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An artificial neural network (ANN) with the restricted Boltzmann machine (RBM) architecture was recently
proposed as a versatile variational quantum many-body wave function. In this work we provide physical
insights into the performance of this ansatz. We uncover the connection between the structure of the RBM
and perturbation series, which explains the excellent precision achieved by the RBM ansatz in certain simple
models, demonstrated in G. Carleo and M. Troyer [Science 355, 602 (2017)]. Based on this relation, we improve
the numerical algorithm to achieve a better performance of the RBM in cases where local minima complicate
the convergence to the global one. Furthermore, we study the performance of a sparse RBM for approximating
ground states of random, translationally invariant models in one dimension, as well as random matrix-product
states. We find that the error in approximating such states exhibits a broad distribution and shows a positive
correlation with the entanglement properties of the targeted state.
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I. INTRODUCTION

Variational methods play an invaluable role in quantum
many-body physics because they allow one to represent ex-
ponentially many amplitudes of a many-body wave function
using a small number of variational parameters. The choice
of the variational ansatz is often motivated by the underlying
physics of the system of interest, with notable examples being
product states, the BCS wave function [1], and Laughlin states
[2]. Broad classes of variational wave functions, such as tensor
networks [3–5], which include matrix product states (MPSs)
[4], rely on the low amount of quantum entanglement in
ground states of physical systems.

Even though tensor network methods proved remarkably
successful [5–9], it is important to investigate other classes of
variational wave functions, including the ones that can capture
states with higher entanglement. Recent proposals [10–20] for
such ansätze considered variational wave functions inspired
by machine learning (ML). More generally, ML is finding
an increasing number of diverse applications in physics, in-
cluding the detection of phase transitions [21–30], extraction
of relevant degrees of freedom [31,32], and improvement
of existing techniques [33–35]. In this paper we consider
the variational ansatz inspired by the restricted Boltzmann
machine (RBM) [10]. The architecture of the RBM—a neural
network with a wide range of applications outside quantum
physics [36–38]—is illustrated in Fig. 1.

The RBM ansatz for the system of N physical spins {σ z
i } =

±1 is constructed by introducing M hidden spins {si} = ±1,
which gives α = M/N hidden spins per each physical spin.
Then, the amplitudes of the variational wave function in the
{σ z

i } eigenbasis are obtained by summing over the states of
hidden degrees of freedom:

�RBM({σ j}) =
∑

{si=±1}
e
∑

j a jσ
z
j +

∑
i bisi+

∑
i j Wi j siσ

z
j . (1)

This wave function is optimized over the variational param-
eters {a j}, {bi}, and {Wi j} to yield the lowest-energy wave
function for a given Hamiltonian.

The summation over the hidden-spin states in Eq. (1) can
be performed explicitly, giving up to a normalization factor:

�RBM({σ j}) ∝ exp

⎛
⎝∑

j

a jσ
z
j

⎞
⎠ M∏

i=1

Si,

Si = cosh

⎛
⎝bi +

∑
j

Wi jσ
z
j

⎞
⎠. (2)

This property facilitates Monte Carlo sampling since any
quantum amplitude can be computed by evaluating the func-
tion (2).

The utility of the RBM ansatz (2) is being actively ex-
plored [39–46]. Among its advantages are applicability in
any number of spatial dimensions and the ability to describe
states with a high degree of entanglement. It was found to
approximate the ground states (GSs) of certain Hamiltonians
[one-dimensional (1D) Ising and 1D and two-dimensional
(2D) Heisenberg] [10] with a remarkably high precision, given
relatively few variational parameters. Moreover, it can exactly
represent certain topological states (1D cluster state and 2D
and three-dimensional toric codes) [40].

An important question regarding the representation of
tensor-network states by the RBM ansatz is intimately related
to the entanglement properties of the latter. The entanglement
entropy of a general RBM state obeys volume-law scaling
[39], but finite-range RBM states (that is, states in which a
hidden spin can have nonzero interaction Wi j only with d
contiguous physical spins) obey the area law in any number of
dimensions [39] and can be represented [41] by an MPS with
a finite bond dimension D. However, some MPSs, the Affleck-
Kennedy-Lieb-Tasaki (AKLT) state being an example, cannot
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FIG. 1. Illustration of the RBM architecture: {σ j} denote physi-
cal spins, and {si} are the hidden spins. The variational parameters
{aj} and {bi} represent biases applied to physical and hidden spins,
and parameters {Wi j} correspond to couplings between the two
flavors of spins.

be approximated by a finite-range RBM [41]. The infinite-
range RBM can approximate any MPS arbitrarily well, but
the number of required hidden units is exponential in the bond
dimension of MPSs [47], which is impractical for numerical
applications. Thus, it is important to understand how well
sparse RBM states, with a relatively low density of hidden
spins α, which can be efficiently optimized, can approximate
generic MPSs.

