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Temperature-dependent photoluminescence in Ge: Experiment and theory
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We report a photoluminescence study of high-quality Ge samples at temperatures 12 K � T � 295 K, over a
spectral range that covers phonon-assisted emission from the indirect gap (between the lowest conduction band
at the L point of the Brillouin zone and the top of the valence band at the � point), as well as direct gap emission
(from the local minimum of the conduction band at the � point). The spectra display a rich structure with a
rapidly changing line shape as a function of T. A theory is developed to account for the experimental results using
analytical expressions for the contributions from LA, TO, LO, and TA phonons. Coupling of states exactly at the
� and L points is forbidden by symmetry for the latter two phonon modes, but becomes allowed for nearby states
and can be accounted for using wave-vector dependent deformation potentials. Excellent agreement is obtained
between predicted and observed photoluminescence line shapes. A decomposition of the predicted signal in
terms of the different phonon contributions implies that near-room temperature indirect optical absorption and
emission are dominated by “forbidden” processes, and the deformation potentials for allowed processes are
smaller than previously assumed.
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I. INTRODUCTION

Optical absorption and spontaneous emission are related
by the so-called van Roosbroeck–Shockley (RS) equation
[1–4] in semiconductors that are in thermal equilibrium with
black-body radiation. A generalization of this equation to
quasiequilibrium conditions in the conduction band (CB) and
in valence band (VB) leads to
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Here the left-hand side is the differential photon emission
rate per unit sample volume V at photon frequency ω and
solid angle �. On the right-hand side, α(ω) is the absorption
coefficient, nop is the index of refraction, �F = Fc − Fv the
difference between the CB and VB quasi-Fermi levels, and
T the absolute temperature. Finally, h̄, kB, and c denote the
reduced Planck constant, Boltzmann’s constant, and the speed
of light in vacuum, respectively.

Equation (1) is mostly used to model photoluminescence
(PL) spectra from direct gap materials, but it is well known
that its validity extends to indirect gap semiconductors [5].
Application examples include the determination of the absorp-
tion coefficient in Si devices from PL or electroluminescence
measurements [6–8]. On the other hand, predictions of PL
spectra from Eq. (1) using theoretical expressions for the indi-
rect absorption are very rare, except at very low temperatures
where the PL consists of sharp peaks that are rather insensitive
to the detailed photon-energy dependence of α(ω). In the case
of Ge, if we use the textbook expression for the absorption co-
efficient, with phonon creation and phonon annihilation com-
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ponents given by α±(ω) ∝ (h̄ω − Eind ∓ h̄� j )
2/(E0 − h̄ω)2,

where Eind is the fundamental indirect gap, E0 the lowest di-
rect gap, and h̄� j a characteristic phonon energy, one obtains
from Eq. (1) the PL spectra in Fig. 1.

It is apparent that no well-defined indirect PL peak is
predicted for T > 200 K, in strong disagreement with ex-
perimental observations. It is therefore not surprising that
researchers have resorted to more or less ad hoc expressions to
model indirect PL from Ge [9,10]. These expressions, while
useful, are unsatisfactory for the purpose of studying the
electron-phonon interaction underlying indirect gap emission.
On the other hand, fully ab initio approaches to the compu-
tation of indirect absorption spectra have become possible in
recent years [11,12]. Yet the results do not lend themselves
to the fitting of PL spectra via Eq. (1) nor to the modeling of
the optical response of Ge-like materials and structures in the
proximity of the direct gap. The latter are attracting increasing
attention after the demonstration of lasing in strained Ge and
in Ge1-ySny alloys [13,14]. A rigorous yet practical theory
of PL in Ge is also needed—-based preferably on analyti-
cal expressions—to address suggestions that quasiequilibrium
may not be attainable in defected or highly doped Ge [15,16].
This may require a theory beyond Eq. (1) [17]. Furthermore,
PL has emerged as the most reliable technique for the mea-
surement of the separation between direct and indirect gaps
in Ge1-ySny alloys [18,19]. However, the determination of the
indirect gap energy requires additional calibrations due to the
lack of suitable theoretical expressions to fit the indirect gap
emission.

The need for a realistic description of the indirect PL
in Ge is also apparent in the field of group-IV spintronics
[20], where the spin orientation of photoexcited carriers is
monitored using circular polarization measurements of the
emitted light [21,22]. Similarly, PL studies play an important
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FIG. 1. Calculated indirect PL spectrum for Ge using Eq. (1)
and the textbook prediction for indirect gap absorption assuming
constant energy denominators in the perturbation theory expressions.
The phonon energy was taken as 27.5 meV, corresponding to an LA
phonon. The needed quasi-Fermi levels were computed as described
in the text. The absolute and relative scales are arbitrary and were
selected for visualization purposes.

role in the development of strained Ge microstructures and
devices [23–26].

The main reason for the failure of the textbook absorp-
tion expressions in the prediction of indirect PL spectra is
their strong (E0 − h̄ω)−2 divergence as the direct gap is ap-
proached. This divergence arises from the assumption of con-
stant energy denominators in the second-order perturbation
expressions used to compute the phonon-assisted absorption.
The assumption is very good for Si but poor for Ge due
to the small 0.14-eV separation between Eind and E0. The
unique challenge presented by the Ge band structure was first
tackled by Hartman [27], who derived analytical expressions
for the indirect absorption coefficient without the assumption
of constant denominators. The Hartman expression, with suit-
able excitonic corrections, was recently shown to agree very
well with the experimental room-temperature indirect gap
absorption in Ge [28,29]. Since this expression has a weaker
(E0 − h̄ω)−1/2 divergence, it can be expected to lead to much
better PL predictions when inserted into Eq. (1).

In this paper, we present a combined experimental and the-
oretical study of PL in Ge. Our emphasis is not on extremely
low temperatures, for which many PL studies are available
[30–34], but on the intermediate range between cryogenic and
room temperature, which provides the best test of theoretical
predictions based on Eq. (1). Some earlier work suggested the
need to include no-phonon transitions to account for indirect
gap PL [9]. These transitions are very difficult to model from
a microscopic perspective. To ensure that they are minimized,
we carried out our experiments on the highest-quality bulk
germanium wafers commercially available. On the other hand,
Ge has a very large ambipolar diffusion coefficient [35]. This
means that the PL signal in bulk samples originates from large
volumes over which the photoexcited carrier concentration

can vary substantially, requiring point by point calculations of
the quasi-Fermi levels and reabsorption corrections to com-
pute the signal reaching the detector. Furthermore, the carrier
diffusion process has a large lateral component, so standard
one-dimensional models are not suitable to compute steady-
state carrier concentrations [36]. Since the required numerical
solution of the realistic three-dimensional diffusion equation
is impractical for the analysis of experimental data, we have
developed an effective one-dimensional equation where the
lateral out-diffusion appears as an effective diffusion length
that depends on the laser beam waist. We find this dependence
to be very significant. This indicates that the neglect of lateral
out-diffusion can lead to large systematic errors in power-
dependence studies.

Our results show that the PL line shape changes dra-
matically with temperature, a strong indication that phonons
of very different frequencies are involved in the emission
process. Since the minimum of the CB is at the L point of the
Brillouin zone (BZ), and the maximum of the valence band
occurs at the � point of the BZ, wave-vector conservation
requires that these phonons should have wave vectors near
the L point of the BZ. Earlier low-temperature absorption
and PL work has found evidence that longitudinal acoustic
(LA), transverse optic (TO), longitudinal optic (LO), and
transverse acoustic (TA) phonons [31,37] are involved. The
frequencies are similar for the first three modes, but the
TA frequencies at the L point are very low in tetrahedral
semiconductors [38]. Therefore, the interplay between TA
phonons and the higher-frequency LA, LO, and TO modes
must be responsible for the observed PL line-shape changes
as a function of temperature. However, the electron-phonon
coupling of electronic states at the � and L points in the
BZ vanishes for TA or LO phonons both in the CB and in
the VB [31]. Accordingly, if TA- and LO-induced transitions
contribute to the PL this must be due to lower-symmetry
states near the � and L points. It then follows that the
electron-phonon coupling (deformation potential) should be
taken as a function of the wave vectors that becomes zero
for states exactly at L and �. This wave-vector dependence,
when incorporated into the corresponding perturbation theory
expressions, leads to “forbidden” absorption coefficients with
a very different energy dependence compared to its allowed
counterparts. We have derived some of these forbidden ex-
pressions using the same approximations that lead to the Hart-
man model for allowed LA coupling, and we will show that
they play an important role in matching the PL line shapes via
Eq. (1).

The number of possible phonon-assisted transition chan-
nels becomes quite high when one includes forbidden
electron-phonon coupling. Furthermore, if a process can occur
via two or more mechanisms, there is always the possibility of
interferences, so that the phase of the electron-phonon matrix
elements becomes important. The spirit of our theoretical
work, however, is not to include every possible process but
to identify the main contributions that give a satisfactory
description of the PL. We find that a single transition channel
per phonon is sufficient for this purpose, leading in fact to
excellent agreement with experiment. For the selection of
the relevant forbidden processes we are guided by ab initio
calculations of the electron-phonon interaction in Ge [39–41].
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In particular, the work of Tandon et al. is very useful for
this purpose because it presents electron-phonon matrix ele-
ments over the entire BZ [40]. In addition, there are several
experimental and theoretical results that impose severe con-
straints on the possible coupling mechanisms. For example,
the electron-phonon coupling between the � and L points in
the CB determines the intervalley carrier scattering rate [42],
the linewidth of the direct gap exciton [43], and contributes to
the indirect absorption [29]. These three seemingly different
phenomena have been fit with the same deformation potential
DLA ∼ 4.2 × 10−8 eV/cm assuming that only LA phonons
contribute. If other phonons must be included, as suggested by
our PL results, then we must require that the phonon combina-
tion that fits the PL results still accounts for the other non-PL
measurements. Furthermore, at the highest temperatures, clear
evidence is seen for direct gap emission that is not mediated
by phonons. Our theoretical model should also account for
the relative strength of the direct and indirect signals. On
the theoretical front, Tandon et al. have also calculated the
electron-phonon broadening of states throughout the BZ [40],
and Tyuterev et al. have shown from ab initio simulations
that the contribution of TA phonons to the �-L scattering
time is negligible [39]. We will show that our PL model not
only agrees self-consistently with all available experimental
data, but it is also consistent with the ab initio predictions in
Refs. [39,40].

II. EXPERIMENT

The sample used for the PL experiment was an epi-ready,
double-side polished Ge substrate from Umicore [44]. The
wafer’s rms roughness is better than 1 nm, and the impurity
concentration is below 2 × 1010 cm−3, corresponding to a
resitivity ρe > 57 � cm. The sample was mounted strain-free
in a CTI Cryogenics model 22 refrigerator cryostat in contact
with a thermal block. A single-stage refrigerator enables the
block to be cooled down to 10 K. The temperature is con-
trolled via a proportional-integral-derivative (PID) feedback
system with the unit’s heater and temperature sensor mounted
to the sample block. A 5-10-min time lag was used to allow
temperatures to stabilize after moving to the next selected
temperature. Carriers were photoexcited either with a Laser-
glow Technologies 1064-nm (1.165-eV) laser or an Excel
Laser Quantum 532-nm (2.33-eV) laser. Each laser system
was current controlled to adjust the output power delivered to
the sample, as measured by a Newport model 1830-C power
meter. The laser beam was focused with an f = 250-mm
plano-convex lens that produces a minimum beam waist w0 ∼
250 μm on the sample. The average laser power did not
exceed 50 mW. The emitted light was conditioned using an
850-nm-cutoff low-pass filter and a 1064-nm Semrock Raman
edge filter, and focused on the entrance slit of an Acton
Spectra Pro 275 spectrometer equipped with a 600-g/mm,
1600-nm blaze grating. The dispersed light [with a resolution
of 6 nm (5.4 meV) at 1-mm slits], was detected with an
Electro-Optical liquid nitrogen cooled ex-InGaAs photodiode
at the exit slit. The signal from the detector was processed in
a single point scan lock-in amplifier (Stanford SR830 DSP)
configuration. The modulation was provided by an optical
chopper that halves the net power incident on the sample. The

resulting spectra were converted to an energy scale, corrected
for the constant slit width during the measurements, and for
the system’s spectral response, which was calibrated with a
tungsten lamp.

