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The Bloch theorem mathematically proves that in a periodic crystal, electrons can acquire a negative mass.
The present work aims to provide a physical understanding for why this is so. We successively analyze the
consequences of the threefold orbital valence-state coupling to (i) a nondegenerate orbital level in the conduction
band, (ii) a threefold orbital level in the conduction band, and (iii) spin states through spin-orbit interaction. We
show that it is not at all trivial for valence electrons to acquire a negative mass for whatever their momentum
with respect to the crystal axes: It is necessary to not only have a coupling to a degenerate orbital conduction
level but also a symmetry breaking of the threefold valence subspace by the spin quantization axis, as induced by
spin-orbit interaction. Due to the relativistic origin of this interaction, the existence of negative valence masses
thus constitutes an unexpected signature of quantum relativity.
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I. INTRODUCTION

In semiconductors, some electrons have a negative mass.
This fact is the prime reason for these materials to have
shaped today’s technology [1,2]. As a physicist, it is
worth understanding why and how this is so, indepen-
dently from the mathematical derivations based on Bloch
theorem [3–5] or group theory [6–8], and also indepen-
dently from the numerous methods that calculate semi-
conductor band structures, like the tight-binding approach
[9,10], Luttinger’s approach [11], and the numerical density
functional method [12,13].

A direct consequence of electrons having a negative effec-
tive mass is that when such an electron is excited, it leaves a
hole, that is, an electron absence in the corresponding state
[4,5]. This hole essentially behaves as a quantum particle
having a positive mass. As a result, semiconductors host two
types of fermionic particles, the conduction electrons and the
valence holes. Having opposite charges, they can bind into a
bosonic particle, the exciton, which is similar to a hydrogen
atom, but with a much larger size due to the electron and
hole effective masses, one order of magnitude smaller than
the free electron mass, and to the semiconductor dielectric
constant of the order of 10. These basics largely explain that in
addition to their tremendous technological interest [2,14,15],
semiconductors have provided an ideal playground for a large
number of exciting many-body effects of fundamental physics
[16–19].

The Bloch theorem mathematically proves that the energies
of electrons subjected to a periodic ion lattice potential form
bands, with minima and maxima. Close to these extrema,
the band curvatures are positive or negative, enforcing the
resulting electron effective mass to also be positive or neg-
ative, as commonly demonstrated in textbooks through the
simple Kronig-Penney model [20]. Behind this beautiful but
abstruse mathematics, there is a drastic change in physics:

The electron that suffers a periodic potential is a free electron
with a positive mass m0. Due to interaction with the periodic
ion lattice, this electron ends by behaving like a free electron
but with a much lighter mass, that can even become negative.
What are the forces that drive this pathological sign change
in the electron mass? Understanding its physics will help
tailoring the particle effective mass of other systems in search
for new technology [21–23].

The usual approach to the effective masses of semicon-
ductor electrons makes use of group theory. Indeed, the
degenerate orbital states of the upper valence band suffer a
relativistic spin-orbit interaction [24,25] that mixes orbital and
spin degrees of freedom. A standard but simple-minded way
to derive the spin-orbit eigenstates for semiconductors follows
the procedure developed for atoms [18]. It is based on the
total angular momentum J = L + S of the electron. However,
because the concept of orbital momentum L only has a
meaning for electron states that have a spherical symmetry
[26], like atomic states, such a derivation cannot be used for
crystals, in spite of the validity of the obtained results. Until
very recently [25], the procedure based on group theory has
been the only correct way to derive the spin-orbit eigenstates
in a periodic crystal. Through the double groups that mix
orbital and spin symmetries, this approach leads to different
dispersion relations for valence electrons in the various spin-
orbit states.

For sure, the group theory formalism is extremely power-
ful. Yet, through mixing the orbital and spin subspaces within
the double groups, as done at the very first line, it lacks
a physical transparency. In addition, most semiconductor
physicists who do not master group theory find it difficult to
follow, and equally hard to accept that learning such a general
but heavy formalism is necessary to solve problems dealing
with a threefold orbital degeneracy only. This is why, in a
first work [25], we reconsidered the energy splitting of the
threefold orbital states at the � point, i.e., for k = 0 electron
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momentum, induced by the spin-orbit interaction. We pinned
down the physical origin of the change from the “natural”
orbital states μ = (x, y, z) labeled along the crystal axes, to
their linear combinations η = (1, 0,−1) similar to the � = 1
atomic states.

The present work follows the same spirit: by only using
conceptually simple arguments, we unravel the physics that
drives the positive mass of a free electron toward a negative
value when this electron is put in a periodic ion lattice. The
sign change in the electron mass, from positive to negative,
fundamentally relies on couplings to states that are opposite
in parity and higher in energy than the upper valence states
at hand. Yet, this is far from enough. To end with a negative
effective mass whatever the electron momentum direction k
with respect to the crystal axes, it is necessary to break the
orbital symmetry of the degenerate valence states along these
axes. This is done in two ways:

(i) By mixing the orbital states of the degenerate valence
level, through its coupling to the orbital states of a degenerate
level in the conduction band. By contrast, its coupling to a
nondegenerate conduction level, like the lowest conduction
band, plays no role in getting a negative mass.