Here, we provide several results regarding the performance
and representation power of the RBM ansatz. First, by con-
necting the RBM to perturbation theory, we explain the sur-
prisingly good performance of the RBM with few variational
parameters for certain models, as reported in Ref. [10]. To
that end, we show that the RBM with α = 1 already captures
several orders of the perturbation series for those models.
The connection to perturbation theory naturally suggests an
improvement for the optimization algorithm, which we ex-
plore. Second, we investigate the performance of the RBM
for general local Hamiltonians, picked at random, as well
as its ability to approximate random MPSs in the practically
interesting case of α = 1. By applying the ansatz to vari-
ous random realizations of these systems, we show that the
performance of the RBM is positively correlated with the
entanglement entropy and range of correlations.

II. RBM AND PERTURBATION THEORY

To illustrate the connection of the structure of the RBM to
perturbation series we first focus on a solvable, 1D transverse-
field Ising (TFI) model:

HTFI = −
∑

i

σ x
i − J

∑
i

σ z
i σ z

i+1, (3)

where σ
β
i , β = x, y, z are the standard Pauli operators.

We consider two points in the phase diagram: J = 0.5
(paramagnetic phase) and J = 2 (ferromagnetic phase). The
GS wave function at these points can be presented in the
following form, using perturbation theory:

|ψ〉 = eŴ |ψ0〉
〈ψ0|eŴ †eŴ |ψ0〉 1

2

, (4)

where |ψ0〉 is the unperturbed wave function, polarized along
the x axis and the z axis for the paramagnetic and ferro-
magnetic cases, respectively. The nth term of the perturbing
operator Ŵ = ∑

n Ŵn accounts for the nth-order perturbative
correction to the wave function. The terms Ŵn become less and

less local as n is increased. The explicit form of the operator
Ŵ is obtained by iteratively solving the Schrödinger equation

(HeŴ − eŴ E )|ψ0〉 = 0. (5)

The RBM wave function (2) can be rewritten in a form similar
to Eq. (4):

�RBM({σ j}) ∝ eW̃ |ψ̃0〉, (6)

where we introduce the RBM operator W̃ = ∑
j a jσ

z
j +∑M

i=1 ln Si and the RBM reference state |ψ̃0〉, which corre-
sponds to the state polarized along the x axis.

The case of the RBM reference state coinciding with
the unperturbed GS |ψ0〉 = |ψ̃0〉 is the simplest example,
where the RBM ansatz can approximate the perturbative wave
function (4). For such an unperturbed GS the action of the
perturbation can result only in spin flips. Thus, the perturbing
operator Ŵ can be expressed solely in terms of {σ z

i }, which
makes it possible to establish the equivalence of the perturbing
and RBM operators Ŵ = W̃ . We can see this equivalence by
rewriting the expression for the RBM (2). Given a finite range
d of the RBM weights Wi j , the cosine terms Si of the RBM
wave function can be written as

Si = cosh bi

⎛
⎝i+d−1∏

j=i

cosh Wi j

⎞
⎠

×
∑

{nk = {0, 1}}d
k=0

(
∑

k nk )mod 2 = 0

tanhnd b
i+d−1∏

j=i

(tanh Wi jσ j )
n j−i . (7)

We see that a cosine Si and, consequently, its logarithm in
the RBM operator contain all possible spin-flip terms at the
range d . At the same time we can always limit the perturbative
expansion of the perturbing operator Ŵ to the finite order in
such a way that the support of each individual term in the
expansion does not exceed d . Then, the perturbing operator
contains no more than Nd = 2d−1 terms per spin, which is the
number of all possible distinct spin-flip operators with a given
support d . Further, the RBM ansatz with a hidden-unit density
α has α(d + 1) parameters per spin coming from the cosines
Si [48]. Therefore, such a perturbative wave function can be
approximated by the RBM ansatz if the following inequality
holds:

Nd � α(d + 1). (8)

To illustrate our argument we explicitly build a map between
the perturbation series and the RBM ansatz at the param-
agnetic point of the TFI model and for the XXZ model
(Appendix B).

As shown above, the capability of the RBM ansatz to ap-
proximate a perturbative series is limited given a fixed hidden-
unit density α. However, being able to reproduce a finite order
of perturbative expansion is sufficient to approximate GS
energy with high precision. This is illustrated in Fig. 2, where
at low orders (�8) the curve describing the RBM precision
of the paramagnetic GS energy approximation (blue) follows
closely the expansion in powers of J of the exact energy
(purple), computed using Jordan-Wigner transformation.
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FIG. 2. Comparison of the energy accuracy obtained by the
variational wave function with finite-range, translationally invariant
couplings Wi j (blue for the paramagnetic case, green for the fer-
romagnetic) to the perturbative expansion of the energy computed
exactly (purple), as a function of the perturbative order. The re-
sults for the analytically constructed RBM are denoted by crosses.
The asymptotic values of error for the paramagnetic case (blue
dashed line), the asymptotic value for the ferromagnetic point with
a gradually increasing RBM range d (green dashed line), and the
results of the original algorithm (yellow dashed line) are shown.
The precision of the analytically constructed RBM wave function
falls onto the curve for the exact expansion, indicating that the
RBM ansatz captures several orders of perturbation theory. At higher
orders the performance gain for RBM slows down and eventually
saturates. The modified algorithm based on the perturbation theory
argument outperforms the original one by 2 orders of magnitude for
J = 2. The results are obtained for a system of N = 18 spins.