The measured PL obtained with either 1064- or 532-nm ex-
citation is virtually identical, as expected if quasiequilibrium
conditions prevail in the CB and VB. Because of this strong
similarity we only show here results from the 532-nm experi-
ments. Figure 2 shows spectra for nine different temperatures
between 12 and 295 K. The spectra have been normalized to
the same maximum value for better visualization of the line-
shape changes. However, relative intensities are also predicted
by Eq. (1) and are shown in Fig. 3. They will be discussed
below.

We see that the PL line shape changes dramatically as a
function of temperature, which we assign to the interplay be-
tween different phonon modes. These different contributions
seem to be comparable at a temperature close to 160 K.

III. ILLUMINATION MODEL
AND QUASI-FERMI LEVELS

The quasi-Fermi levels required in Eq. (1) are obtained
from the calculated steady-state carrier concentrations under
laser illumination. For this, one solves a diffusion equation
with generation and recombination terms. The usual textbook
approach is to assume uniform illumination at the sample
surface, which leads to a simple one-dimensional diffusion
equation. However, this uniform illumination model is not
good for our experimental conditions due to the large am-
bipolar diffusion coefficient D in Ge [35]. Accordingly, one
needs to solve a more complicated diffusion problem given
by [36]

−D

[
1

r

∂

∂r

(
r
∂�n

∂r

)
+ ∂2�n

∂z2

]
= G(r, z) − �n

τ
. (2)

Here r is the radial coordinate in the plane of the sample
surface and z is the depth coordinate. �n = �p is the excess
carrier concentration, G the electron-hole generation rate per
unit volume, and τ the recombination lifetime. For our exper-
imental conditions the laser light is absorbed over distances
much smaller than the depth of focus of our lens, so that we
can approximate the generation rate as

G(r, z) = αImax(1 − R)

h̄ω
exp

(−2r2

w2
0

)
e−αz, (3)

where α is the absorption coefficient, Imax is the maximum
intensity of the incident laser beam, R the sample reflectance,
and w0 the beam waist at the focal point.

Our PL signal is obtained from an integration over r and z,
which suggests that we can compute approximate intensities
by defining an average excess carrier concentration

�n(z) = 2

w2
0

∫ w0

0
rdr�n(r, z). (4)

This average carrier concentration is then used to compute
the quasi-Fermi levels at depth z. An effective differential
equation for �n(z) can be derived by integrating Eq. (2) over
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FIG. 2. Experimental (circles) and theoretically predicted (solid lines) PL spectra for Ge at nine selected temperatures. All spectra have
been normalized to the same intensity for clarity. Note the expanded energy scale for the top row at the lowest temperatures. The vertical dotted
lines indicate the position of the indirect gap at each temperature. Peak assignments are shown in the 12 K spectrum. The LO contribution in
this spectrum appears as a weak shoulder in higher-resolution spectra [31].

the r coordinate. We obtain

− 2D

w0

∂�n

∂r

∣∣∣∣
w0

− D
∂2�n

∂z2

= (1 − e−2)P0(1 − R)

π h̄ωw2
0

αe−αz − �n(z)

τ
, (5)

where P0 is total incident power of the laser beam. This
is the standard one-dimensional equation for uniform illu-
mination except for the first term, which we then treat in
an approximate way. For this we notice that in the limit of
vanishing diffusion we should obtain �n ∝ exp(−2r2/w2

0 ), so
that ∂�n/∂r|w0 = −4�n(w0, z)/w0 � − 4

3�n(z)/w0. Insert-
ing this back into Eq. (5), we finally obtain a differential
equation formally identical to the one-dimensional equation
for uniform illumination
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�n(z) − �n(z)
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πw2
0 h̄ωD
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but with an effective diffusion length given by

1
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= 1
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+ 8

3w2
0

, (7)

where L = √
Dτ . The solution is therefore [2]
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exp

(
− z

Leff

)
− e−αz

]
, (8)

where s0 is the surface recombination velocity. For our
ultrahigh-purity sample, we estimate τ = 0.9 ms at room
temperature from a model that includes Shockley-Read-
Hall, Auger, and radiative recombination. Using the ex-
perimental value D = 53 cm2/s at 295 K [35] and w0 =
250 μm, we find L = 2000 μm and Leff = 150 μm. Thus,
the effect of lateral out-diffusion is dominant under our
experimental conditions. With s0 = 100 cm/s [45], we esti-
mate �n(100 nm) = 1.6 × 1016 cm−3 for P0 = 100 mW from
Eq. (8). But if we ignore the second term in Eq. (7), we find
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FIG. 3. Integrated Ge photoluminescence intensities as a func-
tion of temperature, normalized to unity for T = 295 K. The dots
correspond to experimental spectra excited with 50 mW (average
power) of 532-nm radiation. The solid line is the theoretical pre-
diction using the ambipolar diffusivity from Eq. (14). The dotted
line was obtained by ignoring the temperature dependence of the
diffusivity and using its T = 295 K value.

�n(100 nm) = 1.1 × 1017 cm−3, almost an order of magni-
tude higher. This suggests that studies of the power depen-
dence of the PL in Ge should carefully consider the role of
out-diffusion, particularly if much tighter focal waist values
are used. It is interesting to compare our approximate solution
to the numerical solution of the same problem for the case of
InN, as computed by Cuscó et al. [36]. They find that out-
diffusion reduces the peak carrier concentration by a factor
of 11.2, whereas our model predicts a reduction by a factor
of 12.6. Thus the agreement is very good, particularly in
view of the simplicity of our approach and the availability of
analytical solutions via Eq. (8).

The quasi-Fermi level Fc in the CB at depth z is obtained
by solving the equation

ni + �n(z)
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The prefactors are given by
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,

where mLd , m�d , and m�d are the density of states effec-
tive masses of the L, �, and � valleys with energies Eind,
E0, and E� with respect to the top of the valence band.
For the anisotropic L and � valleys this effective mass is
(m2

⊥m‖)1/3 where m⊥ is the transverse mass and m|| the
longitudinal mass. The functions F1/2 and F3/2 that appear in
Eq. (9) are Fermi integrals defined as in Ref. [46]. The terms
involving the F3/2 function correspond to nonparabolicity
corrections. The characteristic nonparabolicity energies ��

and �L can be derived from k·p theory. We obtain �� =
3
2 [2/E0 + 1/(E0 + �0)]−1. The corresponding expression for
�L is �L = [1/E1 + 1/(E1 + �1)]−1, but for higher accu-
racy we adjust this value to band-structure calculations as
described in Ref. [47].

The quasi-Femi level in the VB is obtained by solving the
equation
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The prefactors in this equation are given by

Nhh(T ) = 1

4
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2mhhkBT

π h̄2
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(
2mlhkBT
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4

(
2msokBT

π h̄2

)3/2

,

where mhh, mlh, and mso are the effective masses of the heavy-,
light-, and split-off holes, respectively. The nonparabolicity
terms and their numerical prefactors were obtained from fits
to the valence-band density of states computed by Rodríguez-
Bolívar et al. [48]. These fits are valid for hole energies less
than 0.4 eV. The nonparabolicity corrections in Eqs. (9) and
(11) give an excellent account of the deviation between the
measured intrinsic carrier concentrations and the predictions
from a simple two-band parabolic model [49], but they could
be neglected with little error for the computation of PL
spectra.

The thermal occupation model can also be used to derive
an expression for the Thomas-Fermi screening wave vector
corresponding to the photoexcited carriers [50,51]. Neglecting
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the nonparabolicity components, we obtain

k2
T F = 4πe2

kBT

{
4NL

c (T )F−1/2
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+ N�
c (T )F−1/2

(
Fc − E0

kBT

)
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(−Fv
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)}
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The ambipolar diffusion coefficient is needed at all measure-
ment temperatures, and we compute it from the expression

D = Dnμp + Dpμn

μp + μn
. (14)

Here μn, μp are the temperature-dependent electron and hole
mobilities, respectively, from Ref. [52]. The electron and
hole diffusion coefficients are related to the mobilities by the
generalized Einstein relations:

Dn = μnkBT

e

{
F1/2[(Fc − Eind )/kBT ]

F−1/2[(Fc − Eind )/kBT ]

}

Dp = μpkBT

e

{
F1/2(−Fv/kBT )

F−1/2(−Fv/kBT )

}
, (15)

where the curly brackets become unity in the nondegener-
ate limit. Equation (14) gives D(295 K) = 63.7 cm2/s and
D(135 K) = 148 cm2/s, in good agreement with the di-
rect measurements D(295 K) = 53 cm2/s and D(135 K) =
142 cm2/s in Ref. [35]. However, the predicted value
D(4.2 K) = 2940 cm2/s is one order of magnitude higher
than the measured excitonic diffusion coefficient D(4.2 K) =
300 cm2/s in Ref. [53]. Furthermore, in the case of Si, Zhao
[54] has found that the ambipolar diffusion coefficient follows
Eq. (14) from room temperature down to 250 K, but it de-
creases at lower temperatures, in complete disagreement with
the prediction from this equation. Efros [55] has presented
a theory that attempts to explain the discrepancy in terms
of carrier-carrier interactions in the photoexcited plasma, but
application of this theory to Ge gives only a small correction
for our typical photoexcitation levels.

IV. ABSORPTION THEORY

A. Hamiltonians

The absorption processes relevant for the calculation of the
photoluminescence are determined by the electron-radiation
and electron-phonon interaction. In the dipole approximation
the electron-radiation interaction is given by

HeR = HeR(a†
λ + aλ)

HeR =
(

e

m0

)(
4π

n2
opV

)1/2(
h̄

2ω

)1/2

×
∑

k,m,m′
(êλ · Pm′k,mk)c†

m′kcmk, (16)

where e and m0 are the free-electron charge and rest mass,
a†

λ (aλ) is a creation (annihilation) operator for a photon with
frequency ω and polarization λ, êλ a unit polarization vector,
and Pm′k,mk the momentum matrix element between Bloch

states mk and m′k with creation and annihilation operators
(c†

mk, cmk) and (c†
m′k, cm′k), respectively. The electron-phonon

interaction is written as

HeP =
√
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2V ρ

∑
j

∑
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∑
kq

√
1

�q j

× D j
m′m(k + q, k)(aq j − a†

−q j )c
†
m′k+qcmk, (17)

where D j
m′m(k + q, k) is the so-called deformation potential,

and (a†
q j, aq j) are the creation/annihilation operators for a

phonon of wave vector q in branch j. Prefactors have been
chosen to match the standard Conwell definitions of interval-
ley deformation potentials [41,56]. Theorists [57] are more
likely to use the matrix element

gm′m j (k, q) =
√

h̄

4� j (q)M
D j

m′m(k + q, k), (18)

where M is the mass of a Ge atom. Detailed ab initio cal-
culations of gm′m j (k, q) for diamond, Si, and Ge have been
presented by Tandon et al. [40,58]. The deformation potential
is related to the phonon eigenvectors 
e(b|q j) (where b is the
basis index) by

D j
m′m(k + q, k) =

√
2

∑
b


e(b|q j ) · 
Db
m′m(k + q, k), (19)

where 
Db
m′m(k + q, k) is a matrix element of the potential-

energy gradient between the Bloch states m′, k + q and m, k
[57].

Notice that for notational compactness we omit the spin
indices in Eqs. (16) and (17). For all calculated interband
transitions between a band m and a band m′ below, we add
over all spins. Since HeR and HeP do not flip spins, these spin
sums introduce factors of 2.