(ii) By introducing the electron spin. Through the spin-
orbit interaction, the spin quantization axis breaks the
orbital degeneracy μ = (x, y, z) of electrons in a cubic
crystal. The resulting orbital eigenstates, labeled as η =
±1, are linear combinations of (x, y) states, while the
z state along the spin quantization axis stays unaffected:
it just corresponds to the spin-orbit eigenstate labeled as
η = 0.

These two ways of mixing are necessary for valence
electrons to end with a negative effective mass whatever the
k momentum direction. It is then clear that their interplay
renders the physics of this negative effective mass quite com-
plicated, and definitely beyond the simple interpretation based
on a Kronig-Penney model [20], even if the Bloch theorem
mathematically draws the correct conclusion within a few
lines. Indeed, the common textbook explanation for negative
effective mass involves Bragg reflection: In one-dimensional
spinless Kronig-Penney model with a lattice spacing a, nega-
tive effective mass occurs when the momentum k approaches
the band boundaries nπ/a from below, with n = ±1,±2, . . ..
When k is slightly less than nπ/a, the scattering processes
from each lattice potential interfere in such a way that the
particle wave is largely reflected, that is, propagates backward
even as we increase its momentum k by applying a force;
the particle transfers more momentum to the lattice than
it receives from the applied force [4]. While this physical
argument supports the negative effective mass as a general
feature in all periodic crystals, it is obvious that the physics
of negative effective mass in real materials is more involved.

In order to catch the above physics in the simplest way,
we here use a k · p approach [27–29]. Its big advantage
is to possibly analyze, step by step, the various couplings
experienced by the valence electrons, to ultimately catch the
key ones.

This paper is organized as follows. Section II provides
general arguments on the physical origin of a negative valence
mass and the possible dependence of the electron energy on

the momentum k, making use of the fact that in a cubic crystal,
the (x, y, z) axes play the same role.

Section III recalls the k · p procedure to obtain the electron
energy up to second order in momentum k. We give the
possible forms for the degenerate and nondegenerate orbital
wave functions of a cubic crystal, which fundamentally are
even in the case of the valence band and odd in the case of
the conduction band. We also give the form of the eigenstates
resulting from spin-orbit interaction. Finally, for later use,
we relate operators written in the μ = (x, y, z) basis and the
η = (1, 0,−1) basis.

In Sec. IV, we derive the energy of a valence electron in a
threefold orbital level, by considering its coupling to an orbital
level in the conduction band which is either nondegenerate or
threefold, or its coupling to both types of levels.

In Sec. V, we perform similar calculations, focusing on the
fourfold spin-orbit eigenstates, labeled as j̃z = (±3/2,±1/2),
which are the physically relevant states in the presence of
spin-orbit interaction.

We then conclude.

II. GENERAL ARGUMENTS

We consider a direct-gap semiconductor like GaAs, with
band extrema occurring for k = 0, called the � point. We want
to determine the dispersion relation close to the maximum of
the valence band that originates from threefold orbital states.
Due to symmetry between the cubic crystal axes (x, y, z), we
expect the dispersion relation, that is, the energy difference
εv,k − εv,0, to depend on the components of the momentum k
through (k2

x , k2
y , k2

z ) taken in a cyclic way. Possible combina-
tions at lowest order in k are k2

x + k2
y + k2

z = k2,

k2
x k2

y + k2
y k2

z + k2
z k2

x = Sk, k2
x k2

y k2
z = Pk. (1)

Terms like Sk or Pk in the dispersion relation cause the energy
to be nonspherical—known as “warping.” Handling such a
nonspherical energy in problems dealing with Coulomb inter-
action is fundamentally impossible. This is why the warping is
commonly averaged out to produce a spherical mass. We will,
however, see that the existence of a warping in the valence
band is fundamentally linked to the existence of a negative
curvature: it is a crucial feature of the valence effective mass
problem.

III. REQUIRED BACKGROUND

The derivation we propose for the valence electron effec-
tive mass does not require the knowledge of group theory. It
only uses very basic solid-state physics. Nevertheless, to settle
the notations properly, we have chosen to briefly recall what
we are going to use.

A. The k · p formalism

The k · p formalism [27] is a simple but powerful tool to
understand semiconductor band structures. It starts with the
Hamiltonian of a free electron with positive mass m0, in a
potential V (r) having the lattice periodicity. The Bloch states
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|n, k〉, eigenstates of this Hamiltonian

0 =
[

p̂2

2m0
+ V (r) − εn,k

]
|n, k〉, (2)

are characterized by a band index n and a momentum k. When
k is small, the εn,k energy can be obtained from the knowledge
of all Bloch states for k = 0. Indeed, by writing the Bloch-
state wave function in a sample volume L3 as

〈r|n, k〉 = eik·r

L3/2
〈r|un,k〉 (3)

in Eq. (2), we find that |un,k〉 fulfills

0 = (ĥk − εn,k )|un,k〉, (4)

with ĥk = ĥ0 + h̄2k2/2m0 + ŵk. For k small, the operator ŵk,
defined as

ŵk = h̄

m0
k · p̂, (5)

can be treated as a perturbation.
(i) For εn0,0 nondegenerate, the εn0,k energy follows from