In Fig. 2 we relate a given RBM ansatz to a certain order
of perturbation theory. We achieve this by taking the range d
of interactions Wi j to be equal to the largest support among
the irreducible terms that contribute to the corresponding
order of the perturbative expansion of the energy. For exam-
ple, the second-order correction to the energy is determined
by the first-order correction to the GS wave function in the
case of the TFI model, which gives d = 2 (d = 1) for the
paramagnetic (ferromagnetic) point.

At this point we have established the mapping between the
perturbation expansion and the RBM ansatz only in the case of
the unperturbed GS being polarized along the x axis. However,
our argument is more general; that is, in Appendix A we show
that in the case of an arbitrary product state the first-order
perturbative wave function can be approximated by the RBM.
Even though we cannot extend the perturbative argument to
an arbitrary order of the perturbation theory rigorously, we
still expect that given enough variational parameters higher
orders can be captured in agreement with Eq. (8). We test our
expectations numerically using the RBM as a variational wave
function at the ferromagnetic point of the TFI. Interestingly,
we observe that the restriction of the structure of the ansatz
according to perturbation theory improves its convergence
properties. We enforce this structure by modifying the original
algorithm [10] in the following way: we gradually increase
the range of variational couplings Wi j at each step starting
with the optimal parameters obtained in the previous step. We
found that this modified procedure yields a lower error than
the original procedure already at range d = 3.

To conclude this part we note that it is a nonlinearity of the
hyperbolic cosine and the logarithm in Eq. (6) that allows the
RBM to approximate the action of all possible local operators.
We expect other ansätze with these properties to perform in a
similar way. We propose two alternative functions and verify
that they have an approximative power comparable to that of
RBM (Appendix C).

III. GENERAL HAMILTONIANS

While the TFI model provides a good test for the varia-
tional wave functions, it is important to apply RBM to more
general Hamiltonians. As an example, we consider a family
of translationally invariant Hamiltonians with random nearest-
neighbor spin-spin interactions:

Hrand =
∑

i

∑
α,β={0,x,y,z}

Jαβσ α
i σ

β

i+1, (9)

with Jαβ being independent random coefficients uniformly
distributed in the range [−0.5, 0.5]. We use the RBM ansatz
with α = 1 and translationally invariant variational param-
eters to approximate the GS energy of these Hamiltonians.
Therefore, we have to restrict our consideration only to those
Hamiltonians that have translationally invariant GSs and do
not exhibit a spontaneous breaking of translational symmetry
(Appendix E).

The error in approximating the GS energy for different
realizations of Hamiltonian (9) exhibits a broad distribution
[49]. To analyze the nature of this spread, we also studied the
properties of the exact GS of the corresponding Hamiltonians
(computed using exact diagonalization of system with N =
18). Namely, we study how the RBM performance depends
on the entanglement entropy and the correlation length [50]
(Fig. 3). The positive correlation of the error with both quan-
tities is evident, indicating that RBM performs best for states
with short-range correlations and low entanglement.

Another thing that we analyze is how the value of the
error scales with the hidden-unit density depending on the
entanglement of the GS. For the system size N = 16 we com-
pare the performance of RBM ansätze with α = 2, 4 to the
one with unit α = 1 (Fig. 3). We observe that the increase in
density generally improves the performance of the ansatz [51].
However, this improvement varies by an order of magnitude,
being the most significant for the low-entanglement GSs.

IV. RBM AND MPS

We can further understand the interplay of RBM and entan-
glement by studying the relation of the ansatz to MPSs. Let us
first point out that any finite-range RBM can be represented as
an MPS. In particular, in Appendix D we show that an RBM
with the range d can be represented as an MPS with a bond
dimension D that scales exponentially in d , compared to the
exponential in d2 scaling obtained in Ref. [41].