B. Direct absorption

Figure 4 shows schematically the absorption processes
in Ge. Direct absorption is caused by the electron-radiation
interaction only (solid red arrow in Fig. 4), so that the tran-
sition rate R can be obtained using Fermi’s golden rule to
first order. The absorption coefficient needed for Eq. (1) is
obtained as α = Rnetnop/c, where Rnet is the net transition rate
that accounts for recombination of the photoexcited carriers.
Accordingly, we obtain

αm→m′,free(ω) = 2π

h̄

(
nop

c

)(
e

m0

)2
(

4π

n2
op

)(
h̄

2ω

)
1

V

×
∑

k

|(êλ · Pm′k,mk)|2[ fmk − fm′k]

× δ(h̄ω − Em′k + Emk) (20)

for absorption from a band m to a band m′. Here the f ’s
are the Fermi-Dirac occupation factors and the E’s are the
energies for the Bloch states m′k and mk. The “free” subscript
highlights the fact that this expression does not include exci-
tonic effects, which will be discussed below. The evaluation
of |(êλ · Pm′k,mk)|2 requires an average over the angle between
the polarization vector and wave vector [4]. In cubic systems,
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FIG. 4. Schematic depiction of the possible quantum-mechanical
routes to indirect and direct gap optical absorption in Ge. The solid
lines indicate optical transitions induced by the electron-radiation
interaction HeR; dashed lines correspond to the electron-phonon
interaction HeP. The relevant states are labeled by their double-group
representations. Shown in magenta are the single-group representa-
tions if spin-orbit coupling is neglected.

this average is most easily performed by adding the values
obtained from polarization directions along each of the three
Cartesian axes and dividing by 3. We are mainly interested in
absorption across the direct gap E0, for which the average is

P2/3, where P can be obtained from the �−
7 effective mass

me [equal to the density of states mass m�d in Eq. (10)] us-
ing m−1

e = m−1
0 + 2

3 (P/m0)2[2/E0 + 1/(E0 + �0)]. Here �0

is the spin-orbit splitting at �. Within the parabolic approxi-
mation and under the assumption of spherical symmetry, the
delta function in Eq. (20) requires that the electron energy
in the CB be Ec = seH E0 + shH h̄ω and the valence band
energy be Ev = seH (E0 − h̄ω), where seH = me/(me + mH ),
shH = mH/(me + mH ), and mH is the hole mass [H = hh
(heavy hole), lh (light hole)]. This implies that the square
bracket containing Fermi functions can be taken out of the
summation over wave vectors. The resulting expression is
then proportional to the joint density of states at energy h̄ω,
so that the absorption becomes

αfree(ω) = 4
√

2e2P2

3m2
0 h̄3ωcnop

√
h̄ω − E0

× {
μ

3/2
hh [ fhh(h̄ω) − fc(h̄ω)]

+μ
3/2
lh [ flh(h̄ω) − fc(h̄ω)]

}
, (21)

where μhh (μlh) is the reduced effective mass for the CB
electron and the heavy (light) hole.

C. Indirect absorption

Indirect absorption is caused by the combined effect of the
HeR and HeP perturbations, so that the lowest-order contri-
butions to the transition rate can be obtained from Fermi’s
golden rule to second order. Using Eqs. (16) and (17), we
obtain for the net phonon-assisted absorption from a VB band
m to a conduction band m′

α±
m→m′,free = 2π2e2h̄2

m2
0ρcnop

(
1

h̄ω

)
1

V 2

∑
jkq

∣∣∣∣∣
∑
m′′

D j
m′m′′ (k + q, k)(êλ · Pm′′k,mk)

h̄ω − Em′′ (k) + Em(k) − iηm′′k,mk
+ D j

m′′m(k + q, k)(êλ · Pm′k+q,m′′k+q)

h̄ω − Em′ (k + q) + Em′′ (k + q) − iηm′k+q,m′′k+q

∣∣∣∣∣
2

× 1

�q j

[(
nq j + 1

2
± 1

2

)
( fmk − fm′,k+q) ± fm′,k+q(1 − fmk)

]
δ(Em′ (k + q) − Em(k) − h̄ω ± h̄�q j ), (22)

where the “+” and “−” superscripts correspond to phonon
creation and annihilation, respectively, and the total absorp-
tion is αm→m′ = α+

m→m′ + α−
m→m′ . In Eq. (1) the roles are

reversed, with α+
m→m′ giving emission with the annihilation

of a phonon, and α−
m→m′ giving emission with the creation

of a phonon. In Eq. (22) nq j is the Bose-Einstein occupa-
tion number for the phonon of branch j and wave vector q
that participates in the absorption, and the η’s represent the
broadening of the intermediate states. The first term inside
the square bracket corresponds to electron-phonon coupling in
the CB, and the second term to electron-phonon coupling
in the VB. This indirect absorption expression is consider-
ably more complicated than its direct absorption counterpart,
Eq. (20), and requires additional assumptions to reduce it to
analytical expressions comparable to Eq. (21). The first com-
mon approximation is to neglect the wave-vector dependence
of the phonon frequencies, using their value at the L point.
Even within this approximation, the square bracket containing
occupation numbers cannot be taken out of the summation, as

in the case of direct absorption. However, for the conditions
in our experiments it is an excellent approximation to replace
it by the expression

N±
j =

(
n j + 1

2
± 1

2

)
−

(
n j + 1

2
∓ 1

2

)

× exp
±h̄� j − h̄ω + �F

kBT
, (23)

which is independent of wave vector. Here � j is the frequency
of the mode of branch j at the wave vector of the L point. Note
that this approximate expression still vanishes identically at
the gain threshold h̄ω = �F , so that Eq. (1) does not diverge
at this frequency.

Additional approximations require a careful analysis of the
absorption paths in Fig. 4. For the “E0 route”, there is a virtual
optical transition across the direct gap and a virtual phonon
transition in the CB from states near � to states near L. The
“E ′

0 route” is similar but involves a virtual optical transition

195204-7



MENÉNDEZ, POWELEIT, AND TILTON PHYSICAL REVIEW B 101, 195204 (2020)

across the E ′
0 gap. For the “E1 route,” there is a virtual optical

transition across the E1 or the E1 + �1 gaps followed by a
virtual phonon transition in the VB from states near � to states
near L. Thus the energy denominators in Eq. (22) are close
to h̄ω − E0 for the E0 route, h̄ω − E ′

0 for the E ′
0-route, and

to h̄ω − E1 for the E1 route. But, since the spectral region
of maximum interest is Eind � h̄ω � E0, the E0 route is en-
hanced by at least [(Eind − E1)/(Eind − E0)]2 � 100 relative
to the E1 route and [(Eind − E ′

0)/(Eind − E0)]2 � 280 relative
to the E ′

0 route. Hence we can neglect all but the E0 route if the
phonon deformation potentials corresponding to the different
routes are comparable in magnitude. This is the case for the
LA phonon [40]. Furthermore, since we are mostly interested
in the contribution from states close to L and �, it seems rea-
sonable to expand the deformation potential in a Taylor series
around the wave vectors k = 0 and k + q = kL = π

a0
(1, 1, 1)

corresponding exactly to the indirect gap. (Here a0 is the
cubic lattice parameter.) If the zeroth-order term D j

m′m′′ (kL, 0)
or D j

m′′m(kL, 0) are different from zero, the Taylor series can
be truncated at this stage and one can assume a constant
deformation potential. From symmetry considerations, this is
the case for both LA and TO phonons [31]. On the other hand,
whenever D j

m′m′′ (kL, 0) and D j
m′′m(kL, 0) are zero, as is the

case of TA and LO phonons [31], we must include linear or
higher-order terms in the Taylor expansion of the deformation
potential to obtain nonzero absorption. Such forbidden pro-
cesses will tend to be weaker, since a deformation potential
that vanishes exactly at the band extrema is not expected to be
large at nearby wave vectors. However, given the experimental
evidence that LO and TA phonons are involved in PL spectra,
forbidden processes cannot be neglected. Nevertheless, it
seems reasonable for these phonons to ignore the E1- and
E ′

0 routes and include only the-E0 route. We will make this
approximation for TA and LO phonons. On the other hand, the
case of TO phonons is interesting because DTO

L+
6 ,�−

7
(kL, 0) = 0

by symmetry [31]. Thus, the E0 route is forbidden for this
phonon, but we cannot rule out that a forbidden TO process
via the E0 route might be stronger than the allowed E1-route
counterpart. However, a group-theory analysis by Thomas
et al. [31] shows that the leading term in the Taylor expansion
of the TO-phonon deformation potential is quadratic in the
wave-vector displacement from the band extrema, while the
same expansion gives leading linear terms for TA and LO
phonons. Accordingly, we will ignore forbidden absorption
by TO phonons.

Based on all the above considerations, we propose a min-
imal model consisting of an allowed LA contribution via the
E0 route, an allowed TO contribution via the E1 route, and
forbidden TA and LO contributions via the E0 route. In all of
these cases, the summation over intermediate states in Eq. (22)
can be reduced to a single band. Furthermore, none of these
phonons are assumed to couple simultaneously in the CB and
VB, eliminating the interference implicit in Eq. (22).

D. Allowed TO absorption

For TO absorption via the E1 route we can greatly simplify
the calculation by assuming that the energy denominator is
the same for all intermediate states and neglecting its small

imaginary part. This “constant denominator approximation”
is the standard textbook approach to the calculation of in-
direct absorption. Furthermore, since the spin-orbit splitting
�1 is comparable to the dispersion energies that are being
neglected in the constant denominator approximation, we can
also disregard spin-orbit effects in the intermediate states and
use an average gap Ē1 = E1 + �1/2. We can then take the VB
states as belonging to two doubly degenerate L−

3 single-group
representations, one for each spin. There are 4 × 2 × 4 = 32
possible TO phonon matrix elements between these states
and the light-hole/heavy-hole quartet at �. The calculation
is tedious but straightforward using the method described by
Li et al. [22]. Combining these matrix elements with the
corresponding momentum matrix elements, carrying out the
sum over intermediate states, and averaging over three light
polarization directions, we arrive at

α±
TO,free(ω)

= 2π2e2 h̄2

m2
0ρcnop

(
1

h̄ω

)(
2P̄2

3

)(
4D2

TO

�TO

)
NTO

(h̄ω − Ē1)2

1

V 2

×
∑

H

∑
kq

δ[Ec(k + q) − EvH (k) − h̄ω ± h̄�TO]. (24)

The momentum matrix element P̄ is defined so that the
transverse CB effective mass at the L point is given by m−1

⊥ =
m−1

0 + (P̄/m0)2[1/E1 + 1/(E1 + �1)], and D2
TO is the average

of the squared modulus of the six different matrix elements
(3 �+

25 states and 2 L−
3 states) for a TO phonon when the

spin-orbit interaction is completely neglected. (The result is
independent of which TO partner is used [59].) Hence D2

TO
is directly comparable, via Eq. (18), with the results from
Tandon et al. [40]. The sum over wave vectors can be easily
converted into a double-integral over the CB and VB density
of states, by first making a change of variables to k and k′,
where k + q = kL + k′ .Using the delta function we obtain

1

V 2

∑
H

∑
kk′

δ[Ec(k′) − Evh(k) − h̄ω ± h̄�TO]

= 2m⊥(m‖)1/2
(
m3/2

hh + m3/2
lh

)
π4h̄6

×
∫ h̄ω−Eind∓h̄�TO−ε

0
dε

√
ε
√

h̄ω − Eind ∓ h̄�TO − ε,

(25)

where we have added over all (111) valleys in Ge. Here m‖ is
the longitudinal CB mass. The integral on the right-hand side
has a well-known analytic solution, and we finally obtain

α±
TO,free(ω) = 4e2

3π h̄3m0ρcnop

(
D2

TO

h̄�TO

)(
P̄2

m0

)

