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We demonstrate the emergence of antichiral edge states in a Heisenberg ferromagnet with Dzyaloshinskii-
Moriya interaction (DMI) on a honeycomb lattice with inequivalent sublattices, using both Schwinger-boson
mean field theory and Holstein-Primakoff transformation. The DMI, which acts between atoms of the same
species, differs in magnitude for the two sublattices, resulting in a shifting of the energy of the magnon bands
(or bands in each spinon sector) in opposite directions at the two Dirac points. The chiral symmetry is broken
and, for sufficiently strong asymmetry, the band shifting leads to antichiral edge states (in addition to the normal
chiral edge states) in a rectangular strip where the magnon (or up or down spinon) current propagates in the
same direction along the two edges. This is compensated by a counterpropagating bulk current that is enabled
by the broken chiral symmetry. We analyze the resulting magnon (spinon) current profile across the width of the
system in details and suggest realistic experimental probes to detect them. Finally, we discuss possible materials
that can potentially exhibit such antichiral edge states.
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I. INTRODUCTION

Quantum magnets have emerged as a versatile platform
for realizing magnetic analogs of the plethora of topolog-
ical phases that have been predicted, analyzed, classified,
and observed in electronic systems over the past decade.
Haldane’s paradigmatic model [1] of tight binding electrons
on a honeycomb lattice with complex next-nearest-neighbor
hopping—that constitutes the foundation of many of the
electronic topological phases—has a natural realization in
(quasi-)2D insulating ferromagnets such as CrI3 [2] and
AFe2(PO4)2 (A=Ba,Cs,K,La) [3]. In many of these materials,
the dominant Heisenberg exchange is supplemented by a
next-nearest-neighbor antisymmetric DMI. These systems are
described by two species of quasiparticles—spinons with up
and down spins. The Kane-Mele-Haldane model—analogous
to the Kane Mele model for electrons—has been proposed to
describe the spinons over a wide range of temperatures [4].
The spinon bands acquire a nontrivial dispersion due to Berry
phase arising from the DMI. This results in a spin Nernst
effect (SNE), where a thermal gradient drives a transverse
spin current, a spinon version of the spin Hall effect [4–7]. In
a finite sample, the two spinon species generate two counter-
propagating spin currents along the edges that are protected by
chiral symmetry of the Hamiltonian—analogous to two copies
of the thermal Hall effect (THE) of magnons that has been
observed in many insulating magnets [8–11].

Recently, there has been growing interest in engineering
systems with copropagating edge currents [12–14], through
an ingenious, yet physically unrealistic, modification of the
Haldane model. The conservation of net current is satisfied
by counterpropagating bulk current. That is, the bulk is not
insulating, in contrast to conventional topological insulators.
In this work, we demonstrate that antichiral states arise
naturally in spinons on a honeycomb magnet comprised of

two different magnetic ions, with unequal DMI for the two
sublattices. In the absence of DMI, the spinon dispersion
consists of two doubly degenerate bands with linear band
crossings at K and K′ [15]. A finite DMI lifts the degeneracy
between the two spinon branches and opens up a gap in the
spectrum [16–19]. For asymmetric DMI, the two bands for
each spinon species are shifted in opposite directions relative
to each other at the K and K′ points in the Brillouin zone.
This results in similar dispersion for the gapless modes at
both edges, giving rise to copropagating edge states. This is
shown to yield effective antichiral edge states for the spinons
in addition to normal chiral ones. We present a detailed char-
acterization of the nature of the edge and bulk spinon states
and suggest suitable experimental signatures to detect these
topological states.

