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We explore the connection between the area law for entanglement and geometry by representing the
entanglement entropies corresponding to all 2N bipartitions of an N-party pure quantum system by means of
a (generalized) adjacency matrix. In the cases where the representation is exact, the elements of that matrix
coincide with the mutual information between pairs of sites. In others, it provides a very good approximation,
and in all the cases it yields a natural entanglement contour which is similar to previous proposals. Moreover,
for one-dimensional conformal invariant systems, the generalized adjacency matrix is given by the two-point
correlator of an entanglement current operator. We conjecture how this entanglement current may give rise to a
metric entirely built from entanglement.
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I. INTRODUCTION

Entanglement is one of the most relevant features of the
quantum world, constituting the main resource in quantum
technologies [1–3] and characterizing the different phases
of quantum matter [4,5]. In the last years, it has been put
forward that even the basic fabric of space-time might be built
upon entanglement via the holographic principle and tensor
networks [6–12]. Indeed, this suggestive connection stems
from the area law: the entanglement entropy of blocks of low-
energy states of local Hamiltonians is frequently proportional
to the measure of the boundary separating the block from its
environment [13–16], with at most logarithmic corrections
[17–19]. Yet, there are relevant exceptions to the area law,
such as the rainbow state [20–27] and the Motzkin state
[28–34]. In some of these cases, as we will show, an area
law is indeed fulfilled for a geometry that differs from the
geometry defined by the local structure of the Hamiltonian.
Thus, given a quantum state, it is relevant to ask: What is the
geometry suggested by the entanglement structure?

Consider a pure state |ψ〉 of N qubits. There are 2N

possible subsets or blocks A ⊂ �, and we can compute the
von Neumann entropies (alternatively, Rényi entropies) for
each, SA = −TrA(ρA log ρA), where ρA = TrĀ|ψ〉〈ψ | and TrA

and TrĀ denote the partial traces on subset A and its com-
plement Ā, respectively. Let I ∈ {0, . . . , 2N − 1} index the
subsets through its binary expansion, and let us compute the
entanglement entropies for all of them, {SI}2N −1

I=0 . The main
question that we will answer is as follows: Does this set of
entropies respond to an area law for some geometry?

This article is organized as follows. In Sec. II we define
the entanglement adjacency matrix (EAM), which explains
the geometry encoded in the entanglement data, while its
properties are discussed in Sec. III. Some exact examples are
discussed in Sec. IV. The cases, for which we must recourse
to numerical computations, are detailed in Sec. V. The EAM

provides a route to define a generic entanglement contour, as
is shown in Sec. VI. Interestingly, from the point of view of
conformal field theory (CFT), the EAM entries can be written
as the two-point correlator of an entanglement current, and
many of their properties can be readily understood. Based on
the CFT insight, we ask whether an entanglement metric can
be defined from the EAM, and a conjecture in that direction is
provided in Sec. VIII. The article concludes in Sec. IX with a
list of our conclusions and our proposals for further work.

II. DEFINING A GEOMETRY: ENTANGLEMENT
ADJACENCY MATRIX

With the purpose of investigating the area law, we shall
define a geometry through an adjacency matrix J such that
Ji j > 0 when sites i and j are somehow connected or zero
otherwise (Ji j = Jji). The von Neumann entropy of a subset
A ⊂ � will be given by the sum of the weights corresponding
to the broken links

SA =
∑
i∈A

∑
j∈Ā

Ji j, (1)

of course, Rényi entropies of order n can be employed, thus
defining S(n)

A and J (n)
i j . Alternatively, a constant s0 term may

be added to the right-hand side (rhs) of Eq. (1), which may
constitute a topological entropy term [35]. If Eq. (1) holds,
matrix J will be termed the entanglement adjacency matrix
(EAM) of the state. Notice that Ji j is the entanglement entropy
that we gain by separating node i from node j. A schematic
representation of the above formulation is presented in Fig. 1.
Additionally, the Ji j’s may be employed to build a notion of
distance, or an entanglement metric, along recent proposals
[11,12], that we will discuss in Sec. VIII.

Figure 2 presents a different way to conceptualize the
entropy of any bipartition, assuming the validity of Eq. (1),
similar to the Venn diagrams used in classical information
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FIG. 1. Schematic of the entanglement entropy obtained for an
arbitrary bipartition (A, Ā) by adding up the links connecting the
sites. Here the link intensities represent the EAM entries Ji j .

theory [36]. Let the square represent the whole J matrix.
Then the entropy of blocks A or B is found by counting the
shaded elements of Figs. 2(a) or 2(b), which are the ones that
connect the blocks with their compliments. But these quantum
versions of Venn diagrams can convey more information. The
mutual information between blocks A and B, defined as I(A :
B) = S(A) + S(B) − S(A ∪ B), which is twice the shaded area
in Fig. 2(c), i.e., the matrix elements connecting blocks
A and B.

III. PROPERTIES OF THE ENTANGLEMENT
ADJACENCY MATRIX

Before considering the validity of Eq. (1) for the quantum
states of physical interest, let us list a few relevant properties
of the elements of the EAM, Jab.

A. Positivity: Jab � 0

Proof. The entanglement entropy of site a can be easily
obtained (assuming s0 = 0): Sa = ∑

j �=a Ja j . Similarly, the
entropy of a block composed by sites a and b is given by

Sab =
∑
j �=a,b

(Ja j + Jb j ) = Sa + Sb − 2Jab. (2)

Thus, we can find the mutual information between sites a and
b, I(a : b),

I(a : b) ≡ Sa + Sb − Sab = 2Jab, (3)

thus providing a simple physical interpretation for Jab as the
mutual information of the pair of sites a, b. Mutual informa-
tion must be positive, thus reinforcing our notion that Jab � 0
must hold (if s0 = 0).

This interpretation of the entries of the entanglement ad-
jacency matrix as mutual information of sites yields the next
corollary.

Corollary: If Eq. (1) is exact, knowledge about the entan-
glement of all single sites and all pairs of sites is enough to
determine the entanglement of all blocks.

B. Subadditivity condition

The entanglement entropies obtained using the elements of
entanglement adjacency matrices fulfill certain subadditivity
conditions as follows.

Given any three subsets, A, B, and C ⊂ �, the strong
subadditivity condition must hold [36]

SAB + SBC � SABC + SB. (4)

Whenever Eq. (1) holds with Jab � 0, even with s0 �= 0, this
inequality will hold also.