× m⊥(m‖)1/2
(
m3/2

hh + m3/2
lh

)(NTO

h̄ω

)

× (h̄ω − Eind ∓ h̄�TO)2

(h̄ω − Ē1)2 . (26)
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E. Allowed LA absorption

LA-mediated absorption is simpler than its TO counterpart in the sense that there is a single electron-phonon matrix element
connecting the �−

7 and L+
6 CB states. However, the absorption process follows the E0 route, and we cannot use the constant

denominator approximation because the dispersion energies involved are comparable in size with the denominator. If we then
follow the same procedure as in the case of the TO phonons, except for the step of taking the energy denominator out of the
wave-vector summation, we obtain

α±
LA,free(ω) = 8e2

3π2h̄3m0ρcnop

(
D2

LA

h̄�LA

)(
1

h̄ω

)(
P2

m0

)
m⊥(m‖)1/2

(E0 − h̄ω)2

× NLA

∑
H

(mH )3/2
∫ h̄ω−Eind∓h̄�LA

0
dε

√
ε
√

h̄ω − Eind ∓ h̄�LA − ε[ h̄ω−Eind∓h̄�LA−ε
seH (E0−h̄ω) + 1

]2 . (27)

The parameter D2
LA is often referred to as D2

�L in the literature [28,29] but here we use a consistent notation for all phonon
modes. Hartman [27] was the first to arrive at this integral and note that it has an analytical solution for h̄ω < E0. The resulting
absorption can be written as

α±
LA,free(ω) = 4e2

3π h̄3m0ρcnop

(
D2

LA

h̄�LA

)(
1

h̄ω

)(
P2

m0

)
m⊥(m‖)1/2NLA

∑
H

s2
eH (mH )3/2

×
{

2(E0 − h̄ω) + (h̄ω − Eind ∓ h̄�LA)/seH√
(E0 − h̄ω)

√
[(E0 − h̄ω) + (h̄ω − Eind ∓ h̄�LA)/seH ]

− 2

}
. (28)

Expanding the curly bracket in Eq. (28) to second order in x = s−1
eH (h̄ω − Eind ∓ h̄�LA)/(E0 − h̄ω), we recover the textbook

expression

α±
LA,free(ω) = e2

3π h̄3m0ρcnop

(
D2

LA

h̄�LA

)(
P2

m0

)
m⊥(m‖)1/2

(
m3/2

hh + m3/2
lh

)
NLA

(
1

h̄ω

)
(h̄ω − Eind ∓ h̄�LA)2

(E0 − h̄ω)2 , (29)

that was used to generate Fig. 1. However, this expression
is not valid for the E0 route in Ge because the condition
x � 1 is not satisfied except very close to the absorption
edge. Most absorption studies in the past focused on precisely
this absorption edge spectral region, which may explain why
Eq. (28) was not compared with experiment until very recently
[28,29]. For the range of temperatures of our PL experiments,
however, the absorption is needed over a broad spectral range
and Eq. (28) must be used. The most important difference be-
tween the two expressions is that the (E0 − h̄ω)−2 divergence
in Eq. (29) is replaced by a weaker (E0 − h̄ω)−1/2 divergence
in Eq. (28). This should have a dramatic impact on the
predicted PL line shape and likely eliminate the discrepancy
with experiment schematically illustrated in Fig. 1.

F. Forbidden LO and TA absorption

The Taylor expansion of the deformation potential
D j

cc(kL + k′, k) connecting states near the � point with states
near the L point in the lowest CB gives linear terms pro-
portional to the components of the vectors k′ and k. We
will refer to the terms linear in k′ as “near-L/� terms” and
those linear in k as “near-�/L terms” There is an important
difference between them. For h̄ω → E0, k → 0, so that the
electron-phonon coupling via near-�/L terms will vanish. This
should further suppress the (E0 − h̄ω)−1/2 divergence that
appears for allowed processes via the E0 route. On the other
hand, near-L/� terms should not suppress the divergence, and

therefore they might be expected a priori to represent the
strongest contribution. A group theory analysis by Thomas
et al. [31] indicates that these terms are

DLO
cc (kL + k′, k) � d ′

LOk′
z

DTA
cc (kL + k′, k) � d ′

TA(k′
ρ · êTA), (30)

where k′
z and k′

ρ are the longitudinal and transverse vector
components of k′ and êTA is a unit polarization vector for
the TA modes, which except for a trivial phase factor can
be chosen as either one of the phonon eigenvectors over the
two-atom unit cell.

We start first with the LO phonon. The derivation of the
absorption expression is very similar to the LA phonon case,
except that in the wave-vector summation in Eq. (22) there
is an extra factor of k′

z due to Eq. (30). When the expression
is finally converted to an integral over the energy, we end up
with

α±
LO,free(ω)

= 16e2

3π2h̄3m0ρcnop

(
m‖d2

LO

3h̄3�LO

)(
1

h̄ω

)(
P2

m0

)

× m⊥(m‖)1/2

(E0 − h̄ω)2 NLO

∑
H

m3/2
H

∫ h̄ω−Eind∓h̄�LO

0
dε

× ε3/2
√

h̄ω − Eind ∓ h̄�LO − ε[ h̄ω−Eind∓h̄�LO−ε
seH (E0−h̄ω) + 1

]2 . (31)
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The definite integral in Eq. (31) can also be given in an analytically closed form for h̄ω < E0. We then obtain for the absorption

α±
LO,free(ω) = 8e2

3π h̄3m0ρcnop

(
m‖d ′2

LO

3h̄3�LO

)(
1

h̄ω

)(
P2

m0

)
m⊥(m‖)1/2NLO

×
∑

h

s2
eH (mH )3/2

√
(E0 − h̄ω)

{(h̄ω − Eind ∓ h̄�LO)(−3
√

(E0 − h̄ω) +
√

(E0 − h̄ω) + (h̄ω − Eind ∓ h̄�LO)/seH )

+ 4seH (E0 − h̄ω)(−
√

(E0 − h̄ω) +
√

(E0 − h̄ω) + (h̄ω − Eind ∓ h̄�LO)/seH )}. (32)

Expanding Eq. (32) to third order in x = s−1
eH (h̄ω − Eind ∓ h̄�LO)/(E0 − h̄ω) we obtain

α±
LO,free(ω) = e2

3π h̄3m0ρcnop

(
m‖d ′2

LO

3h̄3�LO

)(
P2

m0

)
m⊥(m‖)1/2

(
m3/2

hh + m3/2
lh

)(NLO

h̄ω

)
(h̄ω − Eind ∓ h̄�LO)3

(E0 − h̄ω)2 , (33)

which has the cubic dependence on the shift from the absorption edge that has been anticipated for forbidden absorption [37].
As in the case of allowed absorption, however, this expression is not valid for the E0 route in Ge, and we must use Eq. (32).

For TA phonons, the dot product in Eq. (30) introduces an extra angular factor that complicates the calculation. If we simply
average over the angle prior to inserting into the absorption expression, we generate an extra factor of 1/2 that is canceled by
the summation over the two TA modes. Within this approximation, the expression for the absorption mediated by TA phonons is
the same as Eq. (32) with the substitution m‖d ′2

LO → 2m⊥d ′2
TA in the first bracket and the obvious use of TA frequencies instead

of LO frequencies throughout. An inspection of the Tandon et al. [40] calculations, however, shows that d ′
TA is considerably

smaller than d ′
LO. Furthermore, a TA absorption mechanism along the lines of Eq. (32) implies that TA phonons participate in

the relaxation of electrons from the � local minimum of CB to the L valley, and in the broadening of the direct gap exciton. But
ab initio simulations of carrier relaxation show no TA involvement [39], and Li et al. were able to explain the exciton broadening
quantitatively based only on LA phonon coupling [43,60]. These observations suggest that the TA forbidden absorption may be
dominated by near-�/L processes corresponding to those terms in the expansion of D j

cc(kL + k′, k) that are proportional to the
components of k. Indeed, the corresponding linear coefficient dTA along the (110) direction satisfies dTA 
 d ′

TA according to
Tandon et al. [40]. A rigorous calculation of this forbidden absorption is complicated because the anisotropy of dTA is not
compatible with the spherical symmetry of the near-� states. Therefore, we simply assume that the deformation potential
is given by dTAk, where k is the magnitude of k. Carrying out the calculation with the extra factor of k in Eq. (22), we
arrive at

α±
TA,free(ω) = 16e2

3π2h̄3m0ρcnop

(
d2

TA

h̄3�TA

)(
1

h̄ω

)(
P2

m0

)
m⊥

√
m‖NTA

×
∑

H

(mH )5/2

(h̄ω − E0)2

∫ h̄ω∓h̄�TA−Eind

0
dε

ε3/2
√

(h̄ω ∓ h̄�TA − Eind − ε)(
ε

seH (E0−h̄ω) + 1
)2 . (34)

The definite integral in Eq. (34) can also be calculated exactly for h̄ω < E0. We then obtain for the absorption

α±
TA,free(ω)

= 8e2

3π h̄3cnopρm0

(
d2

TA

h̄3�TA

)(
1

h̄ω

)(
P2

m0

)
m⊥

√
m‖N±

TA

∑
H

(mH )5/2s2
eH

(4seH (E0−h̄ω)+h̄ω∓h̄�TA−Eind )(
√

seH (E0−h̄ω)+h̄ω∓h̄�TA−Eind−
√

seH (E0 − h̄ω))−2(h̄ω∓h̄�TA−Eind )
√

seH (E0−h̄ω)√
seH (E0−h̄ω)+h̄ω∓h̄�TA−Eind

.

(35)

This expression should contain an additional factor of 2 due to the degeneracy of the TA branches. We chose not to include it
for better comparison of dTA with Ref. [40], where it is shown that one the TA branches has negligible coupling. While Eq. (35)
is clearly as invalid for h̄ω > E0 as Eqs. (28) and (32), it does not diverge as the direct gap is approached. Thus, the anticipated
further suppression of the divergence in this type of forbidden absorption is confirmed. This will have a profound impact on our
fits of the PL line shapes. It will not escape the reader that, since the deformation potential is squared in Eq. (22), the expression
for forbidden absorption will contain mixed terms of the form kk′. The contribution from such terms can also be calculated.
Not surprisingly, they yield a weak logarithmic divergence as h̄ω → E0. We will ignore these contributions but they can be
incorporated in future refinements. Carrying out the same expansion that leads to Eq. (33), we find that the constant denominator
limit of Eq. (35) is

α±
TA,free(ω) = e2

3h̄3m0nopπcρ

(
d2

TA

h̄3�TA

)(
1

h̄ω

)(
P2

m0

)
N±

TAm⊥
√

m‖
∑

h

(mh)5/2 (h̄ω ∓ h̄�TA − Eind )3

(h̄ω − E0)2 , (36)

which has the same photon-frequency dependence as Eq. (33).
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G. Broadening

While we have succeeded at developing analytical ex-
pressions for the main phonon channels that contribute to
the indirect gap PL in Ge, we have found that in the case
of the E0 route these expressions are not valid at h̄ω > E0,
and some of them diverge as h̄ω → E0. This is a matter of
concern because we are interested in calculating the PL over
an emission range below and above E0. While the h̄ω > E0

range is less important for indirect PL (because the emitted
light in this range is mostly reabsorbed, and it overlaps with
the direct gap emission), it is extremely difficult to carry
out any numerical analysis of the data with expressions that
contain mathematical singularities. Furthermore, the ability
to reproduce the experimental relative intensity of direct- and
indirect gap PL is an important test of theory, and this requires
that the calculated indirect gap PL at the direct gap energies be
at least mathematically meaningful. The solution to this prob-
lem is to restore the broadening parameter in Eq. (22), which
was set equal to zero in order to obtain analytical expressions

for the absorption. Adding the neglected imaginary part to
the integrals in Eqs. (27), (31), and (34) requires that they be
computed numerically. If we proceed this way, however, we
find that the magnitude of the absorption at h̄ω > E0 depends
strongly on the broadening parameter. For example, in the
case of allowed LA absorption, the absorption strength has
a 1/η dependence for h̄ω > E0. Therefore, we need a realistic
theory of intermediate state broadening.

