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We propose that a pertinently engineered double superconducting island connected to two spinless one-
dimensional conducting leads can work as a tunable (iso)spin Kondo and charge Kondo system, with the lead
index regarded as an effective isospin degree of freedom. We evidence how, by tuning a single gate voltage
applied to the island, it is possible to make the system switch from the (iso)spin Kondo to the charge Kondo
phase, passing across an intermediate phase, in which the Kondo impurity is effectively irrelevant for the
low-temperature behavior of the system. Eventually, we evidence how to probe the various phases by measuring
the ac conductance tensor of our system, by emphasizing the features that should allow to identify the onset of
the so far quite elusive “charge-2” charge Kondo effect.

DOI: 10.1103/PhysRevB.101.195140

I. INTRODUCTION

The Kondo effect has been experimentally seen for the
first time as an upturn in the resistivity of metals doped with
magnetic impurities, as the temperature T goes below the
nonuniversal Kondo temperature TK , typically of the order
of a few Kelvin, or less [1,2]. On the theoretical side, the
Kondo effect was readily explained in terms of a dynamical
screening of the single-impurity magnetic moment by means
of the spin density of itinerant electrons in the metal [1,2]. As
T → 0, the impurity moment is fully screened, which allows
for trading the impurity for a local (Kondo) spin singlet, acting
as a scattering center that forbids electrons from accessing
the impurity site [2,3]. The Kondo spin singlet provides one
of the few theoretically well-understood examples of strongly
correlated states of matter. For this reason, soon after its dis-
covery and its theoretical explanation, Kondo effect began to
be used as a paradigmatic test bed for a number of remarkable
analytical, as well as numerical, methods to study strongly
correlated systems, including the well-celebrated Wilson’s
numerical renormalization group (RG) technique [4,5]. On
top of that, it has been found how a peculiar realization of the
effect, such as the “overscreened” one, in which more than one
itinerant electron “channel” contributes to screen the magnetic
impurity, yields to a novel phase of matter, which, differently
from the local spin singlet, cannot be described within the
“standard” Landau’s Fermi-liquid framework [6].

Recently, a renewed interest has arisen in the Kondo effect
[7], due to the possibility of realizing it in a controlled
way in mesoscopic systems with tunable parameters, such as
semiconducting quantum dots with metallic leads [8–11], in
which Kondo effect is expected to appear as an upturn of
the conductance, rather than of the resistivity, across the dot

connected to the leads, or with superconducting leads [12–14],
in which Kondo effect should be evidenced by a change in the
behavior of the subgap (Josephson) supercurrent across the
dot, when the leads are held at a fixed phase difference ϕ. In
addition, since the effect is merely due to spin dynamics, it has
been proposed that a “spin Kondo” effect can take place in
systems with itinerant, low-energy excitations carrying spin,
but not charge, such as XXZ spin- 1

2 chains [15–17], which can
be for instance realized by loading cold atoms on a pertinently
designed optical lattice [18,19], or frustrated J1-J2 spin chains
with J2/J1 tuned at the “critical” value at the phase transition
between the spin liquid and the dimerized phase of the sys-
tem [20]. In fact, realizations of the spin Kondo effect have
recently been proposed at junctions of quantum spin chains
[21–24], or of one-dimensional arrays of Josephson junctions
[25–27]. Finally, it is worth mentioning the possibility, that
has been recently put forward, that a remarkable “topological”
Kondo effect might arise, in which the impurity spin is real-
ized by means of Majorana modes emerging at the interface
between topological superconductors and normal conductors
(or the empty space) [28–30] and, more generally, the striking
similarity between the Kondo physics and the hybridization
between a Majorana mode and the itinerant electrons in a
metal connected to the topological superconductor [31].

A key point about Kondo effect is that, aside from all the
spin dynamics underneath, in order for the effect to take place,
one generally needs an impurity with a twofold-degenerate
ground state, which is able to switch from one state to the
other via quantum number exchange processes with itiner-
ant particles from the medium into which the impurity is
embedded. In this respect, a number of proposals have been
put forward in which Kondo effect is associated to charge
rather than to spin degeneracy in the impurity ground state.
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Such a charge-based version of Kondo effect is typically
dubbed “charge Kondo” (CK) effect, to distinguish it from
the “standard” “spin Kondo” (SK) effect. The CK effect was
originally proposed as a possible mechanism, related to the
“negative-U” Anderson model, able to induce a charge-dual
version of the highly correlated, heavy-fermion ground state
[32]. The CK effect has later on been theoretically studied in
dots connected to bulk leads [33], in single-electron transistors
[34–36], as well as in generalizations of the negative-U An-
derson model [37–39], also involving optical lattice systems
[40]. Overall, there are two main different realizations of
CK effect. The former one does not require superconduct-
ing correlations. It consists in realizing the two degenerate
impurity states at a quantum point contact with a finite
charging energy tuned, by means of an external gate voltage,
nearby the degeneracy point between two states differing by
a single-electron charge e (“charge-1” CK). This proposal has
been theoretically put forward in, e.g., Refs. [33–36,41] and
eventually led to the experimental observation of the effect,
discussed in Ref. [42]. At variance, a different realization
of CK effect, in which the degenerate impurity states differ
by a charge 2e (“charge-2” CK), has been proposed in, e.g.,
Refs. [32,37–39] (a detailed discussion about the two different
realizations of CK is provided in, e.g., Ref. [43]).

Notwithstanding the great interest in CK effect, witnessed
by the large number of papers on the topic, a clear-cut ex-
perimental verification of charge-2 CK effect is still lacking
(differently from what happens for SK and for charge-1 CK
effect). For this reason, in the last years there has been an
increasing interest in realizing CK effect in a controlled way,
in systems with tunable parameters. For instance, it has been
proposed to realize CK effect in mesoscopic superconductors
coupled to normal metals [43], in negative-U quantum dots
with superconducting electrodes [44], and even in double
quantum dot, in which the effect should be mediated by
the Coulomb repulsion between the electrons at the double
dot [45]. In general, defining an appropriate tunable device
to probe CK effect, possibly in comparison with the more
“standard” SK effect, is still an open challenge, also in view
of the potential relevance of CK effect to explain the physics
of, e.g., superconductivity in PbTe doped with Tl [38], or of
impurities formed at dots in LaSrO3/SrTiO3 interfaces [46].

In this paper, we propose to realize charge-2 CK effect at
a “minimal” tunable device in which one may in principle
switch from SK to CK effect by just acting onto a limited num-
ber of system parameters (ideally, one parameter only). Our
system, which we sketch in Fig. 1 in its “minimal” version,
consists of two spinless conducting fermionic channels (the
“leads”), connected to a “tunable” effective Kondo impurity
K . In particular, we propose to realize the tunable Kondo
impurity by means of a pertinently designed double super-
conducting island hosting four Majorana modes emerging at
the end points of two spinless quantum wires deposited on
top of it (see Fig. 2 for a sketch of the setup). Aside from
technical details related to the design of our system, it is based
on by now well-established features concerning the interplay
between emerging Majorana fermion in condensed matter
systems and the Kondo effect, a sample of which can be found
in, e.g., Refs. [28–30,47–49]. In principle, our device can be
experimentally realized similarly to setups already employed

FIG. 1. Sketch of our proposed system: the two quantum wires
are represented as one-dimensional lattices, while the tunable Kondo
impurity is realized by connecting the leads to a double supercon-
ducting island with pertinently chosen parameters (see the main text).

to test the existence of Majorana modes [50–52] making use
of, e.g., heterostructures of semiconductors coupled to s-wave
superconductors [53] or linear junctions between supercon-
ductors and topological insulators [54]. To define an effective
spin index, we regard the lead index of lead electrons as an
effective isospin index. Yet, to ease the presentation, in the
paper we refer to the effective isospin degree of freedom
simply as lead electron spin. Doing so, we show that the
Kondo-type coupling of K to lead electrons can be either SK
like, or CK like, depending on the specific values of the tuning
parameters.

Our design allows for changing in a controlled way the
magnitude and the sign of the electronic interaction at the
superconducting island. In the language of the Anderson
impurity model Hamiltonian, which provides a reliable low-
energy description of the island, this corresponds to tuning
the system across a transition from the positive-U to the
negative-U regime. For both signs of U the island ground state
keeps twofold degenerate, thus triggering the onset of Kondo
physics when connected to the leads. However, the nature of
the degenerate ground-state doublet strongly depends on the
sign of U . Eventually, this implies a transition from the SK
to the CK regime at the change in the sign of the electronic
interaction strength [45].

FIG. 2. Our proposed system: a couple of interacting spinless
quantum wires are deposited on a double topological island, hosting
four Majorana fermions. The Majorana fermions γ1 and γ3 are tunnel
coupled to leads 1 and 2, respectively, as highlighted by the dashed
lines in the figure.
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Within our device, the SK and CK phases do not overlap
in parameter space with each other. This avoids the simul-
taneous presence of both effects which, though making the
physical scenario richer, does not possibly allow for a clear-
cut detection of the latter effect against the former one [55].
In fact, the separate detection of either effect is even more
favored by the fact that the SK and CK phases are separated,
in parameter space, by an intermediate, “disconnected lead”
phase, in which the impurity plays no relevant role for the
low-T physics of the system.

To probe the various phases of our system, we propose
to look at the ac conductance across the impurity, both over
the same lead (“intralead”), as well as between different leads
(“interlead”). Eventually, we show how a synoptic comparison
of the intralead and of the interlead ac conductances offers
a simple, though effective, way of detecting the SK and CK
effects in our system. Moreover, when tuned within the CK
phase, the Kondo impurity triggers off-diagonal conduction
via a peculiar realization of crossed Andreev reflection be-
tween the two leads. In analogy to the devices discussed in
Refs. [56,57], this suggests that, in a “dual” setup, in which
a Cooper pair is injected into the leads through the impu-
rity, our system might effectively work as a “long-distance
electronic entangler”, with potential applications to realizing
large-distance entangled two-particle states.

The paper is organized as follows:
(i) In Sec. II, we introduce the lattice model Hamiltonian

for our system. In particular, we discuss in detail how to
engineer the double superconducting island at the center of the
system, so to make it work as a spin Kondo or charge Kondo
impurity, by acting onto a pertinent tuning parameter.

(ii) In Sec. III, we derive the effective low-energy, long-
wavelength, continuum Hamiltonian description of our sys-
tem in its various phases: the spin Kondo phase, the charge
Kondo phase, and the decoupled lead phase.

(iii) In Sec. IV, we resort to a perturbative renormalization
group analysis, to recover how the system scales with a run-
ning scale D [which we identify with either the (Boltzmann
constant k times the) temperature T , or with the frequency of
the ac applied voltage ω, depending on which scale is larger]
toward the fixed point corresponding to each one of its phases.

(iv) In Sec. V, we discuss the dependence on ω of the
intrawire and of the interwire ac conductance in each phase,
focusing onto the low-temperature regime ω, kTK � T and
paying particular attention to the onset of the nonperturbative
Kondo regime in the SK and CK phases. Eventually, we high-
light how an appropriate measurement of the ac conductances
as a function of ω and of the system parameters provides an
effective means to map out the phase diagram of our system.

(v) In Sec. VI, we summarize our result by also discussing
about a possible practical realization of our system and by
eventually highlighting possible further developments of our
work.

(vi) In the various appendices, we report the mathematical
details of our derivation.

II. MODEL HAMILTONIAN

Our device is sketched in Fig. 1. To model it, we resort to a
lattice Hamiltonian for two leads, which we represent as two

(2� + 1)-site chains, with � eventually sent to ∞. The lattice
Hamiltonian for the leads, H0,Lat, is given by

H0,Lat =
∑

a=1,2

⎧⎨
⎩−Ja

�−1∑
j=−�

[c†
j,ac j+1,a + c†

j+1,ac j,a]

− μa

�∑
j=−�

c†
j,ac j,a

⎫⎬
⎭, (1)

with {c j,a, c†
j,a} being single-fermion annihilation/creation

operators at site j of lead a, obeying the standard anticommu-
tation relations {c j,a, c†

j′,a′ } = δ j, j′δa,a′ . Ja and μa, respectively,
correspond to the single-fermion hopping strength and to the
onsite chemical potential in lead a. For the sake of simplicity,
in the following we choose the parameters entering Eq. (1)
independent of a. In fact, this only quantitatively affects the
final result and, in any case, one may readily discuss the case
of different parameters in the two leads by using the approach
discussed in, e.g., Ref. [58] in the general case of a ladder of
interacting quantum wires.