Proof. First of all, let us consider the blocks A, B, and C
contain a single site, respectively, a, b, and c. Then we can
prove the following:

Sab + Sbc � Sabc + Sb, (5)

which is the site equivalent of Eq. (4). To prove the above
relation, we can compute each of the terms

Sb =
∑
j �=b

Jb j,

Sab =
∑
j �=a,b

(Ja j + Jb j ),

Sbc =
∑
j �=b,c

(Jc j + Jb j ),

Sabc =
∑

j �=a,b,c

(Ja j + Jb j + Jc j ), (6)

FIG. 2. Illustrating the structure of the entanglement adjacency matrix through Venn diagrams. (a) Evaluation of the entanglement entropy
of block A requires adding up all Ji j elements joining A to its complement (Ā = B ∪ C), given by the shaded area. (b) The same situation holds
for block B. (c) The mutual information of blocks A and B, I(A : B) = S(A) + S(B) − S(A ∪ B) is (twice) the darker area shaded in this panel,
given by the sum of the matrix entries Ji j joining both blocks.
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FIG. 3. Top: Graphical illustration of the validity of Eq. (4). The marked squares, filled on the lhs and empty on the rhs, account for the
inequality. Bottom: Graphical illustration of the validity of Eq. (9). The marked squares on the rhs are the filled squares on the lhs of the
inequality.

from which we derive

Sab + Sbc =
∑
j �=a,b

Ja j +
∑
j �=a,b

Jb j +
∑
j �=b,c

Jb j +
∑
j �=b,c

Jc j

=
∑

j �=a,b,c

(Ja j + Jb j + Jb j + Jc j )

+ Jac + Jbc + Jab + Jac

= Sabc +
∑

j �=a,b,c

Jb j + 2Jac + Jbc + Jba

= Sabc + Sb + 2Jac. (7)

Due to the positivity of Jac, the strong subadditivity condition
is therefore proved.

Now let us consider general subsets A, B, and C ⊂ �. We
can additionally prove the following important lemma.

Lemma: A partition of the nodes into blocks leads to
an effective entanglement adjacency matrix neglecting the
intrablock links and adding the interblock ones. In other terms,
if we define blocks {Bk}, with Bk ⊂ �, Bk ∩ Bl = ∅ if k �= l ,
∪kBk = �, then we can define

JB
kl ≡

∑
a ∈ Bk ,

b ∈ Bl

Jab, (8)

if k �= l and JB
kk = 0. Then Eq. (1) still holds for partitions

which do not break the blocks. The effective entanglement
adjacency matrix entries retain their physical meaning of mu-
tual information. Similarly, the site entropies Sa, Sab, Sbc, Sabc

can be generalized to corresponding block entropies SA, SAB,
SBC , SABC . Using this lemma, and the relation in Eq. (7) we
can prove the strong subadditivity condition of three subsets
of �, A, B, and C, given in Eq. (4).

A graphical illustration of Eq. (4) can be seen in Fig. 3,
along with an illustration of a direct variant

I(A : B) + I(B : C) � 2S(B). (9)

C. Recursion relation for entropies of contiguous blocks

If the quantum state is translationally invariant in one-
dimension (1D), a recursion relation that generalizes Eq. (3)
can be proved for entropies of contiguous blocks Sl . Since
Ji j = J (l = |i − j|), we have

Jl = Sl − 1
2 Sl−1 − 1

2 Sl+1. (10)

The proof can be obtained by the mere substitution of Eq. (1).
We may now ask the following question: Are there any

real quantum states for which expression (1) is exact or, at
least, approximate? In the forthcoming sections, we carry out
analytical and numerical analysis to answer this question in
detail.

IV. EXACT EXAMPLES

To obtain the entanglement adjacency matrix for any gen-
eral pure quantum many-body state, one needs to compute the
entanglement of all possible bipartitions of the state, which
increases exponentially with the size of the system. Hence,
computation of the entanglement adjacency matrix, which

195134-3



SUDIPTO SINGHA ROY et al. PHYSICAL REVIEW B 101, 195134 (2020)

FIG. 4. Graphical representation of the entanglement adjacency
matrices obtained analytically for (a) the dimer state and (b) the
rainbow state. Here N = 8.

provides even approximate representation of all the entropies,
often requires some computational effort. We discuss the
methodology in detail in Sec. V. However, in some cases in
which the entropies of the quantum state can be computed an-
alytically, the corresponding entanglement adjacency matrix
can be obtained straightforwardly. Below we discuss a few
such cases.

A. Valence bond states

Let us consider valence bond states, where qubits are
paired into maximally entangled Bell pairs |�〉 = |i1, j1〉 ⊗
· · · ⊗ |im, jm〉, with m = N/2 (for even N) and |i, j〉 = 1√

2
(| +

−〉i j ± | − +〉i j ). In that case, Eq. (1) represents exactly the
entanglement entropy of every partition, as long as Ji j = log 2
iff i = ik and j = jk (or vice versa) for some k, and zero
otherwise. Interestingly, such states approximate the ground
states (GS) of a strongly inhomogeneous free-fermionic
Hamiltonian

Hf−f = −1

2

N∑
i, j=1

ti jc
†
i c j, (11)

where ci stands for the annihilation operator for a spinless
fermion on site i and ti j are hopping amplitudes. Below we
consider two important members of the valence bond states,
which can be derived from the above Hamiltonian at certain
limits of the hopping term ti j .

1. Dimer-model

If we set ti,i+1 = [1 + (−1)i+1δ], and all other ti j = 0, for
δ � 1, the GS will approximate the dimer state whose Ji j =
log 2 only for i = 2k − 1 and j = 2k, for k = 1, 2, . . . , N

2 ,
which is still tridiagonal, resulting in a mere restriction of the
one-dimensional adjacency matrix representing the Hamilto-
nian. A graphical representation of the same is depicted in
Fig. 4(a).

2. Rainbow chain

Another important member of the family of valence bond
states, the rainbow state, can be derived from the Hamiltonian
in Eq. (11), for the following choices of the system param-
eters, t N

2 , N
2 +1 = 1 and ti,i+1 = exp[−h(|i − N/2| − 1/2)], for

h 
 1. In this case, the Bell pairs are established among
symmetric qubits with respect to the center: ik = k, jk =
N + 1 − k [20,21]. Thus, all the entanglement entropies of

1.6
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FIG. 5. Plot of S(l ) given in Eq. (12), along with the J (l )
obtained using Eq. (12) into Eq. (10). Both results are expressed
taking logs with a base of 2.

the rainbow state are reproduced by Eq. (1) using Ji j = log 2
iff i + j = N + 1, and zero otherwise. Similar to the previous
example, a graphical representation of the J-matrix obtained
in this case is given in Fig. 4(b). Notice that, in the rainbow
case, the entanglement adjacency matrix is not emerging as
a restriction on the adjacency matrix representing the Hamil-
tonian. In other words, an observer trying to determine the
geometry from observations of the entanglement will not find
the geometry of the Hamiltonian.