For states at the � point of the BZ, Li et al. have studied
their broadening experimentally by monitoring the width of
the direct gap exciton as a function of hydrostatic pressure
[43]. Other experimental studies involve the time-resolved
dynamics of electrons in the CB [42,61–63]. Ab initio the-
oretical methods have been used to model such experiments
[39,41,64,65], and in the case of Tandon et al. to compute the
electron-phonon broadening of the electronic states in Si and
Ge over the entire BZ [40]. The broadening is related to the
transition rate R by η = Rh̄/2. Using Fermi’s golden rule, we
then obtain

ηmk =
(

π h̄

2ρV

) ∑
m′q j

1

�q j

∣∣D j
m′m(k + q, k)

∣∣2{(nq j + 1)δ[Em′ (k + q) − Em(k) + h̄�q j] + nq jδ[Em′ (k + q) − Em(k) − h̄�q j]},

(37)

where we have used �q j = �−q j . The predicted broadening ηc(ε) of a CB state at an energy ε above the minimum of the CB
at � can then be calculated “self-consistently” with the above absorption calculations by including the same electron-phonon
mechanisms. The calculation is straightforward using the same approximations and conversions to density of states integrations,
and we obtain ηc(ε) = η+

c (ε) + η−
c (ε), with

η±
c (ε) =

√
2

πρ

(
D2

LA

h̄2�LA

)
m⊥

√
m‖

(
nLA + 1

2
± 1

2

)√
E0 + ε − Eind ∓ h̄�LA

+ 2
√

2

3πρ

(
d ′2

LO

h̄4�LO

)
m⊥m3/2

‖

(
nLO + 1

2
± 1

2

)
(E0 + ε − Eind ∓ h̄�LO)3/2

+ 4
√

2

3πρ

(
d ′2

TA

h̄4�TA

)
m2

⊥
√

m‖

(
nTA + 1

2
± 1

2

)
(E0 + ε − Eind ∓ h̄�TA)3/2

+ 2
√

2

πρ

(
d2

TA

h̄4�TA

)
mcm⊥

√
m‖

(
nTA + 1

2
± 1

2

)
ε
√

E0 + ε − Eind ∓ h̄�TA

+ 2√
2πρ

(
D2

��

h̄2��

)
m3/2

�

(
n� + 1

2
± 1

2

)√
E0 + ε − E� ∓ h̄��, (38)

where it is understood that the contribution from each term
is zero when the arguments in the factors containing radi-
cals become negative. The first term is identical to the LA-
phonon contribution considered by Li et al. [43], while the
next three terms correspond to LO and TA coupling in the
CB, as discussed in the absorption calculations. The last
term was introduced by Li et al. [43] and corresponds to
electron-phonon scattering to the third lowest valley in the
CB, along the (�,0,0) direction. The broadening needed in
Eq. (22) depends on the CB and VB states connected by
the momentum operator, but since the top of the valence
band has zero broadening and the energy of the dominant
heavy-hole states is small compared with the energy of
the associated electron states, we can ignore the valence

band and assume that the broadening is given by Eq. (38)
alone.

Inserting Eq. (38) in the expressions containing the
integrals over the energy, the absorption can be computed
numerically. While one-dimensional integrals are very fast in
a modern PC and fitting routines incorporating such integrals
run in a reasonable time, in the case of the PL calculations
the number of such integrals is very high due to the need for
depth sampling. For this reason, we have generated ad hoc
analytical expressions that match the numerical results for
typical Ge parameters. For h̄ω � E0, we simply add ηc(0)/2
to the energy E0 in Eqs. (28), (32), and (35), where ηc(0) is
computed from Eq. (38). For h̄ω > E0 we write α±

H, j (ω) =
α±

H, j (E0/h̄)G±
H, j (ω), where α±

H, j (ω) is the heavy- or
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light-hole component of the absorption assisted by phonon
j. The functions G±(ω) are selected by noting that the
corresponding integrals can be viewed as the product
of a function times a Lorentzian, which can be roughly
approximated as proportional to the product of the value of
the function at the peak of the Lorentzian times the width of
the Lorentzian. Starting with such trial functions, we find by
inspection of the numerical results that

G±
H,LA(ω) =

√
h̄ω − Eind ∓ h̄�LA

E0 − Eind ∓ h̄�LA

×
√

(h̄ω − E0) + ηc[shH (h̄ω − E0)]

ηc[shH (h̄ω − E0)]

G±
H,i(ω) =

(
h̄ω − Eind ∓ h̄�i

E0 − Eind ∓ h̄�i

)

×
√

(h̄ω − E0) + ηc[shH (h̄ω − E0)]

ηc[shH (h̄ω − E0)]
, (39)

where i = TA, LO in the second equation. A comparison of
the absorption computed with the modified analytical expres-
sions and the numerical integrations shows that the agreement
is nearly perfect below E0 and for tens of meV above it, and
within 20% at energies 0.2 eV above E0. This is adequate for
our purposes.

H. Excitonic effects

The absorption theory we have developed so far ignores
excitonic effects. These effects are dominant at very low
temperatures, but even at room temperature they have been
shown to be critical to bring theory and experiment into agree-
ment, both for the direct [66,67] and indirect absorption in Ge
[28,29]. In PL experiments, however, the photoexcited carrier
concentration can be orders of magnitude higher than typical
photoexcitation levels in absorption measurements, and the
associated screening of the excitonic interaction cannot be
neglected a priori.

1. Direct gap excitons

A simple but accurate way to treat the effect of pho-
toexcited carriers is to use the Hulthen potential to model
screened excitons [68]. This potential mimics the Yukawa-
like expression for the screened Coulomb interaction, with
the significant benefit that analytical solutions are known.
Furthermore, Tanguy [69] has found a surprisingly simple
analytical form for the complex dielectric function at a direct
gap modified by a Hulthen exciton. Applied to the direct gap
of Ge, this theory amounts to rewriting Eq. (21) as

α(ω) = 4
√

2e2P2ω

3m2
0 h̄cnop

{
μ

3/2
hh H2(ω,�, Ry,hh, g)

× [ fhh(h̄ω) − fc(h̄ω)]

+μ
3/2
lh H2(ω,�, Ry,lh, g)[ flh(h̄ω) − fc(h̄ω)]

}
, (40)

where H2(ω,�, R, g) is the imaginary part of

H(ω,�, R, g) =
√

R

(h̄ω + i�)2 [g̃(ξ (h̄ω + i�))

+ g̃(ξ (−h̄ω − i�)) − 2g̃(ξ (0))]. (41)

Here � is the Lorentzian broadening of the exciton and R =
μe4/(2h̄2ε2

0 ) is the exciton Rydberg energy. In this expression
ε0 is the static dielectric constant. The functions g̃(ξ ) and ξ (z)
are defined as

ξ (z) = 2(E0−z
R

)1/2 + (E0−z
R + 4

g

)1/2 (42)

and

g̃(ξ ) = −2ψ

(
g

ξ

)
− ξ

g
− 2ψ (1 − ξ ) − 1

ξ
, (43)

where ψ (z) is the Digamma function. The parameter g char-
acterizes the screening. Perfect screening is obtained for
g → 0, for which Eq. (40) reduces to Eq. (21) in the limit
of vanishing Lorentzian broadening. Equation (40) implies
that the absorption consists of a heavy-hole exciton plus a
light-hole exciton. This additivity is not entirely justified, be-
cause the excitonic interaction is not diagonal in these states.
Therefore, one must—in principle—solve a more complicated
three-band problem. However, as discussed in Ref. [29], the
error made by adding separate heavy- and light- direct gap
excitons is small. Furthermore, we have applied such a model
to strained GaAs [70], where one sees distinct light- and
heavy-hole excitonic peaks, and we find excellent agreement
with their relative strengths. We have also improved our model
by including nonparabolicity and the wave-vector dependence
of the momentum matrix elements. These effects, however,
are less important for PL calculations and will be discussed
elsewhere.

For g → ∞, the Hulthen potential approaches the bare
Coulomb potential. At intermediate values, g = 1 determines
the onset of bound states and corresponds to the so-called ex-
citonic Mott criterion. By numerically comparing the Hulthen
potential with the Yukawa potential, Bányai and Koch [71]
find

g = 12

π2aBkT F
, (44)

where aB = h̄2ε0/(μe2) is the Bohr radius and kT F the
Thomas-Fermi screening wave vector. Using Eq. (13) it is
then possible to compute g, and we show in Fig. 5 results for
different photoexcitation levels.

We find that the sharp peak corresponding to bound exci-
tons disappears at relatively low densities in the 1016-cm−3

range. This is in very good agreement with experimental
results and more rigorous theoretical calculations in Ref. [73].
However, excitonic enhancements in the continuum remain
significant at much higher photoexcitation levels and must
be included in a realistic description of the direct-gap PL. In
particular, notice that the continuum excitonic enhancement
increases the slope of the absorption curve just above the band
gap relative to the perfect screening case. This affects the line
shapes computed with Eq. (1).
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FIG. 5. (a) Calculated screening parameter g in the Hulthen
potential as a function of the photoexcited carrier concentration.
(b) Absorption coefficient for E0 = 0.803 eV, � = 1 meV, and other
Ge parameters from Table I. Notice that the bound exciton sharp peak
disappears for a Mott density �n ∼ 3 × 1016, but the excitonic en-
hancement in the continuum persists to much higher photoexcitation
levels. The bound exciton peak is not observed experimentally at 300
K because the broadening parameter is at least twice the value used
in this simulation [72].

2. Indirect gap excitons

The observation that excitonic effects are important in
direct gap PL experiments suggests that the same should be
true for indirect gap emission. In fact, recent work has shown
that the incorporation of excitonic effects is crucial to match
the value of DLA obtained from absorption measurements
with the value deduced from time-resolved measurements
of carrier dynamics [28,29]. Since the effect of screening
is modest for our experimental conditions, we use the full
Coulomb interaction for our estimates. Analytical expressions
for indirect excitonic absorption were derived in a classic
paper by Elliott [74] under the constant denominator as-
sumption, which, as discussed above, is not valid for the E0

route in Ge. An excitonic theory applicable to Ge has only
recently been developed [28,29], but it involves numerical
triple integrals for each photon frequency. The approach is
therefore impractical for the computation of PL spectra, which
requires the calculation of absorption at all sampling depths.
We will therefore use Elliott’s constant denominator theory

to compute excitonic effects. The major differences between
the excitonic enhancement computed from Elliott’s theory and
the theory of Refs. [28,29] are that the former overestimates
somewhat the enhancement at the onset of absorption and
underestimates it when the photon energy approaches the
direct gap. But, at intermediate energies corresponding to the
maxima of the indirect PL at all but the lowest temperatures,
the two theories give similar enhancements.