To study the inverse mapping, we use RBM with
α = 1 to approximate MPSs with a given bond dimension.
We generate random translationally invariant MPSs |�MPS〉
with D = 2, 4, 8 for a system of N = 18 spins [52]. Then we
minimize the quantity 1 − |〈�MPS|�RBM〉|2, which is plotted
against the entanglement entropy in Fig. 3. One can see a
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(a) (b) (c) (d)

FIG. 3. The performance of the RBM with unit hidden spin density is analyzed in the context (a) of the entanglement entropy of the
subsystem of six cites and (b) of the correlation length for the problem of the GS energy approximation of the random Hamiltonian. (c) The
change in the RBM error with the increased hidden spin density compared to the base case of α = 1 (dashed line) is summarized. (d) The
RBM performance for states with higher entanglement is analyzed in the framework, where we generate random MPSs with different bond
dimensions as target states. Generally, a larger bond dimension corresponds to larger entanglement. The numerical simulations are done for
system sizes N = 16 in (c) and N = 18 in (a), (b), and (d).

clear dependence of the error on the entanglement entropy,
which is in agreement with the results obtained for the random
Hamiltonians above.

V. CONCLUSIONS

In this paper we considered the RBM “black box” from the
physical prospective. We pointed out an explicit connection
between the RBM ansatz and the perturbative description of
ground states of gapped models, which explains the remark-
able accuracy of the sparse (α = 1) RBM for simple models
such as the TFI model [10]. In particular, we provided a
mapping between RBM wave functions and perturbation the-
ory for several concrete cases. This connection allowed us to
introduce a simple modification of the optimization algorithm
of RBM that leads to the improvement of the performance by
several orders in certain cases.

Finally, we have investigated the performance of practical,
sparse RBM states in approximating ground states of random
(but translationally invariant) local spin Hamiltonians. We
found that the approximation error has a broad distribution,
and the sparse RBM performs very well for ground states
with a low amount of entanglement. It is natural to expect
that such states can be well approximated using just few
orders of perturbation theory, which RBM can capture. We
have also shown that for low-entanglement GSs the RBM
performance is more significant when the number of hidden
spins is increased.

We leave for future work the detailed investigation of how
well infinite-range RBM can reproduce critical many-body
states. Another open question is whether the volume-law
entanglement that RBM states generally have may be use-
ful for approximating, e.g., excited states and entanglement
spreading in many-body systems.

The data for this work is available [53].
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APPENDIX A: A MAPPING BETWEEN THE FIRST-ORDER
PERTURBATIVE EXPANSION OF A GENERAL PRODUCT

STATE AND THE RBM

In the case of the finite-order perturbative expansion the
perturbing operator (4) can be represented as the following
sum:

Ŵ =
∑

i

ŵi, (A1)

where operators ŵi correspond to the local operators with a
support localized between spin i and i + d − 1, with d being
the range of the terms in a perturbation. In general, wi can be
the sum of several local product operators. However, below,
without a loss of generality, we assume that wi is just one
product operator.

The simplification that appears in the first-order expansion
is the validity of the representation

eŴ ≈
∏

i

(1 + ŵi) (A2)

and the fact that all the terms corresponding to the product of
neighboring ŵi with the intersecting support can be neglected
since they appear in the higher order of the perturbative
expansion. Therefore, this product can be viewed as a product
of the operators that are localized on distinct spins, and thus,
we can match it and the RBM disregarding cross terms.

First of all, let us show how any unperturbed product GS
can be represented as the RBM. Such a GS can always be
related to the state |ψ0〉 with all spins polarized along the x
axis as

|GS〉 =
∏

n

R̂(an, σn)|ψ0〉, R̂(a, σ ) = ei(aσ ). (A3)

Let us now notice the following property of the action of
the rotation operator R̂(a, σ ) on the spin polarized along the
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x axis |↑〉x: the action of such an operator can always be expressed in terms of only the σz operator up to normalization:

R̂(a, σ )| ↑〉x =
[

cos a + sin a

|a| sin a
(
axσ

x + ayσ
y + azσ

z
)]|↑〉x (A4)

=
[(

cos a + sin a

|a| ax

)
+ sin a

|a| (az − iay)σz

]
|↑〉x ∝ eγ σz |↑〉x ≡ R̃(γ )|↑〉x, (A5)

where γ is determined from the equation tanh γ = (az − iay)/(|a| cot a + ax ). Therefore, the unperturbed GS may be represented
as |GS〉 ∝ ∏

j R̃(γ j )|ψ0〉. The next step is to include the perturbative corrections to the GS. Note that each term ŵi has a

representation ŵi = vi
∏i+d−1

j=i R̂(A j, σ j ). Let us now show that the action of this operator on the GS can be expressed in terms
of {σ z

i }

ŵi|GS〉 = vi

i+d−1∏
j=i

R̂(A j, σ j )
∏

n

R̂(an, σn)|ψ0〉 = vi

n�i+d∏
n<i

R̂(an, σn)
i+d−1∏

j=i

R̂(Ã j, σ j )|ψ0〉 (A6)

