration is performed with
enough sampling k points (see below).

B. Classification of step types

In this paper, we focus on single-bilayer height steps owing
to the following reasons. In the pioneering work on the step-
flow growth, the single-bilayer height steps are considered
[34]. The step height of ∼0.25 nm corresponding to the single-
bilayer height is indeed observed [20,35,36]. Furthermore, the
single-bilayer height step on the 4H-SiC(0001) surface has
lower formation energy than the double- and quad-bilayer
height steps from the previous DFT calculations [16].

SiC is an ambivalent semiconductor with its covalency and
ionicity [37,38]: Electron is transferred from Si to C, whereas
it takes the tetrahedrally bonded structure typical to covalent
materials. This leads to a variety of polytypes in which atomic

stacking along the bond direction is different. They are named
by the number of Si-C bilayers in the primitive cell and
the symmetry, cubic (C), hexagonal (H), or rhombohedral
(R), such as 2H , 3C, 4H , 6H , and 15R structures. We use
3C-SiC for polytypes in this work. This is reasonable since
the difference among the polytypes is only in the atomic
stacking and the local structure with the single-bilayer height
step, which is important in considering the step morphology,
is identical in all the polytypes. Nomenclature thus changes
from {0001} in the hexagonal symmetry to {111} in the cubic
symmetry, and also the 〈11̄00〉 and 〈112̄0〉 directions become
the 〈1̄21̄〉 and 〈1̄01〉 directions, respectively.

Stepped surfaces are modeled by a supercell structure that
is periodic in all three directions. To simulate an isolated step
on an otherwise flat surface, we use a periodic-array slab [39]
and a vicinal slab [15,40] (see below) both of which have
lateral superperiodicity. Each slab is periodically arranged
along the surface normal direction with a thick-enough vac-
uum region. Regarding the structure of the surface terrace, we
consider the (1×1) lateral periodicity and then optimize the
structure including both the step and the terrace by relaxing
the atoms in a supercell. Experimentally, the (

√
3 × √

3)R30◦
reconstruction is commonly observed [41–44]. Hence, we also
examine the effect of such terrace reconstruction on the step
structure. We consider the steps appearing on the (111) vicinal
surface inclined toward either the 〈1̄21̄〉 or 〈1̄01〉 direction.
The step edge generally runs along the direction normal to
〈1̄21̄〉 in the former case (we call it the 〈1̄21̄〉 step hereafter),
and in the latter case it does along the normal to 〈1̄01〉 (the
〈1̄01〉 step hereafter).

Figure 1(a) shows a schematic view of the five distinct
steps on 3C-SiC(111) surfaces. For the 〈1̄01〉 step, there
is a single type of the step edge at which both Si and C
atoms appear. They are twofold and threefold coordinated,
respectively, before the atomic relaxation. We call this step
SC denoting Si and C. For the 〈1̄21̄〉 step, there appear four
distinct step types. We label them the atomic species at the
step edge and the number of dangling bonds before the atomic
relaxation: Si2, Si3, C1, and C2. Since the arrangements of
the surface atoms are different toward the [12̄1] and [1̄21̄]
directions, two particular types of the step edges appear for
each direction. For the [12̄1] direction, the Si2 and C2 steps
are possible, whereas for the [1̄21̄] direction the Si3 and C1
steps are possible [Fig. 1(b)].

C. Step formation energies

Now we introduce the formation energy λα of a particular
step labeled α, for a periodic-array slab. Since the numbers of
Si and C atoms near the step edge are different for different
step types, one has to introduce the chemical potentials μi of
each atomic species. Hence the step formation energy λα is
given as

∑

α

λαL = Estep − Eflat −
∑

i

μi�Ni, (1)

where L is the length of the step edge in the lateral unit cell,
Estep is the total energy obtained for the stepped periodic-array
slab, Eflat is the total energy of the flat slab, �Ni is the
difference in the number of atomic species i with respect to
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FIG. 1. (a) Schematic view of the five distinct single-bilayer
height steps (Si2, Si3, C1, C2, and SC) on 3C-SiC(111) surfaces.
The upper and lower terraces are depicted by the networks of the
larger and smaller balls, respectively. (b) Side views of the step-
edge structures for the four different 〈1̄21̄〉 steps before the atomic
relaxation. Si and C atoms are represented by the blue and brown
balls, respectively.

the flat slab. Geometry optimization of the flat slab results
in the buckled configuration in which the top-layer Si atoms
shift upwards and downwards alternately. This relaxation is
similar to the obtained structure for 4H-SiC(0001) surfaces in
the previous DFT calculation [45]. Hence, as the total energy
of the flat slab in Eq. (1), we take that of the buckled (2×1)
surface.