B. Affleck-Kennedy-Lieb-Tasaki (AKLT) state

Let us now consider a translational invariant quantum state,
the Affleck-Kennedy-Lieb-Tasaki (AKLT) state on a spin-1
chain [37], defined by its matrix product form built on the
Pauli matrices, Ak = σk , and derive the exact expression of
the J (l = |i − j|) as follows. The expression of entanglement
entropy for a block of l consecutive sites obtained from the
periodic AKLT state with N 
 1 is given by [38–40]

Sl = log 4 − 3
4 (1 − pl ) log(1 − pl )

− 1
4 (1 + 3pl ) log(1 + 3pl ), (12)

where p = − 1
3 . For l 
 1, Sl approaches asymptotically the

value 2 log 2 that corresponds to cutting the valence bonds
that connect the block to the rest of the system (see Fig. 5).
J (l ) can be found by plugging Eq. (12) into the recursion
relation for translationally invariant states, Eq. (10). The result
is plotted in Fig. 5. Notice the fast decreases of J (l ) with l , that
can be obtained expanding the entropies in Eq. (12) as

Sl ≈ log 4 − 3
4 (1 − pl )

[−pl − 1
2 (pl )2

]
− 1

4 (1 + 3pl )
[
3pl − 1

2 (3pl )2].
≈ log 4 − 3

2
p2l . (13)

Replacing this into Eq. (10), and only keeping the terms up to
p2l , we get

Jl = log 4 − 3
2 p2l − 1

2 log 4 + 1
2

(
3
2 p2 p2l

)
− 1

2 log 4 + 1
2

(
3
2 p−2 p2l

)
, (14)

which after simplification yields

Jl ∝ p2l . (15)
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Therefore, for the AKLT state, Jl decays faster than that of
spin-correlation function 〈�S0 �Sl〉 = 4pl [37].

C. GHZ state

A different case is provided by the Greenberger-Horne-
Zeilinger (GHZ) state, |ψ〉GHZ = 1√

2
(|0〉⊗N + |1〉⊗N ). In this

case, the entanglement entropy of all partitions is equal to
log 2. It can be proved that Eq. (1) can only represent this situ-
ation making Ji j = 0 for all i, j and s0 = log 2. This amounts
to the fact that the GHZ state does not have a geometrical
interpretation in this framework.

V. NUMERICAL COMPUTATION OF THE
ENTANGLEMENT ADJACENCY MATRIX

Equation (1) attempts to represent 2N entanglement en-
tropy values using only Np = N (N − 1)/2 parameters (ne-
glecting s0). The relation between parameters and entropies
is linear, expressed through∑

(i j)

AI,(i j)Ji j = SI , (16)

where I = (x1, . . . , xN ) denotes the binary expansion for the
index of each block, i.e., xk = 1 if site k belongs to block I
(and zero otherwise), and A is a 2N × Np matrix with entries
given by A(x1,..., xN ),(i j) = 1 if (xi, x j ) = (0, 1) or (1,0), and
zero otherwise. Equation (16) is a strongly overdetermined
linear system which will be, in general, incompatible. Yet it
is possible to find an approximate solution in the least-squares
sense, using the so-called normal equations∑

(i′ j′ )

(A†A)(i j),(i′ j′ )Ji′ j′ =
∑

I

AI,(i j)SI . (17)

So element kl of matrix ATA provides the number of blocks
which break both index k and index l . This number is inde-
pendent of k and l as long as k �= l . For a system with N sites,
the number of blocks which break a given coupling is always
the same, 2N−1. The number of blocks which break two given
couplings is also the same: 2N−2. Thus matrix ATA is given
by

ATA = 2N−2

⎡
⎢⎢⎢⎢⎣

2 1 1 . . . 1
1 2 1 . . . 1
1 1 2 . . . 1
...

...
...

. . .
1 1 . . . . . . 2

⎤
⎥⎥⎥⎥⎦. (18)

Equation (17) is a linear system of Np equations for Np

unknowns with a unique solution, but the computational cost
is still exponential because it requires the evaluation of 2N

entropies. Nevertheless, an approximate solution can be found
using a random sample of the total set of entropies.

We quantify the relative error made in the optimization
process described above, as follows. Let ŜI be the estimate
obtained through Eq. (17). The error will be defined as

E = 1

2N

2N −1∑
I=0

|SI − ŜI |. (19)

FIG. 6. We consider the nearest-neighbor dimerized Hamiltonian
with periodic boundary condition and N = 14. Plots of J (r) = J2,2+r

with the distance r are obtained for different δ values. Additionally,
in the inset, we plot the scaling of the error function E with the system
size N , for the same choices of the parameters.

We will use this formula to estimate the error made in the
computation of the entanglement adjacency matrix for certain
physical models we consider below.

A. Free-fermionic model

Let us consider free-fermionic systems, as described in
Eq. (11). The GS of Eq. (11) is a Slater determinant built
from the lowest-energy eigenstates of the hopping matrix ti j .
Let Uk,i be the matrix containing such eigenstates as columns.
Then

Ci j = 〈c†i c j〉 =
∑
k∈K

Ūk,iUk, j, (20)

where K denotes the set of occupied orbitals, which we
will assume to be the half with negative energies. The von
Neumann entropy for a block A is found from the eigenvalues
of the restriction of Ci j to that block, νp ∈ [0, 1] [41]

SA =
|A|∑
p=1

H (νp), H (x) = −[x log x + (1 − x) log(1 − x)].

(21)

Once the entropy values are computed, the optimal en-
tanglement adjacency matrix can be obtained by solving the
set of linear Eqs. (17). In Fig. 6 we plot the J (r) = J2,2+r

with the distance r, for the dimerized Hamiltonian, which
can be derived from the free-fermionic model expressed in
Eq. (11), for ti,i+1 = 1 + (−1)iδ. From the figure, we can
see that starting from a high value, J (r) decreases with r.
Moreover, J (r) presents slowly decaying parity oscillations.
A true short-ranged behavior emerges as the GS configuration
tends towards the dimer configuration for higher values of δ.
Subsequently, we present a scaling of the error (E) estimated
in all these cases with the system size N . The maximum
error turns out to be <4 × 10−2. Though E quantifies the
average error introduced in the computation of entropy of any
bipartition, a more fine-grained analysis of the error, in this
case, reveals the fact that the amount of error is relatively
lower in the case of bipartitions with a lesser number of
boundaries (see Appendix A for a detailed discussion).
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FIG. 7. We obtain the same profiles for the XXZ model ex-
pressed in Eq. (22), with N = 12 and for different values of the
anisotropy parameter 	. The broken black line corresponds to the
analytical expression J (r) = 1

6 ( π

N )2 1
sin2(πr/N )

, obtained for the con-
formal case (see Table I in Appendix C).

B. Interacting model: XXZ Hamiltonian

We next discuss the optimal entanglement adjacency ma-
trix obtained for an interacting model, the XXZ model in 1D
with periodic boundaries, expressed as

HXXZ =
N∑
i

[
Sx

i Sx
i+1 + Sy

i Sy
i+1 + 	Sz

i Sz
i+1

]
, (22)

where Sk
i (k ∈ x, y, z) are the spin-1/2 operators at site i, and

	 denotes the anisotropy constant. We carry out the same
analysis as before and obtain the entanglement adjacency
matrix by solving the set of linear Eqs. (17). However, in
this case, the entropy values cannot be obtained from the
correlation matrix. Rather, we need to perform an exact diag-
onalization and obtain the reduced density matrices directly
from the GS itself. The behavior of J (r) = J2,2+r with the
distance r is depicted in Fig. 7, for the following values of
the anisotropy parameter 	 = 0.0, 0.5, 1.0 (critical cases),
and 3.0,5.0 (noncritical cases in the gapped antiferromagnetic
phase).