We now show how it is possible to realize a tunable Kondo
Hamiltonian by connecting the two-leg ladder to a double
superconducting island (DSI), with pertinently chosen pa-
rameters. Specifically, we consider an adapted version of the
topological Kondo Hamiltonian introduced in Ref. [59], and
then widely studied in Refs. [28–30,47,49,60–63]. In Fig. 2
we draw a sketch of the proposed device. It consists of two
mesoscopic s-wave superconducting islands with two spinless
quantum wires deposited onto each of them. According to
Refs. [64,65], we expect four localized real Majorana modes
to emerge at the end points of the wires. Let γ1, γ2 and
γ3, γ4 be the two Majorana modes arising at wire 1 and 2,
respectively. To construct the tunable Kondo Hamiltonian, we
assume that γ1 and γ3 are tunnel coupled to, respectively, lead
1 and lead 2. Also, we assume that the length of each wire
deposited on the islands and the distance between the wires
are large enough to suppress the direct tunneling between the
two Majorana modes at each wire. Yet, the two Majorana
modes at the same island are assumed to be coupled to
each other via the capacitive charging energy between each
island and the ground. Finally, we assume a nonzero direct
cross-capacitance coupling between the two superconducting
islands and a Josephson coupling allowing for Cooper pair
exchange between the islands and an underneath supercon-
ducting island S. As a result, the total Hamiltonian for the
double-island system is given by

HIsland = HI,1 + HI,2 + HC + HS. (2)

In Eq. (2), HI,1 and HI,2 describe the two islands coupled
to S. They are defined so that

HI,1 + HI,2 = −EJ cos(χ1) + EC[2N1 + n1 − Q1]2

− EJ cos(χ2) + EC[2N2 + n2 − Q2]2, (3)

with ni = 1
2 [1 + iγ2i−1γ2i], so that 2Ni + ni is the total charge

(in units of e) lying at island i, including a possible quasipar-
ticle occupying the Dirac level made out of the two Majorana
modes, and with Qi being the back-gate voltage, determined
by the voltage across the capacitor. EC is the charging energy
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of each island, and −EJ cos(χi ) corresponds to the Josephson
coupling between island i and the superconductor underneath,
with the phase difference χi canonically conjugate to the
number of Cooper pairs (Ni ).

HC in Eq. (2) describes the cross-capacitive coupling be-
tween the two islands. It is given by

HC = ECC[2N1 + n1 − Q1][2N2 + n2 − Q2], (4)

with ECC being the cross-charging energy. Finally, HS de-
scribes the superconducting island S, which we assume to be
large enough for it to be able to absorb/emit Cooper pair at
no additional cost of energy. The charging energies of each
island and the cross-charging energy are obtained from the
inverse of the Maxwell capacitance matrix C, that for the
system described above reads as

C =
(

C1 + C12 −C12

−C12 C2 + C12

)
. (5)

The diagonal entries correspond to the partial capacitances
relative to ground of each island, i.e., the sum of the cross
and auto capacitances, while the off-diagonal terms are minus
the cross capacitance between the two islands. The diagonal
elements are positive, while the off-diagonal ones are negative
[66,67]. From the inverse of the capacitance matrix, assuming
C1 = C2 = C, we derive

EC = e2

2

C + C12

C2 + 2CC12
(6)

for the islands capacitance and

ECC = e2

2

C12

C2 + 2CC12
(7)

for the cross-capacitance coupling. It follows that EC >

ECC > 0. In the following, we further assume that the param-
eters of the two mesoscopic islands have been chosen so that
they lie within the “charging” regime, in which EC/EJ � 1.
In this case, Coulomb blockade prevents Cooper pairs from
tunneling across the island, except if the back-gate potential
is tuned at the degeneracy point between states with dif-
ferent total charge at the island. In our specific case, the
single-fermion state associated to the pair of real Majorana
modes can be combined into Dirac complex fermion oper-
ators, a1 = 1

2 (γ1 + iγ2) and a2 = 1
2 (γ3 + iγ4), thus allowing

for low-energy charge tunneling processes across the impurity
involving a single quasiparticle, rather than a Cooper pair.
Therefore, setting Qi at each island so that Qi = 2N̄i + 1

2 , with
integer N̄i, allows for defining the low-energy subspace at the
double junction as spanned by the four states with N̄i Cooper
pairs at island i, with the mode corresponding to ai full, or
empty. Listing those states, together with the corresponding
energy eigenvalues, we obtain the set

|N̄1, N̄2, 0, 0〉, ε0,0 = 1
2 EC + 1

4 ECC,

|N̄1, N̄2, 1, 1〉, ε1,1 = 1
2 EC + 1

4 ECC,
(8)

|N̄1, N̄2, 1, 0〉, ε1,0 = 1
2 EC − 1

4 ECC,

|N̄1, N̄2, 0, 1〉, ε0,1 = 1
2 EC − 1

4 ECC,

with |N̄1, N̄2, ν1, ν2〉 denoting the state with N̄i Cooper pairs at
island i and νi additional quasiparticle in the level determined
by the Majorana modes (clearly, νi = 0, 1), and with the en-
ergies measured with respect to a common reference level. As
we discuss in the following, the level structure summarized in
Eqs. (8) is enough to induce an effective Kondo Hamiltonian,
except that, in order to recover both SK and CK effects, one
has to have a window of values of parameters corresponding to
an attractive interisland interaction (that is, ECC has to become
<0). This is the main motivation for introducing S, which is
coupled to the two islands by a small Josephson term that
allows to form a Cooper pair in the superconductor through
the annihilation of the two Dirac fermions in the islands, and
vice versa. At low energies, only particles populating the ai

levels are involved. Therefore, the corresponding processes
are described by the hopping Hamiltonian

HS = −τ (a1a2e2iϕ + a†
2a†

1e−2iϕ ). (9)

Differently from islands 1 and 2, S hosts no Majorana
modes. Therefore, at low energies, charges can enter and exit
it only as Cooper pairs. To fix the number of Cooper pairs at
S, we assume that it has a finite capacitive energy ES , which
enters the corresponding Hamiltonian given by

H (0)
S = −EJ,S cos χS + EQ,S[2NS − QS]2. (10)

As there is no cross-capacitance terms between the two islands
and S, the capacitive energy of S is simply given by the
inverse of its capacitance, that is ES = e2/(2CS ). Tuning QS =
2N̄S and assuming EQ,S/EJ,S > 1, Coulomb blockade pins at
NS the number of Cooper pairs at S. In this case, charges
can tunnel from the islands to S, and vice versa, only in
virtual processes. This implies a corresponding lowering of
the energy of the states with ν1 = ν2 = 0 and ν1 = ν2 = 1
by an amount that appears at second order in τ and is given
by ετ = −CSτ

2

4e2 . Taking this result and the level diagram in
Eqs. (8) altogether, the double-island dynamics is described
by the effective Hamiltonian

HEff
Island = δ(|0, 0〉〈0, 0| + |1, 1〉〈1, 1|

− |1, 0〉〈1, 0| − |0, 1〉〈0, 1|). (11)

To simplify the notation, in Eq. (11) we have omitted the
labels associated to the number of Cooper pairs on the two
islands. The right-hand side of Eq. (11) depends only on
the tuning parameter δ = ECC

4 − ετ , which we will use as a
control parameter to switch from SK to CK effect. For the
following discussion, it is useful to rewrite HEff

Island in terms
of the Dirac complex fermion operators a1, a2 and of their
Hermitian conjugates as

HEff
Island = δ{1 − 2[a†

1a1 + a†
2a2] + 4a†

1a1a†
2a2}. (12)

Formally, the coupling between the DSI and the leads is
described by the tunneling Hamiltonian Ht , which we model
in analogy to what is done in Ref. [59], as

Ht = −t
∑

a=1,2

(c†
0,aaa + c†

0,aa†
ae−iωa ) + H.c. (13)

In Eq. (13), the term c†
0,aa j describes the transfer of a

fermion from the ith island to the central site of the corre-
sponding lead, with the corresponding depletion of the level
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a j . The term c†
0,aa†

ae−iωa represents an alternative process
through which a fermion is created in the level aj and an-
other one is created in the corresponding lead along with the
annihilation of a Cooper pair in the island by the operator
e−iωa . Noticeably, this process induces a transition to a state
with a higher number of Cooper pairs in the islands, which
we rule out on projecting onto the low-energy ground-state
manifold of the islands. Therefore, we drop it henceforth from
the tunneling Hamiltonian and describe the DSI coupled to the
ladder by means of the boundary Hamiltonian ĤB given by

ĤB = HEff
Island − t

∑
a=1,2

{c†
0,aaa + a†

ac0,a}. (14)

In addition to the direct tunneling between the leads and
the DSI, a local density-density interaction Hamiltonian may
arise, as well. The corresponding Hamiltonian HDI can be
simply modeled as

HDI =
∑

a,b=1,2

μa,bc†
0,ac0,aa†

bab. (15)

In the following, we use the boundary Hamiltonian HB =
ĤB + HDI to discuss the crossover between the SK and the
CK regimes at the impurity by also pointing out the remark-
able emergence of an intermediate “disconnected lead” (DL)
phase, with peculiar properties.

III. EFFECTIVE IMPURITY HAMILTONIAN IN
THE VARIOUS REGIMES

To describe the impurity dynamics in our system, we resort
to pertinent approximations for ĤB in different windows of
values of the various parameters. In fact, we see that δ is the
only scale related to the isolated impurity. The other relevant
scales are the tunneling strength t and the local density-
density interaction strengths, the μa,b’s in Eq. (15) which,
consistently with our symmetry assumption, we choose so that
μ1,1 = μ2,2 = μd and μ1,2 = μ2,1 = μod. A first important
limit corresponds to |δ| → ∞. In this limit, the low-energy
manifold of the system is twofold degenerate. In particular,
for δ → +∞, the two degenerate ground states correspond to
the “minidomain walls” of Ref. [68], that is, to the |1, 0〉 and
to the |0, 1〉 eigenstates of the DSI, while, for δ → −∞, the
two degenerate states correspond to the |0, 0〉 and to the |1, 1〉
eigenstates of the DSI.

Leaving aside, for the time being, the density-density inter-
action encoded in HDI in Eq. (15), we see that, at finite values
of the ta’s, tunneling processes between the degenerate ground
states are accounted for by resorting to an effective, Kondo-
type description of the interaction of the DSI with the leads.
To do so, we employ the Schrieffer-Wolff (SW) procedure,
which we illustrate in detail in Appendix B. In the symmetric
case t1 = t2 = t , the leading boundary operator describing
the residual dynamics within the low-energy subspace of the
states of the DSI is either a SK Hamiltonian HK,S, in the case
δ > 0, or a CK Hamiltonian, HH,C, for δ < 0. In particular,
on applying the SW transformation to ĤB, one obtains the
following:

(i) For δ > 0, the spin Kondo (SK) Hamiltonian HK,S is
given by

HK,S = JS �S0 · �S (16)

with JS = 2t2/δ and the impurity spin operator �S and the lead
spin density operator �S j defined as

Sα = 1

2

∑
u,u′=1,2

a†
uτ

α
u,u′au′ , Sα

j = 1

2

∑
u,u′=1,2

c†
j,uτ

α
u,u′c j,u′ ,

(17)

with τα , α = x, y, z being the Pauli matrices.
(ii) For δ < 0, the charge Kondo (CK) Hamiltonian HK,C

is given by

HK,C = JC �T0 · �T , (18)

with JC = 2t2/|δ| and the impurity charge-isospin operator �T
and the lead charge-isospin density operator �Tj respectively
defined as

T α = 1

2

∑
u,u′=1,2

ã†
uτ

α
u,u′ ãu′ , T α

j = 1

2

∑
u,u′=1,2

c̃†
j,uτ

α
u,u′ c̃ j,u′ ,

(19)

with ã1 = a1, ã2 = a†
2, and c̃ j,1 = c j,1, c̃ j,2 = c†

j,2.
Turning on HDI we see that, in the SK regime, it modifies

the effective impurity Hamiltonian as

HK,S → ĤK,S = JS �S0 · �S +
(

μd − μod

2

)
Sz

0Sz

+
(

μd + μod

2

) ∑
a=1,2

c†
0,ac0,a, (20)

that is, the effective isotropic Kondo Hamiltonian acquires
a nonzero anisotropy along the z direction as soon as μd 	=
μod plus a local scattering potential term, which does not
substantially affect Kondo physics [2]. At variance, in the
complementary CK regime, on turning on HDI, we obtain

HK,C → ĤK,C

= JC �T0 · �T +
(

μd + μod

2

)
{T z

0 T z + T z
0 + T z}, (21)

that is, again a nonzero anisotropy along the z direction in
the (charge) Kondo interaction terms, plus effective, local
field contributions coupled to both the impurity- and the
itinerant-fermion effective charge-isospin operator at j = 0.
All the terms appearing at the right-hand side of both Eqs. (20)
and (21) are “standard” contributions arising in the Kondo
problem and, accordingly, their effect, at least in the simplest
case of a perfectly screened spin- 1

2 impurity, is basically well
understood [2].