ε̃n0,k = εn0,k − εn0,0 − h̄2k2

2m0

� 〈
un0,0

∣∣ŵkP⊥
1

εn0,0 − ĥ0
P⊥ŵk

∣∣un0,0
〉
, (6)

where P⊥ is the projector over the subspace orthogonal to
|un0,0〉, namely P⊥ = ∑

n �=n0
|un,0〉〈un,0|. Note that the first-

order term 〈un0,0|ŵk|un0,0〉 disappears due to parity.
(ii) When εn0,0 is degenerate, that is, when εn0,0 is the en-

ergy of |u(r)
n0,0

〉 states with r = (1, 2, . . . , N0), the ŵk operator
shifts and splits these N0 states. The εn0,k eigenvalues then
follow from the cancellation of the determinant of a N0 × N0

matrix D̂ defined as

Dr′,r = −ε̃n0,kδr′,r + Wr′,r, (7)

Wr′,r = 〈
u(r′ )

n0,0

∣∣ŵkP⊥
1

εn0,0 − ĥ0
P⊥ŵk

∣∣u(r)
n0,0

〉
, (8)

where P⊥ now is the projector over the subspace orthogonal to
the |u(r)

n0,0
〉 subspace. In practice, calculations are made with a

restriction of this orthogonal subspace to states whose energy
is close to εn0,0, due to the (εn0,0 − ĥ0) denominator in the
above equation.

Without going into detailed calculation, some useful obser-
vations can be drawn from the above equations.

(i) The states coupled to |u(r)
n0,0

〉 through ŵk, that enter the
P⊥ operator, lead to negative Wr′,r’s when they are higher in
energy than εn0,0. They produce a negative ε̃n0,k value, that
makes the resulting εn0,k curvature, i.e., the inverse effective
mass, smaller than 1/2m0, and possibly negative when the
coupling is large.

(ii) When the Ŵ determinant is equal to zero, the equation
detD̂ = 0 must contain a solution ε̃n0,k = 0, that is, εn0,k =
εn0,0 + h̄2k2/2m0, which corresponds to an effective mass
equal to the positive free electron mass m0. As a result, when
detŴ = 0, we immediately deduce that the amount of states
included in the truncated P⊥ operator is not enough to produce
a negative effective mass, as required for valence electrons.

FIG. 1. The physically relevant orbital states are the ones close to
the band gap Eg. In zinc-blend semiconductors like GaAs, these are
the nondegenerate and threefold degenerate conduction states |c〉 and
|μc〉 separated by an energy �c, and the nondegenerate and threefold
degenerate valence states |v〉 and |μv〉 separated by an energy �v .
Conduction states are fundamentally odd in parity, while valence
states are even.

B. Valence and conduction states with crystal periodicity

The physically relevant states of the valence and conduc-
tion bands are the ones close to the band gap. They are shown
in Fig. 1. Their orbital parts are either nondegenerate as in
the case of the |v〉 and |c〉 states, or threefold degenerate as
in the case of |μv〉 and |μc〉 states, with μ = (x, y, z) along
the crystal axis [28]. Using the lattice periodicity, we can
expand their wave functions in terms of the reciprocal lattice
vectors K.

Conduction orbital states have a parity which is fundamen-
tally odd. Since the cubic axes play the same role, we can
write them [25] as

−〈−r|c〉 = 〈r|c〉 =
∑

K

eiK·r

L3/2
KxKyKz FK,c, (9)

−〈−r|μc〉 = 〈r|μc〉 =
∑

K

eiK·r

L3/2
Kμ GK,c. (10)

Similarly, the valence orbital states, which are fundamentally
even, can be written as

〈−r|v〉 = 〈r|v〉 =
∑

K

eiK·r

L3/2
FK,v, (11)

〈−r|μv〉 = 〈r|μv〉 =
∑

K

eiK·r

L3/2

KxKyKz

Kμ

GK,v. (12)

These F and G functions only depend on K = |K|.
The cyclic symmetry of these orbital states is broken

by the spin quantization axis when spin-orbit interaction is
introduced. The six states |μv〉 ⊗ | ± 1/2〉 then split into four
and two states (see Fig. 2) in a way similar to their atomic
counterpart with quantum number j. This is why we label
them as j̃ , not j, in order to keep the reader reminded that
orbital angular momentum has no meaning for electrons in a
periodic crystal.
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FIG. 2. The spin-orbit interaction splits the six valence states
|μv〉 ⊗ | ± 1/2〉 into four and two states, separated by �so. These
states are given in Eqs. (13), (14), and (15).

The upper fourfold states read as

|j̃ = 3/2, j̃z = ±3/2〉 = | ± 1v〉 ⊗ | ± 1/2〉, (13)

|j̃ = 3/2, j̃z = ±1/2〉
= 1√

3
(| ± 1v〉 ⊗ | ∓ 1/2〉 +

√
2|0v〉 ⊗ | ± 1/2〉), (14)

while the lower twofold states read as

|j̃ = 1/2, j̃z = ±1/2〉
= 1√

3
(
√

2| ± 1v〉 ⊗ | ∓ 1/2〉 − |0v〉 ⊗ | ± 1/2〉). (15)

For a spin quantization axis taken along z, the orbital states
|ηv〉 with η = (1, 0,−1) read in terms of the |μv〉 orbital states
as

| ± 1v〉 = ∓i|xv〉 + |yv〉√
2

, |0v〉 = i|zv〉, (16)

following the Landau-Lifshitz choice [30] for the arbitrary
phase factor.