In general, spin and the fermion representations lead to
different reduced density matrices for nonconsecutive blocks
[42]. In our case, to obtain the optimized geometry, we must
consider both consecutive and nonconsecutive blocks, a clear
difference emerges in the behavior of J (r) obtained in this
case. We observe that unlike the fermionic case, the profile of
J (r) obtained using the spin representation does not exhibit
the usual parity oscillations. In this case, the maximum error
(ε) computed using the formula in Eq. (19), turns out to be
∼6 × 10−2. Moreover, here the random sampling of only 5 ×
102 entropies provides close agreement with the above results
(see Fig. 10 in Appendix A). Hence, the random sampling
method can ensure the scalability of the formalism and unveil
important features at larger system sizes, when exploring all
possible bipartitions becomes impracticable.

VI. ENTANGLEMENT CONTOUR

In the subsequent part of our analysis we use the entan-
glement adjacency matrix to refine the entanglement structure
contained in the block entropies, making use of the entan-
glement contour function [43]. The entanglement contour for
a given block A, introduced by Chen and Vidal [43] and

analyzed in several other works [24,44–49], is a positive
partition of the entanglement entropy associated to the block
sites, i.e., a function sA(i) with i ∈ A, such that

SA =
∑
i∈A

sA(i), sA(i) � 0 . (23)

Interestingly, the entanglement adjacency matrix provides a
natural entanglement contour, using expression (1),

sA(i) ≡
∑
j∈Ā

Ji j . (24)

Furthermore, using the properties of Ji j described in Sec. III,
it can be shown that our proposal for the entanglement contour
function satisfies all the constraints listed in Ref. [43]. Below
we list a few of those relevant properties.

(1) Positivity: sA(i) � 0.
Equation (3) guarantees the positivity of the elements of

the entanglement adjacency matrix Ji j , which implies that the
contour function sA(i) defined in Eq. (24) must be positive.

(2) Normalization:
∑

i∈A sA(i) = SA.
From Eqs. (1) and (24), we obtain the entropy of the subset

A is given by SA = ∑
i∈A

∑
j∈Ā Ji j = ∑

i∈A sA(i). Hence, the
normalization condition of the contour function is guaranteed.

(3) Symmetry: If F is a symmetry of ρA, (FρAF
† = ρA)

that exchanges the sites i and j, then sA(i) = sA( j).
This statement applies to space reflections, translations,

and rotations. In our case, the symmetry must apply to the
whole wave function |ψ〉AB, not to the reduced density matrix
of a single block, since the Ji j’s is a property of the entire
set of partitions. A symmetry of the wave function will be
reflected in a symmetry of the set of entanglement entropies
of the different blocks. The solution to the normal equations,
Eq. (17), is unique and must reflect the symmetries of the wave
function.

Proof of properties viz. the invariance of the entanglement
contour under local unitaries and its upper and lower bounds
are given in Appendix B.

For free-fermion models, a proposal for the contour is [43]

sA(i) =
|A|∑
p=1

∣∣�(A)
p,i

∣∣2
H (νp) , (25)

where �
(A)
p,i is the eigenvector, with eigenvalue νp, of the

correlation matrix (20) restricted to the block A. In this regard,
here, we stress the fact that unlike the above formulation, our
approach aims to provide an entanglement contour function
by considering contributions of all bipartitions and not just
the ones consisting of simply connected intervals. Moreover,
the formalism can be applied to any general quantum system,
including the interacting models. Figure 8 shows that the
contours (24) and (25) for a free-fermion model are very
similar [50].

VII. ENTANGLEMENT CURRENT

The entanglement entropy of the GS of a conformal field
theory (CFT) for an interval A = (u, v) embedded in the
infinite line is given by [17–19]

SA = c

3
log

v − u

ε
, (26)
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FIG. 8. Comparison of the contour functions for the entangle-
ment entropy sA(i), obtained for the half-chain of a clean free-
fermionic system [ti j = 1, |i − j| = 1 in Eq. (11)], using Eqs. (24)
(red squares) and (25) (black circles). Here we consider N = 14.

where c is the central charge and ε > 0 a short distance cutoff.
Equation (26) can be obtained from a continuous version of
Eq. (1)

SA =
∫

Aε

dx
∫

B
dy J (x, y) , (27)

with Aε = (u + ε, v − ε) and B = (−∞, u) ∪ (v,∞), by
choosing

J (x, y) = c/6

(x − y)2
. (28)

Note that the above choice of the entanglement adjacency
matrix is also emanating from the recursion relation given in
Eq. (10), when the continuum limit is considered. In partic-
ular, if we expand the entropies obtained for the contiguous
blocks Sl , we get Jl = − 1

2
d2Sl
dl2 . Equation (28) indicates that

J (x, y) is the two-point correlator, on the plane of the spatial
component of a current operator J, whose integration along
segments, as in Eq. (27), is invariant under reparametrizations.
J (x, y)dxdy represents the amount of entanglement between
the intervals (x, x + dx) and (y, y + dy). This interpretation
of J holds in more general situations. Indeed, using the con-
struction by Cardy and Tonni for entanglement Hamiltonians
in CFT [51], we can show that Eq. (27) reproduces the values
of SA, for the space-time geometries �, that are conformally
equivalent to an annulus. In these cases J (x, y) is given by the
two-point correlator (see Appendix C)

J (x, y) = 〈J(x) J(y)〉� . (29)

The origin of the entanglement current J can be traced back
to the way the nth Rényi entropy, S(n)

A = 1
1−n log trA ρn

A, is
computed using twist fields [19,52,53]. For the interval A =
(u, v) in the infinite line one has

trA ρn
A = 〈T̄n(u)Tn(v)〉 = cn

[(v − u)/ε)]2	n
, (30)

where Tn(x), and its conjugate T̄n(x), are twist fields with
the same scaling dimension 	n = c

12 (n − 1/n), and cn is
a nonuniversal constant whose value at n = 1 is c1 = 1 to
guarantee the normalization condition trA ρA = 1. The von
Neumann entropy SA, given in Eq. (26), can be derived as
limn→1 S(n)

A using Eq. (30). There is also an additive constant

constant c′
1, not included in Eq. (26), that comes from the

derivative of cn at n = 1.
The relation between the entanglement current and the

twist fields is based on Eq. (30). Taking derivatives respect
to the coordinates u and v one finds, in the limit n → 1

lim
n→1

1

2(1 − n)
〈∂uT̄n(u)∂vTn(v)〉 = c/6

(v − u)2
, (31)

that compared to Eq. (28) yields the formal identification

J(x) = lim
n→1

1√
2(1 − n)

∂xTn(x) , (32)

and the same expression with T̄n(x). It is important to observe
that exchanging the limit n → 1 and the u and v derivatives in
Eq. (31) is not well defined since limn→1 〈T̄n(u)Tn(v)〉/(1 −
n) = ∞. There is no a priori reason why these two operations
should commute. The order of operations we chose in Eq. (31)
is perfectly consistent and allow us to identify the entangle-
ment current (32). This derivation is certainly different from
the standard one where the entanglement entropy is found
by taking the logarithm of Eq. (30) and the limit n → 1.
Notice that the twist fields become the identity in the limit
n → 1, so their derivative are fields of dimension 1.

