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Majorana bound states are interesting candidates for applications in topological quantum computation.
Low-energy models allowing one to grasp their properties are hence conceptually important. The usual scenario
in these models is that two relevant gapped phases, separated by a gapless point, exist. In one of the phases,
topological boundary states are absent, while the other one supports Majorana bound states. We show that a
customary model violates this paradigm. The phase that should not host Majorana fermions supports a fractional
soliton exponentially localized at only one end. By varying the parameters of the model, we describe analytically
the transition between the fractional soliton and two Majorana fermions. Moreover, we provide a possible
physical implementation of the model. We further characterize the symmetry of the superconducting pairing,
showing that the odd-frequency component is intimately related to the spatial profile of the Majorana wave
functions.
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I. INTRODUCTION

The search for platforms enabling the implementation of
operations based on Majorana bound states is a fascinating
area in condensed matter physics [1–5]. Such devices rep-
resent a substantial step forward for topological quantum
computation [6,7]. As of now, the most promising candidates
as hosts for Majorana bound states appear to be spin-orbit
coupled quantum wires [3–5], planar Josephson junctions
[8,9], topological insulators [10,11], and ferromagnetic chains
on superconductors [12]. The experimental tools commonly
used to substantiate the formation of Majorana bound states in
those systems are transport measurements and tunneling spec-
troscopy. A downside of such detection methods is that it is
not easy to discriminate between topological Majorana bound
states and trivial Andreev bound states [13–17], disorder
[18,19], or distracting effects in Josephson junctions [20–23].
More refined experimental schemes, involving for instance the
study of nonlocal conductance [24] and current noise [25],
have hence been suggested to better characterize the presence
of Majorana fermions. As the complexity of the properties
to be inspected increases, the adoption of low-energy models
becomes more important to capture the essential physics.

A common trait of most low-energy models for Majorana
bound states is that they resemble the Jackiw-Rebbi model
[26] in particle-hole space [1]. The Majorana bound states
are then located at mass kinks of the model. A competing
topological bound state is naturally present in such models.
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When a spin (or chirality) index is also present, fractional soli-
tons [27–30] can emerge. These topological boundary states
carry stable fractional charge [31] and have been predicted to
appear in heterostructures based on topological insulators and
ferromagnetic insulators [27,28] or quantum point contacts
[30]. In lattice models, they arise in Su-Schrieffer-Heeger
(SSH) -like systems [32]. They are fundamentally interesting
and have been proven to lead to phenomena that can be
potentially useful in spintronics [27]. However, they have
never been detected in a solid state setup.

Previously, the competition between phases hosting Tamm-
Shockley [33] states and Majorana fermions have been pre-
dicted in models based on spin-orbit coupled quantum wires
[29]. In that case, the appearance of zero modes when a single
termination is imposed, has been analyzed.

In this work, we describe a simple superconducting system
undergoing a transition between a state characterized by the
presence of a single fractional soliton to a state characterized
by two Majorana bound states. Our model generalizes the
basic idea of a competition of these bound states originally
proposed in Ref. [29]. The model is fully solvable with
periodic and open boundary conditions at the two ends. When
periodic boundary conditions are imposed, a quantum phase
transition between gapped phases is present. Unexpectedly,
when open boundaries are considered, we show that a zero-
energy solution is always present. In one phase, the solution
is localized at one end of the structure, and in the other phase,
it is located at both ends. The first case, being adiabatically
connected to � = 0, where � = 0 is the superconducting
pairing, corresponds to a single fractional soliton, the second
to two Majorana zero modes. In order to better understand
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FIG. 1. (a) The dispersion ε
(P)
1/2(k) in units of vF /L, as a function

of k, in units 1/L, for � = 2vF /L and B = 0.5vF /L. (b) The dis-
persion ε

(P)
1/2(k) in units of vF /L as a function of k in units 1/L, for

� = 2vF /L and B = 2vF /L.

the result, we map our model onto the model describing a
heterostructure based on the helical edge states of a two-
dimensional topological insulator proximitized by an s-wave
superconductor [34–54]. This mapping allows us to fully
understand the properties of the original model in terms of
competing masses. If we investigate the Majorana phase in
more detail, we are able to show a deep connection between
Majorana wave function, tunneling density of states, and the
odd-frequency component of the anomalous Green’s function.