C. From (x, y, z) to (1, 0, −1) orbital states

The above results show that the relevant orbital indices
to handle spin-orbit interaction are not the ones linked to
the crystal axes because their cyclic symmetry is broken by
the spin quantization axis. Yet, this cyclic symmetry renders
the (x, y, z) indices quite convenient for calculations before
introducing the spin. This is why we will start with operator
written in the (x, y, z) basis and then turn to its representation
in the (1, 0,−1) basis.

The 3 × 3 matrix that represents the operator Â in the μ =
(x, y, z) state basis reads as

Âμ =
⎛
⎝Ax,x Ax,y Ax,z

Ay,x Ay,y Ay,z

Az,x Az,y Az,z

⎞
⎠, (17)

with Aμ′,μ = 〈μ′|Â|μ〉, equal to A∗
μ,μ′ when Â = Â†. In the

problem we here consider, these matrix elements are real; so
Aμ′,μ = Aμ,μ′ , as taken in the following.

In the η = (1, 0,−1) basis, the same operator reads as

Âη =
⎛
⎝ A1,1 A1,0 A1,−1

A0,1 A0,0 A0,−1

A−1,1 A−1,0 A−1,−1

⎞
⎠, (18)

with Aη′,η = 〈η′|Â|η〉 still equal to A∗
η,η′ because Â = Â†. But

Aη′,η is not necessarily equal to Aη,η′ because the matrix
elements of Â, real in the μ basis, are not necessarily real in
this η basis.

We can relate these two sets of matrix elements by inserting
the closure relation

∑
μ |μ〉〈μ| on both sides of the operator Â

as

Aη′,η = 〈η′|Â|η〉 = 〈η′|
∑
μ′

|μ′〉〈μ′|Â
∑

μ

|μ〉〈μ|η〉. (19)

The link between the |η〉 and |μ〉 states given in Eq. (16) leads
to

A1,1 = i〈xv| + 〈yv|√
2

Â
−i|xv〉 + |yv〉√

2
= Ax,x + Ay,y

2
, (20)

A±1,0 = ±i〈xv| + 〈yv|√
2

Âi|zv〉 = ∓Ax,z + iAy,z√
2

, (21)

and so on. So, the Â operator in the (1, 0,−1) basis reads as

Âη =

⎛
⎜⎝

Ax,x+Ay,y

2
−Ax,z+iAy,z√

2

−Ax,x+Ay,y+2iAx,y

2

· Az,z
Ax,z−iAy,z√

2

· · Ax,x+Ay,y

2

⎞
⎟⎠, (22)

the other elements being obtained from A∗
η′,η = Aη,η′ .

The determinants of the two matrices Âμ and Âη are equal
because these two matrices represent the same operator Â in
different bases of the same 3 × 3 subspace. Yet, the cyclic
symmetry of the (x, y, z) indices renders the calculation of this
determinant far simpler for Âμ.

IV. VALENCE ELECTRON EFFECTIVE MASS
IN THE ABSENCE OF SPIN

We first forget spin and look for the effect of the ŵk
operator on the threefold orbital states |μv〉 given in Sec. III.
Since the p̂ = −ih̄∇ operator in ŵk is odd, it couples the even
valence states |μv〉 to odd states only; so, it does not couple
|μv〉 to other valence states, neither |v〉 nor |μ′

v〉 with μ′ �= μ,
but to the conduction state |c〉 and possibly to the |μc〉 states
slightly above in energy (see Fig. 1).

A. Coupling to |c〉 only

Using the periodic wave functions given in Sec. III B, we
find

〈c| p̂x|μv〉 =
∫

d3r
∑
K′

e−iK′ ·r

L3/2
K ′

xK ′
yK ′

z F ∗
K ′,c

× h̄

i

∂

∂x

(∑
K

eiK·r

L3/2

KxKyKz

Kμ

GK,v

)
. (23)
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As ∂
∂x eiK·r = iKxeiK·r, the integral over r gives L3δK′,K; so, the

RHS of the above equation reduces to

h̄
∑

K

Kx

Kμ

K2
x K2

y K2
z F ∗

K,c GK,v, (24)

which, for a cubic crystal, is equal to zero except for μ = x.
So

〈c| p̂x|μv〉 = δx,μh̄
∑

K

K2
x K2

y K2
z F ∗

K,c GK,v ≡ δx,μPcv. (25)

The matrix elements of the ŵk operator between the three-
fold valence states |μv〉 and the nondegenerate conduction
state |c〉 then reduce to

〈c|ŵk|μv〉 = 〈c| h̄

m0
(kx p̂x + ky p̂y + kz p̂z )|μv〉

= h̄Pcv

m0
kμ. (26)

When the |c〉 state only is included in the P⊥ projector
appearing in Eq. (8), we get

Wμ′,μ = 〈μ′
v|ŵk

|c〉〈c|
−Eg

ŵk|μv〉 (27)

= − h̄2|Pcv|2
m2

0Eg
kμ′kμ ≡ − h̄2

2m0
γ1〈μ′

v|B̂(1)|μv〉,

where γ1 is a dimensionless parameter given by

γ1 = 2|Pcv|2
m0Eg

. (28)