II. MODEL

We consider a Heisenberg ferromagnet on the honeycomb
lattice with unequal DMI (DA and DB) on the two sublattices.
Introducing the symmetric and antisymmetric combinations
of DA and DB as D = 1

2 (DA + DB) and D′ = 1
2 (DA − DB)—

termed chiral and antichiral DMI respectively for reasons that
will become clear later—the Hamiltonian is given by

H = −J
∑
〈i, j〉

Si · S j + D
∑
〈〈i, j〉〉

νi j ẑ · (Si × S j )

+ D′ ∑
〈〈i, j〉〉

ν ′
i j ẑ · (Si × S j ) − B

∑
i

Sz
i , (1)

where J > 0 is the nearest-neighbor Heisenberg interac-
tion and νi j = +1 when i and j are along the cyclic
arrows shown in Fig. 1(b). Again, 〈. . .〉 and 〈〈. . .〉〉 de-
note the nearest-neighbor and next-nearest-neighbor bonds,
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FIG. 1. (a) Honeycomb lattice structure. (b) The directions along
which νi j = +1 has been shown; otherwise νi j = −1. (c) The direc-
tions along which ν ′

i j = +1 has been shown; otherwise ν ′
i j = −1.

respectively. Finally, ν ′
i j = +νi j for sublattice A and ν ′

i j =
−νi j for sublattice B [Fig. 1(c)]. The zero-temperature ground
state of the Hamiltonian [Eq. (1)] is ferromagnetic for J >

− 3
√

3
2

∑
p |D + pD′|, p = ±1 in the absence of magnetic

field. The magnetic field B is introduced in a Zeeman cou-
pling term to stabilize the ferromagnetic ground state at finite
temperature. The energy scale is set by choosing J = 1—all
other parameters in the Hamiltonian are in units of J .

III. RESULTS

A. Spinon picture

The Hamiltonian (1) has a ferromagnetic ground state.
This can be described as the condensation of one of the spin
species. At low temperatures (T � J), the only dynamics
comes from magnon excitations that carry the opposite spin.
However, at finite temperatures (T ∼ J), both spin species
contribute to the dynamics of the system. We start the discus-
sion of our results with the general consideration of both spins
contributing to the dynamics and later demonstrate that this
naturally reduces to the magnon picture at low temperatures.
We apply the Schwinger-boson mean field theory (SBMFT) to
study the topological character of the magnetic system at finite
temperatures. The Schwinger-boson representation consists
of mapping the spin operators into spinons as S+

i = c†i,↑ci,↓,

S−
i = c†i,↓ci,↑, Sz

i = 1
2 (c†i,↑ci,↑ − c†i,↓ci,↓), where ci,s and c†i,s

are the annihilation and creation operators of spin-1/2 up
(s = +1) or down (s = −1) spinons, respectively. The con-
straint

∑
s c†i,sci,s = 2S, ∀i on the bosonic operators ensures

the fulfillment of the spin-S algebra.
After applying Schwinger-boson transformation along

with the constraint, and using a mean field approximation
to reduce the four-body operators to bilinear forms, the spin

model Eq. (1) is mapped to the mean field Hamiltonian,

H = −ηJ
∑
〈i, j〉,s

[ĉ†i,sĉ j,s + H.c.] +
∑

i,s

(
λ − sB

2

)
ĉ†i,sĉi,s

+ D

2

∑
〈〈i j〉〉,s

[(iνi jsζ−s + sξ−s)ĉ†i,sĉ j,s + H.c.]

+ D′

2

∑
〈〈i j〉〉,s

[(iν ′
i j sζ−s + sξ ′

−s)ĉ†i,sĉ j,s + H.c.], (2)

where the mean field parameters are defined as η =∑
s 〈χ̂i j,s〉 ≡ ∑

s 〈ĉ†i,sĉ j,s〉 evaluated on the nearest-neighbor
bonds and ζs = 1

2 〈χ̂i j,s + χ̂ ji,s〉, ξs = νi j

2i 〈χ̂i j,s − χ̂ ji,s〉, and

ξ ′
s = ν ′

i j

2i 〈χ̂i j,s − χ̂ ji,s〉, evaluated on next-nearest-neighbor
bonds. The terms associated with the parameters η, νi jζ−s

of spinon Hamiltonian Eq. (2) constitute the Kane-Mele-
Haldane model [4]. The term with parameter ν ′

i jζ−s corre-
sponds to the antichiral hopping term introduced in Ref. [12].
The terms with the parameters ξs and ξ ′

s have no effect on
the energy or the topological character of the bands, as the
parameters are found to be much smaller compared to other
mean field parameters. λ is the Lagrange undetermined mul-
tiplier introduced to implement the local constraint. Fourier
transformation of the mean field Hamiltonian in momentum
space yields