It is also interesting to address in detail what happens at
small values of |δ|. At δ = 0, the leads are fully decoupled
from the impurity. At δ 	= 0, to account for the competition
between the effects of a finite δ and the hybridization between
the aa modes and the leads [69], we resort to an “all-inclusive”
RG analysis, considering the RG equations for all the running
couplings associated to ĤB. To do so, we define the dimen-

sionless couplings as τ̄ = ( D0
D )

1−d f ( at
v

), μ̄d,od = ( aμd,od

v
), δ̄ =

( D0
D ) ( aδ

v
), with d f = 1

2 . On employing a pertinently adapted
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version of the approach used in Refs. [17,19,70], we even-
tually get the full set of RG equations, given by (apart for
irrelevant boundary terms, which can in principle be gener-
ated along the RG procedure, and which we neglect in the
following)

d τ̄ (D)

d ln
(D0

D

) = (1 − d f )τ̄ (D) + μ̄d(D)τ̄ (D),

dμ̄d(D)

d ln
(D0

D

) = −δ̄(D)μ̄od(D),

dμ̄od(D)

d ln
(D0

D

) = −δ̄(D)μ̄d(D),

d δ̄(D)

d ln
(D0

D

) = δ̄(D) − μ̄d(D)μ̄od(D)

4
. (22)

To infer from Eqs. (22) the condition for the crossover be-
tween the DL and either the SK or the CK phase, we simplify
the right-hand side of Eqs. (22) by neglecting nonlinear terms
in the various coupling strengths. Accordingly, the only actu-
ally running couplings are now τ̄ (D) and δ̄(D), given by

τ̄ (D) =
(

D0

D

)1−d f
(

at

v

)
, δ̄(D) =

(
D0

D

) (
aδ

v

)
. (23)

The derivation of Eqs. (22) relies on the small-coupling
assumption for the various boundary interaction strengths.
This corresponds to requiring that τ̄ (D) < 1, a condition that,
if one considers the running coupling strength in Eq. (23),

only holds up to D ∼ D∗, with D∗ ∼ D0 | at
v
|

1
1−d f . In order

for the SW transformation leading to the effective Kondo
Hamiltonian to apply, the condition |t/δ| < 1 must hold. From
Eqs. (23), one sees that this happens at any scale if |δ| > t (at
the reference scale D = D0). However, due to the nontrivial
renormalization of the running parameters, the condition can
also be satisfied if |δ| < t . To recover this condition, we note
that δ̄(D) takes over τ̄ (D) at a scale DCross, determined by

δ̄(DCross) = τ̄ (DCross) ⇒ DCross = D0

(
δ

t

) 1
d f

. (24)

Therefore, in order for the Kondo regime to set in, one has to
have that DCross > D∗, which implies the condition

a|δ|
v

>

(
at

v

) 1
1−d f

. (25)

Once the condition in Eq. (25) is satisfied, the impurity
dynamics is either described by ĤK,S in Eq. (20), or by ĤK,C

in Eq. (21), depending on whether δ > 0 or δ < 0.
At variance, in the DL region the boundary dynamics is

described, as we discuss in detail in Appendix C, by the
effective local density-density interaction Hamiltonian given
by

HDL = κc†
0,1c0,1c†

0,2c0,2 +
∑

a=1,2

λac†
0,ac0,a, (26)

with κ being the effective local interlead density-density in-
teraction strength and λ1, λ2 being “residual” intrawire single-
body potential scattering strengths.

In the following, we use the results we derived in this sec-
tion to recover, after resorting to an appropriate low-energy,

long-wavelength continuum limit for the fermionic fields in
the leads, a detailed RG analysis of the system boundary
dynamics in the three phases discussed above.

IV. RENORMALIZATION GROUP ANALYSIS
OF THE IMPURITY DYNAMICS

We now resort to a perturbative RG analysis to recover the
fixed point (that is, the phase) to which the system flows in the
various regions we discuss in the previous section. To do so,
we expand the lattice fermionic fields c j,a by retaining only
low-energy, long-wavelength excitations around the Fermi
points ±kF = ±arccos(− μ

2J ). Therefore, we obtain

c j,a ≈ √
a {eikF jψR,a(x j ) + e−ikF jψL,a(x j )}, (27)

with a being the lattice step (which we set to 1 henceforth,
except when explicitly required for the sake of the presenta-
tion clarity), x j = a j, and ψR,a(x), ψL,a(x) being chiral fields
described by the (1 + 1)-dimensional Hamiltonian H0, given
by

H0 = −iv
∑

a=1,2

∫ �

−�

dx {ψ†
R,a(x)∂xψR,a(x)

−ψ
†
L,a(x)∂xψL,a(x)}. (28)

To simplify the following derivation we note that, since we
are representing the DIS as a pointlike impurity localized at
x = 0, it is useful to resort to the “even” and “odd” linear
combinations of the chiral fermionic fields ψe,a(x), ψo,a(x),
respectively given by

ψe,a(x) = 1√
2

{ψR,a(x) + ψL,a(−x)},

ψo,a(x) = 1√
2

{ψR,a(x) − ψL,a(−x)}. (29)

Apparently, ψo,1(x) and ψo,2(x) fully decouple from the
impurity dynamics, which is accordingly described, in the
three different regions identified in Sec. III, by the boundary
Hamiltonians

H̃K,S = 2JS �σe(0) · S + 2

(
μd − μod

2

)
σ z

e (0)Sz

+ 2

(
μd + μod

2

)
ρe(0),

H̃K,C = 2JC �τe(0) · T +
(

μd + μod

2

)
× {

2τ z
e (0)T z + 2τ z

e (0) + T z
}
,

HDL =
∑

a=1,2

2λaρe,a(0) + 4κρ1,e(0)ρ2,e(0), (30)

with

ρe,a(0) = ψ†
e,a(0)ψe,a(0),

ρe(0) =
∑

a=1,2

ρe,a(0), (31)

σα
e (0) = 1

2

∑
u,u′=1,2

ψ†
e,u(0)τα

u,u′ψe,u′ (0),

τ α
e (0) = 1

2

∑
u,u′=1,2

ψ̃†
e,u(0)τα

u,u′ψ̃e,u′ (0),
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and ψ̃e,1(x) = ψe,1(x), ψ̃e,2(x) = ψ
†
e,2(x). [Note that the fields

ψe,a(x) contain the combinations of opposite chirality modes
that, in each lead, effectively couple to the DIS and can be
more general than the symmetric expressions in Eqs. (29). Yet,
for the sake of simplicity and without loss of generality in
the derivation, in the following we employ the expressions in
Eqs. (29), which correspond to symmetric coupling to the DSI
of opposite chirality modes in each lead.]

In performing the RG analysis, we neglect the nonpurely
Kondo-type terms at the right-hand side of the first two ones
of Eqs. (30). This makes us deal with a generally anisotropic
Kondo Hamiltonian, using which, in the following, we per-
form the RG analysis along the guidelines of Ref. [71]. To do
so, we note that, in view of the fact that only the ψe,a fields do
actually couple to the impurity spin, the fields in the o sector
obey the continuity condition at x = 0 given by

ψo,a(0+) = ψo,a(0−) (32)

for any value of the Kondo coupling. At zero Kondo coupling,
the fields in the e sector satisfy the same boundary conditions
as in Eq. (32), that is,

ψe,a(0+) = ψe,a(0−). (33)

In general, we expect μd � μod. Therefore, the RG
flow of the dimensionless running coupling strengths in the
anisotropic (spin and charge) Kondo Hamiltonians at the
right-hand side of Eqs. (30) is described by Eqs. (D5) of
Appendix D, switching to the isotropic RG flow of Eq. (D3) in
the isotropic limit. In either case, the system flows toward the
Kondo fixed point, which accordingly determines a change in
the boundary conditions in Eq. (33). In particular, at the SK
fixed point one obtains [71]

ψe,a(0+) = e−2iδS ψe,a(0−), (34)

with δS being a nonuniversal phase shift, which, at the strongly
coupled fixed point, is independent of the momentum k
measured with respect to the Fermi momentum of the chiral
fermion excitations, and is equal to π

2 if particle-hole sym-
metry is unbroken [71]. Equation (34) simply corresponds to
Nozierès Fermi-liquid boundary conditions, that is, to the fact
that the formation of the local Kondo singlet at the impurity
location prevents any other electron from accessing that point
[3]. From that, taking also into account a possible breaking
of the spin rotational symmetry, one obtains that the leading
boundary operator allowed at the Kondo fixed point can be
expressed as [71]

H̃K,S = αSψ
†
e,1(0)ψe,1(0) ψ

†
e,2(0)ψe,2(0)

+
∑

a=1,2

βS,a ψ†
e,a(0)ψe,a(0) (35)

(see also Appendix B for a systematic derivation of
the H̃K,S), with ψe,a(0) ≡ ψe,a(0−) and αS, βS,a appropri-
ate boundary coupling strengths. A similar construction
holds for the CK effect, as well, provided one substi-
tutes ψe,1(x), ψe,2(x) with ψ̃e,1(x), ψ̃e,2(x) defined right af-
ter Eqs. (31). As a result, one finds that the noninteracting
fixed point is described by the boundary conditions at x = 0

given by

ψ̃e,a(0+) = ψ̃e,a(0−), ψ̃o,a(0+) = ψ̃o,a(0−), (36)

and that, at variance, the CK fixed point is described by the
boundary conditions

ψ̃e,a(0+) = e−2iδC ψ̃e,a(0−), ψ̃o,a(0+) = ψ̃o,a(0−).

(37)

Finally, one also infers that the leading boundary perturba-
tion at the CK fixed point is given by

H̃K,C = αCψ̃
†
e,1(0)ψ̃e,1(0) ψ̃

†
e,2(0)ψ̃e,2(0)

+
∑

a=1,2

βC,a ψ̃†
e,a(0)ψ̃e,a(0), (38)

with ψ̃e,a(0) ≡ ψ̃e,a(0−) and αC, βC,a interaction strengths.
Remarkably, the leading boundary Hamiltonian at both the
SK and CK fixed point reported in Eqs. (35) and (38), takes
exactly the same form as the leading boundary Hamiltonian
in the DL region, the third one of Eqs. (30). As we discuss
in the following, this allows for simplifying the derivation by
making an unified analysis of the ac conduction properties of
the system at each one of the three fixed points.

Before concluding this section, we now briefly mention the
effects of the local magnetic field acting on both the impurity
spin and the spin of the conduction electrons in the effective
Kondo Hamiltonians on the first two lines of Eqs. (30). In
fact, while, in general, a strong applied field may eventually
lead to the suppression of Kondo effect, it is by now well
established that the Kondo effect instead survives the applied
field, as long as TK is higher than the energy scale associated
to the applied magnetic field [17,72]. The local magnetic field
encodes the local density-density interaction at the DSI. This
is a minor effect, which is expected to be much smaller than
the direct electronic tunneling encoded in ĤB in Eq. (14).
This implies that TK is expected to be always much larger
than the energy scale associated to the Zeeman term, which
does not spoil the Kondo effect. Based on these observations,
we now discuss the leading boundary perturbation at both
the Kondo and the DL fixed points. As we discuss above,
basically HDL in Eqs. (30) encompasses both the boundary
Hamiltonians in Eqs. (35) and (38). Therefore, we refer
to HDL for our further analysis. As noted in Appendix D,
a simple power counting implies that the dimensionless cou-
pling associated to κ is K(D) = D

D0
κ . On lowering the running

cutoff D, one therefore obtains that K(D) scales to 0 as D/D0.
Thus, we conclude that the interwire local density interaction
is an irrelevant perturbation at either the SK (CK), or at
the DL fixed point, which is consistent with the expected
stability of the various fixed points. The leftover terms are,
instead, marginal one-body scattering potential terms. These
marginally deform the fixed-point dynamics by changing the
phase shift in the e channel, with minor consequences on the
ac conduction properties of the system, as we discuss in the
following.
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V. AC CONDUCTANCE AND PHASE DIAGRAM
OF THE SYSTEM

In this section, referring to the results we derive in detail
in Appendix E, we evidence how it is possible to map out
the whole phase diagram of our tunable Kondo device by
means of the ac conductance tensor and of its dependence on
the frequency ω. To perform our analysis, in the following
we mostly focus onto the ac conduction properties of the
system across the impurity, both over the same lead, and on
different leads. Specifically, consistently with the symmetries
of our system, we discuss [in the notation of Eq. (A7) of
Appendix A], the intralead ac conductance, G(1,>);(1,<)(ω),
and the interlead one, G(2,>);(1,<)(ω), as a function of ω. As we
extensively discuss in the following, whether G(2,>);(1,<)(ω) is
zero or not and, in this latter case, whether it takes the same
sign as G(1,>);(1,<)(ω), or the two of them have opposite signs,
allows us to discriminate between the various phases of our
system. To provide a comprehensive sample of the behavior of
the ac conductance tensor as a function of ω, in the following
we discuss in detail both the relevant regimes ω � kTK � kT
(perturbative regime) and kT � ω � kTK (Kondo fixed-point
regime).