Since the system considered is in equilibrium with the SiC
substrate, the chemical potentials of the individual species
satisfy

μSi + μC = εbulk
SiC , (2)

where εbulk
SiC is the total energy of crystalline SiC per molecular

unit. Then the formation energy (1) is expressed as a function
of either μSi or μC. In this paper we take μSi as an independent
variable. Then

∑

α

λαL = Estep − Eflat

− εbulk
SiC �NC − μSi(�NSi − �NC). (3)

In a periodic-array slab, step edges appear at two sides of
the terrace. For the 〈1̄01〉 step, the two steps are SC identical
to each other. However, as stated above, for the 〈1̄21̄〉 steps,
either the C1 or Si3 step appears at one side and either C2 or
Si2 does at the other side. Therefore, only four combinations
are possible owing to the restriction of the symmetry of the

crystal, whereas the number of two combinations among four
elements is intrinsically 4C2 = 6. We obtain four equations for
λSi2 + λC1, λC2 + λSi3, λC2 + λC1 and λSi2 + λSi3 as the left-
hand side of Eq. (3). For the (Si2, C1) and (C2, Si3) step pairs,
the step edges are terminated by both Si and C atoms. The
differences in the number of Si and C atoms can be taken as
�NSi = �NC in this case. For the (C2, C1) step pair, the step
edge is constructed by removing two Si atoms at the Si3 step
in the (C2, Si3) step pair. Likewise, for the (Si2, Si3) step pair,
the step edge is constructed by removing two C atoms from
the C1 step in the (Si2, C1) step pair.

Only three of the four equations above for the sum of the
formation energies are linear independent. We thus need ad-
ditional equation among the formation energies. The simplest
one is λSi2 − λC1, λC2 − λSi3, λC2 − λC1, or λSi2 − λSi3. These
differences in the two formation energies are computed by
using vicinal slabs since it is possible to contain a single step
type: We prepare two vicinal slabs each of which contains a
particular step type and compare the total energies of the slabs
to get the formation-energy difference. Hence the difference
between the formation energies of the steps α and β becomes

(λα − λβ )L = Estep(α) − Estep(β ) −
∑

i

μi�Ni, (4)

where Estep(α) [Estep(β )] is the total energy of the vicinal
slab which contains the step α (β), and �Ni is the number
difference of atomic species i between the two vicinal slabs.

For the vicinal slabs the chemical potential of hydrogen μH

should also be considered due to the difference of the total
number of hydrogen atoms bonded to the bottom C atoms
between the [12̄1] and [1̄21̄] steps. The chemical potential of
hydrogen μH is chosen as μH=(εCH4 − μC)/4, where εCH4

is the cohesive energy of a methane molecule. The step
formation energy is thus expressed as a function of the Si
chemical potential also in this case.

The heat of formation of SiC, �Hf , is defined by �Hf =
εbulk

Si + εbulk
C − εbulk

SiC , where εbulk
Si and εbulk

C are the total energies
of the crystalline Si and diamond per atom, respectively.
Although chemical potentials vary depending on experimental
environments, there are the upper and lower limits. At those
limits, the constituent element, Si or C, may precipitate. Hence
the allowed range of the chemical potential for μSi is given
by εbulk

Si − �Hf � μSi � εbulk
Si , representing the C-rich envi-

ronment (μSi = εbulk
Si − �Hf ) and the Si-rich environment

(μSi = εbulk
Si ). We determined the theoretical value of �Hf

by calculating the total energies of the crystalline Si, C, and
3C-SiC. For the diamond-structured Si, C, and 3C-SiC, we
used the theoretical lattice constants of 5.48, 3.56, and 4.37 Å,
respectively. The obtained heat of formation is 0.44 eV per
SiC molecular unit for 3C-SiC, in agreement with other DFT
results [46,47].