The corresponding 3 × 3 matrix for Ŵ then reads
−(h̄2γ1/2m0)B̂(1), where B̂(1) is a symmetric real matrix

B̂(1)
μ =

⎛
⎝ k2

x · ·
kxky k2

y ·
kzkx kykz k2

z

⎞
⎠. (29)

Since detB̂(1) = 0, as easy to check, we readily see that the
equation detD̂ = 0, for coupling to |c〉 only, has a solution
ε̃v,k = 0, which corresponds to an unchanged positive mass
m0. More precisely, the solutions of detD̂ = 0 read as ε̃v,k =
(h̄2/2m0)γ1e1 with e1 solution of

0 =
∣∣∣∣∣∣
k2

x + e1 · ·
kxky k2

y + e1 ·
kzkx kykz k2

z + e1

∣∣∣∣∣∣ = e2
1(e1 + k2). (30)

So the coupling to |c〉 only leads to a partial splitting of the
valence orbital states |μv〉, with two unchanged branches still
having a positive mass m0 which corresponds to the e1 = 0
degenerate solution, and one branch e1 = −k2 which gives

εv,k = εv,0 + (1 − γ1)
h̄2k2

2m0
. (31)

This branch can have a negative effective mass for γ1 > 1, that
is, a coupling Pcv between |μv〉 and |c〉 large enough to have
2|Pcv|2/m0 larger than the band gap Eg.

B. Coupling to the |μc〉 subspace only

To better catch the role of the orbital state degeneracy, we
now consider the coupling of the threefold valence states |μv〉
to the threefold conduction states |μc〉, these two sets of states
having opposite parity.

Using the periodic wave functions given in Sec. III B, we
find

〈μ′
c| p̂x|μv〉 =

∑
K

(Kμ′G∗
K,c)h̄Kx

(
KxKyKz

Kμ

GK,v

)
, (32)

which differs from zero for (μ′, μ) equal to (y, z) or to (z, y).
So, we end, since (x, y, z) play the same role, with

〈yc| p̂x|zv〉 = 〈zc| p̂x|yv〉 = h̄
∑

K

K2
x K2

y G∗
K,cGK,v ≡ Qcv, (33)

and similar results obtained from cyclic permutations.
The matrix elements of the ŵk operator between the three-

fold valence states |μv〉 and the threefold conduction states
|μ′

c〉 then read as

〈μ′
c|ŵk|xv〉 = 〈μ′

c|
h̄

m0
(kx p̂x + ky p̂y + kz p̂z )|xv〉

= h̄Qcv

m0
(kyδμ′,z + kzδμ′,y). (34)

When the P⊥ projector appearing in Eq. (8) only contains
the |μc〉 states, we find

Wμ′,μ = 〈μ′
v|ŵk

∑
μ′′

|μ′′
c 〉〈μ′′

c |
−(Eg + �c)

ŵk|μv〉

≡ − h̄2

2m0
γ3〈μ′

v|B̂(3)|μv〉, (35)

where the dimensionless parameter γ3 is given by

γ3 = 2|Qcv|2
m0(Eg + �c)

. (36)

The corresponding 3 × 3 matrix for Ŵ then reads
−(h̄2γ3/2m0)B̂(3) where the B̂(3) operator in the μ = (x, y, z)
basis also is a symmetric real matrix

B̂(3)
μ =

⎛
⎝k2

y + k2
z · ·

kxky k2
z + k2

x ·
kzkx kykz k2

x + k2
y

⎞
⎠. (37)

The determinant of this matrix is equal to 4k2
x k2

y k2
z ; so, for

any kμ = 0, the equation detD̂ = 0 has a solution ε̃v,k = 0,
that is, valence electrons still having a positive mass m0.
More precisely, the solutions of detD̂ = 0 read as ε̃v,k =
(h̄2/2m0)γ3e3 with e3 given by

0 =
∣∣∣∣∣∣
k2

y + k2
z + e3 · ·

kxky k2
z + k2

x + e3 ·
kzkx kykz k2

x + k2
y + e3

∣∣∣∣∣∣
= e3(e3 + k2)2 + 4k2

x k2
y k2

z . (38)
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FIG. 3. (a) Contours of the valence electron energies εv,k − εv,0 (in the unit of h̄2/2m0) as a function of (kx, ky ) for kz = 0.05. They
correspond to the three solutions given in Eq. (43) for coupling between |μv〉 and |μc〉 only. In each subfigure, the color of each contour curve
represents the energy value given by the color bar on the right. The solution for ϕ2 = 0 corresponds to a positive mass, as can be deduced from
the fact that the εv,k − εv,0 energy increases from 0 with increasing k. The other two solutions, ϕ1 = 2π/3 and ϕ3 = −2π/3, correspond to
negative masses, as seen from the fact that the εv,k − εv,0 energy decreases from 0 with increasing k. (b) Same for Eq. (46) that correspond
to coupling between |μv〉 and both |c〉 and |μc〉 states of the conduction band. The solution for ϕ2 = 0 corresponds to a positive mass along
kx = ±ky and a negative mass along kx = 0 or ky = 0; the change occurs along the yellow contour lines which correspond to εv,k − εv,0 = 0,
that is, the inverse of the effective mass equal to zero. The other two solutions produce negative masses, as εv,k − εv,0 decreases from 0 with
increasing k. We have taken γ1 = 16.7 and γ3 = 3.5 as for GaAs [32].