Hm f
sp =

∑
k∈B.Z.,s

�
†
k,s[gs(k)I + hs(k) · σ]�k,s + E0, (3)

where �
†
k,s = (â†

k,s, b̂†k,s). â†
k,s and b̂†k,s are the creation op-

erators for Schwinger bosons on sublattice A and sublattice
B [see Fig. 1(a) of main text], respectively. σα (α = x, y, z)
represents the Pauli matrices. The other terms are given by

gs(k) = − sB

2
+ λ + sDξ−sγ

β
c + sD′(ξ ′

−sγ
β
c − ζ−sγ

β
s

)
,

hs(k) =
⎛
⎝ −Jηγ α

c

Jηγ α
s

−Dsζ−sγ
β
s

⎞
⎠,

E0 = 6NuJη2 − 6DNu

∑
s

sζsξ−s

− 6D′Nu

∑
s

sζsξ
′
−s − 4SNuλ + 3NuJS2, (4)

where γ β
c = ∑

j cos(k · β j ), γ β
s = ∑

j sin(k · β j ), γ
α
c =∑

j cos(k · α j ), γ α
s = ∑

j sin(k · α j ) and the vectors β j
and α j are shown in Fig. 1(a). Nu is the number of unit
cells in the lattice. E0 is the energy of the ground state
and the energies of spinons are considered with respect
to the ground state energy. The mean field parameters are
obtained by solving a set of self-consistent equations, derived
by minimizing the Helmholtz free energy at a particular
temperature (Appendix A).

Band structure for spinons at a temperature T = 0.25J is
shown in Fig. 2(a). In the absence of DMI, the two bands
cross linearly at the Dirac points K and K′ [15]. A finite
DMI opens up a gap with magnitude �s = 3

√
3|Dζ−s| in

each spinon sector at K and K′ [4,16–19]. For the anisotropic
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FIG. 2. (a) Band along symmetry lines K , KM, MK ′, K ′ for
J = 1.0, B = 0.1, Dch = 0.1, DAch = 0.05, T = 0.25. The blue band
is for down-spinon band and the red band is for up-spinon band.
(b) The schematic of the antichiral contribution (D = 0, D′ = 0) of
the current from edge states (thin arrows) and bulk states (thick
arrows). The colors red and blue are the contributions from the
up-spinon and down-spinon, respectively. The direction of the thin
arrows for each spinon sector are opposite and so there is a net
spin current along the edges. Moreover, for each spinon sector the
direction of the thick arrows and thin arrows are opposite, which in
turn reduces the total spin-current flow along the edges. So, a net
spin-current flow along the two edges are the evidence of antichiral
state. (c) Nernst-conductivity vs temperature plot for different DMIs.
The inset shows a magnified figure of the rectangular portion of
the figure.

system (DA = DB) considered here, the gap opening is not
symmetric and leads to a tilting of the spinon bands near
the Dirac momenta. The band tilting for each band in each
spinon sector, defined as the energy difference between two
Dirac points in the same band, is given by T τ

s = 3
√

3|D′ζ−s|.
While the antichiral DMI drives the tilting of the bands, it
has no effect on the magnitude of the band gap. Crucially,
the tilting is opposite for the two species of spinons. For the
parameters chosen in Fig. 2(a), the gap and tilting for the
up-spinon bands are smaller than those for the down-spinon
bands. This is because in the presence of positive magnetic
field B = 0.1 considered here, there are fewer down spinons
and, consequently, ζ↓ < ζ↑.