D. Slab models

Our periodic-array slab consists of 5 SiC bilayers and an
additional SiC bilayer representing the upper terrace. The
bottom side of the slab is passivated by hydrogen atoms. To
simulate a 〈1̄01〉 step, namely the SC step, we use a periodic-
array slab with a (16 × √

3) lateral unit cell (see Fig. 2). For
a 〈1̄21̄〉 step we use a (2 × 8

√
3) lateral unit cell to preserve
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FIG. 2. Top and side views of the optimized structure of the SC
steps using the periodic-array slab. Green: Si atoms on the terrace;
yellow: C atoms on the terrace; blue: Si atoms; brown: C atoms. The
highlighted region in the top view is the lateral surface unit cell.

the volume of the slabs for the two distinct steps to assure the
numerical accuracy. Consequently, the terrace widths in the
supercells for the 〈1̄01〉 and 〈1̄21̄〉 steps are 23.8 and 19.8 Å,
respectively.

Our vicinal slab for a 〈1̄21̄〉 step consists again of 5
SiC bilayers with the terrace and the step edge appearing
periodically toward the 〈1̄21̄〉 direction. In the unit cell, ten
Si-C zigzag rows are included and the periodicity along the
step edge is two times of the hexagonal lattice constant for
each model. The terrace width for the vicinal slab depends
on the inclined direction (see Fig. 3). At the bottom layer, C
edge atoms appear with two or three dangling bonds which
are passivated by H atoms. Hence either the CH2 or CH3 unit
emerges at the bottom edge: Actually the CH2 unit appears in
the slab simulating the [12̄1] step (Si2 and C2 steps) and the
CH3 unit does in the slab for the [1̄21̄] step (Si3 and C1 steps).

The lattice constant of SiC is fixed at the calculated value
in the crystalline 3C-SiC of 4.37 Å, which is 3.092 Å as the
hexagonal lattice constant ahex, and agrees with the previous
DFT-GGA result [48]. Each slab is isolated by �10.5 Å of the
vacuum region from the adjacent images. The Brillouin-zone
integration has been performed using the 4-k points along the
step-edge direction.

III. RESULTS AND DISCUSSIONS

A. Structural properties and energetics

The optimized structure of the SC step obtained by using
the periodic-array slab is shown in Fig. 2. A Si edge atom
on the upper terrace rebonds with its neighboring Si atom on
the lower terrace. This characteristic rebond was also found in
the previous DFT calculations for the steps on 4H-SiC(0001)
toward the [112̄0] direction [16]. Similar rebond has been
also discussed for steps on Si(001) surfaces [15,49] and on
the Si(111) 2 × 1 surface [50]. The calculated rebond length,
which is a key structural parameter of the SC step is 2.42–
2.43 Å, in agreement with that of 2.43 Å in the previous
DFT results [16]. This length is slightly longer than the bond
length in the crystalline Si of 2.37 Å. However, it is much
smaller than the Si-Si distance of 3.09 Å in the unrelaxed
(ideal) single-bilayer height step. The neighboring C atoms of
the Si edge atoms are highly strained. The Si-C bond lengths
between the Si edge atom and its neighboring C atoms are
1.95 and 1.83 Å which are ∼5.3% longer and ∼7.4% shorter,
respectively, than that in the crystalline SiC of 1.89 Å. The
Si-C bond between the Si and C edge atoms has the shorter
Si-C bond length. The bond angles surrounded by the upper-
terrace Si and C edge atoms are 99◦–108◦ and 93◦–124◦,
respectively. The angles for the upper-terrace C edge atoms
are close to the values for the C edge in the (112n) (n = 12)
nanofacet of 4H-SiC(0001) surfaces obtained by the previous
DFT calculations [6].

C1

Si2

C2

Si3

[121]

[101]  

[121]

[101]  

[121]

[111]  

[121]

[111]  

[121]

[101]  

[121]

[101]  

[121]

[111]  

[121]

[111]  

FIG. 3. Top and side views of optimized structures of the four 〈1̄21̄〉 steps, Si2, Si3, C1, and C2, using the vicinal slabs. The color coding
is Si atoms (blue), C atoms (brown), Si edge atoms (green), and C edge atoms (yellow). The lateral surface unit cells used are highlighted in
the top views.
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Figure 3 shows the top and side views of stable structures
of the four distinct 〈1̄21̄〉 steps obtained by using the vicinal
slabs. We also determined the step-edge structures for the
〈1̄21̄〉 steps using the periodic-array slabs. The structural char-
acteristics obtained by the different slab models are the same.
Let us first focus on the relaxed geometries of the 〈1̄21̄〉 steps
with the Si edge atoms (Si2 and Si3 steps). At the Si2 step,
an upper-terrace Si edge atom rebonds with its neighboring
lower-terrace Si atom. Consequently, the rebonded upper-
terrace Si edge atom is threefold coordinated. The rebond
length ranges in 2.47–2.48 Å and is slightly longer than that
in the SC step described above. The Si edge atoms form
a five-membered ring marked by highlighted green areas in
Fig. 3. The number of dangling bonds of the upper-terrace Si
edge atom is reduced as a result of forming the rebonds.