Aside from the constant denominator approximation, a
second issue affecting excitonic calculations is that analytical
expressions can only be obtained under the assumption of
spherical symmetry. This is of course not valid in Ge, given
the strong anisotropy of its lowest CB valley. However, a
spherical model can be justified as a first approximation by
noting that the excitonic Hamiltonian can be written as a
sum whose first term does possess spherical symmetry, as
shown by Altarelli and Lipari (A-L) [75,76]. The spherical
component of the A-L Hamiltonian corresponds to effective
electron and hole masses

mL = 3m‖m⊥/(2m‖ + m⊥)

mh = 2mlhmhh/(mlh + mhh). (45)

This exciton is doubly degenerate (since it maps into the
heavy-hole and light-hole transitions), and its binding energy
is Ry = e4μLh/(2h̄2ε2

0 ), with μ−1
Lh = m−1

L + m−1
h . The exci-

tonic translational mass is MLh = mL + mh. Using values from
Table I, we obtain Ry = 2.65 meV and MLh = 0.195. On the
other hand, the full A-L Hamiltonian yields a lower and upper
exciton, with binding energies of 4.20 and 3.18 meV, respec-
tively, and anisotropic translational masses that are different
for each exciton and strongly nonparabolic [75]. It seems then
reasonable to “renormalize” the masses in Eq. (45) so that
they reproduce a suitable average of the two A-L binding
energies and approximate the excitonic density of states in the
full A-L model. We then fit parabolic dispersion curves to the
dispersion relations computed in Ref. [75] and we assume that
the weighting factors to obtain the average binding energies
are the partial density of states corresponding to each exciton
(at very low temperatures we might choose the lower exciton
values, but we are more interested in intermediate temper-
atures with kBT 
 Ry). Using this procedure we find that
the renormalized masses are m′

L = 3.51mL and m′
h = 0.99mh

This yields a renormalized binding energy R′
y = 1.37Ry, a

renormalized excitonic Bohr radius a′
B = e2/(2ε0R′

y), and a
renormalized translational mass M ′

Lh = m′
L + m′

h.

TABLE I. Electronic and band-structure parameters for Ge used in the computation of PL spectra. Values are given for room temperature
(T = 295 K). The second row indicates how the temperature dependence of the parameters was accounted for. If the temperature dependence
was neglected, the entry is left blank. Some parameters are not listed because they can be computed from the table entries using formulas given
in the text.

Temperature Eind E0 E1 �0 �1 P2/m0 P̄2/m0 �L

(K) (eV) (eV) (eV) (eV) (eV) (eV) (eV) (eV)
m‖
m0

mhh
m0

mlh
m0

295 0.660 0.805 2.109 0.287a 0.200b 12.61 12.94 1.405 1.58c 0.352 0.0386
0–295 See text Ref. [29] Ref. [29] Ref. [29] Ref. [29] Ref. [47] Ref. [29] Ref. [29]

aReference [77], at T = 10 K.
bReference [47].
cReference [78].
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Using our renormalized spherical exciton, the calculation of the phonon-induced absorption amounts to making the
replacement

1

V 2

∑
H

∑
kq

δ
[
Ec(k + q) − EvH (k) − h̄ω ± h̄� j

] → 2

V

∑
nq′

|Fn(0)|2δ
[

Eind + h̄2q′2

2M ′
Lh

+ E (n) − h̄ω ± h̄� j

]
. (46)

in the expressions for allowed j = LA,TO process, such as Eq. (24). Here q′ = q − kL, n stands generically for the internal
degrees of freedom of the exciton, and En is the corresponding energy for the state with an envelope function Fn(r) that satisfies
the excitonic Schrödinger equation. For forbidden absorption, we face the problem that in Eq. (30) we explicitly considered the
anisotropy of the L valley, but we are assuming a spherically symmetric exciton. We must then consider a spherically symmetric
deformation potential contribution to keep the problem tractable analytically, replacing Eq. (30) with the simpler expression d ′k′.
With the additional wave-vector factors, the expression equivalent to Eq. (46) is

1

V 2

∑
H

∑
kq

|k + q − kL|2δ[Ec(k + q) − EvH (k) − h̄ω ± h̄� j]

→ 2

V

∑
nq′

∣∣∣∣ ∂F ∗
n (r)

∂r

∣∣∣∣
r=0

− isLq′F ∗
n (0)

∣∣∣∣
2

δ

[
Eind + h̄2q′2

2M ′ + E (n) − h̄ω ± h̄� j

]
, (47)

where sL = mL/(mL + mh) for near-L/� processes and sL = mh/(mL + mh) for near-�/L processes. Notice that for hydrogenic
excitonic Hamiltonians Eq. (46) implies that only s-like functions will contribute to the absorption, a well-known fact from
Elliott’s theory. For forbidden scattering, on the other hand, the expression contains a derivative of Fn(r), which is only different
from zero for p states. This result was already found by Elliott for forbidden direct absorption. The difference in the indirect case
is that there is also a contribution from s states via the second term in the squared expression. The two terms do not interfere
because they are not different from zero simultaneously. Using Eqs. (46) and (47) the excitonic absorption can be computed in a
similar fashion as the absorption for free-electron-hole pairs.

a. Bound excitons. The bound exciton absorption for allowed phonon processes can be easily computed using the procedure
outlined by Elliott or the approach in Ref. [29] in the constant denominator limit. The result is, for LA phonons,

α±
LA,bound = 16

√
2e2

3πρm0cnop

(
D2

LA

h̄�LA

)(
1

h̄ω

)(
P2

m0

)(
nLA + 1

2 ± 1
2

)
(E0 − h̄ω)2

∑
n

a′−3
B (M ′

Lh)3/2 1

n3

√
h̄ω ∓ h̄�LA − Eind + R′

y/n2. (48)

For TO phonons:

α±
TO,bound = 64

√
2e2

3πρm0cnop

(
D2

TO

h̄�TO

)(
1

h̄ω

)(
P̄2

m0

)(
nTO + 1

2 ± 1
2

)
(Ē1 − h̄ω)2

∑
n

a′−3
B (M ′

Lh)3/2 1

n3

√
h̄ω ∓ h̄�TO − Eind + R′

y/n2. (49)

For “forbidden absorption” on the other hand, we have separate p-state and s-state contributions, given by

α±
j - p,bound(ω) = 16

√
2e2

3πρm0ρcnop

(
d2

h̄3� j

)(
1

h̄ω

)(
P2

m0

)(
n j + 1

2 ± 1
2

)
(E0 − h̄ω)2 h̄2(M ′

Lh)3/2
∑

n

n2 − 1

3a′5
Bn5

√
h̄ω ∓ h̄� j − Eind + R′

y/n2 (50)

and

α±
j - s,bound(ω) = 32

√
2e2

3πρm0cnop

(
d2

h̄3� j

)(
1

h̄ω

)(
P2

m0

)(
n j + 1

2 ± 1
2

)
(E0 − h̄ω)2 s2

L(M ′
Lh)3/2

∑
n

1

a′3
Bn3

(h̄ω ∓ h̄� j − Eind + R′
y/n2)3/2 (51)

for j= LO, TA. Notice that the use of the “renormalized” M ′
Lh

in the above equations corresponds to an enhancement factor
smaller than the one used in Eq. (48) of Ref. [29]. We believe
that the approach used here is a better approximation of the
exact A-L results, but we note that the difference is not very
important for our purposes, since at intermediate temperatures
the absorption is dominated by the continuum excitonic con-
tribution. Except for the fact that sL has a different meaning for
near-L/� and near-�/L forbidden processes, the expressions
in Eqs. (50) and (51) turn out to be valid in both cases if we
use the corresponding linear term coefficient (d or d ′). This is
due to our use of the constant denominator approximation for
excitonic effects as well as our approximation of a spherically
symmetric deformation potential. As a result of the constant

denominator approximation, all of our expressions for bound
excitons contain a (E0 − h̄ω)−2 divergence. We correct for it
in a rather crude way by making the replacement

(E0 − h̄ω)−2 → (E0 − Eind )−2. (52)

The justification for this substitution is that bound excitons
only play a significant role at the onset of absorption.

b. Continuum excitons. For the continuum solutions, the
internal quantum number n becomes a wave vector k, and the
solution can be written as (Ref. [29])

Fk(r) = 1√
V

�(1 + iν)eπν/2eik·r
1F1(−iν, 1,−ikr − ik · r),

(53)
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where 1F1 is a confluent hypergeometric function of the first

kind, and ν =
√

R′
y/ε, with ε = h̄2k2/(2μ′

Lh). For allowed

absorption we need in Eq. (46) the value

|Fk(0)|2 = 1

V
|�(1 + iν)|2eπν = 1

V

πν

sinh (νπ )
eπν. (54)

If we insert this into Eq. (46), we notice that in the limit
ν → 0, corresponding to vanishing excitonic interaction, we
would expect the two sides to be equal, but since we are using
the spherical approximation for excitons, the right-hand side
would be proportional to 2(m′

Lm′
h)3/2, whereas the left-hand

side is proportional to m⊥m1/2
‖ (m3/2

hh + m3/2
lh ), which is about a

factor of 2 larger. This is the same problem we faced when
we observed that it is not entirely correct to assume separate
light-hole and heavy-hole excitons at the direct gap, except
that in that direct case the discrepancy is only 14% [29]. To
circumvent this problem, we calculate the absorption with
the spherical part of the A-L Hamiltonian with and without
Coulomb interaction, so that the ratio of the two absorptions
gives an excitonic enhancement factor S(h̄ω) independent of
the mass “mismatch.” This also bypasses the disadvantages
of the constant denominator approximation. We then assume
that the experimental continuum absorption can be written as
α±

j,cont (ω) = S±
j (ω)α±

j,free(ω). This ensures that in the limit of
vanishing Coulomb interaction we recover the free-electron
results—including anisotropy—since in that case S±

j (ω) = 1.
Furthermore, the diverging factors (E0 − h̄ω)−2 from the
constant denominator approximation cancel out in the com-
putation of S(h̄ω), suggesting that our computed absorption
should be much more accurate in the continuum, since we are
not forced to make the crude approximation represented by
Eq. (52). Carrying out the excitonic calculation, we obtain

S±
j (ω) = 8

π

∫
dε

√
ε πν

sinh(νπ ) e
πν

√
h̄ω − Eind ∓ h̄� j − ε

(h̄ω − Eind ∓ h̄� j )
2

(55)

for j= LA, TO. An example of this function is shown in
Fig. 6. For forbidden absorption, we need the derivative of the
wave function in Eq. (53). This derivative contains two terms,
of which the second one is proportional to ν and thus smaller.
Neglecting this contribution we then obtain

∂F ∗
n (r)

∂r

∣∣∣∣
r=0

− isLq′F ∗
n (0) = i√

V
�(1 + iν)eπν/2[k − sLq′].

(56)

When squaring this expression there is a term proportional to
k · q′ that vanishes upon angular integration, and we finally
obtain an excitonic enhancement function

S±
j (ω) = 16

π

∫
dεε3/2 πν

sinh (νπ ) e
πν

√
h̄ω − Eind ∓ h̄� j − ε

(h̄ω − Eind ∓ h̄� j )
3

(57)

for j= LO, TA. An example of this function is also shown in
Fig. 6.

FIG. 6. Excitonic continuum enhancements for indirect absorp-
tion with phonon annihilation (which maps into indirect PL with
phonon emission) for the allowed and forbidden cases. The horizon-
tal scale is selected so that zero corresponds to the absorption edge
and 1 to the direct gap.

V. EXPERIMENTAL DATA FITS

The calculation of the PL emitted from a point at depth z
below the sample surface begins with an estimate of the pho-
toexcited carrier concentration via Eq. (8), which is needed
to determine the quasi-Fermi levels using Eqs. (9) and (11).
These quasi-Fermi levels are then used to calculate the absorp-
tion. We start with Eqs. (26), (28), (32), and (35), modified to
account for broadening as discussed in Sec. IV G. We then
multiply each of these expressions times the corresponding
excitonic enhancement factor in Eqs. (55) or (57) to obtain
the excitonic continuum contribution to the absorption. Next
we add the bound exciton contribution for each phonon mode
using Eqs. (48)–(51). with the approximation in Eq. (52). An
additional approximation is that we use for bound excitons the
same anisotropic deformation potential parameter d ′

LO used
for the continuum exciton.

The phonon-assisted absorption calculations are carried
out for the cases of phonon creation and annihilation and
added up. Next we add the direct absorption contribution
from Eq. (40). The final step is to compute the PL spectrum
by inserting the total absorption into Eq. (1). The spectrum
is corrected for reabsorption of the emitted radiation by
multiplying times exp[−α(ω)z]. We also account for final-
state broadening and spectral resolution by convolving the
calculated spectrum with a Lorentzian and a Gaussian. Since
the spectra at intermediate temperatures are rather broad, this
convolution has negligible impact on the computed PL except
at the lowest temperatures.