∝
∏

n

R̃n(γn)
i+d−1∏

j=i

R̃ j (� j − γ j )|ψ0〉 ≡ R̃n(γn)wz
i |ψ0〉, (A7)

where R̃i(γi ) ≡ eγiσ
z
i , R̂(Ãi, σi ) = R̂(ai, σi )R̂(Ai, σi ), and

R̂(Ãi, σi )|ψ0〉 ∝ R̃(�i )|ψ0〉. We see that the structure of the
operator acting on the GS is preserved even after all operators
are represented solely in terms of {σ z

i }. Generalizing this result
to the whole perturbative expansion, we obtain

eŴ
∏

n

R̂(an, σn)|ψ0〉 ∝ e
∑

i w
z
i

∏
j

R̃(γ j )|ψ0〉. (A8)

Note that the discrepancy between the left-hand side and the
right-hand side appears only in the higher-order terms. The re-
lation above allows us to match the perturbative expansion and
RBM using the parametric argument discussed in the main
text. Moreover, it sheds light on the role of {aj} parameters in
the RBM ansatz. These parameters allow transformation from
the true unperturbed GS to the state with all spins polarized
along the x axis.

APPENDIX B: AN EXACT MAPPING OF THE
PERTURBATIVE WAVE FUNCTION TO THE
RBM ANSATZ FOR TFI AND XXZ MODELS

1. Paramagnetic point of the TFI Hamiltonian (3)

As defined in Eq. (4), Ŵ is given by

(HeŴ − eŴ E )|ψ0〉 = 0. (B1)

Let us write Ŵ and the energy E in the form Ŵ = Ŵ1 + Ŵ2 +
Ŵ3 + O(J4) and E = E0 + E1 + E2 + E3 + O(J4) to outline
their perturbative structure.

To simplify the analysis we want to fix the freedom in
choice of Ŵ . It could be chosen to depend solely on {σ z

i }.
This is the case since an action of any operator on |ψ0〉 that
is the product of {σα

i } results only in spin flips at certain
positions. Thus, to cancel such terms we need to put σ z

i in
the corresponding positions of Ŵ . When commuted with H0,
some σ z

i would be changed to σ
y
i , but the resulting action on

|ψ0〉 stays the same up to a phase (σ z
i |ψ0〉 = iσ y

i |ψ0〉).
Two important simplifications follow from this observa-

tion, namely, that [V,Ŵ ] = 0 at any order and eŴn+Ŵm =
eŴn eŴm . Also, a simple property of the TFI Hamiltonian is

that all odd-energy corrections are zero. Having said that, the
equations that determine the terms of interest in Ŵ can be
written as

([H0,Ŵ1] + V )|ψ0〉 = 0, (B2)(
[H0,Ŵ2] + 1

2 [[H0,Ŵ1],Ŵ1]
)|ψ0〉 = E2|ψ0〉, (B3)(

[H0,Ŵ3]+[[H0,Ŵ1],Ŵ2]+ 1
6 [[[H0,Ŵ1],Ŵ1],Ŵ1]

)|ψ0〉 = 0.

(B4)

To have more compact notation we denote λ ≡ J
4 . If we

take Ŵ1 = λ
∑

i σ
z
i σ z

i+1, then [H0,Ŵ1] = 2iλ(
∑

i σ
y
i σ z

i+1 +∑
i σ

z
i σ

y
i+1). Therefore, the term that should be canceled in the

second order is

1

2
[[H0,Ŵ1],Ŵ1] = −4λ2

∑
i

(
σ x

i + σ z
i σ x

i+1σ
z
i+2

)
. (B5)

We choose Ŵ2 = λ2 ∑
i σ

z
i σ z

i+2 and get an extensive
energy correction E2 = −4λ2 ∑

i 1; then [H0,Ŵ2] =
2iλ2(

∑
i σ

y
i σ z

i+2 + ∑
i σ

z
i σ

y
i+2). The third-order interaction is

then given by

[[H0,Ŵ1],Ŵ2] + 1

6
[[[H0,Ŵ1],Ŵ1],Ŵ1]

= 16λ3i

3

∑
i

(
σ

y
i σ z

i+1 + σ z
i σ

y
i+1

)
− 4λ3

∑
i

(
σ x

i σ z
i+1σ

z
i+2 + σ z

i σ z
i+1σ

y
i+2

+ σ z
i σ x

i+1σ
z
i+3 + σ z

i σ x
i+2σ

z
i+3

)
. (B6)

This gives Ŵ3 = 2λ3 ∑
i(σ

z
i σ z

i+3 + σ z
i σ z

i+1/3), and the total
wave function up to normalization can be written as

|ψ〉 = eŴ |ψ0〉 + O(λ4), (B7)
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with

Ŵ =
∑

i

[(
λ − 2λ3

3

)
σ z

i σ z
i+1 + λ2σ z

i σ z
i+2 + 2λ3σ z

i σ z
i+3

]
.