The paper is organized as follows. In Sec. II, we present
the model. In Sec. III, we discuss the crossover between the
Jackiw-Rebbi soliton and the Majorana fermions. In Sec. IV,
we present a possible experimental realization of our findings.
In Sec. V, we discuss the pairing amplitude in the Majorana
phase. Finally, in Sec. VI, we draw our conclusions.

II. MODEL

The Bogoliubov–de Gennes (BdG) Hamiltonian of the
model, on the segment of length L, that we study is (h̄ = 1)

H = 1

2

∫ L

0
�†(x)H(x)�(x)dx, (1)

where �†(x)=(ψ†
R (x), ψ†

L (x), ψL(x),−ψR(x)), with ψR/L(x)
Fermi operators, and the Hamiltonian density

H(x) = −ivF ∂xτz ⊗ σz − Bτ0 ⊗ σy + �τy ⊗ σ0. (2)

In Eq. (2), vF is the Fermi velocity, and B and � are real
and positive competing masses. Moreover, τi/σi are Pauli
matrices acting, respectively, on particle-hole and R/L space.
Importantly, this Hamiltonian emerges, for instance, as a
linearized model of a spinless topological superconductor (see
Appendix A) at large chemical potential. Imposing periodic
boundary conditions on the wave functions, it is easy to obtain
the spectrum of the Hamiltonian. It is given by the four ex-

citation energy bands ε
(P)
1/2(k) = ±

√
v2

F k2 + �2 + B2 ± 2�B,
where k = 2πn/L, with n integer, represents the momentum
eigenvalues. The dispersion relation is always gapped except
for B = �. Moreover, it is even under the exchange of B
and � [see Figs. 1(a) and 1(b)]. Differently from the case

of spin-orbit coupled quantum wires [55,56], the model
only has two Fermi points in the absence of masses. Hence,
the naive expectation would be that, in the case of open
boundary conditions, there are no boundary states if the term
proportional to B dominates the gap, while a pair of Majorana
bound states appears in the case of a �-dominated gap. We
show below that the physics of the model is much richer.

To model open boundary conditions, we make the hypothe-
sis that the model emerges from the linearization of a spinless
parabolic dispersion [25,57] with p-wave superconductivity
parametrized by �, and a resonant external field parametrized
by B (see Appendix A). The condition for having a resonant
field is that it has a substantial component with wave vector
2kF [56]. We hence decompose the Fermi field as ψ (x) =
eikF xψR(x) + e−ikF xψL(x). The open boundary conditions can
then be written as [57]

ψL(x) = −ψR(−x), (3)

ψR(x + 2L) = ψR(x). (4)

Note that the fields ψR(x) and ψL(x) are not independent
anymore. Moreover, the periodicity in space has doubled,
leading to effective momenta q = nπ/L, with n integer. The
minus sign relating ψR(x) and ψL(−x) in Eq. (3) can be
understood by observing that a basis {ζn(x)}n>0 for square
integrable functions in the domain [0, L], with open boundary
conditions, is given by the functions ζn(x) = √

2L sin ( nπx
L ) ∝

einπx/L − e−inπx/L. The full Fermi field is built from the wave
functions ζn(x). In the linearized scheme, the right-moving
Fermi field is then given by the terms proportional to einπx/L ,
while the left-moving field by e−inπx/L. The Hamiltonian (1)
is given by

H =
∫ L

−L
dx[H0 + H� + HB], (5)

with

H0 = vF ψ
†
R (x)(−i∂x )ψR(x), (6)

HB = −iB sgn(x)ψ†
R (x)ψR(−x), (7)

H� = i
�

2
sgn(x)[ψ†

R (x)ψ†
R (−x) + ψR(x)ψR(−x)], (8)

where sgn(·) is the sign function. For the mapping from the
quadratic dispersion of the common p-wave superconductor
shown in the Appendix A to the linearized model to be mean-
ingful, band curvature at the chemical potential must give a
negligible contribution to the kinetic energy. This condition
holds true for large chemical potential.