At the Si3 step, the ideal distance between the upper- and
lower-terrace Si edge atoms is equal to the hexagonal lattice
constant ahex = 3.092 Å. After the geometry optimization,
the Si-Si distances among three Si atoms, one of the upper
terrace and the two of the lower terrace, are 2.64–2.66 Å.
These lengths are longer than the rebond lengths in the Si2
step and are elongated by about 12% compared to the bond
length in the crystalline Si. This is indicative of the weak
covalent bond between the upper- and lower-terrace Si atoms,
which was discussed in defects in bulk materials [51,52]. As
a consequence, the rebonded Si atoms on the lower terrace
are fivefold coordinated with three covalent bonds and two
weak covalent bonds, as occasionally observed in defective
semiconductors [53], whereas the Si edge atoms on the upper
terrace are threefold coordinated with one covalent bond and
two weak covalent bonds. The number of dangling bonds of
the upper-terrace Si edge atom is reduced from three to one.

Adding a single row of C atoms at the Si step edges leads to
the C1 and C2 steps from the Si3 and Si2 steps, respectively.
At the C1 step shown in Fig. 3, no striking geometrical change
occurs at the step edge from the ideal atomic structure. We
find that the bond lengths between the C edge atom and its
nearest-neighbor Si atoms on the upper and lower terraces are
1.78 and 1.85 Å, respectively. These Si-C bond lengths are
shorter than that in the crystalline SiC of 1.89 Å. The number
of dangling bonds of the C edge atom still remains one.

Another structural characteristic is a dimerization which
we found at the C2 step shown in Fig. 3. In the unrelaxed
structure, one of the two dangling bonds at each C edge atom
faces another dangling bond at the adjacent C edge atom.
Hence, the dimerization along the step edges is expected. The
dimerization indeed leads to the energy gain of 0.40 eV/Å.
The dimer at the C2 step is found to be symmetric. The
dimer bond length of 1.47 Å is longer than that of 1.38 Å
for the symmetric dimer on the C(001) surfaces obtained by
the previous DFT-GGA calculations [54], but shorter than the
bond length in the crystalline diamond of 1.54 Å. We find the
dimerization at the C2 steps also in the periodic-array slabs
with the dimer bond length of 1.47 Å, being identical to that
in the vicinal slab. The number of dangling bonds of the C
edge atom decreases as a consequence of the dimerization.

The bonds of the edge atoms are highly strained with the
bond stretching for the Si2, Si3, and C2 steps. In particular,
a significant distortion arises from the C-C dimers for the C2
step and causes the strain energy. All step-edge types have one
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FIG. 4. Calculated formation energies of the atomic steps, SC
(red line), Si2 (blue line), Si3 (green line), C1 (orange line), and
C2 (light blue line), on 3C-SiC(111) surfaces as a function of the
Si chemical potential μSi. The vertical dashed lines denote the
range of μSi − εbulk

Si . The Si-rich (C-poor) and Si-poor (C-rich) limits
correspond to the right and left sides, respectively.

remaining unsaturated dangling bond at the edge atoms after
the atomic relaxation. The remaining dangling bonds at the
edge atoms are expected to be reactive in the epitaxial growth,
etching process, and so forth.

Figure 4 shows the calculated formation energies of the
five distinct steps as a function of the Si chemical potential
μSi − εbulk

Si . We find that the Si2 step is energetically most
favorable. The Si3 step is the next in the Si-rich condition.
In the C-rich condition, the SC step is the second lowest
in the formation energy. The C edge steps are energetically
unfavorable. We find that the C1 and C2 steps have almost
equal formation energies for the allowed range of μSi. There
is uncertainty in the calculated formation energies for the steps
on the 〈1̄21̄〉 vicinal surface. As stated in Sec. II C, we used
four distinct slabs to determine the formation energies of Si2,
Si3, C1, and C2 individually, and then the choice of the four
slabs are arbitrary. We examined various choices and found
that the uncertainty was less than 35 meV/Å, representing the
cutting-edge accuracy of the present calculations.