(B8)

At this point it is clear how the RBM ansatz could be
constructed in order to recover perturbative expansion; that
is, the Taylor expansion of each cosine should reproduce
local terms in the exponent of (B7). Since we need only

terms even in operators σ z, it is natural to take parameters
ai and b j of the RBM ansatz to zero. The parameters Wi j

are chosen to be translationally invariant, i.e., dependent only
on the difference between the position of a hidden unit and
the physical spin Wi j = W̃i− j . Since the largest support of
the terms in Ŵ is 4, we restrict ourselves to four nonzero
parameters W̃i, {i = 0, . . . , 3}. Applying all the assumptions
to the RBM wave function (2), we may write the ansatz in the
form

�RBM({σ j}) =
(

3∏
i=0

cosh W̃i

)N ∏
j

(
1 + w0w1σ

z
j σ

z
j+1 + w0w2σ

z
j σ

z
j+2 + w0w3σ

z
j σ

z
j+3 + w1w2σ

z
j+1σ

z
j+2

+ w1w3σ
z
j+1σ

z
j+3 + w2w3σ

z
j+2σ

z
j+3 + w0w1w2w3σ

z
j σ

z
j+1σ

z
j+2σ

z
j+3

)
, (B9)

where wi = tanh W̃i. Since we assume this expression has
the perturbative structure, the terms containing Pauli matrices
should be small. Thus, we can take the approximate logarithm
of this expression to get the exponential form (B7) up to
normalization. Then we could easily identify the value of the
parameters wi that reproduce the perturbative expansion to
the third order: w0 = 1 (it is possible with an exponential
precision for finite W̃0), w1 = λ − 2λ3, w2 = λ2 + λ3, and
w3 = 2λ3.

To account for the first three orders of the perturba-
tion theory we can set the parameters to the following val-
ues: tanh W0 = 1 (this could be done with exponential pre-
cision for finite W0), tanh W1 = λ − λ3/2, tanh W2 = λ2 +
λ4/2, tanh W3 = 2λ3. For these parameter values the RBM
ansatz coincides with the perturbative expansion given the
accuracy.

2. Ferromagnetic point

Here, we construct the RBM ansatz that captures the per-
turbation series at the ferromagnetic point up to the second
order. The main challenge here is that in contrast to the
paramagnetic case the unperturbed GS is a product state of
spins polarized along the z axis. However, as we have shown
in Appendix A even in this case the first order is guaranteed
to be captured by the RBM. Moreover, for this particular
Hamiltonian we show how this could be extended to the
second order.

The TFI Hamiltonian is a sum of a zero-order part H0 =
−∑

i σ
z
i σ z

i+1 and the perturbation V = −4λ
∑

i σ
x
i . The first

two orders of the perturbing term Ŵ (4) are given by

Ŵ1 = λ
∑

i

σ x
i ,

Ŵ2 = λ2
∑

i

σ x
i σ x

i+1.

Our first goal is to express the second-order wave function
in terms of {σ z

i } operators acting on the state |ψ̃0〉 of all spins
polarized along the x axis. First of all, an unperturbed GS |ψ0〉
can be represented as

|ψ0〉 ∝
∏

i

e�σ z
i |ψ̃0〉, (B10)

with exponential precision for a large �. In a similar manner
we express the second-order wave function as

eŴ1+Ŵ2 |ψ0〉 ∝
∏

i

e�σ z
i
[
2e−2� + (λ + λ2) − (λ + λ2)σ z

i

− λ2σ z
i+1 + λ2σ z

i σ z
i+1

]|ψ0〉 (B11)

within the precision of the expansion. We can approximate
this wave function by an RBM with a range d = 2 and
translationally invariant weights satisfying conditions ai = �

for all spins, tanh bj = [(λ + λ2)/(2e−2� + λ + λ2)]1/2 for
all hidden spins, and tanh Wii = − tanh b j , tanh Wii+1 =
−λ2/(2e−2� + λ + λ2)/ tanh b j , tanh Wi j = 0 for j �=
i, i + 1.

3. XXZ Hamiltonian

Let us now map a perturbative expansion in λ of the GS of
the antiferromagnetic (AF) XXZ Hamiltonian to a RBM wave
function. This Hamiltonian is given by

HAF =
∑

i

σ x
i σ x

i+1 + λ
∑

i

(
σ

y
i σ

y
i+1 + σ z

i σ z
i+1

)
. (B12)

In the limit of λ = 1 it becomes an AF Heisenberg model,
which was numerically studied using the RBM in Ref. [10].
Note that an unperturbed GS of this Hamiltonian is doubly
degenerate with one state being |GS〉 = | ↑↓ · · · 〉 and another
being translated by one index. Below we build an expansion
over the state |GS〉. Note that this state can be mapped onto
the state with all spins polarized along the x axis |ψ0〉 if the
following unitary transformation is applied:

U =
∏
ieven

σ z
i , |ψ0〉 = U |GS〉. (B13)

And the Hamiltonian is transformed to

H̃AF ≡ UHAFU † = −
∑

i

σ x
i σ x

i+1 − λ
∑

i

(
σ

y
i σ

y
i+1 − σ z

i σ z
i+1

)
.