III. JACKIW-REBBI SOLITONS VS MAJORANA
FERMIONS

Solving the Schrödinger equation for the problem amounts
to recasting the Hamiltonian in the form H = ∑

p εpc†pcp,
where p is an index for a complete basis of eigenfunctions,
εp is the corresponding energy, and cp the Fermi operator. To
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do so, we make the ansatz

c†p =
∫ L

−L
dx[χp(x)ψ†

R (x) + ξp(x)ψR(x)]. (9)

We then obtain the following system of differential equations:

εpχp(x) = −ivF ∂xχp(x) + i[�ξp(−x) − Bχp(−x)]sgn(x),

εpξp(x) = −ivF ∂xξp(x) + i[�χp(−x) − Bξp(−x)]sgn(x).

Despite the nonlocal character of the equations, an analytical
solution is possible. The method we employ is based on the
decomposition

χp(x) = χ+
p (x)
(x) + χ−

p (−x)
(−x),

ξp(x) = ξ+
p (x)
(x) + ξ−

p (−x)
(−x), (10)

where 
(·) is the Heaviside step function.
The additional conditions to be satisfied are

χ+
p (0) = χ−

p (0), ξ+
p (0) = ξ−

p (0), χ+
p (L) = χ−

p (L), and
ξ+

p (L) = ξ−
p (L). Solutions are found for energies ε � |� − B|

and ε = 0. The energy levels in the part of the spectrum for
which ε � |� − B| become dense in the L → ∞ limit. The
zero-energy eigenfunction, henceforth labeled by a subscript
0, represents an isolated solution. We find for the zero-energy
state

χ+
0 (x) = χ−

0 (x)=A0e(�−B)x/vF +C0e−(�+B)x/vF , (11)

ξ+
0 (x) = ξ−

0 (x)=A0e(�−B)x/vF −C0e−(�+B)x/vF . (12)

Up to a global phase, the coefficients obey

A2
0 = C2 � − B

� + B
e−2�L/vF

sinh [(� + B)L/vF ]

sinh [(� − B)L/vF ]
, (13)

C2
0 = � + B

4vF

1

1 − e−2(�+B)L/vF
. (14)

There are two intriguing observations about the zero-energy
solution. The first one is that it can be found in both of the
gapped regions. This is not what is commonly expected in
models for Majorana fermions, for instance, in the Kitaev
model, where nontrivial boundary states only appear in the
topological sector. The second observation is that for � > B
the state is localized in the vicinity of x = 0 and x = L, while
for � < B the state is only localized close to x = 0. The
first case is the usual Majorana bound state scenario, where
the fermionic zero mode is decomposed into two Majorana
fermions located at the edges of the system. The second
case is reminiscent of a Jackiw-Rebbi fermionic state, where
the mass has a single kink. Upon varying B and �, our
model implements the transition of a Jackiw-Rebbi into two
Majorana bound states. This crossover is illustrated in Fig. 2.
This behavior is surprising. Indeed, it is difficult to predict
the presence of end stated in systems with quadratic kinetic
energy. In linear theories, on the other hand, it is well known
that bound states appear at mass kinks. When a linear system
is built from a quadratic model, as in our case, the original
boundary conditions may effectively be translated in such
mass kinks. Surprising and unpredictable bound states charac-
terizing quadratic systems can hence be intuitively explained
by means of linearization. In the next section we fully exploit
this principle in the case of our model.

FIG. 2. Contour plot of χ0(x), in units L−1/2, as a function of B
in units vF /L, and of x, in units L, for � = 7vF /L. The central white
line corresponds to the gapless point.

IV. HELICAL EDGE IMPLEMENTATION

The aim of this section is twofold. We present a model
based on a quantum spin Hall based heterostructure that both
clarifies the result and represents a possible experimental
realization of the phenomena we discussed.