In Fig. 4, we unequivocally clarified that the Si2 step and
also the Si3 step in the Si-rich condition, which belong to
the 〈1̄21̄〉 step, were energetically more favorable than the
〈1̄01〉 step, i.e., the SC step. This finding was important to
discuss the step morphology experimentally observed. The
scanning tunneling microscopy (STM) observations by Chang
et al. [55] showed that the step edges are aligned in the
〈1̄01〉 directions on the 3C-SiC (111) surfaces, corresponding
to the straight 〈1̄21̄〉 step. Also for hexagonal SiC(0001)
surfaces inclined toward the 〈11̄00〉 direction, straight stripe-
type morphology was observed [19–22,56]. Our results above
naturally explain these experimental findings in the past.
Furthermore, the spiral patterns were reported for on-axis
hexagonal SiC(0001) surfaces [56–58]. Isolated hexagonal
hillocks are formed and every step is perpendicular to one
of the six equivalent 〈11̄00〉 directions, which corresponds
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FIG. 5. Electronic band structures along the step edge (�X di-
rection) and the Kohn-Sham orbitals at the � point for (a) the Si2
step and (b) the C1 step. The Fermi levels are set to be zero. The
isovalue surfaces at 25 % of their maximum values are shown. Blue
and brown balls depict Si and C atoms, respectively.

to the 〈1̄21̄〉 direction in the cubic case. Our calculated step
formation energies also provide a natural explanation for those
spiral patterns.

B. Electronic structures

The characteristic atomic structures of the five steps, SC,
Si2, Si3, C1, and C2, are presented in Sec. III A. Their
electron densities and density of states were already shown in
our recent papers in Refs. [25] and [59], respectively. We here
perform the electronic structure calculations for the two steps
among the five distinct steps using vicinal slabs: One is the
Si2 step which has the lowest step formation energy and the
other is the C1 step which is an example different from the Si2
step in both the edge-atom species and the inclined direction.
The calculated band structures along the �X direction parallel
to the step edge for the Si2 and C1 steps together with their
KS orbitals are shown in Fig. 5. The valence band maximum
of bulk 3C-SiC is set to be zero at the ordinate. The two band
structures have similar features except for the flat bands near
the top of the valence bands for the C1 step. The calculated
energy gap of bulk 3C-SiC is 1.41 eV, which agrees well
with the other first-principles calculations within DFT-GGA
[48], and underestimated by 40% typical to the local and
semilocal approximations for the exchange-correlation energy
functional.

For the (2 × 1) buckled step-free surfaces, the dangling
bond states appear in the bulk band gap [60]. We indeed
observe the states originating from the dangling bonds of the
terrace Si atoms in the bulk band gap in the region between
0 and 1.4 eV for the Si2 and C1 steps. Those gap states

(a) (b)Si2 C1 Si2 C1

FIG. 6. Calculated STM images in the vicinity of the Si2 and C1
steps for (a) −1.5 V and (b) +1.0 V bias voltages using the periodic-
array slab. The color coding of balls is the same as in Fig. 2. The
upper terrace is located at the right (left) side for the Si2 (C1) step.

are partially occupied. In Fig. 5, at the Si2 step, the group
of the energy bands labeled S2(Si2) is occupied, whereas the
group labeled S1(Si2) is unoccupied. Likewise, the groups of
the energy bands labeled S1(C1) and S2(C1) are unoccupied and
occupied, respectively, for the C1 step.

The groups of the occupied surface states, S2(Si2) and
S2(C1), show a similar character. They are distributed at the
dangling bonds of the terrace Si atoms which shift upwards.
The groups of the unoccupied surface states, S1(Si2) and S1(C1),
at the Si2 and C1 steps have characters in common. The main
contribution to the S1(Si2) and S1(C1) groups originates from the
empty dangling bonds of the terrace Si atoms shifting down-
wards. A dominant contribution to the S3(C1) group apparently
comes from the C edge atoms, whereas the contribution from
the Si edge atoms appears in the S2(Si2) group.