1. Nernst effect

The bands in each spinon sector carry nonzero Berry
curvature, �τ

s (k), given by

�τ
s (k) = i

∑
τ ′ =τ

〈
uτ

s (k)
∣∣ ∂H

∂kx

∣∣uτ ′
s (k)

〉〈
uτ ′

s (k)
∣∣ ∂H

∂ky

∣∣uτ
s (k)

〉
[
E τ

s (k) − E τ ′
s (k)

]2

− (kx ↔ ky), (5)

where τ = +1(−1) represents upper(lower) band and s =
+1(−1) denotes the up-spinon(down-spinon) sector. uτ

s (k)
[E τ

s (k)] is the eigenvector (energy) of τ th band at reciprocal
space point k for spinon setor s. Detecting Berry curvature
of spinon bands is more challenging than that for electrons.
The absence of Pauli exclusion principle for the (bosonic)
quasiparticles as well as their charge neutral character make
the standard approaches used for electronic systems inappli-
cable. Spin Nernst effect has been proposed as a physical

phenomenon to identify Berry curvature of spinon bands
when there are comparable numbers of up and down spinons.
Here we explore whether it can detect the existence of antichi-
ral DMI. The Nernst conductivity has been calculated using
the expression [4,20]

αs
xy=

1

2A

∑
k,s,τ

sc1
[
ρτ

s (k)
]
�τ

s (k), (6)

where A is the area of the system. Again, the Bose-Einstein
distribution ρτ

s (k) and the function c1(x) are given by

ρτ
s (k) = 1{

exp
[
E τ

s (k)/T
]− 1

} ,

(7)
c1(x) = (1 + x) ln(1 + x) − x ln x.

The results are plotted in Fig. 2(c) for some representative
values of D and D′. Increase in D increases the band gap
as well as the Berry curvature away from the Dirac points.
As a result, the Nernst conductivity is substantially affected
by D [Fig. 2(c)]. Conversely, since the Berry curvature is
independent of D′, the antichiral DMI has very little effect
in the Nernst conductivity. The effect of D′ on Nernst conduc-
tivity can be observed at low temperature due to tilting of the
band structure [inset of Fig. 2(c)]. But, at higher temperature,
the D′ has no influence in Nernst conductivity, because the
contributions from higher bands overshadow the effects of
band tilting. So, the presence of D′ in the system is very hard
to detect using Nernst conductivity. Instead, we suggest an
alternative way to detect the presence of antichiral DMI.

2. Spin current

The gapped bands are topologically nontrivial with Chern
numbers C−

↑ = +1,C+
↑ = −1,C−

↓ = −1,C+
↓ = +1 [21].

Due to bulk-edge correspondence, we expect to observe edge
states in a finite system. In the isotropic limit (D′ = 0, i.e.,
DA = DB), the edge states are topologically protected by a
chiral symmetry. The spinon currents along the two edges
are equal and opposite for the up and down spinons. This
results in a net flow of spins along the two edges in opposite
directions—any scattering to the bulk states is prevented by
symmetry constraints. For the asymmetric system considered
here, D′ induces an antichiral edge current of spinons where
each species of spinon flows in the same direction along the
two edges. This is balanced by the counterflow current of
spinons in the opposite direction carried by the bulk modes.
The antichiral DMI breaks the chiral symmetry protecting
the edge states and enables scattering between edge and bulk
states. This edge-to-bulk scattering produces the bulk current
that balances the antichiral edge current. In the following we
discuss how the bulk and edge state dispersion changes due
to interplay between the chiral and antichiral DMI.