The PL calculation is repeated at several depths and aver-
aged. We use a total of 21 points, separated by 700 nm near the
surface and increasing the separation as a function of depth.
Depth sampling could be avoided in thin-film measurements,
as discussed below.
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TABLE II. L-point phonon frequencies used in the computation
of PL spectra. The values correspond to T = 80 K but were used
unchanged at all temperatures. See text for discussion.

�TA �LA �LO �TO

(meV) (meV) (meV) (meV)

7.86a 27.5a 30.4a 36.0a

aReference [79].

The input material data in the calculation are from Tables I
and II, which leaves as the sole adjustable parameters the
deformation potentials DLA and DTO and the deformation
potential derivatives d ′

LO and dTA (the assumption d ′
TA = 0

is discussed in more detail in Sec. VII). These four param-
eters are expected to reproduce the temperature-dependent
PL line shapes in Fig. 2. This includes a correct ratio of
indirect/direct PL luminescence, since the latter does not
depend on deformation potentials. In addition, we expect the
calculated indirect absorption with these parameters to match
the experimental indirect absorption in Refs. [28,29], the
experimental broadening of the direct gap exciton measured
by Li et al. [43], and the width of the intermediate states
calculated by Tandon et al. [40], the latter two conditions via
Eq. (38). These multiple requirements could in principle be
implemented in a least-squares fitting routine that considers
all experimental and theoretical information at once. However,
such procedure is numerically difficult and will not necessar-
ily lead to an optimal choice of deformation potentials, since
the approximations we made to obtain analytical expressions
have different degrees of validity depending on the photon
frequency h̄ω.

We then adopt a much simpler procedure that leads to
satisfactory results. We start by fitting the experimental spec-
trum at 160 K. From this fit we obtain relative values of the
deformation potentials. The only weak contribution at this
temperature turns out to be the one from the TO phonon,
which we further adjust by fitting the TO/LA ratios at 12 K.
The absolute values are next adjusted by matching the indirect
absorption from Refs. [28,29]. No attempt is made to further
adjust the deformation potentials to match the experimental
indirect/direct PL intensity ratios or the experimental and the-
oretical broadenings. These quantities are simply compared
with the predictions as discussed below.

VI. RESULTS

Our deformation potential parameters are listed in
Table III, where the errors correspond to the 160 K fit. These
parameters lead to excellent agreement with the PL line
shapes at all temperatures, as seen in Fig. 2, suggesting
that our model captures the most important contributions to
indirect gap PL. Figure 7 shows the calculated absorption
using the same deformation potentials from Table III, and
we see that the agreement is also very good, providing a
self-consistent confirmation of the model. In Fig. 8 we show
the calculated width of the conduction band states near the
� point using Eq. (38) with the deformation potentials from
Table III and compare them with the ab initio results from
Tandon et al. [40] and with experiment from Ref. [43].

TABLE III. Deformation potential parameters fit to the experi-
mental data compared with theoretical values. The errors are those
from the PL fit at 160 K and do not include the uncertainty from the
many approximations in the theoretical PL model.

DLA DTO dTA d ′
LO

(108 eV/cm) (108 eV/cm) (eV) (eV)

Experiment 1.31 ± 0.04 3.18 ± 0.65 45 ± 1 69 ± 3
Tandon et al. [40] 1.58 1.76 10.0a 12.2

aAlong the 〈110〉 direction.

Finally, we notice that the deformation potential choice
in Table III leads to good agreement with the direct/indirect
PL intensity ratios in Fig. 2. These ratios are difficult to
quantify because our predicted line shapes show their max-
imum deviation from experiment at the onset of direct gap
PL. Nevertheless, it is apparent from Fig. 2 that the rela-
tive strength and its temperature dependence are correctly
predicted.

Our theoretical expressions also make it possible to eval-
uate the integrated intensity of the PL signal as a function
of temperature, and the result is shown as a solid red line in
Fig. 3. The agreement with experiment is not good, but we
note that the discrepancy is mostly due to the uncertainty in
the temperature dependence of the ambipolar diffusivity, as
discussed in Sec. III. Our use of the experimental temperature
dependence of the carrier mobilities leads to a diffusivity that
increases too fast as the temperature is decreased. This lowers
the photoexcited carrier concentrations and reduces the pre-
dicted integrated intensity, in disagreement with experiment.
The dashed red line shows the same calculation but keeping
the diffusivity fixed at the room-temperature value, and we see

FIG. 7. Experimental indirect absorption in Ge, from Ref. [29]
and calculated absorption obtained by adding up the contributions
from TA, LA, LO, and TO phonons with deformation potentials
from Table III, so that the relative strength of these contributions are
consistent with the fit of the PL spectra. The color-shaded areas show
the individual phonon contributions.
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FIG. 8. Half-width (imaginary part of the self-energy) for states
near the � minimum of the conduction band. The solid line is from
Eq. (38) using experimental deformation potentials from Table III.
Circles correspond to ab initio calculations from Refs. [40,80], with
colors identifying the different directions away from the � point in
the ab initio calculation. The square dot is the experimental value
from Ref. [43].

that theory now predicts a very rapid increase of the integrated
intensity as the temperature is lowered, far exceeding the
observed increase. The experimental values are between those
two extremes.

VII. DISCUSSION

A. Choice of material parameters

The predicted PL line shapes in Fig. 2 are generally rather
insensitive to the precise value of the material parameters in
Tables I and II. The only exceptions are the temperature de-
pendence of the indirect band gap and the phonon frequencies,
which we discuss in this section.

Most of the literature references on the temperature depen-
dence of the indirect gap point to the classic 1960 review
by McLean [37]. This author measured optical absorption
and extracted the band-gap energies by inspection of the
absorption edges. He used a theoretical model which close
to the absorption edge has an energy dependence similar to

the model presented here. The exact procedure used to fit the
theory to experiment seems to have been a combination of
visual inspection and numerical methods. An obvious diffi-
culty of this approach is that, due to lifetime broadening, the
identification of the absorption edges becomes harder as the
temperature is raised. This is a clear disadvantage of absorp-
tion measurements when compared to PL measurements. It
becomes apparent by comparing Fig. 6 with the PL spectrum
at 295 K in Fig 2. Whereas the former is a smooth curve, the
latter has a well-defined edge and a clear peak.

The data from McLean were processed in another clas-
sic paper by Varshni [81], who introduced his well-known
formula Eind(T ) = Eind(0) − αT 2/(β + T ) to represent the
temperature dependence. The parameters of the fit were
found to be Eind(0) = 0.7412 eV, α = 4.561 × 10−4 eV/K,
and β = 210 K. These parameters have been widely used
in the literature to represent the temperature dependence of
the indirect gap. However, a reevaluation of the same data
by Thurmond [82] gives Eind(0) = 0.7437 eV, α = 4.774 ×
10−4 eV/K, and β = 235 K. We have carried out our own
fit of the McLean data and we find Eind(0) = 0.7446 eV,
α = 4.777 × 10−4 eV/K, and β = 231 K, in much better
agreement with Thurmond. Using this band gap, however,
we find excellent agreement between the PL line shapes
and experiment at low temperature but a rigid shift that
increases with temperature to reach about 5 meV at room
temperature. This is small enough for our fits to be very
close to the experimental data, but since we believe that this
shift is caused by the difficulties in determining absorption
edges near room temperature using the McLean method, we
have changed the Varshni parameters to Eind(0) = 0.7440 eV,
α = 4.956 × 10−4 eV/K, and β = 217 K. This choice leads
to the nearly perfect energy match between the main fea-
tures of the theoretical and experimental PL curves at all
temperatures.

The phonon energies used in our simulations are those in
Table II, which were measured at 80 K [79]. The shifts be-
tween 12 and 295 K should be less than 0.5 meV [83], which
is almost negligible in the scale of our measurements but
could have been included for completeness. However, we have
not considered this correction because our model neglects
a larger effect, namely the wave-vector dependence of the
phonon frequencies. While this dependence will not have any
significant impact on the overall PL line shape either, it could
be responsible for some of the “high-frequency” features in
the PL spectra. The neglect of the wave-vector dependence of
the phonon energies is obviously a worse approximation for
forbidden processes, since in those cases the phonons with
a wave vector exactly at the L point will have a vanishing
electron-phonon coupling. We expect the largest effect for
TA-phonons, both because their frequency is very low and
because of strong dispersion in directions perpendicular to
〈111〉. In fact, it is apparent in the 50 K spectrum in Fig. 2
that the predicted TA peak is somewhat shifted relative to its
experimental counterpart. If we change the phonon frequency
to match the PL peaks exactly, we notice that one important
side effect is a change in the value of deformation potential
derivative dTA that best fits the data. This is because of the
presence of the inverse phonon frequency as a prefactor in all
absorption expressions.
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B. Failures of the PL model

In spite of the remarkable agreement between theory and
experiment in Fig. 2, there are a few but significant remaining
discrepancies. Most notable are the failure of theory to repro-
duce the intensity of the TA peak at the lowest temperature
of 12 K, and the failure to reproduce the experimental line
shape just below the peak associated with direct gap emission,
particularly near room temperatures. The intensity of the
theoretical TA peak at 12 K is roughly 3 times weaker than
observed. This is actually not entirely surprising given the
crudeness of our bound exciton model, as explained above.
We are using two degenerate hydrogenic excitons to model
two nondegenerate, highly nonparabolic excitons that display
a “mass reversal” effect [75]. The approximation is likely to
be even worse in the case of forbidden processes, which in
the hydrogenic limit involve noninterfering s-state and p-state
contributions. The real excitons in Ge lack spherical symme-
try and the relevant matrix elements for bound excitons may
be very different. Furthermore, while our excitonic model for
direct transitions accounts for screening by the photoexcited
carriers, this is not the case for our indirect excitons. As
discussed above, bound excitons are most sensitive to this
screening, and this may contribute to the observed discrep-
ancy if screening affects allowed and forbidden transitions
differently.

An alternative explanation for the failure to reproduce the
observed strength of low-temperature TA-assisted emission
is the possible existence of an anharmonic decay bottleneck
for TA phonons [84]. At low temperatures, the PL intensities
are extremely sensitive to the value of the vanishing phonon-
occupation numbers, and even a minor deviation from the
thermal values might be enough to change the predicted
intensities appreciably.

The line-shape discrepancies near the direct band gap E0,
which become quite apparent at room temperature, are diffi-
cult to unravel because at least three factors may contribute:
(a) there is a sharp cutoff of the indirect emission at this energy
as a result of self-absorption, but this is obtained from the
quasi-1D illumination model discussed in Sec. III. A more
realistic 3D model could broaden this edge; (b) the intensity
enhancement due to the excitonic nature of the intermediate
states, which we are neglecting to keep the model tractable,
peaks at these energies; and (c) the resonant E0-route indirect
processes diverge at this energy. We are using approximate ex-
pressions to calculate the indirect contributions in this range,
and it is not even obvious if second-order perturbation theory
is applicable in this regime. The treatment of the near-E0

spectral region would be highly simplified in measurements
on thin films, as discussed below, and this may allow us to
improve our model at the borderline between mainly indirect
and mainly direct emission.