Those characteristics on the energy-band structures are
observable by, e.g., STM. Figure 6 shows the calculated STM
images of the Si2 and C1 steps using the periodic-array slab.
The STM images are simulated according to the scheme of
Tersoff and Hamann [61]. The difference between the two
steps is clear in the occupied-state images. We observe bright
spots corresponding to the rebonding of the upper- and lower-
terrace Si edge atoms in the vicinity of the Si2 step edge,
whereas at the C1 step the spots are relatively dark due to
the lack of the edge-carbon character in the relevant electron
states [S2(C1) in Fig. 5(b)] contributing the occupied-state
STM image. In the unoccupied-state STM images the bright
spots corresponding to the dangling bonds on the Si atoms are
primarily observed.

C. Zigzag-shaped step structures

The meandering step morphology toward the 〈112̄0〉 direc-
tion on hexagonal SiC(0001) surfaces are observed by experi-
ments [19–22,62]. A possibility to explain this meandering is
the energetics. In Sec. III A, we clearly showed that some of
the 〈1̄21̄〉 steps have lower formation energies than that of the
〈1̄01〉 step on 3C-SiC(111) surfaces. It is therefore plausible
that a zigzag-shaped step toward the 〈1̄01〉 direction, which
consists of the local straight 〈1̄21̄〉 steps, is energetically more
favorable than the straight SC step toward the 〈1̄01〉 direction
shown in Figs. 1(a) and 2.

A step model with a zigzag configuration along the 〈112̄0〉
direction on 6H-SiC(0001) as a hexagonal counterpart was
proposed based on the STM observation [20]. The model
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[111]

[101]

[101]

[121]

Si2

Si3

FIG. 7. Top and side views of the optimized atomic structure of
the zigzag-shaped step consisting of the two local Si2 and Si3 steps
shown in Fig. 3. The lateral surface unit cell is indicated by the
highlighted orange region. The local Si2 and Si3 steps are marked
with the green and light blue regions. The color coding is Si atoms
(blue), C atoms (brown), Si edge atoms at Si2 (green), and Si edge
atoms at Si3 (light blue).

has two step edges extended either along the [2̄110] and
[12̄10] direction. The two step edges in this proposed model
correspond to the Si2 and C1 steps in our terminology. Other
zigzag-shaped steps consisting of the two local straight 〈1̄21̄〉
steps are possible: the combinations of (C1, C2), (Si2, Si3),
and (C2, Si3). From the formation energies of the straight
steps shown in Fig. 4, it is clear that the combination (Si2,
Si3) is the candidate which has the lowest formation energy
of all of them. Therefore, we consider the zigzag-shaped
step consisting of the two local Si2 and Si3 steps (“Si2+Si3
zigzag-shaped step” hereafter) and compare the stability be-
tween this zigzag-shaped step and the straight SC step.

A larger unit cell is necessary to describe the zigzag-shaped
step. The large-scale calculations were performed for the
unit cell containing the local Si2 and Si3 steps with their
edge lengths being six times of the hexagonal lattice constant
(Fig. 7). To save the computational cost, we reduce one SiC
bilayer for the slab thickness, which still ensures the required
accuracy as we tested. Nevertheless, 1050 atoms are required
to simulate the Si2+Si3 zigzag-shaped step on the vicinal
3C-SiC(111) surfaces inclined toward the [1̄01] direction. The
�-point Brillouin-zone sampling has been used.

We now present the formation-energy difference between
the Si2+Si3 zigzag-shaped step and the straight SC step to-
ward the [1̄01] direction. We found that the formation energy
of the Si2+Si3 zigzag-shaped step is lower than that of the
straight SC step by 4.30 and 1.66 eV per unit cell in the Si-rich
and Si-poor conditions, respectively. By dividing these values

(b)(a)

C1 Si3

Si2

Si3

Si2

FIG. 8. Top views of the two possible local atomic structures
near the kink of the zigzag-shaped step model shown in Fig. 7. The
color coding is the same as in Fig. 7.

by the length of the straight step edge, we obtain the formation
energy of the zigzag-shaped step being lower than that of
the straight SC step by 0.05–0.13 eV/Å for μSi in the range
of εbulk

Si − �Hf � μSi � εbulk
Si . The Si2+Si3 zigzag-shaped

step is thus energetically more favorable than the straight SC
step, being indicative of the stability of the meandering for
the steps toward the 〈1̄01〉 direction. The energetics obtained
here naturally explains the observed meandering step inclined
toward the 〈112̄0〉 direction in the hexagonal case [19–22,62].