Figure 3 shows the spinon bands for a honeycomb nanorib-
bon with dimension 200 × 500 lattice sites with zigzag edges,
together with the spin current profile along the width of
the ribbon. Three different sets of (D, D′) are chosen to
illustrate the evolution of band dispersion and spin currents
with changing DMI. For clarity of presentation, only one
species of spinons is shown. Along with the total spin current,
the contributions from the bulk and two edge modes are
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FIG. 3. (a) Honeycomb ribbon. The encircled sites are the basis of unit cell. The figure sets {(b) − (d)}, {(e) − (g)}, and {(h) − (j)}
represent the result for down-spinon from 200 × 500 (width×length) stripe with DMIs {D = 0.1, D′ = 0.001}, {D = 0.001, D′ = 0.1}, and
{D = 0.1, D′ = 0.1}, respectively. The other parameters are J = 1.0, B = 0.1, T = 0.5 for all the plots. The figure sets {(b), (e), (h)} show the
band structure and inset of the figures shows the magnified dispersion of the edge states. The figure sets {(c), (f), (i)} give the spatial current
distribution along the width of the stripe, where b, Ep, and tp are the lattice constant, Planck energy, and Planck time, respectively. The figure
sets {(d), (g), (j)} show the average of spatial current distribution over four sites, respectively. In the figure sets {(b), (c), (e), (f), (h), (i)} the
green, red, and blue plots correspond to bulk state, upper edge edge state, and lower-edge edge state, respectively. A nonzero net spin current
along the edges in figures (g) and (j) are definitive signatures of antichiral edge states. The results for up-spinon are qualitatively the same,
with the dispersion being opposite for the bulk and edge states relative to the down-spinons. Hence the up-spinons further contribute to the net
spin current along the edges in the presence of antichiral edge states.

calculated separately to identify the effects of D′ on each
component. The spinon bands and the individual spin currents
are color coded for easy identification. Green represents the
bulk bands and their contribution to the spin current at each
position along the width of the ribbon; red (blue) denotes the
localized spinon mode and the associated spin current at the
top (bottom) edge. A negative (positive) value of the spin
current denotes spinon transport to the left (right) along the
length of the ribbon.

For D > D′, the tilting of the bands is small and the disper-
sion of edge states at upper and lower edges are opposite, as
shown in Fig. 3(b). The edge states are predominantly chiral
in nature, and the spin current at the two edges are opposite
in direction [Fig. 3(c), though not equal in magnitude since
D′ = 0 breaks chiral symmetry]. For large D′ (D′ � D), the
tilting of the bands at the Dirac points is much greater and
yields identical dispersion for the two edge states [Fig. 3(e)].
This results in anti-chiral edge states where the spin current

195133-4



ANTICHIRAL EDGE STATES IN HEISENBERG … PHYSICAL REVIEW B 101, 195133 (2020)

is in the same direction along both edges of the ribbon
[Fig. 3(f)]. Finally, when D ≈ D′, one of the edge states
(the top edge in the present case) acquires a dispersionless
character [Fig. 3(h)]. In other words, the edge state at the top
is localized with no spinon transport, while the bottom edge
has a finite dispersion with a finite edge current [Fig. 3(i)].
Because of U (1) symmetry of each spinon sector, there is a
counterpropagating bulk current to compensate the imbalance
between edge states. The bulk current is not uniform across
the width of the ribbon. Instead, it is primarily confined to
a small region near the edges. At each edge, the bulk cur-
rent opposes the edge current, with its magnitude decreasing
rapidly away from the edges. To summarize, a nonzero net
spin current along the two edges is a definitive signature of the
existence of antichiral edge states. In principle, the anti-chiral
edge states persist over the entire temperature range for which
the short range correlations exist for the system (kBT � J).
However, at very high temperature the short range correlations
η and ζs are very small (see Fig. 6 of Appendix A), which in
turn makes the antichiral edge phenomenon experimentally
undetectable at this limits. So we suggest the temperature
range kBT � 0.6J is ideal for experimental detection of Anti-
chiral edge modes.

B. Magnon picture

At low temperature one of the spinon species (say, the
up-spinon) condenses at the lowest energy and forms the
ferromagnetic ground state. The down-spinons are now ex-
citations above the ground state. In contrast to the high tem-
perature paramagnetic regime, at low temperatures only spin
excitations above the ground state contribute to the dynamics
of the system. Thus the system at low temperature can be
described more simply using linearized Holstein-Primakoff
bosons, which are given as

S+
i =

√
2Sâi, S−

i =
√

2Sâ†
i , Sz

i = S − â†
i âi, (8)

where âi is the annihilation operator of the Holstein-Primakoff
boson. The real space Hamiltonian in terms of the Holstein-
Primakoff boson is given by

H = −JS
∑
〈i, j〉

(â†
i â j + â†

j âi ) − iDS
∑
〈〈i, j〉〉

νi j (â
†
i â j − â†

j âi )

− iD′S
∑
〈〈i, j〉〉

ν ′
i j (â

†
i â j − â†

j âi ) + (B − 3JS)
∑

i

â†
i âi.