To proceed with a physical interpretation, it is useful to
enumerate the ingredients leading to the phenomena we have
discussed. The presence of four (dependent) Fermi fields, with
linear kinetic energy and zero chemical potential is needed.
Furthermore, two mass terms acting in different subspaces,
relations that implement a dependence between right and
left movers and an “unfolding” periodic boundary condition
play essential roles. The required number of Fermi fields is
provided by a helical edge proximitized by an s-wave super-
conductor. The boundary conditions are then implemented by
two strong magnetic barriers at x = 0 and x = L. The two
masses are provided by the induced superconductivity and by
an external magnetic field [58–60]. More specifically, in order
to reproduce the correct boundary conditions, the external
magnetic field must be positive in the −σy direction in spin
space, the magnetic barrier at x = 0 must be positive in the σy

direction in spin space, while the magnetic barrier at x = L
must be parallel to the external magnetic field [42]. Other
directions of the magnetization of the barriers would result in
twisted boundary conditions instead of Eqs. (3) and (4). For a
schematic, see Fig. 3. More specifically, an infinite quantum
spin Hall system in the presence of a magnetic gap Bqsh and a

FIG. 3. The quantum spin Hall analogy of the model. The arrows
in the central region indicate right- and left-moving particles, the
arrows in the side blocks the magnetization of the barriers, and B
and � the applied magnetic field and the superconducting pairing.
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superconducting gap �qsh can be modeled by

H (∞)
qsh =

∫ ∞

−∞
[H0,qsh(x) + HB,qsh(x) + H�,qsh(x)]dx, (15)

where

H0,qsh(x) =
∑
s=±

ψ
†
s,qsh(x)(−isvF ∂x )ψs,qsh(x), (16)

HB,qsh(x) =
∑
s=±

isBqshψ
†
s,qsh(x)ψ−s,qsh(x), (17)

H�,qsh(x) = �qshψ
†
+,qsh(x)ψ†

−,qsh(x) + H.c. (18)

Here, s represents the spin projection and ψ
†
s,qsh(x) is the

creation operator of a fermionic field for an electron with
spin projection s. The Hamiltonian density is identical to
the one in Eq. (1), provided that the fermionic fields of the
two theories are identified. To proceed with the analogy,
boundary conditions need to be implemented. To this aim,
strong magnetic barriers are added at x = 0 and x = L. The
corresponding Hamiltonian HG is

HG =
∫ ∞

−∞

∑
s

ψ
†
s,qsh(x)

[(
M (0)

x − isM (0)
y

)
δ(x)

+ (
M (L)

x − isM (L)
y

)
δ(x − L)

]
ψs,qsh(x)dx. (19)

In Eq. (19), M (0/L)
x/y represents the various components

of the magnetization of the barriers. In the limit√
M (0/L)2

x + M (0/L)2
y /vF � 1, the regions x < 0, 0 < x < L,

and x > L become fully separated. The boundary conditions
that the fields in the region 0 < x < L obey are [42]

ψ+,qsh(0) =
[

−M (0)
y − iM (0)

x

M (0)2
x + M (0)2

y

]
ψ−,qsh(0), (20)

ψ+,qsh(L) =
[

M (L)
y + iM (L)

x

M (L)2
x + M (L)2

y

]
ψ−,qsh(L). (21)

To reproduce the open boundary conditions emerging from
Eqs. (3) and (4), that is, ψ+,qsh(0) = −ψ−,qsh(0) and
ψ+,qsh(L) = −ψ−,qsh(L), we need to set M (0)

x = M (L)
x = 0,

M (0)
y > 0, and M (L)