In Fig. 7, the atomic structure at the local Si2 and Si3 steps
is essentially the same as the structures shown in Fig. 3. At
the local Si2 step, the rebonding arises from the upper- and
lower-terrace Si edge atoms and this is a similar feature to the
Si2 step as described in Sec. III A. The rebond lengths range
2.45–2.51 Å and the average value is 2.48 Å. This is close to
the value of 2.47 Å in the straight Si2 step toward the 〈1̄21̄〉
direction. We find that the shortest rebond at the local Si2 step
is located near the kink of the zigzag-shaped step.

At the local Si3 step, we find not only a weak covalent bond
as mentioned in Sec. III A but also a rebond between upper-
and lower-terrace Si edge atoms. Many of the lower-terrace Si
atoms at the step edge change their coordination number from
5 to 4 probably due to the increased degrees of freedom for
the reconstruction along the straight part.

At the kink where the Si2 and Si3 steps meet, we find two
distinct (meta)stable geometries shown in Fig. 8. In Fig. 8(a),
one lower-terrace Si atom (marked by the red arrow) and two
upper-terrace Si edge atoms are rebonded (the red dashed
lines). As a consequence, the lower-terrace Si atom becomes
fivefold coordinated, being similar to the Si3 step toward
the 〈1̄21̄〉 direction. When one of the upper-terrace Si edge
atoms near the kink at the Si3 step in Fig. 8(a) is removed,
the upper-terrace C edge atom at the kink becomes threefold
coordinated, being the local C1 step shown in Fig. 8(b). We
find that the energies to form those kinks are almost the same.

D. Effect of the terrace reconstruction on the step edge

The Si-face cubic SiC(111) and hexagonal SiC(0001) sur-
faces have various surface reconstruction. As an example of
a terrace reconstruction, we focus on the (

√
3 × √

3)R30◦
reconstruction in this work. It is known that the model with Si
adatom on the T4 site which is the on-top site of an underlying
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(a) SC SC

Top view
Side view

(c) Si2Si3

Side view
Top view

(b) Si2C1

Side view
Top view

Si atom 
    (upper)
C atom 
    (upper)
Si atom 
    (lower)
C atom 
    (lower)
Si adatom
    (upper)
Si adatom
    (lower)

FIG. 9. Top and side views of the optimized structures of stepped
3C-SiC(111) surfaces with Si adatoms using periodic-array slabs
(a) for the two SC steps, (b) for the (Si2, C1) step pair, and (c) for
the (Si2, Si3) step pair. The separate color coding for the atoms on
the upper terrace (upper) and the lower terrace (lower) is used. The√

3 × √
3 units are shown by the blue solid lines. The lateral surface

unit cells used are highlighted in the top views.

second layer atom is most favorable for the (
√

3 × √
3)R30◦

reconstruction [43,44,46,63,64]. We use the periodic-array
slabs to model the

√
3 × √

3-reconstructed terrace. We con-
sider three models shown in Fig. 9: one model for the 〈1̄01〉
steps and two models for the 〈1̄21̄〉 steps. The model of the
〈1̄01〉 step has two SC steps on the terrace. We use the models
with the (Si2, Si3) and (Si2, C1) step pairs for the 〈1̄21̄〉 steps
since the Si2 step is most stable for the 〈1̄21̄〉 direction. There
are several distinct structural arrangements for each pair of
steps, depending on the distances between the step edge and
the Si adatoms on the terrace. We find that the geometries in
which the Si adatoms are located at the edge sites are generally
higher in energy.

Figure 9 shows the step-edge structures which has the
minimum formation energies. We observe the rebonding be-
tween the upper- and lower-terrace Si edge atoms for the
local SC and Si2 steps. This is essentially identical to the

S3(Si2ad)

S1(Si2ad)

S2(Si2ad)

S4(Si2ad)

XΓ

E
ne

rg
y 

(e
V

)

S1(Si2ad)
S2(Si2ad)

S4(Si2ad)

S3(Si2ad)

-2

-1

0

1

2

FIG. 10. Electronic band structure along the �X direction and
the Kohn-Sham orbitals at the � point for the Si2 step on the

√
3 ×√

3-reconstructed terrace. The isovalue surfaces at their value of 25%
of the maximum value. Blue and brown balls depict Si and C atoms,
respectively.