(9)

In Fourier space the Hamiltonian is given by

Hm f
sp =

∑
k∈BZ

�
†
k [g(k)I + h(k) · σ]�k, (10)

where �
†
k = (â†

k, b̂†k ). â†
k and b̂†k are the creation operators for

the Holstein-Primakoff boson on sublattice A and sublattice
B [see Fig. 1(a) of main text], respectively. σα (α = x, y, z)
represents the Pauli matrices. The other terms are given by

g(k) = B − 3JS + 2D′Sγ β
s , hs(k) =

⎛
⎝−JSγ α

c

JSγ α
s

2DSγ β
s

⎞
⎠, (11)

FIG. 4. Figure sets {(a) − (c)} and {(d) − (f)} represent the re-
sult for down-spinon from 200 × 500 (width×length) stripe with
DMIs {D = 0.1, D′ = 0.001} and {D = 0.001, D′ = 0.1}, respec-
tively. The other parameters are J = 1.0, B = 0.1, T = 0.5 for all the
plots. The figure sets {(a), (d)} show the magnon band structure of
the stripe geometry. The figure sets {(b), (e)} give the spatial current
distribution along the width of the stripe, where b, Ep, and tp are the
lattice constant, Planck energy, and Planck time, respectively. The
figure sets {(c), (f)} show the average of spatial current distribution
over four sites, respectively. In all the figures the green, red, and blue
plots correspond to bulk state, upper-edge edge state, and lower-edge
edge state, respectively. A nonzero net magnon current along the
edges in figure (f) denotes the existence of antichiral edge states.

where γ β
c = ∑

j cos(k · β j ), γ β
s = ∑

j sin(k · β j ), γ α
c =∑

j cos(k · α j ), γ α
s = ∑

j sin(k · α j ), and the vectors β j and
α j are shown in Fig. 1(a). The magnon Hamiltonian is iden-
tical to the down-spinon Hamiltonian at low temperatures, as
the mean field parameters of the spinon Hamiltonian reduce to
the following values: η = S, ζ↑ = 2S, ζ↓ = ξs = ξ ′

s = 0 (see
Fig. 6) and the Lagrange’s undetermined multiplier becomes
λ = 3JS + B/2. In other words, the spinon Hamiltonian natu-
rally converges to the magnon Hamiltonian at low T . Figure 4
shows the results obtained using the magnon picture. The
results agree well with those for the down spinon sector in
the spinon picture.

C. Experimental detection

How does one detect antichiral spin currents experimen-
tally? We suggest a suite of experimental probes that, taken
together, can provide a “smoking-gun” signature of the ex-
istence of antichiral edge states. First, magnetic force mi-
croscopy (MFM) offers a promising experimental technique
to measure the spinon current across the nanoribbon and
hence can detect the presence of antichiral edge states. A
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FIG. 5. (a),(b) Dynamical spin structure factor for two edges at temperature T = 0.4J , with parameters D = 0.1, D′ = 0.09, B = 0.01.
Red and blue colors denote upper and lower edges. (c) The experimental setup for spin Hall noise spectroscopy. (d) A ferromagnetic material
with two different sublatices with a mirror symmetric plane along the dashed lines. (e) A proposed material based on real materials CrGeTe3

and CrSiTe3 to realize antichiral edge states.

nonzero value of net spin current along the two edges provides
a direct evidence of antichiral edge states. Current MFM
techniques can probe the local spin current in a finite sample
to a resolution of a few nm. Since the topological character of
the spinon bands for the different ranges of anisotropic DMI
is reflected in distinct current profile across the ribbon, we
believe MFM provides a promising experimental technique
to identify antichiral edge states in real quasi-2D materials.
Second, inelastic neutron scattering spectra can indirectly
detect the presence of antichiral edge modes by probing the
magnon band structure. If the bands are tilted or the energy
at K and K ′ point is unequal, it will suggest the presence of
antichiral edge modes.