y < 0. Once the boundary conditions are
known, it is easy to obtain the solution to the single-
particle problem, and hence demonstrate that ψ+,qsh(x) =
−ψ−,qsh(−x). Moreover, with this choice of the magnetization
direction of the barriers, we have ψ+,qsh(x) = ψ+,qsh(x + 2L).
When the magnetization of the barriers is not antiparallel,
twisted boundary conditions emerge. The Hamiltonian of the
part of the helical edge confined between the magnetic barriers
is hence equal to the problem already solved [Eqs. (5)–(8)].
To show this fact, the identifications ψ±,qsh(x) → ψR/L (x),
�qsh → �, and Bqsh → B must be performed. This analogy
completely clarifies the obtained results: When the gap is
of superconducting type, two Majorana fermions are present
at the boundaries. On the other hand, when the gap is of
magnetic type, a Jackiw-Rebbi charge is trapped close to x =
0 since there the mass (the magnetization of the barrier/the
magnetic field) changes sign. The mapping of the model onto
a heterostructure based on the edges of a two-dimensional
topological insulator not only provides a valuable tool for
understanding the transmutation of the Jackiw-Rebbi charge

into Majorana fermions. It also provides a possible experi-
mental realization of the model and implies that the standard
techniques used to address the transport properties of topo-
logical heterostructures can be employed in the case of finite
magnetic barriers. Even more importantly, the mapping onto
the setup based on the helical system provides a detection
scheme for the transition. Indeed, for a large but not infinite
magnetic barrier, and in the limit of large L, the linear local
differential conductance vanishes in the trivial case, for large
L, while it is quantized to 2e2/h in the topological phase [60].

V. B = 0 PHASE

In this section, we carefully investigate the B = 0 regime.
In this case, the Hamiltonian density can be written
as a 2 × 2 differential quadratic operator. One has H =∫ L

0 �†(x)H(x)�(x)dx, with H = −ivF ∂xτz − i�τx. Corre-
spondingly, the Fermi spinor acquires two components only.
As a first step, we state the inverse of Eq. (10), that reads

ψR(x) =
∑

p

[ξ ∗
p (x)c†p + χp(x)cp]. (22)

The explicit form of the functions ξp(x) and χp(x) is given
in the Appendix. By using Eqs. (3) and (4), we define the
Majorana field operators γ1(x) and γ2(x) in the usual way [1]:

γ1(x) = i[�†(x) − �(x)], (23)

γ2(x) = [�†(x) + �(x)]. (24)

The zero-energy contributions γ
(0)

1 , γ
(0)

2 to the Majorana
fields, that is, the Majorana zero modes, then read

γ
(0)

1 (x) = 2 sin(kF x)
√

�/vF√
1 − e−2�L/vF

e−�(L−x)/vF (c†0 + c0), (25)

γ
(0)

2 (x) = −2i sin(kF x)
√

�/vF√
1 − e−2�L/vF

e−�x/vF (c†0 − c0). (26)

We recover the expected results, namely, that one Majorana
zero mode is located close to x = 0 (γ (0)

2 ) and one close to x =
L (γ (0)

1 ). Moreover, 2kF oscillations appear in accordance with
the fact that we have imposed a sharp confinement potential
[61]. Note that, within the model, the two Majorana modes do
not hybridize.

Another feature of the model is that the Green’s functions
can be calculated analytically. This allows us to show explic-
itly the intimate connection between the spatial extension of
the Majorana zero modes given in Eqs. (18) and (19) and the
odd-frequency component of the superconducting pairing that
characterizes the topological superconductor.

We define the retarded Green’s function GR
i j (x, x′, ω) as

[62]

GR
i j (x, x′, ω) =

∫ ∞

−∞
eiω(t+i0+ )GR

i j (x, x′, t )dt, (27)

with

GR
i j (x, x′, t ) = −iθ (t )〈{�i(x, t ), �†

j (x′, 0)}〉, (28)

where �i(x, t ) (i = 1, 2) are the components of the Nambu
spinor in the Heisenberg picture. The average is performed
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on the ground state and the braces indicate the anticommuta-
tor. The advanced Green’s function GA

i j (x, x′, ω) is given by
GA∗

i j (x, x′, ω) = GR
ji(x

′, x, ω). Due to particle-hole symmetry
of the BdG Hamiltonian, the components of the Green’s
functions are not independent, but satisfy