For kxkykz = 0, this gives

εv,k = εv,0 + h̄2

2m0
k2 nondegenerate, (39)

εv,k = εv,0 + h̄2

2m0
(1 − γ3)k2 twofold. (40)

So the coupling to |μc〉 only does not yet provide valence
electrons with an effective mass negative for whatever k.

It is possible to analytically solve Eq. (38) for kxkykz �= 0
by using the Cardano’s trick [31]: The three solutions of x3 +
3ax − b = 0 are

x(n) =
∑
τ=±1

eiτϕn

[
b + τ

√
b2 + 4a3

2

]1/3

(41)

for ϕn = (0,±2π/3). To use it, we first introduce �3 =
e3 + 2k2/3. From Eq. (38), we find that the resulting cubic
polynomial equation for �3 has no quadratic term

0 = �3
3 − k4

3
�3 − 2k6

27
+ 4k2

x k2
y k2

z . (42)

Since k2
x k2

y k2
z � (k2/3)3, Eq. (41) gives the three solutions of

the above equation as

�
(n)
3 =

∑
τ=±1

eiτϕn

[(
k2

3

)3

−2Pk + 2iτ

√
Pk

(
k2

3

)3

−P2
k

]1/3

,

(43)
with Pk = k2

x k2
y k2

z . The shapes of the resulting energy contours
for εv,k are shown in Fig. 3(a).

C. Coupling to both |c〉 and |μc〉 states

As now shown, the coupling to the |c〉 and |μc〉 states not
only decreases the number of k momenta at which the valence
electron effective mass stays equal to m0, but this coupling
also generates a warping dependence of the dispersion relation
in Sk = k2

x k2
y + k2

y k2
z + k2

z k2
x .

For P⊥ = |c〉〈c| + ∑
μ |μc〉〈μc|, we find

Wμ′,μ = − h̄2

2m0

[
γ1B(1)

μ′,μ + γ3B(3)
μ′,μ

] ≡ − h̄2

2m0
〈μ′

v|B̂|μv〉.
(44)
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Using the B̂(1)
μ and B̂(3)

μ matrices calculated above, we can

write B̂μ as γ3k2I + Ĉμ, where I is the 3 × 3 unit matrix
while the matrix Ĉμ is given by

Ĉμ =
⎛
⎝ k2

x γ− · ·
kxkyγ+ k2

y γ− ·
kzkxγ+ kykzγ+ k2

z γ−

⎞
⎠, (45)

with γ± = γ1 ± γ3.
By writing ε̃v,k as (h̄2/2m0)e with e = e′ − γ3k2, we find

that the valence electron eigenvalues resulting from the cou-
plings to the |c〉 and |μc〉 conduction states follow from

0 = e′3 + (γ1 − γ3)k2e′2 − 4γ1γ3Ske′ + 4γ 2
3 (3γ1 + γ3)Pk,

(46)
with (Sk, Pk ) defined in Eq. (1). The above equation demon-
strates a warping behavior through the Sk term; note that
both the γ1 and γ3 couplings to the |c〉 and |μc〉 conduction
states are necessary to bring the warping into the problem.
Moreover, we see that when these two couplings exist, that is,
when γ1γ3 �= 0, the above equation has a solution e′ = γ3k2,
that is, e = 0, for

kx = 0, ky = ±kz, (47)

and their cyclic permutations. So, for some k values, the
valence electron effective mass still is positive and equal to
m0.

For arbitrary k’s, we can obtain the three solutions of
Eq. (46) by again using the Cardano’s trick. The shapes of
the energy contours for εv,k are shown in Fig. 3(b).

All this shows that including the couplings to the |c〉 state
and the |μc〉 states of the conduction band reduces the number
of k momenta at which the valence electron effective mass
stays equal to m0. However, this mixing of orbital symmetries
is not enough to produce a negative curvature for whatever
k. We are going to show that an additional mixing, that
comes from the spin-orbit interaction, is necessary to endow a
valence electron with a negative effective mass whatever its k
momentum.

D. B̂(1) and B̂(3) operators in the (1, 0, −1) basis

To derive the effective masses of valence electrons in the
presence of spin, we have to turn from the (x, y, z) crystal
basis, for which calculations are easy to perform with the help
of cyclic permutations, to the (1, 0,−1) basis for which such
cyclic symmetry is broken by the spin quantization axis.

By inserting the B̂(1)
μ matrix elements in the (x, y, z) basis,

given in Eq. (29), into the general link given in Eq. (22) be-
tween matrices in different bases, we obtain the B̂(1) operator
in the (1, 0,−1) basis as

B̂(1)
η =

⎛
⎝ |k1|2 · ·

k∗
0 k1 |k0|2 ·

k∗
−1k1 k∗

−1k0 |k−1|2

⎞
⎠, (48)

with k±1 = (∓ikx + ky)/
√

2 and k0 = ikz. We can check that
detB̂(1)

η = 0 as expected, since the determinant is invariant
under a basis change. We can also recover the eigenvalue
equation for e1 given in Eq. (30) but in a far heavier way, due
to the broken symmetry of the (1, 0,−1) basis along z.