Applying Eqs. (27) and (28) to disconnected intervals on
a line gives the formula derived for SA in Ref. [19] (see
Appendix C), but misses a term that depends on the harmonic
ratio of the entangling points [54–60]. The current operator
can be written as Jμ = ∂μφ, where φ is a massless boson,
that implies its conservation, i.e., ∂μJμ = 0. If the scalar field
φ has a mass m, one can derive from Eq. (27) the entropy
SA � c

3 log(ξ/ε) that corresponds to a massive field theory
in the scaling limit with correlation length ξ = 1/m [19].
Equations (27) and (29) can be generalized to models in D
spatial dimensions recovering the area law for SA.

Equations (3) and (28) seem to suggest that the mutual
information I(x : y) in CFT has a universal scaling behavior
|x − y|−2. This property holds for the free-fermion model
studied above, but not in general. A recent example was
studied in Ref. [61], when I(x : y) is computed for certain
spin-Hamiltonians. In this case, it was reported that I(x : y) ∝
|x − y|−η with η = 1/2 for the critical Ising model, and η = 1
for the XX spin model [61]. The later results do not contradict
Eq. (28) since the spin representation may exhibit a different
decay rate of bipartite entanglement [42].

VIII. TOWARDS AN ENTANGLEMENT METRIC

Let us consider the intriguing possibility that the Ji j might
be employed to build a metric entirely based on entanglement
properties, as other authors have recently explored [11,12].
The basic assumption is that highly entangled sites are, some-
how, nearby, while disentangled sites are further away. We
suggest that Ji j determines univocally a single-step distance
between sites i and j through an unknown function

di j = �(Ji j ), (33)

which is monotonously decreasing and fulfills �(0) → ∞
and �(Jmax) = �0, where Jmax is the maximal possible value
of J (for qubits, Jmax = log 2) and �0 is the minimal length
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scale. A reasonable choice, following our CFT discussion, is

�(J ) = �0(J/Jmax)−1/2. (34)

In analogy to discrete metric problems, such as first-
passage percolation (FPP) [62], the actual distance between
sites i and j is found by obtaining the discrete geodesic, which
we proceed to define. Let � be any path along the system,
� = {i1, . . . , iM}. Then

Di j = min
�

M(�)−1∑
k=1

d (ik, ik+1), (35)

where M(�) is the number of steps of the path �. It is easy
to prove that Di j fulfills the distance axioms, including the
triangle inequality. Notice that the geodesic can take as many
steps as required.

Let us consider a translationally invariant 1D system fol-
lowing the area-law: entanglement across any cut is bounded
by a constant, with Ji j = J0 exp(−|i − j|/ξ ), such as the
AKLT state, see Eq. (15). Then, for sites i < j such that
|i − j| 
 ξ , we see that the geodesic is the straight path
� = {i, i + 1, . . . , j}, with a distance Di j ∝ |i − j|. On the
other hand, for conformal systems, the straight path competes
with the single-step path, which is also of order Di j = J−1/2

i j ∼
|i − j|, see Eq. (28).

IX. CONCLUSION AND FURTHER WORK

To summarize, in this work, we introduced a framework to
unveil the geometry suggested by the entanglement structure
of any quantum many-body state. The optimal geometry is
characterized by the elements of a generalized adjacency
matrix, which is obtained by exploring the entanglement
entropies computed for all possible bipartitions of the many-
body state. We noted that in some cases, the optimal geometry
turns out to be completely different from that suggested by
the parent Hamiltonian of the model. We later showed how
the optimized geometries can provide a natural route to com-
pute the entanglement contour, introduced for noninteracting
models. Finally, we showed that for a conformal invariant
system, the elements of the generalized adjacency matrices
can be related to the two-point correlator of an entanglement
current operator. This field theory realization leads to think
of entanglement as a flow among the parts of the system,
in analogy to the flow of energy that is characterized by the
stress tensor. Both entanglement and energy are, after all,
fundamental resources of a physical theory [63]. It will also
be interesting to analyze the relation of our approach to the
geometry proposed for tensor networks [12], to holography
in static and dynamic scenarios [49,64,65], and also to a
higher-dimension physical system. As a possible application
of the formalism to other physical models, we plan to explore
quantum disordered and quantum quenched systems in our
future works.
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APPENDIX A: ESTIMATION OF ERROR AND
RANDOM SAMPLING

In the first part of this section, we provide a more fine-
grained analysis of the error introduced in the computation of
the entropies of each bipartition. In particular, we study how
the average error is distributed over different geometries of the
bipartitions. Towards this aim, we first group the bipartitions
according to the number of boundaries (nA) they share with the
rest of the system. The average error (EnA ) is then computed
using the following relation:

EnA = 1

ZA

∑
X∈0,2N−1

|SX − ŜX |, (A1)

where the summation has been taken on the set of bipartitions
X , which has the same number of boundaries nA and ZA is
the cardinality of that set. Figure 9 shows the scaling of the
error (EnA ) with the number of boundaries (nA) of the different
bipartitions for a free-fermionic model described in Eq. (11)
of the main text. From the plot, we can see that the estimated
average error is low for bipartitions with a lesser number of
boundaries. Now as the bipartitions with more boundaries
yield higher entropy values, in the inset, we also provide the
relative error introduced in the computation of the entropies.
It is defined as

Erel
nA

= 1

ZA

∑
X∈0,2N−1

|SX − ŜX |
SX

. (A2)

We note that the relative error is distributed almost uniformly
over bipartitions with all possible geometries.

In the second part of this section, we discuss the efficiency
of the random sampling method that has been introduced in
Sec. V of the main text. In particular, we compare the behavior
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FIG. 10. Comparison of decay of entanglement adjacency matrix
J (r) to the site distance r = |i − j| for an XXZ model as given in
Eq. (22) of the main text, with 	 = 0.50, considering all possible
bipartitions (black curve), and for sampling of 5 × 102 number of
entropies (red curve). Here N = 12.

of J (r) to the site distance r = |i − j| that was obtained in
the main text by considering all possible bipartitions of the
state, to that obtained using a random sampling of less number
of entropies. Figure 10 shows one such example where a
comparison of J (r) versus the r profile, obtained using the
random sampling method, has been made to that of the exact
method, for the XXZ model. From the figure, we note that in
these cases, a random sampling of a lesser number of entropies
can capture all the features of the entanglement adjacency
matrix efficiently.

APPENDIX B: LIST OF CONSTRAINTS TO BE
FULFILLED BY AN ENTANGLEMENT CONTOUR

In this section, we discuss two other important properties
to be satisfied by the contour function [43] obtained from the
entanglement adjacency matrix, as expressed in Eq. (19) in the
main text.