(B14)
Within the new basis one can use the translationally in-
variant RBM ansatz to approximate the perturbative func-
tion. The first-order correction to |ψ0〉 is determined from
Eq. (B2), where H0 = −∑

i σ
x
i σ x

i+1 and V = H̃AF − H0. The
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second-order correction is determined from(
[H0,Ŵ2] + [V,Ŵ1] + 1

2 [[H0,Ŵ1],Ŵ1]
)|ψ0〉 = E2|ψ0〉.

(B15)
The corresponding perturbing terms are given by

Ŵ1 = −λ

2

∑
i

σ z
i σ z

i+1, (B16)

Ŵ2 = −λ2

4

∑
i

(
σ z

i σ z
i+2 − σ z

i σ z
i+1σ

z
i+2σ

z
i+3

)
. (B17)

To capture this perturbative structure we use the RBM
with hidden-unit density α = 2 and the range d = 4. As in
the case of the TFI model we take parameters ai and b j

to zero, and for the couplings Wi j , we assume translational
invariance. Since there are two hidden spins for each real
one, we have to introduce two sets of translationally invariant
parameters w

(1)
i− j/2 ≡ arctanhWi j for even hidden spins j and

w
(2)
i−( j−1)/2 ≡ arctanhWi j for odd ones. To capture the second-

order perturbative expansion of the GS we may choose the
following values of the parameters:

w
(2)
0 = λ

1
2 x/t ≈ 0.376λ

1
2 e−iπ/4,

w
(1)
0 =w

(2)
0 + λ

3
2 tx

4(t4 + 1/16)
≈ 0.376λ

1
2 e−iπ/4+0.468λ

3
2 eiπ/4,

w
(1)
1 = −w

(2)
1 = w

(2)
3 = λ

1
2 t ≈ 0.411λ

1
2 eiπ/4,

w
(1)
2 = w

(2)
2 = −λ

1
2 y/t ≈ 0.984λ

1
2 e−iπ/4,

w
(1)
3 =w

(2)
3 − t3λ

3
2

4(t4 + 1/16)
=0.411λ

1
2 eiπ/4+0.513λ

3
2 eiπ/4,

where x = (−1 + √
5)/8, y = (−1 − √

5)/8, and

t = eiπ/4

2 (9/2 + 2
√

5 −
√

(9/2 + 2
√

5)2 − 8)
1
4 are numerical

constants that emerge in the process of mapping of the
expansion to the RBM.

Another thing that is worth mentioning is that if we allow
an absence of translational invariance in the RBM parameters,
we can easily construct the second-order perturbative expan-
sion of the GS in the original basis. It can be achieved if we
include parameters {ai}, which take the values ai = 0 on odd
sites i and ai = iπ/2 on even sites.

APPENDIX C: A FAMILY OF ANSÄTZE

Another interesting question concerns the uniqueness of
the RBM ansatz. The connection of the RBM to perturbation
theory suggests that this ansatz belongs to a whole class of
variational wave functions which can reproduce perturbative
expansions. To demonstrate this, we investigate two examples
below. In the first example, each hidden spin generates a
quadratic polynomial:

�quad ({σ j})=exp

⎛
⎝∑

j

a jσ
z
j

⎞
⎠ M∏

i=1

⎛
⎝1+αi

⎡
⎣bi+

∑
j

Wi jσ
z
j

⎤
⎦

2⎞
⎠,

(C1)

and coefficients αi are variational parameters. The second trial
ansatz is a sixth-order polynomial with only even powers and

fixed coefficients

� f ix ({σ j}) = exp

⎛
⎝∑

j

a jσ
z
j

⎞
⎠ M∏

i=1

3∑
k=0

⎛
⎝bi +

∑
j

Wi jσ
z
j

⎞
⎠

2k

.

(C2)
We restrict ourselves to only even powers since we found such
ansätze yield a better performance.

The approximative power of these ansätze is summarized
in Fig. 4, where we plot the accuracy of the GS energy approx-
imation as a function of the hidden-unit density, using either
the original algorithm or the modified one. The numerical
results are presented for the system of N = 18 spins and
four Hamiltonians, namely, a paramagnetic one (J = 0.5),
a ferromagnetic one (J = 2), a critical one (J = 1), and a
nonintegrable one, defined as

Hni = −
∑

i

σ x
i − h

∑
i

σ z
i − J

∑
i

σ z
i σ z

i+1, (C3)

where we choose J = 1 and h = 0.5. All three ansätze exhibit
similar numerical performance, which indicates that the RBM
ansatz belongs to a wider class of functions that are capable
of capturing local correlations.