We now discuss in detail the various regions.

A. AC conductance in the spin Kondo phases

Within the SK phase, the impurity dynamics is described
by ĤK,S in Eq. (20). As it is not relevant for the purpose of
our discussion, we leave aside the one-body scattering term
henceforth and perform the following derivation by using the
anisotropic Kondo Hamiltonian H anis

K,S , given by

H anis
K,S = JS,⊥ {S+σ−(0) + S−σ+(0)} + JS,z Szσ z(0). (39)

Consistently with the microscopic derivation of H anis
K,S , we

expect that both JS,⊥ and JS,z are >0. Moreover, since μd

and μod are both >0 and one “naturally” expects μd � μod,
the RG trajectories induced by H anis

K,S all lie within region I of
the diagram in Fig. 6 of Appendix D. According to Eqs. (D5)
and (D6), at a given value of the RG invariant H = −J 2

S,z +
J 2

S,⊥, with JS,⊥(z) = aJS,⊥(z)

v
(note that, according to the above

discussion, one typically gets H < 0), the RG flow induced
by the spin Kondo Hamiltonian is encoded in the running
dimensionless coupling JS,⊥(D), with the running scale D to
be identified with ω (which, as stated above, we assume to be
�kT ). By integrating the second-order RG equations for the
running coupling strength [Eqs. (D5)], one obtains (trading
the dependence on D for an explicit dependence on ω)

JS,⊥(D = ω) = 2
√|H |( kTK

ω

)√|H |

1 − ( kTK
ω

)2
√|H | , (40)

with the Kondo temperature kTK = D0{Jz (D0 )−√|H |
Jz (D0 )+√|H | }

1
2
√|H | , D0

being the reference energy scale (high-energy cutoff) and
Jz(D0) = aJS,‖

v
(note that, in our specific case, since, in order

for the SW transformation leading to HK,S and to HK,C to
apply, we have to assume that there are no physical processes
involving energies of the order of |2δ|, we must properly set
D0 = |2δ|).

In Appendix D we also show how, in the isotropic limit
H = 0, one obtains

JS,⊥(D = ω) = JS,z(D = ω) = 1

ln
( kTK

ω

) , (41)

with now TK given by

kTK = D0e− 1
J⊥ (D0 ) . (42)

So, from Eqs. (40) and (41), we eventually conclude that,
both in the anisotropic and in the isotropic cases, the running
coupling strength is a scaling function of the dimensionless
ratio ω/(kTK ).

In order to incorporate the nontrivial RG flow in Eqs. (40)
and (41) into the formulas for the ac conductances, we re-
fer to the derivation of Appendix E 1. Specifically, keeping
ω > kT, kTK and using it as the running energy scale, we
obtain for the running intralead and interlead ac conductances
G(1,>);(1,<)(ω) and G(2,>);(1,<)(ω) the result in Eq. (E12) of
Appendix E 1, that is,

G(1,>);(1,<)(ω) = − e2

2π

{
1 − J 2

S,⊥(ω)
}
,

G(2,>);(1,<)(ω) = − e2

2π
J 2

S,⊥(ω). (43)

As stated in Appendix E 1, the result in Eq. (43) is expected
to apply from ω ∼ D0 all the way down to ω ∼ kTK . From
the right-hand side of Eq. (43) we see that turning on the
Kondo coupling implies a reduction in the intralead ac current
together with a nonzero interlead current. This is due to the
peculiar features of the Kondo processes mediating the ac
transport at nonzero coupling to the impurity. In terms of elec-
tron transmission across the impurity, transport from, say, lead
1 to the same lead does not correspond to a change in the “spin
index” of the transmitted electron. At the onset of Kondo dy-
namics, together with the former scattering process, which we
depict in Fig. 3(a) as a particle-to-particle transmission within
lead 1, impurity spin-flip processes can induce single-electron
tunneling from lead 1 to lead 2, mediated by the coupling to
the impurity spin �S . This process, which we depict in Fig. 3(b)
as a particle-to-particle transmission from lead 1 to lead 2,
is what is responsible for a nonzero G(2,>);(1,<)(ω). This is a
relevant process as ω goes down from D0 to kTK . Accordingly,
we find that the corresponding off-diagonal conductance takes
over, when going down with ω, until one enters the Kondo
regime at the scale kTK . An important observation is that,
since the current induced in lead 2 is due to particle-to-particle
transmission processes, it takes the same sign as the current in
lead 1. This is evidenced in Eq. (43) by the fact that, as long as
the perturbative RG approach holds (that is, for ω > kTK ), one
has that both G(1,>);(1,<)(ω) and G(2,>);(1,<)(ω) are <0 (with
the − sign due to our conventional definition of the positive
direction for the current operators as the one pointing toward
the impurity both from the left- and right-hand sides of the
system).

On flowing toward the SK fixed point, the spin density of
the lead electrons at x = 0 “locks together” with the impu-
rity spin, so to effectively cut the system into two separate
parts. Accordingly, there is 0 interlead ac conductance, that
is, G(2,>);(1,<)(ω) = 0. Moreover, as the (Nozières-type ) SK

195140-8



TUNABLE SPIN/CHARGE KONDO EFFECT AT A DOUBLE … PHYSICAL REVIEW B 101, 195140 (2020)

1)1)

(a)

1)

(b)

2)

1)

(c)

1) 1)

(d)

2)

FIG. 3. Sketch of the possible single-particle transmission pro-
cesses that can take place in either the SK, or the CK, phase, if an
incoming particle from lead 1 hits the effective magnetic impurity.
The ket represents the “impurity” state, so that a filled (empty) dot
corresponds to the full (empty) state corresponding to the fermionic
mode a1 (left-hand dot) or a2 (right-hand dot) in Eq. (12). (a) In
the SK phase, the particle from lead 1 is transmitted as a particle
toward the same lead. The impurity state is |⇑〉 before, and after, the
scattering process. (b) Still in the SK phase, the particle from lead 1
is transmitted as a particle toward lead 2. The impurity state is |⇓〉
before the scattering process and switches to |⇑〉 after, consistently
with total spin conservation. (c) In the CK phase, the particle from
lead 1 is transmitted as a particle toward the same lead. The impurity
state is |⇑〉 before, and after, the scattering process. (d) Still in the
CK phase, the particle from lead 1 is transmitted as a hole toward lead
2 (crossed Andreev reflection). The impurity state is |⇓〉 before the
scattering process and switches to |⇑〉 after, consistently with total
charge conservation. Remarkably, total charge conservation forbids
crossed Andreev reflection with the hole transmitted toward lead 1.

fixed point is described in terms of the single-electron phase
shift δS , we may employ Eq. (A21) to obtain

G(1,>);(1,<)(ω) = − e2

2π
cos2(δS ). (44)

In the particle-hole-symmetric case (corresponding to a total
phase shift δS = π

2 in the e-linear combinations of the chiral
fields in each channel), Eq. (44) implies G(1,>);(1,<)(ω) =
0. More generally, for δS 	= π

2 , one expects a reduction of
G(1,>);(1,<)(ω) by a factor cos2(δS ) and a simultaneous sup-
pression of G(2,>);(1,<)(ω).

The leading boundary perturbation at the SK fixed point
is the same as the one at the DL fixed point, that is, H̃K,S in
Eq. (35). In fact, the term at the right-hand side of Eq. (35)
that might potentially contribute a nonzero G(2,>);(1,<)(ω) is
the one ∝αS . Yet, in analogy with the calculations in the DL
phase of Appendix E 2, we find that G(2,>);(1,<)(ω) = 0, at
least to second order in αS [in fact, as long as the boundary
interaction describes electron scattering off a local singlet, one
is expected to obtain G(2,>);(1,<)(ω) = 0 at any order in αS]
while, to order α2

S , we obtain

G(1,>);(1,<)(ω) = − e2

2π

{
cos2(δS ) − 8π cos(2δS )α2

Sω
2

3v2

}
.

(45)

In particular, in the particle-hole-symmetric case, one has
2δS = π , which implies

G(1,>);(1,<)(ω) = − e2

2π

8πα2
Sω

2

3v2
. (46)

To summarize, we have shown that, on lowering ω from
ω ∼ D0 to ω ∼ kTK , G(1,>);(1,<)(ω) is suppressed by the
Kondo interaction. At the same time, the relevance of the “ef-
fective” spin-flip processes induces a nonzero G(2,>);(1,<)(ω),
which increases as ω is lowered toward kTK . Since a spin-flip
process here corresponds to a particle/hole tunneling from
one lead as an injected particle/hole to the other one, the ac
currents induced in the two leads by means of a voltage bias
applied to either one of them flow toward the same directions.
Once the system has flown to the SK fixed point, it may, or
may not, exhibit a finite G(1,>);(1,<)(ω), depending on whether
particle-hole symmetry is broken, or not [6]. The leading
correction to the ac conductance tensor is diagonal, as well,
and ∝ω2, consistently with Nozières Fermi-liquid theory [3].

B. The ac conductance in the charge-Kondo phases

Within the CK phase, the impurity dynamics is described
by the Hamiltonian ĤK,C in Eq. (21). Aside from the CK
coupling, ĤK,C contains a Zeeman-type coupling to a local
magnetic field of both τ z(0) and T z. Out of these two terms,
the former one provides an additional phase shift to single-
electron scattering amplitudes which is different in different
leads. Again, this just quantitatively affects the calculation
of the ac conductance, without invalidating the whole RG
analysis of the Kondo interaction. The effects of the term
∝T z are discussed in Appendix D. Here, we just mention that
this term is not expected to substantially affect the Kondo
physics as long as the energy scale associated to the local
magnetic field is much lower than kTK [17,72,73]. Having
stated this, one therefore readily sees that the calculation
of the ac conductance in the CK case can be performed in
perfect analogy as what we have done in Sec. V A for the
SK case. Yet, a fundamental difference in the results for the
ac conductance in the CK case compared to the SK effect
arises from the different nature of physical processes yielding
a nonzero G(2,>);(1,<)(ω) in the two cases. Indeed, while,
in the CK case, interlead charge tunneling is still supported
by an impurity spin flip, this process now corresponds to
a switch between local states with a net charge difference
equal to ±2e. Thus, charge is conserved in a single scattering
process only modulo 2 and, in particular, interlead scattering
processes are of Andreev type, with an incoming particle from
lead 1 emerging as an outgoing hole in lead 2. At variance,
intralead scattering processes again correspond to particle-to-
particle (hole-to-hole) scattering events. In Fig. 3(c) we depict
intralead scattering processes in the charge Kondo phase,
while in Fig. 3(d) we draw a sketch of a single “crossed-
Andreev-reflection”–like scattering event from lead 1 to lead
2, supporting interlead ac transport. As a result, we now
expect that G(1,>);(1,<)(ω) and G(2,>);(1,<)(ω) have opposite
sign. Indeed, for D0 � ω � kTK , one obtains

G(1,>);(1,<)(ω) = − e2

2π

{
1 − J 2

C,⊥(ω)
}
,

G(2,>);(1,<)(ω) = e2

2π
J 2

C,⊥(ω), (47)

that is, Eqs. (E11) of Appendix E 1, with JC,⊥(ω) being
a scaling function of ω/(kTK ) defined just as JS,⊥(ω) of
Eqs. (40) and (41) by replacing the spin Kondo couplings
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with the corresponding charge Kondo ones. As at the SK fixed
point, again, when flowing toward the CK fixed point, the
charge-isospin density of the lead electrons at x = 0 “locks
together” with the impurity spin, so to effectively cut the sys-
tem into two separate parts. Again, if δC is the corresponding
intralead single-fermion phase shift, this implies a reduction
of G(1,>);(1,<)(ω) by a factor cos2(δC ) and a simultaneous
suppression of G(2,>);(1,<)(ω). The leading boundary operator
at the CK fixed point is given by H̃K,C in Eq. (38). Just as in
the spin Kondo case, we therefore obtain, to order α2

C , that
G(2,>);(1,<)(ω) keeps = 0, while G(1,>);(1,<)(ω) is corrected as

G(1,>);(1,<)(ω) = − e2

2π

{
cos2(δC ) − 8π cos(2δC )α2

Cω2

3v2

}
.