(1) Invariance under local unitary transformations: If the
unitary transformation UB concerns a region B, and the pure
state |ψ〉AB is related as |ψ ′〉AB = UB|ψ〉AB, the entanglement
contour functions sA(i) derived for both the states |ψ〉AB and
|ψ ′〉AB must be the same.

Since the Ji j matrix is obtained from the entanglement
entropies of all blocks, this statement is only true for unitary
operators UB which act on single sites. In that case, all
entropies are invariant under the action of any local unitary
operator and, therefore, the Ji j matrix inherits that invariance.

(2) (a) Upper bound: If a subregion A1 ⊆ A is contained
in a factor space VA = VA1 ⊗ VA2 then the entanglement con-
tour of subregion A1 cannot be larger than the entanglement
entropy SA, i.e., sA(A1) � SA.

For a factorized space such as given above, VA = VA1 ⊗
VA2 , the entropy function satisfies the subadditivity condition
SA � SA1 + SA2 . This implies SA1 � SA. Again, the entangle-
ment contour of subregion A1, sA(A1) = ∑

i∈A1, j /∈A1
Ji j = SA1 .

Hence the proof.
Now if we decompose A1 further as VA1 = VA1

1
⊗ VA2

1
, the

lower bound can be derived as follows.
(b) Lower bound: The entanglement contour of subregion

A1 is at least equal to the entanglement entropy of SA1
1
.

This we can show again using the subadditivity condition
for the above factored space, SA1 � SA1

1
+ SA2

1
. Hence, SA1 �

SA1
1
. Now alternatively, we can write SA1 = ∑

i∈A1 j /∈A1
Ji j =

sA(A1). This implies sA(A1) � SA1
1
.

APPENDIX C: ENTANGLEMENT CURRENT IN CFT

Let us consider an interval A of finite length in a larger
system. The entanglement entropy SA of the ground state,
or the thermal state, is computed using a path integral in a
euclidean space-time �. To regularize the path integral one
removes infinitesimal discs Dε (parameterized by a complex
coordinate z) of radius ε, centered around the entangling
points of A. The resulting space-time � \ Dε, can be mapped,
via a conformal transformation w = f (z), into an annulus A
of heigh 2π (i.e., Im w = Im w + 2π ) and width WA given by
[51]

WA =
∫

Aε

dx f ′(x) , (C1)

where Aε denotes the interval left after the removal of the discs
Dε. The nth Rényi entropy is given by

S(n)
A = c

12

(
1 + 1

n

)
WA + Cn + o(1) , (C2)

where c is the central charge of the CFT and Cn is a constant
that depends on the boundary entropies and nonuniversal data
of the model. A contour is a nonnegative function s(n)

A (x) that
describes the contribution of the points of the interval A to the
nth Rényi entropy [43]

S(n)
A =

∫
Aε

dx s(n)
A (x), s(n)

A (x) � 0 . (C3)

This function is nonunique but Eqs. (C1) and (C2) suggest the
ansatz [24,46]

s(n)
A (x) = c

12

(
1 + 1

n

)
f ′(x) + Cn

�
, (C4)

where � is the length of the interval A. Our aim is to represent
the nonconstant term of the contour function (C4) as

s(n)
A (x) − Cn

�
= c

12

(
1 + 1

n

)
f ′(x) =

∫
Ā

dy J (n)(x, y),

(C5)

where Ā is the complement of A.
The dependence of J (n)(x, y) with respect to n can be factor

out defining the function g(x, y),

J (n)(x, y) = c

12

(
1 + 1

n

)
g(x, y) , (C6)

that from Eq. (C5) satisfies

f ′(x) =
∫

Ā
dy g(x, y) . (C7)

As an example, let us consider the euclidean space-time with
complex coordinate z = x + it ∈ C and the finite interval, at
t = 0, A = (u, v) ⊂ IR with v > u. Removing two discs of
radius ε around the entangling points z = u, v one obtains the
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FIG. 11. Euclidean space-time � domains of the models. The space direction x runs horizontally and the time direction t runs vertically. A
red segment denotes the interval A and a red circle the boundary of a disk of infinitesimal radius ε. The boundaries of � are colored in black.
In all these cases, the space-time left after the removal of the disk, or discs, can be mapped to an annulus A, of height 2π and width WA, by the
conformal transformations given in Table I.

annulus A by the conformal transformation [51]

w = f (z) = log
z − u

v − z
. (C8)

Choosing the regularized interval as Aε = (u + ε, v − ε)
(with 0 < ε � 1), one finds from Eqs. (C1) and (C8)

WA = f (v − ε) − f (u + ε) = 2 log
v − u

ε
. (C9)

and from Eq. (C2) the well-known result

S(n)
A = c

6

(
1 + 1

n

)
log

v − u

ε
+ Cn + o(1) . (C10)

To find the function g(x, y), satisfying Eq. (C7), we choose
the interval Ā = (−∞, u) ∪ (v,∞), which does not depend
on ε since the interval Aε already provides a regularization.
Equation (C7) becomes

f ′(x) = 1

x − u
+ 1

v − x
=

(∫ u

−∞
+

∫ ∞

v

)
dy g(x, y), (C11)

and taking a derivative respect to u, or v, gives

g(x, y) = 1

(x − y)2
, (C12)

that together with Eq. (C6) yields Eq. (28). Let us observe
that J (x, y) is the two-point correlator of a current J(z) on the

complex plane

J (x, y) = 〈J(x) J(y)〉plane . (C13)

This method to compute g(x, y) can be applied to the ge-
ometries depicted in Fig. 11 where the regularized space-time
� \ Dε is conformally equivalent to an annulus [51]. The
results are presented in Table I and using them one can verify
Eq. (28) in the main text that generalizes Eq. (C12).

Two disjointed intervals in the infinite line

Let us apply Eqs. (27) and (28) in the main text to com-
pute the entanglement entropy of the ground state for two
disjointed intervals A = (u1, v1) ∪ (u2, v2) (with u1 < v1 <

u2 < v2). Choosing the regularization

Aε = (u1 + ε, v1 − ε) ∪ (u2 + ε, v2 − ε),

Ā = (−∞, u1) ∪ (v1, u2) ∪ (v2,∞), (C14)

one finds (discarding the cutoff ε)

SA = c

3
ln

( |u1 − v1||u2 − v2||u1 − v2||u2 − v1|
|u1 − u2||v1 − v2|

)
. (C15)

This results agrees with the one first obtained in Ref. [19].
There is, however, a missing additive term in this expression
of SA that depends on the harmonic ratio x = (u1 − v1)(u2 −
v2)/[(u1 − u2)(v1 − v2)], and the operator content of the CFT,

TABLE I. Conformal maps f (z) from the geometries of Fig. 11 into the annulus of widths WA and the corresponding functions g(x, y). In
the cases II, III, and V, the length of A is denoted by �.