Finally, we show that probing the low energy excitation
spectrum offers a powerful probe to detect the asymmetry
of the two edges in the limit of D = D′, when one of the
edge states acquires a dispersionless character compared to
the other edge. This low energy spectrum is readily ob-
tained from calculating the dynamical-spin structure factor
(DSSF). The DSSF at the edge of a finite system is (Ap-
pendix C) defined as S (�) = i

∑
l∈edge [Sxx

ll (�) + Szz
ll (�)],

where Sαα
i j (�)= −i

∫∞
−∞ dt e−i�t 〈Ŝα

i (t )Ŝα
j (0)〉

0
. This offers a

promising route to detecting antichiral edge states. The DSSF,
shown in Figs. 5(a) and 5(b) for different edges, can be
interpreted as the number of edge magnons present in a given
energy level, and is proportional to the product of the density
of states and Bose-Einstein distribution for the corresponding
energy level. The signature of the edge states is reflected in the
features of the DSSF near � = 3J

2 + B, which is the energy of
the edge states in the absence of any DMI. Our results show
that S (�) is dramatically different for the two edges for strong
antichiral edge states, viz., when |D| ≈ |D′| (equivalently
DA � DB or DB � DA). The DSSF can be measured using the

experimental setup shown in Fig. 5(c), according to Ref. [22].
The quantum fluctuation of the spins at the edges gives rise
to spin current in metal and as a consequence the spin current
gives rise to the charge current in transverse direction due to
inverse spin Hall effect. Measurement of the noise spectrum
in the charge current gives the information of the DSSF.

D. Material realization

The presence of antichiral DMI requires two in-equivalent
sublattices in the 2D-honeycomb lattice, as shown in Fig. 5(d).
The presence of two different types of atoms will result in
asymmetric DMI, leading to a broken inversion symmetry
and nonzero D′. Mirror symmetry along the dotted lines
prevents any nonzero perpendicular DMI on nearest-neighbor
bonds, whereas in-plane mirror symmetry suppresses any in-
plane DMI. While we are not aware of any such material at
present, the recent discovery of ferromagnetic order in the
2D limit of several Cr-based compounds including CrI3 [2],
CrBr3 [23–25], CrSrTe3 [25], and CrGeTe3 [26] as well as the
Fe-based family of compounds AFe2(PO4)2 (A=Ba, Cs, K,
La) [3] offer great promise. These quasi-2D materials consist
of weakly van der Waals–coupled honeycomb ferromagets.
The presence of chiral DMI in some members of this fam-
ily [2] has been established using inelastic neutron scattering
spectroscopy. In materials like CrSrTe3 and CrGeTe3, the
presence of inversion center at the center of honeycomb cell
makes the two sublattices equivalent. The inversion symmetry
can be removed by replacing every other Ge atom by an Si
atom as depicted in Fig. 5(e). In a similar vein, replacement of
P atom by another group V element in AFe2(PO4)2 (A=Ba,
Cs, K, La) [3] will break the inversion symmetry of the
lattice. The breaking of inversion symmetry may, in prin-
ciple, give rise to additional interactions in these materials,
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e.g., nearest-neighbor DMI. However, we have verified that
inclusion of additional interactions, including nearest-
neighbor DMI as well as second and third nearest-neighbor
Heisenberg interactions only modifies the linear dispersion
of the edge states and does not suppress the appearance of
antichiral edge states (Appendix D).