(48)

To summarize the results of this section, we see that
on lowering ω, just as in the SK case, G(1,>);(1,<)(ω) is
reduced by the Kondo interaction, while the relevance of the
“effective” spin-flip processes induces a nonzero
G(2,>);(1,<)(ω). Since, now, a spin-flip process corresponds
to a particle/hole from one lead as injected as a hole/particle
into the other one, G(1,>);(1,<)(ω) and G(2,>);(1,<)(ω) have
opposite signs. Finite-ω contributions to G(1,>);(1,<)(ω) at the
CK fixed point are ∝ω2, again consistently with Nozières
Fermi-liquid theory [3].

C. The ac conductance in the decoupled lead phase

The DL phase is characterized by the irrelevant boundary
interaction HDL in Eq. (30). In Appendix E 2 we show how,
in the decoupled lead phase, our system is expected to have
G(2,>);(1,<)(ω) = 0 and

G(1,>);(1,<)(ω) ≈ − e2

2π

{
cos2(δκ ) − 8 cos(2δκ )κ2ω2

3π2v2

}
,

(49)

with δκ single-fermion phase shift at the DL fixed point.
On top of the result in Eq. (49) it is also worth stressing
that, since the boundary interaction describing the impurity
throughout the decoupled lead phase is irrelevant, there is no
“Kondo-type” expected crossover in this region, on lowering
ω. Thus, we may eventually conclude that, lowering ω at fixed
system parameters, the Kondo-type phases are dramatically
different from the non-Kondo-type one in that first of all the
former ones are characterized by a strong dependence on ω

of ac conductance tensor, as ω is lowered toward kTK , while
the latter one just exhibits a mild dependence on ω, and is
almost not at all affected by the coupling of the leads to
the superconducting island. Second, the fixed-point properties
are dramatically different, as well. Indeed, when lying within
either one of the Kondo phases, G(1,>);(1,<)(ω) is strongly
reduced by the formation of the Kondo singlet at the DSI and
is eventually forced to be =0 if particle-hole symmetry is not
broken. At variance, at the DL fixed point, G(1,>);(1,<)(ω) is in
general finite and only limited by possible one-body scattering
potential terms due to the coupling to the DSI.

The results of this section allow for fully mapping out the
phase diagram of the system by looking at the ac conductance

SK

CK

δ

0

0
DL

at

a

FIG. 4. Boundary phase diagram of our system in the at-aδ

plane: for |δ| < v

d f
d f −1 (at )

1
1−d f the decoupled lead phase sets in. For

δ > v

d f
d f −1 (at )

1
1−d f and for δ < −v

d f
d f −1 (at )

1
1−d f , the spin Kondo and

the charge Kondo phase, respectively, sets in.

tensor of the device as a function of both ω and of the control
parameter δ, as we summarize in the following.

D. The ac transport properties and phase diagram of the system

Referring to the phase diagram of Fig. 4, in the following
we use as tuning parameter r = δv/(at2). In particular, at r =
±1, the system undergoes two transitions between either the
SK, or the CK, phase (for |r| > 1) and the DL phase (for |r| <

1). The three different phases can be well characterized by
looking at the ac conductances as a function of ω, from ω ∼
D0 all the way down across ω ∼ kTK and below.

In Fig. 5 we show the expected behavior of G(1,>);(1,<)(ω),
as well as of G(2,>);(1,<)(ω), as a function of ω in the three
phases. In the DL phase one sees a very mild dependence of
G(1,>);(1,<)(ω) on ω, with G(2,>);(1,<)(ω) being constantly =0.
At variance, for r > 1 (SK phase), G(1,>);(1,<)(ω) drops to 0
on lowering ω, with a crossover scale determined by kTK . At
the same time, G(2,>);(1,<)(ω) first rises and then drops to 0,
as well, for ω < kTK . As we discuss above, in Sec. V A, in
this phase, G(1,>);(1,<)(ω) and G(2,>);(1,<)(ω) have the same
sign, in the window of values of ω in which both are nonzero.
Finally, for r < −1 (charge Kondo phase) G(1,>);(1,<)(ω) and
G(2,>);(1,<)(ω) behave as in the spin Kondo phase, but now, in
the window of values of ω in which both are nonzero, they
have opposite sign.

A complementary, alternative analysis can instead be per-
formed by sweeping r (that is, δ) and by looking at how
the interlead ac conductance G(2,>);(1,<)(ω) varies at fixed ω

(> kTK ). As stated in Sec. V C, we expect G(2,>);(1,<)(ω) = 0
within the DL phase, for |r| < 1. Crossing the boundary at
r = ±1 from within the DL phase, one enters either one of
the Kondo phases, in which G(2,>);(1,<)(ω) 	= 0, with a sign
depending on whether one is looking at the SK or at the
CK phase. Thus, detecting the onset, along the r axis, of
regions with G(2,>);(1,<)(ω) 	= 0, separated by a zero interlead
ac conductance, provides another means to probe the phase
diagram of our system.

Finally, we note that, denoting with TK (δ) the Kondo
temperature as a function of δ, once all the other system pa-
rameters are fixed since, according to the scaling assumption
for the Kondo effect, one expects the conductance to be a
scaling function of ω/(kTK (δ)) [74,75], increasing |δ| [that
is, increasing TK (δ)] is in principle equivalent to lowering
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G  (ω)
(2,>);(1,<)

FIG. 5. Sketch of G(1,>);(1,<)(ω) and of G(2,>);(1,<)(ω) as a func-
tion of ω in the various phases of the system, determined by dif-
ferent values of r = δv/(at2) and for ω, kTK � kT . From top to
bottom: (a) Expected behavior of G(1,>);(1,<)(ω) (blue curve) and
G(2,>);(1,<)(ω) (red curve) in units of e2/(2π ) as a function of ω/kTK

in the SK region (r > 1). The saturation of G(1,>);(1,<)(ω)/[e2/(2π )]
at high values of ω/kTK may take place to values lower than 1,
depending on the presence of potential scattering terms. Breaking
of particle-hole symmetry may give rise to a nonzero saturation
value of G(1,>);(1,<)(ω)/[e2/(2π )] as ω → 0 (see main text for
details). (b) Expected behavior of G(1,>);(1,<)(ω) (blue curve) and
G(2,>);(1,<)(ω) (red curve) in units of e2/(2π ) as a function of ω/kTK

in the CK region (r < −1). Again, potential scattering terms can
make G(1,>);(1,<)(ω)/[e2/(2π )] saturate to values lower than 1 at
high values of ω/kTK and breaking of particle-hole symmetry may
give rise to a nonzero saturation value of G(1,>);(1,<)(ω)/[e2/(2π )]
as ω → 0. (c) Expected behavior of G(1,>);(1,<)(ω) (blue curve) and
G(2,>);(1,<)(ω) (red curve) in units of e2/(2π ) as a function of ω/TK

in the DL region (−1 < r < 1). Due to the absence of a physically
meaningful temperature reference scale in this region, ω has rescaled
in units of what would be kTK for the specified values of the system’s
parameters in that region if Kondo effect were taking place.

ω toward kTK . So, one expects plots similar to the ones in
Fig. 5 but, now, using δ as a control parameter. This might in
principle provide an easier way to probe Kondo scaling in our
system since δ can actually be used as a control parameter of
the device.

Therefore, we may readily conclude how pertinently
changing either ω or δ (or both), one can in principle probe
the whole phase diagram of the system and, in particular, the
remarkable possibility of switching from SK to CK effect by
acting upon one control parameter only.

VI. CONCLUDING REMARKS

In this paper, we propose how to engineer a tunable Kondo
system which, depending on the value of in principle one
parameter only, can either work as a spin Kondo or as a
charge Kondo impurity. Gauging the control parameter δ, one
moves the system from the SK to the CK phase, passing across
an intermediate, DL phase, in which the Kondo impurity is
effectively irrelevant for the ac conduction properties of the
system. While the main architecture of our device can ap-
pear rather complicated, we are confident that our theoretical
proposal can potentially raise the interest in employing the
interplay between emerging Majorana modes in condensed
matter physics and Kondo effect to experimentally engineer
an efficient tunable Kondo device.

Within linear response theory, we derive the intralead and
the interlead ac conductance of the system as a function of
the frequency ω throughout the whole phase diagram. As
a result, we show how the two conductances provide an
effective means to identify, and distinguish from each other,
the SK, CK, and DL phases of the system. To engineer our
system, we employ a minimal setup, with only two spinless
fermionic leads. In principle, nowadays technology allows
for realizing spinless, one-dimensional electronic conduction
channels at, for instance, semiconductor nanowires with a
strong Rashba spin-orbit interaction and Zeeman energy [76],
as well as edge states of a spin-Hall insulator [77]. So, we
expect it to be possible to realize our model, in a realis-
tic experiment, with spinless leads, which would rule out
unwanted complications on top of the minimal physics we
describe here, such as onset of multichannel either SK or
CK phases which, nevertheless, we plan to study in a future
work.

Finally, it is also worth recalling how, within the CK
phase, our Kondo impurity triggers interwire conduction
via a peculiar crossed Andreev reflection between the two
leads, which suggests that, in a “dual” setup, in which a
Cooper pair is injected into the leads through the DSI, our
system might realize an efficient long-distance electronic
entangler.
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APPENDIX A: EQUILIBRIUM AC CONDUCTANCE TENSOR IN THE CASE OF
A QUANTUM POINT CONTACT BETWEEN TWO WIRES

In this Appendix, we briefly review the formula for the equilibrium ac conductance tensor in the case in which there is a
simple structureless quantum point contact between two quantum wires, located at x = 0, between the two wires. The purpose
of extensively studying the simple model addressed in the following is twofold. On one hand, starting from the lattice model
Hamiltonian and eventually resorting to the continuum formulation of the system allows us to define the general framework
within which we compute the ac conductance tensor throughout our paper. On the other hand, some of the results we obtain along
the derivation of this Appendix are important to ground the discussion of the other, more complex, cases discussed in the paper.

As a starting point, we consider the lattice model Hamiltonian given by

HPC;Lat =
∑

a=1,2

⎧⎨
⎩−J

�−1∑
j=−�

[c†
j,ac j+1,a + c†

j+1,ac j,a] − μ

�∑
j=−�

c†
j,ac j,a

⎫⎬
⎭+ HB, (A1)

with the impurity Hamiltonian HB given by

HB = Vd

∑
a=1,2

c†
0,ac0,a + Vod{c†

0,1c0,2 + c†
0,2c0,1}. (A2)

To define the ac conductance tensor, we imagine our device to be composed of four different regions (1,<), (1,>), (2,<),
(2,>), each one containing the sites at either the left- or the right-hand side of the point contact, with the site at j = 0 “evenly
shared” between the two regions. In practice, we define the charge operator at each region so that

Qa,< = e
−1∑

j=−�

c†
j,ac j,a + e

2
c†

0,ac0,a, Qa,> = e
�∑

j=1

c†
j,ac j,a + e

2
c†

0,ac0,a. (A3)

Defining the corresponding current operators as Ia,λ(t ) = dQa,λ(t )
dt , with λ =<,>, we consider the average current in region

a, λ, I(a,λ)(t ), arising when each region a′, λ′ is biased with a time-dependent voltage va′,λ′ (t ). Within linear response theory, we
obtain

I(a,λ)(t ) = 〈Ia,λ(t )〉 = −i
∑
a′,λ′

∫ t

−∞
dt ′ va′,λ′ (t ′)〈[Ia,λ(t ), Qa′,λ′ (t ′)]〉

≡
∑
a′,λ′

∫ ∞

−∞
dt G(a,λ);(a′,λ′ )(t − t ′)va′,λ′ (t ′), (A4)

with the retarded Green’s function

G(a,λ);(a′,λ′ )(t − t ′) = −iθ (t − t ′)〈[Ia,λ(t ), Qa′,λ′ (t ′)]〉. (A5)

Resorting to Fourier space, one therefore readily obtains the ac conductance tensor. To do so, one starts from the Fourier
transform of the function in Eq. (A5), given by

G(a,λ);(a′,λ′ )(ω) =
∫ ∞

−∞
dt eiωt G(a,λ);(a′,λ′ )(t ). (A6)

Denoting with G(a,λ);(a′,λ′ )(ω) the corresponding element of the ac conductance tensor, one therefore obtains [78]

G(a,λ);(a′,λ′ )(ω) = 1
2 {G(a,λ);(a′,λ′ )(ω) + G(a,λ);(a′,λ′ )(−ω)}. (A7)

Finally, on defining the current-current retarded Green’s function

GI
(a,λ);(a′,λ′ )(t − t ′) = −iθ (t − t ′)〈[Ia,λ(t ), Ia′,λ′ (t ′)]〉, (A8)

one readily sees, by differentiating with respect to t both sides of Eq. (A8) and switching back to Fourier space, that one gets
[78]

GI
(a,λ);(a′,λ′ )(ω) = −iωG(a,λ);(a′,λ′ )(ω) − i〈[Ia,λ(t ), Qa′,λ′ (t )]〉 = −iωG(a,λ);(a′,λ′ )(ω) + GI

(a,λ);(a′,λ′ )(ω = 0), (A9)

with the last term at the second line of Eq. (A9) being, in fact, independent of t and working to cancel the ω = 0 contribution to
the left-hand side.