Type Geometry A f (z) WA g(x, y)

I x, t ∈ IR (u, v) log z−u
v−z 2 log v−u

ε

1
(x−y)2

II x = x + L, y ∈ IR (−R, R) ln
(

e2π iz/L−e−2π iR/L

e2π iR/L−e2π iz/L

)
2 log

(
L
πε

sin π�

L

) (
π

L

)2 1
sin2 π (x−y)

L

III x ∈ IR, t = t + β (−R, R) log
(

e2πz/β−e−2πR/β

e2πR/β−e2πz/β

)
2 log

(
β

πε
sinh π�

β

) (
π

β

)2 1
sinh2 π (x−y)

β

IV x > 0, t ∈ IR (0, x0 ) log z+x0
x0−z log 2x0

ε

1
(x−y)2 + 1

(x+y)2

V x ∈ (−L, L), t ∈ IR (x0, L) log
(

sin[π (z−x0 )/(2L)]
cos[π (z+x0 )/(2L)]

)
log

(
4L
πε

sin π�

2L

) (
π

4L

)2
(

1
sin2 π (x−y)

4L
+ 1

sin2 π (x+y)
4L

)

VI x > 0, t = t + β (0, x0 ) log
(

e2πz/β−e−2πx0/β

e2πx0/β−e2πz/β

)
log

(
β

πε
sinh πx0

β

) (
π

β

)2
(

1
sinh2 π (x−y)

β

+ 1
sinh2 π (x+y)

β

)
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and not only on the central charge [54–57,59,60]. Extensive
analytic and numerical work has been devoted to this problem
but, to our knowledge, there is not a general analytic formula

for SA (see Ref. [60] for a summary and an extended list of
references). The generalization of Eq. (C15) to more than two
intervals is straightforward.

[1] C. H. Bennett and S. J. Wiesner, Communication Via One-
and Two-Particle Operators on Einstein-Podolsky-Rosen States,
Phys. Rev. Lett. 69, 2881 (1992).

[2] C. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and
W. Wootters, Teleporting an Unknown Quantum State Via Dual
Classical and Einstein-Podolsky-Rosen Channels, Phys. Rev.
Lett. 70, 1895 (1993).

[3] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[4] A. Osterloh, L. Amico, G. Falci, and R. Fazio, Scaling of
entanglement close to a quantum phase transition, Nature 416,
608 (2002).

[5] T. J. Osborne and M. A. Nielsen, Entanglement in a simple
quantum phase transition, Phys. Rev. A 66, 032110 (2002).

[6] J. M. Maldacena, The Large N limit of superconformal field
theories and supergravity, Int. J. Theor. Phys. 38, 1113 (1999).

[7] S. Ryu and T. Takayanagi, Holographic Derivation of Entan-
glement Entropy from AdS/CFT, Phys. Rev. Lett. 96, 181602
(2006).

[8] G. Vidal, Entanglement Renormalization, Phys. Rev. Lett. 99,
220405 (2007).

[9] M. van Raamsdonk, Building up spacetime with quantum en-
tanglement, Gen. Relativ. Gravit. 42, 2323 (2010).

[10] B. Swingle, Entanglement renormalization and holography,
Phys. Rev. D 86, 065007 (2012).

[11] C. Cao, S. M. Carroll, and S. Michalakis, Space from Hilbert
space: Recovering geometry from bulk entanglement, Phys.
Rev. D 95, 024031 (2017).

[12] K. Hyatt, J. R. Garrison, and B. Bauer, Extracting Entanglement
Geometry from Quantum States, Phys. Rev. Lett. 119, 140502
(2017).

[13] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement
in many-body systems, Rev. Mod. Phys. 80, 517 (2008).

[14] M. Srenidcki, Entropy and Area, Phys. Rev. Lett. 71, 666
(1993).

[15] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws
for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).

[16] M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Area
Laws in Quantum Systems: Mutual Information and Correla-
tions, Phys. Rev. Lett. 100, 070502 (2008).

[17] C. Holzhey, F. Larsen, and F. Wilczek, Geometric and renor-
malized entropy in conformal field theory, Nucl. Phys. B 424,
443 (1994).

[18] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement
in Quantum Critical Phenomena, Phys. Rev. Lett. 90, 227902
(2003).

[19] P. Calabrese and J. Cardy, Entanglement entropy and quantum
field theory, J. Stat. Mech. (2004) P06002.

[20] G. Vitagliano, A. Riera, and J. I. Latorre, Volume-law scaling
for the entanglement entropy in spin 1/2 chains, New J. Phys.
12, 113049 (2010).

[21] G. Ramírez, J. Rodríguez-Laguna, and G. Sierra, From confor-
mal to volume-law for the entanglement entropy in exponen-

tially deformed critical spin 1/2 chains, J. Stat. Mech. (2014)
P10004.

[22] G. Ramírez, J. Rodríguez-Laguna, and G. Sierra, Entanglement
over the rainbow, J. Stat. Mech. (2015) P06002.

[23] J. Rodríguez-Laguna, J. Dubail, G. Ramírez, P. Calabrese, and
G. Sierra, More on the rainbow chain: Entanglement, space-
time geometry and thermal states, J. Phys. A: Math. Theor. 50,
164001 (2017).

[24] E. Tonni, J. Rodríguez-Laguna, and G. Sierra, Entanglement
hamiltonian and entanglement contour in inhomogeneous 1D
critical systems, J. Stat. Mech. (2018) 043105.

[25] V. Alba, S. N. Santalla, P. Ruggiero, J. Rodríguez-Laguna, P.
Calabrese, and G. Sierra, Usual area-law violation in random
inhomogeneous systems, J. Stat. Mech. (2019) 023105.

[26] N. Samos Sáenz de Buruaga, S. N. Santalla, J. Rodríguez-
Laguna, and G. Sierra, Symmetry protected phases in inhomo-
geneous spin chains, J. Stat. Mech. (2019) 093102.

[27] I. MacCormack, A. Liu, M. Nozaki, and S. Ryu, Holographic
duals of inhomogeneous systems: The rainbow chain and the
sine-square deformation model, J. Phys. A: Math. Theor. 52,
505401 (2019).

[28] R. Movassagh and P. W. Shor, Power law violation of the area
law in quantum spin chains, Proc. Natl. Acad. Sci. USA 113,
13278 (2016).

[29] O. Salberger and V. Korepin, Fredkin spin chains,
arXiv:1605.03842.

[30] Z. Zhang, A. Ahmadain, and I. Klich, Novel quantum phase
transition from bounded to extensive entanglement, Proc. Natl.
Acad. Sci. USA 114, 5142 (2017).

[31] O. Salberger, T. Udagawa, Z. Zhang, H. Katsura, I. Klich, and
V. E. Korepin, Deformed fredkin spin chain with extensive
entanglement, J. Stat. Mech. (2017) 063103.

[32] F. Sugino and P. Padmanabhan, Area law violations and quan-
tum phase transitions in modified motzkin walk spin chains,
J. Stat. Mech. (2018) 013101.

[33] L. Caha and D. Nagaj, The pair-flip model: A very entangled
translationally invariant spin chain, arXiv:1805.07168.