case of the (1×1) reconstruction shown in Figs. 2 and 3.
The rebond lengths are 2.47–2.52 Å and 2.55–2.59 Å for
the SC and Si2 steps, respectively, in this case. A weak
covalent bond between the upper- and lower-terrace Si edge
atoms is also found at the Si3 step with the

√
3 × √

3-
reconstructed terrace. We find that the order of the formation
energies, 2λSC > λSi2 + λC1 > λSi2 + λSi3, in the Si-rich limit
and, 2λSC > λSi2 + λSi3 > λSi2 + λC1, in the C-rich limit re-
mains unchanged, compared to the case of the (1×1) terrace
structure. Taking the (

√
3 × √

3)R30◦ reconstruction as an
example, we clarified that the terrace reconstruction plays
only a minor role in the atomic structures at the step edges
and their energetics [59].

Figure 10 shows the electronic band structure of the Si2
step with the

√
3 × √

3-reconstructed terrace. In this calcu-
lation, we use a vicinal slab. In the band structure we find
the flat bands or the groups of the flat bands labeled S1(Si2ad),
S2(Si2ad), S3(Si2ad), and S4(Si2ad) in the bulk band gap. The
S1(Si2ad) group and the S2(Si2ad) band are unoccupied bands,
whereas the S3(Si2ad) group and the S4(Si2ad) band are occupied
ones. The contribution of the step edge atoms is found in
the S2(Si2ad) and S4(Si2ad) states shown in Fig. 10. The KS
orbitals for the S1(Si2ad) and S3(Si2ad) groups in Fig. 10 clearly
show that those groups of the energy bands originate from the
dangling bonds of the Si adatoms. However, the Si adatoms
contributing to the S1(Si2ad) and S3(Si2ad) states are clearly
different: the lower Si adatom to S1(Si2ad) and the higher Si
adatom to S3(Si2ad). The bond lengths between the Si adatom
and the top-layer Si atom are 1.52–1.56 Å and 1.93–1.95 Å
for the Si adatoms contributing to the S1(Si2ad) and S3(Si2ad)

groups, respectively. Their average value of 1.72 Å is in good
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agreement with the experimental and theoretical values of
1.61–1.77 Å [43,44,46,63,64]. The different height of the Si-
adatom positions comes from the buckling of the Si adatoms
on the terrace.

IV. CONCLUSION

We carried out density-functional calculations of single-
bilayer height steps on 3C-SiC(111) surfaces. Five types of
steps appearing on the (111) vicinal surface inclined toward
either the 〈1̄21̄〉 or 〈1̄01〉 direction were considered. We
performed geometry optimization for all the possible atomic
steps and found the characteristic atomic structures near the
step edges. The calculated formation energies of the five
distinct steps show that the straight 〈1̄21̄〉 step is energeti-
cally more favorable than the straight 〈1̄01〉 step. The most
stable straight step has a rebonded structure with threefold-
coordinated Si edge atoms on the upper terrace. We compared
the formation energies between the straight 〈1̄01〉 step and the
zigzag-shaped 〈1̄01〉 step consisting of the two local straight
〈1̄21̄〉 steps and found that the latter is energetically favor-
able. The obtained energetics clearly explains experimental
findings of the stability not only of the straight step toward
the 〈11̄00〉 direction in the hexagonal case (〈1̄21̄〉 direction
in the cubic case), but also of the meandering step toward
the 〈112̄0〉 direction in the hexagonal case (〈1̄01〉 direction
in the cubic case). The structural feature and the energetics
of steps on 3C-SiC(111) surfaces are essentially the same
for (1×1) and (

√
3 × √

3)R30◦ reconstructions on the terrace.

The results of electronic band structures show that specific
groups of the energy bands in the bulk band gap originate from
the dangling bonds of the terrace Si atoms and the step-edge
atoms. The calculated scanning tunneling microscopy images
assist in further identification of the atomic structures of the
surface steps.

We showed the causality between the energetics of the
steps and the surface morphology of Si-face SiC polar
surfaces, i.e., 3C-SiC(111) and equivalently hexagonal SiC
(0001). Our calculations offer a missing link between mi-
croscopic atomic structures and macroscopic surface mor-
phology. The obtained results from the present calculations
certainly expand our understanding of the stages at which
chemical reactions of the thin-film growth take place.
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