From the definition of the charge operators Qa,λ, it is straightforward to derive the explicit formulas for the current operators
for the lattice model Hamiltonian in Eq. (A1). In particular, one obtains

I1,< = − ieJ

2
{[c†

1,1 − c†
−1,1]c0,1 − c†

0,1[c1,1 − c−1,1]} − ieVod {c†
0,1c0,2 − c†

0,2c0,1},

I2,< = − ieJ

2
{[c†

1,2 − c†
−1,2]c0,2 − c†

0,2[c1,2 − c−1,2]} + ieVod {c†
0,1c0,2 − c†

0,2c0,1},
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I1,> = ieJ

2
{[c†

1,1 − c†
−1,1]c0,1 − c†

0,1[c1,1 − c−1,1]} − ieVod {c†
0,1c0,2 − c†

0,2c0,1},

I2,> = ieJ

2
{[c†

1,2′ − c†
−1,2]c0,2 − c†

0,2[c1,2 − c−1,2]} + ieVod {c†
0,1c0,2 − c†

0,2c0,1}. (A10)

To perform the explicit calculation of the ac conductance tensor, we resort to the expansion of the lattice field operators entering
Eq. (A1) in terms of chiral fermionic fields reviewed in Eq. (27). This eventually leads to the continuum version of the system
Hamiltonian HPL, given by

HPL = −iv
∑

a=1,2

∫ �

−�

dx {ψ†
R,a(x)∂xψR,a(x) − ψ

†
L,a(x)∂xψL,a(x)} + Vd

∑
a=1,2

[ψ†
R,a(0) + ψ

†
L,a(0)][ψR,a(0)

+ψL,a(0)] + Vod {[ψ†
R,1(0) + ψ

†
L,1(0)][ψR,2(0) + ψL,2(0)] + H.c.}. (A11)

Also, in terms of the continuum fields, Eqs. (A10) become

I1,< = ev{ψ†
R,1(0)ψR,1(0) − ψ

†
L,1(0)ψL,1(0)} − ieVod {[ψ†

R,1(0) + ψ
†
L,1(0)][ψR,2(0) + ψL,2(0)] − H.c.},

I2,< = ev{ψ†
R,2(0)ψR,2(0) − ψ

†
L,2(0)ψL,2(0)} + ieVod {[ψ†

R,1(0) + ψ
†
L,1(0)][ψR,2(0) + ψL,2(0)] − H.c.},

I1,> = −ev{ψ†
R,1(0)ψR,1(0) − ψ

†
L,1(0)ψL,1(0)} − ieVod {[ψ†

R,1(0) + ψ
†
L,1(0)][ψR,2(0) + ψL,2(0)] − H.c.},

I2,> = −ev{ψ†
R,2(0)ψR,2(0) − ψ

†
L,2(0)ψL,2(0)} + ieVod {[ψ†

R,1(0) + ψ
†
L,1(0)][ψR,2(0) + ψL,2(0)] − H.c.}. (A12)

To further simplify the calculations, we now switch to the chiral fermionic fields ψe,a(x), ψo,a(x) defined in Eq. (29) of the
main text. As stated before, ψo,1(x) and ψo,2(x) fully decouple from HB and, accordingly, they behave as free chiral fermionic
fields over a segment of length 2�. The dynamics of ψe,1(x), ψe,2(x) is instead described by the Hamiltonian

He = −iv
∫ �

−�

dx
∑

a=1,2

ψ†
e,a(x)∂xψe,a(x) + 2Vd

∑
a=1,2

ψ†
e,a(0)ψe,a(0) + 2Vod{ψ†

e,1(0)ψe,2(0) + H.c.}. (A13)

At the same time, the current density operators in Eqs. (A12) become

I1,< = ev{ψ†
e,1(0)ψo,1(0) + ψ

†
o,1(0)ψe,1(0)} − 2ieVod {[ψ†

e,1(0)ψe,2(0) − ψ
†
e,2(0)ψe,1(0)},

I2,< = ev{ψ†
e,2(0)ψo,2(0) + ψ

†
o,2(0)ψe,2(0)} + 2ieVod {[ψ†

e,1(0)ψe,2(0) − ψ
†
e,2(0)ψe,1(0)},

I1,> = −ev{ψ†
e,1(0)ψo,1(0) + ψ

†
o,1(0)ψe,1(0)} − 2ieVod {[ψ†

e,1(0)ψe,2(0) − ψ
†
e,2(0)ψe,1(0)},

I2,> = −ev{ψ†
e,2(0)ψo,2(0) + ψ

†
o,2(0)ψe,2(0)} + 2ieVod {[ψ†

e,1(0)ψe,2(0) − ψ
†
e,2(0)ψe,1(0)}. (A14)

A generic eigenmode of He with energy eigenvalue ε is written in the form

�ε,e =
∑

a=1,2

∫ �

−�

dx u∗
e,a,ε (x)ψe,a(x). (A15)

On imposing the commutation relation [�ε,e, He] = ε�ε,e, one obtains the Schrödinger equations for the corresponding wave
functions in the form

εue,1,ε (x) = −iv∂xue,1,ε (x) + δ(x){2Vdue,1,ε (x) + 2Vod ue,2,ε (x)},
εue,2,ε (x) = −iv∂xue,2,ε (x) + δ(x){2Vdue,2,ε (x) + 2Vod ue,1,ε (x)}. (A16)

By explicitly solving Eqs. (A16), one readily finds that the fields ψe,1(0), ψe,2(0) at time t can be fully expressed in terms of two
sets of anticommuting energy eigenmodes {�ε,e,α, �ε,e,β}, as

ψe,1(−vt ) = 1√
2�

∑
ε

ei εx
v

1

2
{[1 + td ]�ε,e,α + tod�ε,e,β} e−iεt ,

(A17)

ψe,2(−vt ) = 1√
2�

∑
ε

ei εx
v

1

2
{tod�ε,e,α + [1 + td ]�ε,e,β} e−iεt ,

with

td = v2 − V 2
od + V 2

d

(v + iVd )2 + V 2
od

, tod = −2ivVod

(v + iVd )2 + V 2
od

. (A18)
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To compute the ac conductance tensor, we need the following retarded Green’s functions:

Ga(t − t ′) = −ie2v2θ (t − t ′)〈[ψ†
e,a(−vt )ψo,a(−vt ) + ψ†

o,a(−vt )ψe,a(−vt ), ψ†
e,a(−vt ′)ψo,a(−vt ′) + ψ†

o,a(−vt ′)ψe,a(−vt ′)]〉,
God (t − t ′) = 4ie2V 2

od 〈[ψ†
e,1(−vt )ψe,2(−vt ) − ψ

†
e,2(−vt )ψe,1(−vt ), ψ†

e,1(−vt ′)ψe,2(−vt ′) − ψ
†
e,2(−vt ′)ψe,1(−vt ′)]〉. (A19)

Based on the previous derivation, it is simple to explicitly compute the Fourier transform of the functions in Eqs. (A19). In
particular, one obtains

Ga(ω) = − ie2

4π
[1 + Re(td )]ω = − iωe2

2π

{
v2
[
v2 + V 2

d + V 2
od

]
(
v2 + V 2

od

)2 + 2V 2
d

(
v2 − V 2

od

)+ V 4
d

}
,

God (ω) = − iωe2

2π

{
2v2V 2

od(
v2 + V 2

od

)2 + 2V 2
d

(
v2 − V 2

od

)+ V 4
d

}
. (A20)

In the Vod → 0 limit (which is relevant for the following derivation), we obtain G(2,>);(1,<)(ω) = 0, while

G(1,>);(1,<)(ω) = − e2

2π
cos2(δS ), (A21)

with

cos(δS ) = v√
v2 + V 2

d

. (A22)

APPENDIX B: SCHRIEFFER-WOLFF TRANSFORMATION AND DERIVATION
OF THE EFFECTIVE KONDO HAMILTONIAN

In general, the SW procedure, when applied to a generic Hamiltonian Ĥ , allows for recovering a reduced, effective
Hamiltonian, acting on a limited subspace of the Hilbert space, typically determined as the subspace spanned by a certain
set of low-lying eigenstates of Ĥ . To be specific, let us consider a generic time-independent Schrödinger equation

Ĥ |�〉 = E |�〉, (B1)

and suppose we want to “project” it onto a pertinently defined low-energy subspace G. Let PG be the projector on G. To lowest
order in the “off-diagonal” matrix elements connecting G to its orthogonal subspace, we obtain

PGĤPG{PG|�〉} + PGĤ [I − PG]{[I − PG]|�〉} = E{PG|�〉},
[I − PG]Ĥ [I − PG]{PG|�〉} + [I − PG]ĤPG{PG|�〉} = E{[I − PG]|�〉}. (B2)

Putting together Eqs. (B2), one eventually obtains the “projected” Schrödinger equation

{PGĤPG + PGĤ [I − PG][E − [I − PG]Ĥ [I − PG]]−1[I − PG]ĤPG}PG|�〉 = EPG|�〉. (B3)

Dividing the Hamiltonian as the sum of a nonperturbed contribution plus a perturbation term H = H0 + H1, we can project it
onto the (n times degenerate) ground-state subspace of H0:

H0|ψi〉 = E0,i|ψi〉, i = 1, . . . , n (B4)

to obtain the Brillouin-Wigner perturbation expansion

HEff =
∑
i, j

hi, j |ψi〉〈ψ j | (B5)

with

hi, j = 〈ψi|H0|ψ j〉 + 〈ψi|H1|ψ j〉 +
∑

k

〈ψi|H1|ϕk〉〈ϕk|H1|ψ j〉
E0 − Ek

, (B6)

where the sum over k runs on the low-energy excited states of the unperturbed Hamiltonian. Equations (B1) and (B2) define a
systematic procedure. A straightforward implementation of the procedure we illustrate here allows for recovering the effective
Kondo Hamiltonians in Eqs. (16) and (18).

Another effective use of the SW transformation leads to the residual interaction at both the SK and CK fixed points. To
illustrate our derivation, we consider the SK fixed point. For the sake of generality, we consider an anisotropic lattice version of
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the lattice SK model Hamiltonian in the form

HLat;S =
∑

a=1,2

⎧⎨
⎩−J

�−1∑
j=−�

[c†
j,ac j+1,a + c†

j+1,ac j,a] − μ

�∑
j=−�

c†
j,ac j,a

⎫⎬
⎭+ JS,⊥ {S+

0 S− + S−
0 S+} + JS,zS

z
0Sz

1. (B7)

The ground state at the SK fixed point minimizes the boundary interaction energy encoded in the Hamiltonian in Eq. (B7)
as JS,⊥, JS,z → ∞. To explicitly provide such a state, in the following, we denote by |⇑〉, |⇓〉 the two eigenstates of Sz, with
|0〉, |↑〉, |↓〉, |↓↑〉 the states in which, respectively, the site j = 0 is empty in both chains is filled with one electron on chain
1 and empty on chain 2, is filled with one electron on chain 2 and empty on chain 1, is filled with one electron in both chains.
As a result of the hybridization with the impurity spin, the locally hybridized states, which we list below together with the
corresponding energies, are generated:

Local singlet : |S〉 = 1√
2

{|↓,⇑〉 − |↑,⇓〉};
(

εS = −1

4
(SS,z + 2JS,⊥)

)
,

Local doublet D : |Dσ 〉 = |0, σ 〉; (εD = 0),

Local doublet D̃ : |D̃σ 〉 = |↓↑, σ 〉; (εD̃ = 0),

Local triplet T1 : |T1〉 = |↑,⇑〉;
(

εT,1 = JS,z

4

)
,

Local triplet T−1 : |T−1〉 = |↓,⇓〉;
(

εT,−1 = JS,z

4

)
,

Local triplet T0 : |T0〉 = 1√
2

{|↓,⇑〉 + |↑,⇓〉};
(

εT,0 = 1

4
(−JS,z + 2JS,⊥)

)
. (B8)

At large values of JS,⊥, JS,z, the system lies within the |S〉 local state, with the higher-energy states in Eqs. (B8) playing a
role in the allowed physical processes only as virtual states. Taking this into account, one can therefore go through a systematic
SW transformation, by using as “unperturbed” Hamiltonian H0 = ∑