In the same way, changing from (x, y, z) to (1, 0,−1) basis
gives the B̂(3) operator in the (1, 0,−1) basis as

B̂(3)
η =

⎛
⎝|k1|2 + |k0|2 · ·

k∗
0 k1 2|k1|2 ·

−k∗
1

2 k0k1 |k−1|2 + |k0|2

⎞
⎠. (49)

It still is rather easy to check that the determinant of this
matrix is equal to 4Pk, but the derivation of Eq. (38) for e3

takes more time.
It can be of interest to note that the off-diagonal terms

of the B̂(1) and B̂(3) operators are identical when written
in the (x, y, z) basis, while only two of them are identical
when written in the (1, 0,−1) basis. Difference between B(1)

−1,1

and B(3)
−1,1 comes from the broken symmetry along the spin

quantization axis which produces different diagonal terms,
(−B(1)

x,x + B(1)
y,y )/2 and (−B(3)

x,x + B(3)
y,y )/2, in the (1,−1) cou-

plings [see Eq. (22)].

V. SPIN-ORBIT EFFECT ON VALENCE
EFFECTIVE MASSES

A. From the |η〉 ⊗ | ± 1/2〉 to the |j̃〉 states

The first step to handle the effect of spin-orbit coupling
on the valence states is to go from the |η〉 ⊗ | ± 1/2〉 states
to their linear combinations |j̃〉 which are eigenstate of the
spin-orbit interaction. In the following, we consider that the
spin-orbit splitting �so is large enough and the k momentum
small enough to possibly restrict the spin-orbit eigenstates to
the fourfold states |j̃ = 3/2〉 given in Eqs. (13) and (14), in
spite of the fact that these states are coupled to the |j̃ = 1/2〉
states which have the same parity, through their common
coupling to the conduction states |c〉 or |μc〉.

For Â operator that does not act on spin, like the ŵk
operator, the parts of the |j̃〉 states that are coupled must
have the same spin. Accordingly, we get, using the Âη matrix
elements defined in Eq. (19),

A 3
2 , 3

2
= 〈3/2|Â|3/2〉 = 〈1/2| ⊗ 〈1|Â|1〉 ⊗ |1/2〉 = A1,1.

(50)
In the same way

A 1
2 , 3

2
= 〈−1/2| ⊗ 〈1| + √

2〈1/2| ⊗ 〈0|√
3

Â|1〉 ⊗ |1/2〉

=
√

2

3
A0,1, (51)

and so on.
The Â operator in the (3/2, 1/2,−1/2,−3/2) basis then

appears as

Âj̃ =

⎛
⎜⎜⎜⎜⎝

A1,1 · · ·√
2
3 A0,1

A1,1+2A0,0

3 · ·
1√
3
A−1,1

√
2 A0,1+A−1,0

3
A1,1+2A0,0

3 ·
0 1√

3
A−1,1

√
2
3 A−1,0 A−1,−1

⎞
⎟⎟⎟⎟⎠.

(52)
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Note that for real Aμ′,μ’s, as in the case of present interest,

A0,1 + A−1,0 = −Az,x − iAz,y√
2

+ Ax,z + iAy,z√
2

= 0. (53)

So all elements in the second diagonal are equal to zero.

B. Coupling to |c〉 ⊗ | ± 1/2〉 states only

From the B̂(1)
η matrix in the 3 × 3 orbital subspace

(1, 0,−1), given in Eq. (48), we can derive its expres-
sion in the 4 × 4 subspace (3/2, 1/2,−1/2,−3/2), by using
Eq. (52). We find

B̂(1)
j̃ =

⎛
⎜⎜⎜⎜⎝

|k1|2 · · ·√
2
3 k∗

0 k1
|k1|2+2|k0|2

3 · ·
1√
3
k2

1 0 |k1|2+2|k0|2
3 ·

0 1√
3
k2

1

√
2
3 k0k1 |k1|2

⎞
⎟⎟⎟⎟⎠. (54)

The determinant of this matrix is equal to zero; so there still
is a solution with a positive valence electron mass m0. More
precisely, the eigenvalue equation obtained from this matrix
reads

0 = e2
1

(
e2

1 + 2k2/3
)2

. (55)

It has a twofold solution e1 = 0, that leads to εv,k = εv,0 +
h̄2k2/2m0 and a twofold solution e1 = −2k2/3, that leads to

εv,k = εv,0 + h̄2k2

2m0

(
1 − 2

3
γ1

)
. (56)

This shows that the coupling to the nondegenerate con-
duction level splits the upper fourfold valence states resulting
from spin-orbit interaction, into two states still having a
positive effective mass equal to m0 and two states with an ef-
fective mass possibly negative for a coupling γ1 large enough.
The effect of the spin-orbit interaction slightly reduces this
possibility through a prefactor increase from (1 − γ1) to (1 −
2γ1/3).

C. Coupling to |μc〉 ⊗ | ± 1/2〉 only

For a spin-orbit splitting small compared to the band gap,
we can neglect its effect on the threefold orbital states |μc〉 of
the conduction band, and consider that the six states |μc〉 ⊗
| ± 1/2〉 have the same energy (Eg + �c).