GR
i j (x, x′, ω) = −σ il

x GR∗
lm (x, x′,−ω)σ m j

x . (29)

Moreover, focusing on the anomalous part of the Green’s
function, that is, on the off-diagonal parts, we have
GA

21(x′, x, ω) = −GR
21(x, x′,−ω). The function F (x, x′, ω) =

GR
21(x, x′, ω) + GA

21(x, x′, ω) hence satisfies

F (x, x′, ω) + F (x′, x,−ω) = 0. (30)

Consequently,

F+(x, x′, ω) = F (x, x′, ω) + F (x′, x, ω)

2
(31)

is odd in ω and characterizes the odd-frequency pairing.
Odd-frequency pairing can be expected to be related to the
Majorana wave function, because a Majorana zero mode is an
intrinsically odd-frequency object [49]. In our model, we find,
for ω < �,

F+(x, x, ω) = 4πP
(

1
ω

)
sinh[L

√
�2 − ω2]

ζ (x), (32)

where P(·) is the Cauchy principal value and

ζ (x) = sin2(kF x) sinh[(L − 2x)
√

�2 − ω2/vF ]. (33)

For (L − 2x)/L � 1 [(L − 2x)/L � −1], that is, close to the
edges of the system, the odd-frequency pairing resembles the
modulus square of the spatial extension of γ

(0)
2 (γ (0)

1 ). This
intriguing dependence has recently been analyzed in different
setups [35,39], including the Kitaev chain [63–67].

In the remainder, we address the question whether the
Majorana wave function and the odd-frequency pairing can
be measured. The answer, as for other models of (topological)
superconductivity [34,39,65,66], is related to the diagonal part
GR

11(x, x, ω) of the Green’s function. As an example of a
measurable quantity that can be extracted from the retarded
Green’s function, we in fact analyze the tunneling density
of states ρ(x, ω) = −ImGR

11(x, x, ω)/π , which is associated
with the tunneling from a metallic tip at position x above the
topological superconductor [62]. The explicit result for the
Green’s function, for ω < �, reads (see also Ref. [68])

GR
11(x, x, ω) = ω√

�2 − ω2
[F (ω, x) − F (ω, 0)]

+ 2

ω

√
�2 − ω2F (ω, x) sin2(kF x)

− sin(2kF x)
sinh[(L − 2x)

√
�2 − ω2/vF ]

sinh(L
√

�2 − ω2/vF )
,

(34)

with

F (ω, x) = cosh[
√

�2 − ω2(L − 2x)/vF ]

sinh(L
√

�2 − ω2/vF )
. (35)

The full Green’s function does not show a pronounced simi-
larity with the Majorana wave function and the odd-frequency

pairing. However, we find that

ρ(x, ω) = 2�δ(ω) sin2(kF x)
cosh [�(L − 2x)/vF ]

sinh (�L/vF )
. (36)

The tunneling density of states has hence the same short-
wavelength components as the odd-frequency pairing, that is,
sin2(kF x), while its envelope function is given by the deriva-
tive of the function enveloping the odd-frequency pairing.

The tunneling density of states in the Jackiw-Rebbi case
would be much larger at one end than at the other one. The
tunneling from a metallic tip hence discriminates the Jackiw-
Rebbi from the Majorana case.

VI. CONCLUSIONS

In conclusion, we have proposed and analytically solved a
quantum wire model that is characterized by a transition be-
tween a state hosting a single Jackiw-Rebbi soliton and a state
with two unpaired Majorana fermions. We have explained the
results on the basis of a hybrid system involving topological
edge channels, superconductivity, and magnetic gaps. Such a
setup also allows for the detection of the transition between
the phase hosting the fractional soliton and the Majorana
phase, by means of a local conductance experiment. We
have then characterized the Majorana phase of the system on
the basis of the correlation functions. We have shown that the
odd-frequency component of the pairing closely follows the
spatial extension of the Majorana bound states. After comput-
ing the retarded Green’s function, we have proposed that the
tunneling density of states indeed provides information about
the Majorana wave function and the odd-frequency pairing.
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APPENDIX A: LINEARIZATION OF THE FINITE p-WAVE
SUPERCONDUCTOR

The starting point is a spinless p-wave superconductor,
with Hamiltonian (h̄ = 1)

H2 =
∫ L

0
dx

{
ψ†(x)

(
− ∂2

x

2m∗ − μ + B2 sin(2kF x)

)
ψ (x)

+ [�2ψ
†(x)∂xψ

†(x) + H.c.]