X εX |X 〉〈X |, with {|X 〉} being the set of states listed in
Eqs. (B8), and as “perturbing” Hamiltonian Ht , describing the coupling between site 0 and sites -±1 of each lead, and given by

Ht = t{[c1,1 + c−1,1]c†
0,1 + [c1,2 + c−1,2]c†

0,2 − [c†
1,1 + c†

−1,1]c0,1 − [c†
1,2 + c†

−1,2]c0,2}. (B9)

As a result, one finds that the first nontrivial boundary interaction operator H̃K,S arises to fourth order in Ht , and is given by

H̃K,S =
∑

{X,X ′}={Dσ ,D̃σ }

∑
{Y }={TM }

[
PS

Ht

εS − εX
PX

Ht

εS − εY
PY

Ht

εS − εX ′
PX ′HtPS

]
, (B10)

with PX being the projector onto the space spanned by the local state |X 〉. Plugging into Eq. (B10) the explicit expressions for
Ht and for the various energies, one finds

H̃K,S = −ζI,⊥{[(c1,2 + c−1,2), (c†
1,1 + c−1,1)][(c1,1 + c−1,1), (c†

1,2 + c†
−1,2)]

+ [(c1,1 + c−1,1), (c†
1,2 + c†

−1,2)][(c1,2 + c−1,2), (c†
1,1 + c−1,1)]}

− ζI,z{[(c1,2 + c−1,2), (c†
1,2 + c†

−1,2)] − [(c1,1 + c−1,1), (c†
1,1 + c†

−1,1)]}2, (B11)

with

ζI,⊥ = t4

4ε2
S [εT1 − εS]

, ζI,z = t4

4ε2
S [εT0 − εS]

. (B12)

H̃K,S in Eq. (B11) is the lattice version of the operator describing the leading perturbation at Nozières Fermi-liquid fixed point
as derived in, e.g., Appendix D of Ref. [6]. Resorting to the continuum field framework by means of, e.g., the low-energy, long-
wavelength expansions in Eqs. (28) and (29) and inserting the continuum fields, supplemented with the appropriate fixed-point
boundary conditions, in Eq. (B12), one recovers the continuum formula for the leading boundary perturbation at the SK fixed
point [Eq. (35)]. Similarly, at the CK fixed point, one obtains Eq. (38) of the main text.

APPENDIX C: DERIVATION OF HDL IN THE DISCONNECTED LEAD PHASE

In this Appendix, we briefly discuss the derivation of HDL in Eq. (26) as the leading boundary interaction describing the
impurity within the DL phase. To do so, we start by “artificially” introducing two independent parameters in the DSI Hamiltonian,
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which we accordingly rewrite as

ĤIsland = −2δ1

∑
a=1,2

a†
aaa + 4δ2a†

1a1a†
2a2. (C1)

Clearly, in order to recover physically meaningful results, one has to eventually set δ1 = δ2 = δ. However, Eq. (C1) comes out
to be useful in that it allows for exactly accounting for at least part of the δ-depending terms in HIsland.

Identifying δ2 as our perturbative parameter, we note that, leaving aside the density-density interaction (that is, setting μd =
μod = 0), the system Hamiltonian can be written as Ĥ0 = ∑

a=1,2 Ĥa, with

Ĥa = −J
�−1∑
j=−�

{c†
j,ac j+1,a + c†

j+1,ac j,a} − μ

�∑
j=−�

c†
j,ac j,a − t{c†

0,aaa + a†
ac0,a} − 2δ1a†

aaa. (C2)

The right-hand side of Eq. (C2) contains a quadratic Hamiltonian defined over an (2� + 2)-site lattice. This can be exactly
diagonalized by means of the eigenmodes �k,a, defined as

�k,a =
�∑

j=−�

u j,a,kc j,a + ξk,aaa, (C3)

and (on imposing periodic boundary conditions at j = ±�) the wave functions satisfying the lattice Schrödinger equation

εku j,k,a = −J{u j+1,k,a + u j−1,k,a} − μu j,k,a ( j 	= 0),

εku0,k,a = −J{u1,k,a + u−1,k,a} − μu0,k,a − tξk,a, εkξk,a = −2δ1ξk,a − tu0,k,a. (C4)

To solve Eqs. (C4), we make the ansatz

uj,k,a = α<
k,aeik j + β<

k,ae−ik j (−� � j < 0),
(C5)

u j,k,a = α>
k,aeik j + β>

k,ae−ik j (0 < j � �),

which yields εk = −2J cos(k) − μ and, in addition, the conditions at j = 0 encoded in

u0,k,a = α<
k,a + β<

k,a, u0,k,a = α>
k,a + β>

k,a,

2J cos(k) u0,k,a = J{α<
k,ae−ik + β<

k,aeik + α>
k,aeik + β>

k,ae−ik} + tξk,a,

{2J cos(k) + μ − 2δ1}ξk,a = tu0,k,a. (C6)

Once the system in Eqs. (C6) has been explicitly solved, at a given k, one obtains

u0,k,a = α

{
− 2iJ (εk + 2δ1) sin(k)

(εk + 2δ1)(εk + μ) + 2ieikJ (εk + 2δ1) − t2

}
,

(C7)

ξk,a = α

{
2iJt sin(k)

(εk + 2δ1)(εk + μ) + 2ieikJ (εk + 2δ1) − t2

}
,

with α being an overall normalization constant. Considering specific solutions obeying scattering boundary conditions, such as

u(1)
j,k,a =

{
α
{
eik j + r (1)

k,ae−ik j
}

( j < 0),

αt (1)
k,aeik j ( j > 0)

(C8)

and

u(1)
j,k,a =

{
αt (2)

k,ae−ik j ( j < 0),

α
{
e−ik j + r (2)

k,aeik j
}

( j > 0),
(C9)

one obtains

t (1)
k,a = t (2)

k,a =
{
− 2iJ (εk + 2δ1) sin(k)

(εk + 2δ1)(εk + μ) + 2ieikJ (εk + 2δ1) − t2

}
. (C10)
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At the Fermi level one therefore obtains

t (1)
kF ,a = t (2)

kF ,a = 2iδ1v

2iδ1v − t2
, (C11)

with v being the Fermi velocity. Also, given the relations

c0,a =
∑

k

u∗
0,k,a�k,a, aa =

∑
k

ξ ∗
k,a�k,a, (C12)

one notes that, approximating t (1,2)
k,a with t (1,2)

kF ,a in Eq. (C11) (which clearly applies to energy scales lower than |t |) and if δ1 	= 0,
one obtains

aa ≈ − t

2δ1
c0,a ⇒ a†

aaa ≈ t2

4δ2
1

c†
0,ac0,a. (C13)

Equation (C13) implies a†
aaa ∝ c†

0,ac0,a. Therefore, the whole impurity interaction Hamiltonian can be traded for a density-
density interaction one, HDL, of the form

HDL = κc†
0,1c0,1c†

0,2c0,2 +
∑

a=1,2

λac†
0,ac0,a, (C14)

with κ, λ1, λ2 parameters corresponding to the interwire local density-density interaction and to the residual intrawire local
one-body potentials and κ ≈ ( t

2δ1
)4

δ2. HDL in Eq. (C14) is the Hamiltonian we used in the main text to discuss the effective
impurity dynamics in the DL region of the phase diagram.

APPENDIX D: RENORMALIZATION GROUP EQUATIONS
FOR THE RUNNING COUPLING IN THE EFFECTIVE

IMPURITY HAMILTONIANS

In this Appendix, we concisely review the derivation and
the solution of the RG equations for the various boundary
Hamiltonians describing the impurity dynamics in the various
regions of the system. To begin with, we consider ĤK,S in
Eq. (20) and ĤK,C in Eq. (21). For the sake of the discussion,
here we leave aside purely marginal terms (that is, one-body
potential scattering terms), whose nonuniversal effects we
account for when actually computing the dc conductance
tensor of the system. At the same time, we neglect local
fields acting on the effective spin impurity, whose effects we
briefly discuss by the end of this Appendix. Accordingly, in
order to encompass in our analysis both cases, we hence-
forth consider the RG equations for the running couplings
associated a generic anisotropic Kondo Hamiltonian HAn,
given by

HAn = J⊥{ψ†
1 (0)ψ2(0)S− + ψ

†
2 (0)ψ1(0)S+}

+ Jz

{
ψ

†
1 (0)ψ1(0) − ψ

†
2 (0)ψ2(0)

2

}
Sz, (D1)

with ψ1(x), ψ2(x) being one-dimensional, chiral fermionic
fields. J⊥ and Jz are, respectively, the transverse and the
longitudinal Kondo coupling strengths. On defining the as-
sociated dimensionless running coupling strengths J⊥(D) =
aJ⊥
v

and Jz(D) = aJz

v
, the derivation of the RG equations for

those running coupling has a long story and goes back to
the original works on the subject [2,79–81]. Specifically, on
varying the energy cutoff D, one obtains that the correspond-
ing variation of the running couplings is determined by the

equations

dJ⊥(D)

d ln
(D0

D

) = J⊥(D)Jz(D),
dJz(D)

d ln
(D0

D

) = J 2
⊥(D).

(D2)

The system in Eqs. (D2) corresponds to the set of the
standard Kosterlitz-Thouless RG equations. To solve it, one
defines the RG invariant H = −J 2

z (D) + J 2
⊥(D). In particu-

lar, for H = 0, one recovers the standard poor man’s result for
the RG equations in the case of isotropic Kondo effect [2,81].
In this case, one readily finds the solution in the form

J⊥(D) = J‖(D) = J⊥(D0)

1 − J⊥(D0) ln
(D0

D

) , (D3)

with the corresponding Kondo scale DK (= kTK ) given by

DK ∼ D0e− 1
J⊥ (D0 ) . (D4)

At a generic value of H , as we show in Fig. 6 there are
three relevant regions in the half-plane Jz,J⊥ > 0. In detail,
we have the following:

FIG. 6. Sketch of the RG trajectories for the running couplings
J⊥(D) and Jz(D).
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(i) Region I: This is defined for J‖(D0) > 0 and H < 0. In this case, the integrated RG equations yield

Jz(D) =
√

|H |
⎧⎨
⎩Jz(D0) + √|H | + [Jz(D0) − √|H |](D0

D

)2
√|H |

Jz(D0) + √|H | − [Jz(D0) − √|H |](D0
D

)2
√|H |

⎫⎬
⎭,

J⊥(D) = 2
√

|H |
⎧⎨
⎩

√
J 2

z (D0) − |H |(D0
D

)√|H |

Jz(D0) + √|H | − [Jz(D0) − √|H |](D0
D

)2
√|H |

⎫⎬
⎭. (D5)

Both running couplings increase as D0/D gets large. Eventually, they hit a diverging point at the scale D = D(1)
KT, with

D(1)
KT = D0

{Jz(D0) − √|H |
Jz(D0) + √|H |

} 1
2
√|H |

. (D6)

(ii) Region II: This is defined for H > 0. In this case, one obtains

Jz(D) =
√

H tan

{
atan

(Jz(D0)√
H

)
+

√
H ln

(
D0

D

)}
, J⊥(D) =

√
H

cos
{

atan
(
Jz (D0 )√

H

)
+ √

H ln
(D0

D

)} . (D7)

In the case Gz(D0) < 0, Eqs. (D7) imply a crossing of the vertical axis at the scale Dcross defined as

Dcross = D0 exp

[
− 1√

H

∣∣∣∣atan

(Jz(D0)√
H

)∣∣∣∣
]
. (D8)

Both couplings diverge at the scale D = D(2)
KT, with

D(2)
KT = D0 exp

{
− 1√

H

[
π

2
− atan

(Jz(D0)√
H

)]}
. (D9)

(iii) Region III: This is defined for Jz(D0) < 0 and H < 0. In this case, the integrated RG trajectory take the form

Jz(D) =
√

|H |
⎧⎨
⎩ |Jz(D0)| − √|H | + [|Jz(D0)| + √|H |](D0

D

)2
√|H |

|Jz(D0)| − √|H | − [|Jz(D0)| + √|H |](D0
D

)2
√|H |

⎫⎬
⎭,

J⊥(D) = 2
√

|H |
⎧⎨
⎩

√
J 2

z (D0) − |H |(D0
D

)√|H |

−|Jz(D0)| + √|H | + [|Jz(D0)| + √|H |](D0
D

)2
√|H |

⎫⎬
⎭. (D10)

In this case, we see that the flow is no more toward a point at ∞, but we rather get

lim
D0
D →∞

[
Jz(D)

J⊥(D)

]
=
[−√|H |

0

]
. (D11)

From the analysis we perform above, it is natural to associate
the onset of the Kondo regime (and the corresponding emer-
gence of a dynamically generated energy scale) to regions I
and II, while region III is characterized by a flow toward a
manifold of “trivial” fixed points, continuously parametrized
by H . In Fig. 6 we provide a sketch of the RG trajectories
for J⊥(D) and Jz(D) by particularly evidencing how, in the
“Kondo regions” I and II, both running couplings flow to ∞.
While this result is important for building a description of the
corresponding Kondo fixed point, we now briefly review what
are the possible effects of the “non-Kondo” terms in Eqs. (20)
and (21).