From the B̂(3)
η matrix in the 3 × 3 orbital subspace

(1, 0,−1), given in Eq. (49), we can derive its expres-
sion in the 4 × 4 subspace (3/2, 1/2,−1/2,−3/2), by using
Eq. (52). We find

B̂(3)
j̃ =

⎛
⎜⎜⎜⎜⎝

|k1|2+|k0|2 · · ·√
2
3 k∗

0 k1
5|k1|2+|k0|2

3 · ·
− 1√

3
k∗

1
2 0 5|k1|2+|k0|2

3 ·
0 − 1√

3
k∗

1
2

√
2
3 k0k1 |k1|2+|k0|2

⎞
⎟⎟⎟⎟⎠.

(57)
This matrix has obvious similarities with B̂(1)

j̃ , but some cru-

cial differences. These differences bring to B̂(3)
j̃ a determinant

k8/9 which differs from zero for all directions of the electron
k momentum. As a result, there is no more solution ε̃v,k = 0:
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FIG. 4. Energy contours of εv,k − εv,0 (in the unit of h̄2/2m0)
corresponding to (a) the + solution and (b) the − solution given in
Eq. (63). Parameters are the same as in Fig. 3 for GaAs. The two
solutions correspond to a decrease of εv,k − εv,0 from 0 for whatever
k, that is, a negative effective mass for all k directions.

All the curvatures in the valence dispersion relation now differ
from the one of a free electron.

By writing ε̃v,k as (h̄2/2m0)γ3e3, we find, from the deter-
minant of the above matrix, the equation for e3 as

0 = (
e2

3 + 4k2e3/3 + k4/3
)2 = (e3 + k2)2(e3 + k2/3)2.

(58)

The resulting energies for the fourfold |j̃ = 3/2〉 states then
are

εv,k = εv,0 + h̄2

2m0
(1 − γ3)k2 twofold, (59)

εv,k = εv,0 + h̄2

2m0

(
1 − γ3

3

)
k2 twofold. (60)
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These valence electrons all have a negative effective mass for
a large enough coupling γ3 between the |μv〉 and |μc〉 states.

This shows that in order to have a negative valence mass
whatever the direction of the k momentum, it is necessary

to mix the |μv〉 valence orbital states not only through their
coupling to the threefold orbital states |μc〉 of the conduction
band but also between themselves through the spin states via
the spin-orbit interaction.

D. Coupling to |c〉 ⊗ | ± 1/2〉 and |μc〉 ⊗ | ± 1/2〉 states

As in the absence of spin, we write the energy change as ε̃v,k = (h̄2/2m0)e with e = (e′ − γ3k2). We find that e′ follows from
the cancellation of the 4 × 4 determinant given by

0 =

∣∣∣∣∣∣∣∣∣∣∣

|k1|2γ− + e′ · · ·√
2
3 k∗

0 k1γ+ |k1|2+2|k0|2
3 γ− + e′ · ·

γ1k2
1−γ3k∗

1
2

√
3

0 |k1|2+2|k0|2
3 γ− + e′ ·

0 γ1k2
1−γ3k∗

1
2

√
3

√
2
3 k0k1γ+ |k1|2γ− + e′

∣∣∣∣∣∣∣∣∣∣∣
. (61)

The resulting equation reads

0 = [
e′2 + 2

3 (γ1 − γ3)k2e′ − 4
3γ1γ3Sk

]2
. (62)

From its solutions, we find that the fourfold states |j̃ = 3/2〉 split as two sets of twofold states with energies

εv,k = εv,0 + h̄2

2m0

[(
1 − γ1 + 2γ3

3

)
k2 ± 1

3

√
(γ1 − γ3)2k4 + 12γ1γ3Sk

]
. (63)

These results were first derived by Dresselhaus, Kip, and
Kittel [33]. The shapes of the energy contours for εv,k are
shown in Fig. 4.

It is easy to check that the above equation leads to the
energies obtained in Eq. (56) when γ3 = 0 and the energies
obtained in Eqs. (59) and (60) when γ1 = 0. These results
also confirm our previous observation that in order to have
a negative valence electron mass whatever k, it is necessary
to mix the |μc〉 valence states with the spin states through the
spin-orbit interaction, and to couple these valence states to the
threefold conduction states |μc〉 through the γ3 parameter.

VI. CONCLUSION

It is commonly accepted that a periodic ion potential
brings to semiconductor electrons a mass that drastically turns
negative close to a band maximum. Yet, the precise physics

for why electrons in a threefold valence orbital state all ac-
quire a negative effective mass for whatever their momentum
direction, is quite tricky. In this work, we consider various
scenarios of couplings between threefold valence orbital states
and conduction orbital states with different degeneracies that
are close to the band gap, as well as coupling to spin states
through spin-orbit interaction. Our analysis, based on a k · p
approach, proves that while the coupling to conduction levels
is the primary reason for driving the mass of the valence elec-
trons toward a negative value, a further symmetry breaking of
the valence orbital degeneracy along the spin quantization axis
as a result of the spin-orbit interaction, is necessary to ensure
that all valence electrons acquire a negative mass whatever
the k momentum direction. Since spin-orbit interaction is a
relativistic effect, the negative effective mass of semiconduc-
tor valence electrons thus constitutes an unexpected signature
of quantum relativity, unrevealed until now.
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