}
. (A1)

In Eq. (1), ψ is the Fermi operator, μ the chemical potential,
kF = √

2μm∗ the Fermi momentum, m∗ the effective mass,
�2 the p-wave pairing potential, and B2 a competing mass.
The term proportional to B2 can emerge, for example, due
to the interplay with phonons [69,70], or can be artificially
engineered by external gates capacitively coupled to the
system [33,71,72]. For large enough chemical potential, we
can safely perform the linearization of the theory around

195303-5



N. TRAVERSO ZIANI et al. PHYSICAL REVIEW B 101, 195303 (2020)

the Fermi points, identifying vF = √
2μ/m∗ as Fermi veloc-

ity. With periodic boundary conditions, the diagonalization
is straightforward. With open boundary conditions for the
fermionic operator ψ (0) = ψ (L) = 0, the procedure is more
cumbersome but similar to Ref. [57]. One has

ψ (x) = eikF xψR(x) + e−ikF xψL(x), (A2)

with ψR(x) and ψL(x) obeying the boundary conditions re-
ported in Eqs. (4) and (5). Explicitly,

ψR(x) = −i√
2L

∞∑
n=−∞

einπx/Lc(n+L)kF /π , (A3)

with cp the fermionic operator annihilating an electron with
wave function ζ (x) = √

2/L sin(pπx/L). By neglecting fast
oscillating terms, in the limit LkF /π � 1, and upon renor-
malization of the parameters (B = B2/2, � = �2kF ), the
Hamiltonian in Eq. (6) is recovered. One comment is in order:
Since � = kF �2 and the linearization is only valid for large
kF , in view of the fact that the gap in the spinless topological
superconductor diverges as the chemical potential tends to
infinity, the linear model only describes the properties of
the original quadratic model in the limit of large gap. This
means that little or no hybridization of the Majorana modes is
expected.

APPENDIX B: EIGENFUNCTIONS

We provide the explicit expression for the eigenfunctions in
Eq. (11) that correspond to nonzero energy, in the case B = 0.
From the eigenfunctions, the Green’s functions are calculated
analytically.

We find

χ (+)
q = A(q)

+ eiπq x/L + B(q)
+ e−iπqx/L, (B1)

χ (−)
q = A(q)

− eiπqx/L + B(q)
− e−iπqx/L, (B2)

ξ (+)
q = C(q)

+ eiπqx/L + D(q)
+ e−iπqx/L, (B3)

ξ (−)
q = C(q)

− eiπqx/L + D(q)
− e−iπqx/L, (B4)

where q is a positive integer. The corresponding excitation

energies are εq =
√

v2
F π2q2/L2 + �2. The solutions for neg-

ative energy εq = −
√

v2
F q2 + �2 are the complex conjugate

of the negative of the solutions with positive eigenvalue.
This fact can be directly inferred from the symmetries of the
Hamiltonian in Eq. (1), with B = 0.

For q positive and even, we obtain the coefficients

A(q)
+ = εq + vF πq/L√

8Lεq

, (B5)

A(q)
− = −εq − vF πq/L

εq + vF πq/L
A+, (B6)

B(q)
+ = A(q)

− , (B7)

B(q)
− = A(q)

+ , (B8)

C(q)
+ = C(q)

− , (B9)

C(q)
− = − i�√

8Lεq

, (B10)

D(q)
+ = −C(q)

+ , (B11)

D(q)
− = −C(q)

− . (B12)

For q odd, we have to replace A(q)
± ↔ C(q)

± , B(q)
± ↔ D(q)

± .
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