C. Allowed vs forbidden absorption

Our model implies that indirect absorption and emission
near room temperature are dominated by forbidden TA and
LO processes. LA phonons, which were assumed to com-
pletely dominate room-temperature indirect absorption in
Refs. [28,29], make a relatively small contribution in Fig. 6,
and the fit parameters in Table III also show a strong en-

FIG. 9. Decomposition of the theoretical indirect PL line shape
for Ge into separate phonon contributions. The solid black line is
the overall indirect gap contribution to the PL signal that appears in
Fig. 2. The colored lines show the PL associated with TA (red), LA
(blue), LO (green), and TO (magenta) phonons.

hancement of the forbidden channels relative to the theoretical
predictions. This is not entirely surprising given previous
evidence—for example in the case of GaAs [85,86]—that
forbidden TA phonons make a substantial contribution to in-
tervalley relaxation at room temperature. To better understand
this result, it is very useful to begin by analyzing the contribu-
tions to the PL signal from each individual phonon type. This
is done in Fig. 9, which shows the PL associated with TA, LA,
LO, and TO phonons at three selected temperatures.

Each phonon contribution consists of two peaks: a lower-
energy one which is the reverse of photon absorption with
phonon annihilation, and a higher-energy peak which cor-
responds to the reversal of photon absorption with phonon
creation. Each contribution is associated with the thermal
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factors n j and (n j + 1), respectively, but the former dominates
at low temperature due to the exponential in the denominator
of Eq. (1). Both peaks and their temperature dependence are
clearly seen in each of the colored traces in Fig. 9, except
for the TA line, for which the vibrational frequency is very
low and the peaks are mostly merged. The high-energy peak
is in all cases closer to the direct gap E0. This is important
for phonon processes via the E0 route, because it produces
a sizable enhancement of its relative contribution due to the
resonant character of this route. This is apparent by comparing
the two contributions in the case of LA phonons (E0 route) and
TO phonons, (E1 route).

In the case of forbidden processes, the frequency de-
pendence near the absorption threshold is qualitatively pro-
portional (ignoring denominator and excitonic effects) to
(h̄ω ∓ h̄� − Eind )3, whereas the allowed processes are pro-
portional to (h̄ω ∓ h̄� − Eind )2. This implies a more rapid
rise of the forbidden contributions, which combined with the
E0-route resonance lead to high-energy tails that may extend
all the way to and past the direct gap, as seen for the LO
case at room temperature in Fig. 9. On the other hand, at the
onset of absorption the cubic energy dependence of forbidden
processes makes them weaker than allowed ones. This is
amplified by the fact that the excitonic enhancements from
Eqs. (55) and (57) are much stronger near the absorption
edge [29]. This is also apparent in Fig. 9, where the signal
rises very sharply on the low-energy side due to the excitonic
enhancement of the LA and TO contributions, but the rise of
the forbidden TA and LO signals has a much lower slope.

The above considerations and the phonon decompositions
in Fig. 9 allow us to draw important conclusions: (a) forbidden
processes are relatively weaker at low temperatures because
their associated absorption near the absorption edge is lower,
and the exponential in the denominator of Eq. (1) suppresses
contributions far away from the edge. As the temperature is
raised, however, energies away from the edge begin to make
a contribution, and since the forbidden absorption increases
“faster” than the allowed absorption, its relative weight in-
creases. The emergence of forbidden emission in Fig. 9 as
a function of temperature is very clear. This explains why
forbidden processes were far less important for previous
studies, which were mostly limited to cryogenic temperatures;
(b) TA phonons are essential to explain the PL line shape
and its temperature dependence. The phonon frequencies are
quite similar for LA, TO, and LO phonons, and it is the
low-frequency TA modes with their much stronger temper-
ature dependence which cause the changing line shape. In
particular, the relatively sharp peak at room temperature is
essentially due to TA phonons. Our model then captures the
relative strength of TA phonon emission correctly, otherwise
it would be impossible to match the overall PL line shape.
But this implies that TA phonons must make an important
contribution to the room-temperature absorption, as illustrated
in Fig. 7; (c) we noticed in the Theory section that there are
several possible TA phonon contributions to the absorption.
In particular, there is a “near-L/�” channel—akin to the LO
process in Fig. 9—that was neglected because it would also
contribute to the relaxation of �-point electrons to the L valley,
a process in which TA phonons have a negligible participation,
according to ab initio simulations by Tyuterev et al. [39]. We

now see that if we were to include this process to represent
the TA phonon contribution to the PL, the predicted line
shape would be too broad on the high-energy side because
near-L/� processes have a (E0 − h̄ω)−1/2 divergence. This is
clearly apparent for the LO-phonon contribution (green trace)
in Fig. 9. Instead, in “near-�/L” processes the divergence
is suppressed. This leads to the correct line shape while at
the same time not contributing to the relaxation of �-point
electrons to the L valley, as is evident from the fourth term in
Eq. (38). Thus, the TA mechanism represented by Eq. (35)
is crucial to insure agreement between experiment and the
predicted line shapes near room temperature.

While the evidence for a TA contribution is overwhelming,
and the specific mechanism in Eq. (38) is the only one that
reproduces the experimental line shape, the case for LO
phonons is more subtle. A distinct LO signal appears as a
weak shoulder in high-resolution PL experiments at 4.3 K
[31], but otherwise there are no features that can be unam-
biguously assigned to an LO contribution. If we remove LO
phonons from our model, we can still obtain a reasonably
good agreement with the overall temperature dependence of
the PL line shapes. The contribution from the other phonons
can be increased to match the experimental absorption, but
the nearly perfect agreement seen in Fig. 7 is no longer
obtained, as the theoretical curve no longer matches the slope
of the experimental data. Furthermore, the predicted width
calculations are worsened relative to Fig. 8. But we cannot
completely rule out the possibility that our model is artificially
enhancing the LO phonon strength to mimic excitonic effects
not included in our simplified treatment. We note that in the
295 K spectrum in Fig. 9, the LO signal is the strongest
one at the direct gap threshold. As discussed before [28,29],
the constant denominator approximation exaggerates the ex-
citonic enhancement at the onset of absorption and misses the
enhancement near the direct gap due to the excitonic nature of
the intermediate states. Thus the line shape of the PL signal
near the direct gap and the line shape of the absorption curve
might still be matched with a smaller LO contribution using a
more realistic treatment of excitonic effects. We discuss below
ways how this could be tested.

A comparison of the experimental and theoretical deforma-
tion potentials in Table III shows that for allowed processes
the agreement is quite good. However, DLA turns out to
be considerably lower than previously accepted. The litera-
ture value DLA = 4.2 × 108 eV/cm seemed particularly ro-
bust because it was obtained from time-resolved transmission
[42], broadening of the direct gap exciton [43], and absorp-
tion [28,29], and confirmed by the theoretical results from
Tyuterev et al [39], Krishnamurthy and Cardona [87], and
Murphy-Armando and Fahy [88]. The new value in Table III,
however, is still consistent with all available experimental
measurements if we include forbidden processes, although the
reasons for the discrepancies between theoretical calculations
are not clear to us. Table III also shows a discrepancy of a
factor of almost 2 in DTO between theory and experiment,
but the experimental value was adjusted to match the relative
TO/LA intensity ratios at 12 K. This may not be warranted
because our model for bound excitons is a gross oversimpli-
fication, as discussed earlier. At higher temperatures, the TO
contribution is modest, and reducing DTO to bring it closer
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to the theoretical prediction would hardly make an impact
on the predicted PL line shapes. On the other hand, the
deformation potential derivatives for forbidden processes fit to
the experimental data are at least a factor of 4 higher than the
theoretical ones (although the relative LO/TA magnitude is in
much better agreement with theory). The enhancement of the
forbidden contribution relative to theoretical predictions can
also be seen if we compare the predictions of our model with
the calculations from Tyuterev et al [39]. They find that for the
� minimum in the CB, 36% of the width originates from LO
phonons and 64% from LA phonons, whereas our calculation
in Fig. 8 with the experimental deformation potentials from
Table III is composed of LO and LA fractions of 92 and 8%,
respectively.

The discrepancies between different theoretical values for
deformation potentials make it hard to compare experiment
to theory. More fundamentally, the experimental deformation
potentials may not be directly comparable to theoretical ones
and should be viewed as “effective” values. For example, we
note that Tandon et al. [40] find that DLA has a maximum
value when it couples the � and L points exactly, whereas
our fit value represents an average coupling. Taking this into
account, the agreement between theory and experiment for
DLA may be even better than shown in Table III. Furthermore,
we have intentionally neglected several absorption routes,
which, when combined, could make a sizable contribution
to the overall PL and end up being treated effectively by
our model. Some indirect evidence that this is the case is
provided by the observation that recalculating the widths in
Fig. 8 using Eq. (38) but with the Tandon et al. parameters
from Table III instead of the experimental ones, we actually
worsen the agreement with the widths computed by Tandon
et al. by adding over all possible decay channels. Ultimately,
the best way to compare theory and experiment would be via
predictions of the PL spectrum itself, adding numerically over
all possible channels.

D. Further improvements

The motivation for carrying out the PL measurements in a
bulk Ge sample was the need to minimize any possible contri-
bution from no-phonon transitions, which had been previously
invoked to explain the PL line shape. However, the very high
ambipolar diffusivity in Ge creates serious modeling chal-
lenges, since depth sampling becomes necessary, the details
of the line shape may depend on the illumination geometry,
and the integrated intensity is strongly diffusion dependent.
Measurements of the ambipolar diffusivity as a function of
temperature are needed to resolve the order of magnitude
difference between the excitonic diffusion at low temperatures
and the predictions based on the temperature dependence
of carrier mobilities. Indeed, the ultimate solution to bypass
these complications would be to move away from bulk Ge
and carry out measurements on Ge films with thicknesses
below the diffusion length. Our demonstration in this work
that the PL from bulk Ge can be accounted for quantitatively
without the need to invoke no-phonon transitions implies that
the same should be true in Ge films, provided that the density
of defects can be kept sufficiently low. It remains to be seen
if this is the case for the ubiquitous Ge-on-Si films, grown

either by molecular-beam epitaxy [89], the standard two-step
chemical vapor deposition method [90], or using modern low-
temperature chemistries [91]. If dislocation densities in such
films are too high to suppress no-phonon lines, this growth
would have to carried out on nearly lattice-matched substrates
such as GaAs.

The photoexcited carrier density in a Ge film with thick-
ness below the ambipolar diffusion length is expected to be
very uniform, so that the calculations could be performed at a
single point. This would dramatically reduce the computation
time, allowing us to carry out the integrals containing broad-
ening numerically, and to use the more realistic excitonic
model of Refs. [28,29].

Further model improvements to better capture the basic
physics of the indirect PL process in Ge can be made with
assistance from theory. Full-blown microscopic calculations
such as those performed in Si [11] are much more chal-
lenging in Ge due to the smaller band gap, the strong spin-
orbit interaction, and the sensitivity to the energy difference
between direct and indirect gaps. The need to include ex-
citonic effects further complicates the theoretical challenge.
However, microscopic calculations of the electron-phonon
coupling such as those performed in Ref. [40] could be used to
quantify the importance of the different phonon channels and
absorption routes, and to extract effective, energy-dependent
phonon frequencies that could be incorporated in the model.
At the direct gap threshold, the entire perturbation theory
approach could collapse due to the divergence of the energy
denominators. To analyze this regime, nonperturbative calcu-
lations would be highly desirable, and for this purpose the
elegant method introduced by Zacharias et al. [12] may prove
extremely valuable by making it possible to estimate the con-
tribution from phonon-assisted processes at the direct gap and
above.

VIII. CONCLUSIONS

We have presented detailed PL measurements from high-
quality bulk Ge samples as a function of temperature. A theo-
retical PL model based on the fundamental van Roosbroeck–
Shockley equation has been developed and shown to be in
remarkable agreement with the experimental measurements.
The model consists of analytical expressions that can be used
to fit experimental data, and should prove useful for the
spectroscopy of Ge-like materials such as Ge1-xSix, Ge1-ySny,
and related ternary compounds.

Our model fits indicate that forbidden indirect absorption
processes play a dominant role near room temperature. In par-
ticular, a TA phonon contribution determines the characteristic
line shape of the room temperature PL, and explains the strong
temperature dependence of this line shape.
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