[34] F. Sugino and V. Korepin, Renyi entropy of highly entangled
spin chains, Int. J. Mod. Phys. B 32, 1850306 (2018).

[35] Since both the empty and the complete block should present
zero entropy, thus they will be left out whenever s0 �= 0.

[36] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, 10th Anniversary Ed. (Cambridge Uni-
versity Press, Cambridge, England, 2010).

[37] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Rigorous
Results on Valence-Bond Ground States in Antiferromagnets,
Phys. Rev. Lett. 59, 799 (1987).

[38] T. Hirano and Y. HatsugaiEntanglement entropy of one-
dimensional gapped spin chains, J. Phys. Soc. Jpn. 76, 074603
(2007).

[39] H. Katsura, T. Hirano, and V. E. Korepin, Entanglement in an
SU(n) valence-bond-solid state, J. Phys. A: Math. Theor. 41,
135304 (2008).

195134-11

https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1038/416608a
https://doi.org/10.1038/416608a
https://doi.org/10.1038/416608a
https://doi.org/10.1038/416608a
https://doi.org/10.1103/PhysRevA.66.032110
https://doi.org/10.1103/PhysRevA.66.032110
https://doi.org/10.1103/PhysRevA.66.032110
https://doi.org/10.1103/PhysRevA.66.032110
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1007/s10714-010-1034-0
https://doi.org/10.1007/s10714-010-1034-0
https://doi.org/10.1007/s10714-010-1034-0
https://doi.org/10.1007/s10714-010-1034-0
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1103/PhysRevD.95.024031
https://doi.org/10.1103/PhysRevD.95.024031
https://doi.org/10.1103/PhysRevD.95.024031
https://doi.org/10.1103/PhysRevD.95.024031
https://doi.org/10.1103/PhysRevLett.119.140502
https://doi.org/10.1103/PhysRevLett.119.140502
https://doi.org/10.1103/PhysRevLett.119.140502
https://doi.org/10.1103/PhysRevLett.119.140502
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1367-2630/12/11/113049
https://doi.org/10.1088/1367-2630/12/11/113049
https://doi.org/10.1088/1367-2630/12/11/113049
https://doi.org/10.1088/1367-2630/12/11/113049
https://doi.org/10.1088/1742-5468/2014/10/P10004
https://doi.org/10.1088/1742-5468/2014/10/P10004
https://doi.org/10.1088/1742-5468/2014/10/P10004
https://doi.org/10.1088/1742-5468/2015/06/P06002
https://doi.org/10.1088/1742-5468/2015/06/P06002
https://doi.org/10.1088/1742-5468/2015/06/P06002
https://doi.org/10.1088/1751-8121/aa6268
https://doi.org/10.1088/1751-8121/aa6268
https://doi.org/10.1088/1751-8121/aa6268
https://doi.org/10.1088/1751-8121/aa6268
https://doi.org/10.1088/1742-5468/aab67d
https://doi.org/10.1088/1742-5468/aab67d
https://doi.org/10.1088/1742-5468/aab67d
https://doi.org/10.1088/1742-5468/ab02df
https://doi.org/10.1088/1742-5468/ab02df
https://doi.org/10.1088/1742-5468/ab02df
https://doi.org/10.1088/1742-5468/ab3192
https://doi.org/10.1088/1742-5468/ab3192
https://doi.org/10.1088/1742-5468/ab3192
https://doi.org/10.1088/1751-8121/ab3944
https://doi.org/10.1088/1751-8121/ab3944
https://doi.org/10.1088/1751-8121/ab3944
https://doi.org/10.1088/1751-8121/ab3944
https://doi.org/10.1073/pnas.1605716113
https://doi.org/10.1073/pnas.1605716113
https://doi.org/10.1073/pnas.1605716113
https://doi.org/10.1073/pnas.1605716113
http://arxiv.org/abs/arXiv:1605.03842
https://doi.org/10.1073/pnas.1702029114
https://doi.org/10.1073/pnas.1702029114
https://doi.org/10.1073/pnas.1702029114
https://doi.org/10.1073/pnas.1702029114
https://doi.org/10.1088/1742-5468/aa6b1f
https://doi.org/10.1088/1742-5468/aa6b1f
https://doi.org/10.1088/1742-5468/aa6b1f
https://doi.org/10.1088/1742-5468/aa9dcb
https://doi.org/10.1088/1742-5468/aa9dcb
https://doi.org/10.1088/1742-5468/aa9dcb
http://arxiv.org/abs/arXiv:1805.07168
https://doi.org/10.1142/S021797921850306X
https://doi.org/10.1142/S021797921850306X
https://doi.org/10.1142/S021797921850306X
https://doi.org/10.1142/S021797921850306X
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1143/JPSJ.76.074603
https://doi.org/10.1143/JPSJ.76.074603
https://doi.org/10.1143/JPSJ.76.074603
https://doi.org/10.1143/JPSJ.76.074603
https://doi.org/10.1088/1751-8113/41/13/135304
https://doi.org/10.1088/1751-8113/41/13/135304
https://doi.org/10.1088/1751-8113/41/13/135304
https://doi.org/10.1088/1751-8113/41/13/135304


SUDIPTO SINGHA ROY et al. PHYSICAL REVIEW B 101, 195134 (2020)

[40] V. E. Korepin and Y. Xu, Entanglement in valence-bond-solid
states, Int. J. Mod. Phys. B 24, 1361 (2010).

[41] I. Peschel, Calculation of reduced density matrices from
correlation functions, J. Phys. A: Math. Gen. 36, L205
(2003).

[42] F. Iglói and I. Peschel, On reduced density matrices for disjoint
subsystems, Europhys. Lett. 89, 40001 (2010).

[43] Y. Chen and G. Vidal, Entanglement contour, J. Stat. Mech.
(2014) P10011.

[44] A. Botero and B. Reznik, Spatial structures and localization of
vacuum entanglement in the linear harmonic chain, Phys. Rev.
A 70, 052329 (2004).

[45] I. Frérot and T. Roscilde, Area law and its violation: A mi-
croscopic inspection into the structure of entanglement and
fluctuations, Phys. Rev. B 92, 115129 (2015).

[46] A. Coser, C. D. Nobili, and E. Tonni, A contour for the
entanglement entropies in harmonic lattices, J. Phys. A: Math.
Theor. 50, 314001 (2017).

[47] Q. Wen, Fine structure in holographic entanglement and entan-
glement contour, Phys. Rev. D 98, 106004 (2018).

[48] E. Tonni, Entanglement Hamiltonians and Contours on a Seg-
ment, Talk at the workshop It from Qubit, Centro Atómico
Bariloche, 2018.

[49] J. Kudler-Flam, I. MacCormack, and S. Ryu, Holographic en-
tanglement contour, bit threads, and the entanglement tsunami,
J. Phys. A: Math. Theor. 52, 325401 (2019).

[50] In the similar vein as that of the entanglement contour, we
propose an ansatz for the elements of the J matrix as follows:

Ji j =
〈〈

min(|A|,|Ā|)∑
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