APPENDIX D: EXACT MAPPING OF THE RBM TO MPSs

Let us start with constructing an exact and transparent map-
ping from the finite-range RBM to MPSs in one dimension.
The RBM ansatz with coupling range d can be written as

�RBM({σ j}) =
∏

i

f (i)
σi···σi+d−1

, (D1)

where f (i)
σi···σi+d−1

is a function acting on d neighboring spins.
For example, to write the RBM wave function with α =
1 in this form, we can choose f (i)

σi···σi+d−1
= eaiσ

z
i cosh(bi +∑d−1

j=0 Wi,i+ jσ
z
i+ j ). Next, we construct a mapping from this

form to an MPS form. We can associate the tensor
Aσi

i−d,...,i+d−1 with each function f (i)
σi···σi+d−1

using the following
rule:

Aσi
j1··· jd−1k1···d−1

= f (i)
σik1···kd−1

δσi j1 δk1 j2 × · · · × δkd−2 jd−1 , (D2)

where the first d − 1 indices ( j1 · · · jd−1) of the tensor should
be considered one index taking 2d−1 values, which should be
contracted with the (i − 1)th tensor, and the last d − 1 indices
(k1 · · · kd−1) are contracted with the (i + 1)th tensor. Then the
RBM wave function can be written in the form

�RBM =
∑
{σ j}

Tr(Aσ1 · · · AσN )|{σ j}〉. (D3)

Our argument makes use of the fact that the spin system either
has periodic boundary conditions or is infinite; however, this
argument can be effortlessly generalized to finite-size systems
with boundaries. Also, the slightly modified argument relates
the RBM to MPSs in higher dimensions.

In contrast to Ref. [41], where the mapping was made to
an MPS with a bond dimension D that is exponential in the
number of pairs of the connected hidden unit and the physical
spin that have a given spin in between (∼ed2

), we get an
exponential (D ∼ ed ) scaling with the range of the RBM.
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(a) (b)

FIG. 4. Comparison of the performance of the RBM ansatz and two polynomial ansätze using (a) the original algorithm and (b) the one in
which the range of the couplings Wi j is gradually increased. Four Hamiltonians have been considered: Ferromagnetic, paramagnetic, critical,
and nonintegrable (see the main text). In all cases, the modified algorithm allows one to achieve comparable or lower error. The system size is
N = 18.

APPENDIX E: PROCESSING OF DATA FOR THE RBM
APPLIED TO RANDOM HAMILTONIANS AND MPSs

In this paper we are interested in the simplest, transla-
tionally invariant RBM wave functions. Therefore, we need
to check whether the problem at hand (either the GS of a
random Hamiltonian or a random MPS) is compatible with
this symmetry of the ansatz. The most straightforward prop-
erty to check is the translational symmetry of the target wave
function. While this symmetry is present by construction for
MPSs analyzed in this paper, GSs of a random translationally
invariant Hamiltonians may lack it. We do not expect (and
do not see) accidental degeneracy of the GSs related to the
symmetry breaking. However, some GSs, even being unique,
do not transform trivially under the action of the translation
operator, acquiring a nontrivial phase. Removing such states
from our sample, we found that there are 109 out of overall
randomly generated 150 Hamiltonians that have translation-
ally invariant GSs.

However, the translational symmetry of the GS is not suf-
ficient to justify the use of the translationally invariant RBM
ansatz, which was brought to our attention by G. Carleo. In
particular, in the case of spontaneous breaking of translational
symmetry there are two or more distinct ground states in

the thermodynamic limit. The true eigenstates of a finite-
size system, which are “Schrödinger’s cat” superpositions of
these broken-symmetry states, are translationally invariant.
The sparse RBM ansatz has difficulty approximating such
catlike states and, instead, may give a good approximation
of the symmetry-broken states. Since we chose to consider
only the translationally invariant RBM, we decided not to
include realizations of random Hamiltonian ground states
which exhibit spontaneous symmetry breaking.

To identify such cases, we removed the states that have
strong nonlocal correlations. To that end, we first define the
correlation function

Kα (n) = 〈
σα

1 σα
1+n

〉 − 〈
σα

1

〉〈
σα

1+n

〉
, α = x, y, z. (E1)

To check that a given state does not exhibit nonlo-
cal correlations, we then apply a heuristic condition that
distant (we take n = 8, 9) correlations are smaller than
Cmaxα{meann[|Kα (n)|]}, where C is a constant, chosen at
C = 0.5. We found that this condition reduces the number
of random Hamiltonians from 109 to 91 and the number of
MPSs from 116 to 88. The postselected data are are presented
in Fig. 3, and the raw data are presented in Fig. 5.

(b)(a)

FIG. 5. The raw data for Fig. 3: random Hamiltonian (a) and random MPS (b).
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