A first additional term potentially appearing in the Kondo
boundary Hamiltonian is the one-body, local scattering po-
tential, which may just marginally change the single-particle
phase shifts at the impurity location and, correspondingly,
slightly renormalize the ac conductance tensor with the Kondo

interaction turned off, without essentially affecting the Kondo
physics [2]. Also, in the CK regime, one may get a term
corresponding to an effective, local magnetic field along the
z direction, either coupled to the impurity spin, or to the
electronic spin density at the impurity location (or both). In
general, these terms are known not to substantially affect the
Kondo physics as long as the applied field B is much lower
than the energy scale associated to the Kondo temperature
[17,72,73]. In fact, this is the assumption we make here,
as the effective B field is determined by the direct density-
density interaction within the wires, which is expected to
be much lower than the other energy scales in the system.
Therefore, throughout all this paper, we consistently neglect
the corresponding contributions to the boundary Hamiltonian
effectively describing the impurity dynamics.

To conclude the discussion of this Appendix, we now
consider HDL in Eq. (26). Aside from the one-body local
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scattering potentials, the only nontrivial interaction term is
the direct local density-density coupling, ∝κ . To deal with
it, we therefore introduce the corresponding running coupling
K(D) = ( D0

D )
−1

κ . The RG equation for K(D) to leading order
in the running coupling is therefore given by

dK(D)

d ln
(D0

D

) = −K(D), (D12)

which shows that this term is irrelevant and that, on lower-
ing the cutoff, the corresponding running coupling scales as
D/D0. Accordingly, its effects can be consistently accounted
for within a standard perturbative analysis in the coupling
itself, which is what we made when, e.g., discussing the
effects of HDL on the dc conductance tensor of the system.

APPENDIX E: AC CONDUCTANCE TENSOR: DETAILS
ABOUT THE DERIVATION IN THE VARIOUS REGIONS

OF THE PHASE DIAGRAM OF THE SYSTEM

In this Appendix, we explicitly compute the equilibrium ac
conductance tensor in the various phases of our system. To
do so, we resort to a perturbative expansion around the fixed
point corresponding to each one of the phases. When required
by the onset of a nonperturbative regime triggered by Kondo
interaction, we pertinently complement our analysis within
renormalization group framework. In doing so, we assume
that ac frequency ω is large enough, so to avoid the suppres-
sion of the conductance determined by the emergence of the
finite timescale (“Korringa time” τK [78]), characterizing cor-
relations between subsequent impurity spin flips. Indeed, at
frequencies ω � τ−1

K , the spin conductance across the impu-
rity (which, in our case, corresponds to the interwire conduc-
tance) is suppressed to 0 [78,82–84]. Thus, in the following
derivation we assume that the condition ω, kTK � kT always
holds, so that, as discussed below τK can be safely neglected
and the perturbative calculation scheme applies [78,83].

To encompass the various regimes of our system addressed
in the paper, in the following we separately discuss the calcu-
lation for the effective spin and charge Kondo models, as well
as for the DL limit (which, in view of the apparent similarity
between the corresponding boundary perturbations at the im-
purity, is expected to describe equally well the system in the
vicinity of the spin and of the charge Kondo fixed points).

1. Calculation of the ac conductance tensor in the Kondo regime

According to the derivation of Appendix A, we begin by
defining the analogs of Eqs. (A14) in our case:

(i) For the spin Kondo effective model

I1,< = ev{ψ†
e,1(0)ψo,1(0) + ψ

†
o,1(0)ψe,1(0)} − e

2

dSz

dt
,

I2,< = ev{ψ†
e,2(0)ψo,2(0) + ψ

†
o,2(0)ψe,2(0)} + e

2

dSz

dt
,

I1,> = −ev{ψ†
e,1(0)ψo,1(0) + ψ

†
o,1(0)ψe,1(0)} − e

2

dSz

dt
,

I2,> = −ev{ψ†
e,2(0)ψo,2(0) + ψ

†
o,2(0)ψe,2(0)} + e

2

dSz

dt
.

(E1)

(ii) For the charge Kondo effective model

I1,< = ev{ψ†
e,1(0)ψo,1(0) + ψ

†
o,1(0)ψe,1(0)} − e

2

dT z

dt
,

I2,< = ev{ψ†
e,2(0)ψo,2(0) + ψ

†
o,2(0)ψe,2(0)} − e

2

dT z

dt
,

I1,> = −ev{ψ†
e,1(0)ψo,1(0) + ψ

†
o,1(0)ψe,1(0)} − e

2

dT z

dt
,

I2,> = −ev{ψ†
e,2(0)ψo,2(0) + ψ

†
o,2(0)ψe,2(0)} − e

2

dT z

dt
.

(E2)

In the SK case, as it emerges from Eqs. (E1), the
whole set of current-current correlation functions is deter-
mined by the correlations of the three operators O1;KS(t ),
O2;KS(t ), OS;KS(t ), given by

O1;KS(t ) = ev{ψ†
e,1(−vt )ψo,1(−vt ) + ψ

†
o,1(−vt )ψe,1(−vt )},

O2;KS(t ) = ev{ψ†
e,2(−vt )ψo,2(−vt ) + ψ

†
o,2(−vt )ψe,2(−vt )},

OS;KS(t ) = e
dSz(t )

dt
. (E3)

To simplify the following calculations, we note that, due to
the fact that the spin Kondo Hamiltonian only depends on the
ψe,α fields and due to the identity

e
dSz(t )

dt
= 2ieJS,⊥{ψ†

e,1(−vt )ψe,2(−vt )S−(t )

−ψ
†
e,2(−vt )ψe,1(−vt )S+(t )}, (E4)

we readily obtain that

G(a,S);KS(t − t ′) = −iθ (t − t ′) 〈[Oa;KS(t ),OS;KS(t ′)]〉 = 0

(E5)

for a = 1, 2. By means of analogous arguments, we also
obtain

G(1,2);KS(t − t ′) = −iθ (t − t ′) 〈[O1;KS(t ),O2;KS(t ′)]〉 = 0

(E6)

as well. [Note that Eqs. (E5) and (E6) only depend on the
functional form of the operators involved in the calculations.
Therefore, they are exact at any order of the perturbative
expansion in JS .] Therefore, we only need to compute “diago-
nal” correlation functions. Retaining the leading perturbative
contributions in JS,⊥, we stop our derivation to order J2

S,⊥. We
therefore obtain

GS;KS(t − t ′) = −ie2θ (t − t ′)
〈[

dSz(t )

dt
,

dSz(t ′)
dt ′

]〉

= −4ie2J2
S,⊥

(2�)2
θ (t − t ′)

∑
ε,ε′

f (ε) f (ε′)

×{ei(ε+ε′ )(t−t ′ ) − e−i(ε+ε′ )(t−t ′ )}, (E7)
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with f (ε) being Fermi distribution function. When resorting
to Fourier space, Eq. (E7) implies

GS;KS(ω) = 4e2J2
S,⊥

(2�)2

∑
ε,ε′

f (ε) f (ε′)

×
[

1

ω + (ε + ε′) − iη
− 1

ω − (ε + ε′) − iη

]
,

(E8)

with η = 0+. Similarly, one obtains

G(a,a);KS(ω)

= −i
∫

d (t − t ′) eiω(t−t ′ ) θ (t − t ′) 〈[Oa;KS(t ),Oa;KS(t ′)]〉

= − ie2ω

2π

{
1 − 3J2

S,⊥
v2

}
. (E9)

Equations (E8) and (E9) are all we need to perturbatively
compute the ac conductance. As a result, we obtain

G(1,>);(1,<)(ω) = − e2

2π

{
1 − J2

S,⊥
v2

}
,

G(2,>);(1,<)(ω) = − e2

2π

J2
S,⊥
v2

. (E10)

Similarly, in the charge Kondo case one obtains

G(1,>);(1,<)(ω) = − e2

2π

{
1 − J2

C,⊥
v2

}
,

G(2,>);(1,<)(ω) = e2

2π

J2
C,⊥
v2

. (E11)

Equations (E10) and (E11) are expected to apply in the
frequency range ω � kTK . As ω goes down toward kTK , one
expects that the net effect of the Kondo interaction is to
renormalize the coupling strengths JS,⊥, JC,⊥ as discussed in
Appendix D, with ω corresponding to the running scale D.
Taking this into account, Eqs. (E10) and (E11) become

G(1,>);(1,<)(ω) = − e2

2π

{
1 − J 2

S,⊥(ω)
}
,

G(2,>);(1,<)(ω) = − e2

2π
J 2

S,⊥(ω) (E12)

in the spin Kondo case, and

G(1,>);(1,<)(ω) = − e2

2π

{
1 − J 2

C,⊥(ω)
}
,

G(2,>);(1,<)(ω) = e2

2π
J 2

C,⊥(ω) (E13)

in the charge Kondo case, with JS(C),⊥(z) = aJS(C),⊥(z)

v
, HS(C) =

−J 2
S(C),z + J 2

S(C),⊥,

JS(C),⊥(ω) = 2
√|HS(C)|

( kT S(C)
K
ω

)√|HS(C)|

1 − ( kT S(C)
K
ω

)2
√

|HS(C)|
, (E14)

and the Kondo temperature kT S(C)
K = D0{JS(C),z (D0 )−

√
|HS(C)|

JS(C),z (D0 )+
√

|HS(C)|
}.

Equations (E12) and (E13) provide the perturbative result
for the ac conductances of interest for our work. Thus, we
conclude that the only relevant effect of the Kondo dynamics
on the interlead ac conduction properties of the system is
encoded in the dynamical impurity spin Green’s functions
GS;KS(t − t ′) and GS;KC(t − t ′). Indeed, typically, in problems
dealing with ac transport across a Kondo-type impurity, the ac
conductance is directly related to the (time derivatives of the)
impurity spin Green’s functions as discussed, for instance, in
Ref. [85] in the context of microwave scattering at a quantum
impurity in a Josephson junction array.

2. Perturbative calculation of the conductance
in the disconnected lead limit

In the disconnected lead limit, the leading boundary per-
turbation in the lattice framework is given by HDL in Eq. (30),
which we adopt in the following as our perturbing boundary
Hamiltonian, with the symmetric simplification λ1 = λ2 = λ

and with (in terms of the lattice model Hamiltonian parame-
ters)

λ ∼ t2

2δ
, κ ∼

(
t

2δ

)4

δ. (E15)

(See Appendix C for details.) HDL commutes with the total
charge density at x = 0 in both leads. Therefore, the current
operators defined in Eqs. (A14) are now given by

I1,< = ev{ψ†
e,1(0)ψo,1(0) + ψ

†
o,1(0)ψe,1(0)},

I2,< = ev{ψ†
e,2(0)ψo,2(0) + ψ

†
o,2(0)ψe,2(0)},

I1,> = −ev{ψ†
e,1(0)ψo,1(0) + ψ

†
o,1(0)ψe,1(0)},

I2,> = −ev{ψ†
e,2(0)ψo,2(0) + ψ

†
o,2(0)ψe,2(0)}. (E16)

A first important observation arising at a first glance to
Eqs. (E15) and (E16) is that, since HDL only contains the −e
fields at x = 0 while Ia,> and Ia,< are linear in terms of ψo,a(0)
and ψ†

o,a(0), one obtains the exact result that G(2,>);(1,<)(ω) =
G(1,>);(2,<)(ω) = 0, at any order in κ . As for what concerns
corrections to the ac conductances diagonal in the lead in-
dex, following the analysis of Appendix D, we expect a
perturbative calculation in κ to provide reliable results for
the ac conductance tensor. Setting κ = 0, our system traces
back to the one we discuss in Appendix A, with Vod = 0,
Vd = t2

δ
. Therefore, setting κ = 0, we obtain the conductances

G(0)
(1,>);(1,<)(ω), given by

G(0)
(1,>);(1,<)(ω) = − e2

2π

[
v2δ2

v2δ2 + t4

]
≡ − e2

2π
cos2(δκ ), (E17)

with δκ single-fermion phase shift at the DL fixed point. To
second order in κ , Eq. (E17) is corrected into

G(1,>);(1,<)(ω) ≈ − e2

2π

{
cos2(δκ ) − 8 cos(2δκ )κ2ω2

3π2v2

}
,

(E18)

that is, the result we used in the main text.
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