IV. CONCLUSION

In conclusion, we have studied a Heisenberg ferromagnet
with additional next-nearest-neighbor DMIs on a honeycomb
lattice with broken sublattice symmetry. The unequal DMI
between atoms on different sublattices, together with the
broken chiral symmetry, results in the emergence of antichiral
edge states, in addition to the normal chiral modes. This
is manifested in unique spin current distribution across the
width of a finite system with ribbon geometry. Interestingly, a
uncompensated antichiral edge current exists, when antichiral
DM interaction D′ is larger than the chiral DM interaction D
at a temperature compared to the ferromagnetic Heisenberg

interaction J (i.e., kBT ≈ J). We have shown that the antichi-
ral edges states result in a number of observable physical
signatures, including a nonzero net spin current along the
edges (that is only compensated by counterflowing bulk spin
current) and strong anisotropy in the dynamic spin structure
factor at the opposite edges. These unique features serve as
smoking-gun signatures for the existence of antichiral edge
states. We propose experimental probes to detect the presence
of antichiral edge states via these features as well as a potential
material where such states may be realized experimentally. In
this work, the stability of the ferromagnetism in the proposed
material is not studied. So, in future, further studies need to be
done to identify the presence of ferromagnetism and antichiral
DM interaction in the proposed materials.
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APPENDIX A: SCHWINGER BOSON MEAN FIELD THEORY

The spin Hamiltonian is

H = − J
∑
〈i, j〉

Si · S j + D
∑
〈〈i, j〉〉

νi j ẑ · (Si × S j ) + D′ ∑
〈〈i, j〉〉

ν ′
i j ẑ · (Si × S j ) − B

∑
i

Sz
i . (A1)

After using the Schwinger-boson transformation and the constraints, the spinon Hamiltonian reads as

Hsp = −J

2

∑
〈i, j〉

(ĉ†i,↑ĉ†j,↓ĉi,↓ĉ j,↑ + ĉ†i,↓ĉ†j,↑ĉi,↑ĉ j,↓) − J

4

∑
〈i, j〉

(ĉ†i,↑ĉi,↑ĉ†j,↑ĉ j,↑ + ĉ†i,↓ĉi,↓ĉ†j,↓ĉ j,↓ + ĉ†i,↑ĉi,↑ĉ†j,↑ĉ j,↑ + ĉ†i,↓ĉi,↓ĉ†j,↓ĉ j,↓)

+ iD

2

∑
〈〈i, j〉〉

νi j (ĉ
†
i,↑ĉi,↓ĉ†j,↓ĉ j,↑ − ĉ†i,↓ĉi,↑ĉ†j,↑ĉ j,↓) + iD′

2

∑
〈〈i, j〉〉

ν ′
i j (ĉ

†
i,↑ĉi,↓ĉ†j,↓ĉ j,↑ − ĉ†i,↓ĉi,↑ĉ†j,↑ĉ j,↓)

− B

2

∑
i

(ĉ†i,↑ĉi,↑ − ĉ†i,↓ĉi,↓) +
∑

i

λi(ĉ
†
i,↑ĉi,↑ + ĉ†i,↓ĉi,↓ − 2S) + 3NuJS2 − 4SNuλ. (A2)

The bond operators have to be chosen such that the total number of spinon is conserved in the mean field Hamiltonian which
is equivalent to Sz conservation in terms of spin [27]. Defining the bond operators, χ̂i j = ĉ†i,sĉ j,s and χ̂i j = (χ̂i j,↑ + χ̂i j,↓)/2, we
can rewrite the Hamiltonian as

Hsp = −2J
∑
〈i, j〉

: χ̂
†
i j χ̂i j : −D

2

∑
〈〈i, j〉〉

iνi j (: χ̂
†
i j,↑χ̂i j,↓ : − : χ̂

†
i j,↓χ̂i j,↑ :) − D′

2

∑
〈〈i, j〉〉

iν ′
i j (: χ̂

†
i j,↑χ̂i j,↓ : − : χ̂

†
i j,↓χ̂i j,↑ :)

− B

2

∑
i

(ĉ†i,↑ĉi,↑ − ĉ†i,↓ĉi,↓) + λ
∑

is

ĉ†i,sĉi,s − 4SNuλ + 3NuJS2. (A3)

New bond operators are defined so that corresponding mean field parameters are real: Âi j,s = 1
2 (χ̂i j,s + χ̂ ji,s), B̂i j,s =

νi j

2i (χ̂i j,s − χ̂ ji,s), and B̂′
i j,s = ν ′

i j

2i (χ̂i j,s − χ̂ ji,s). Defining mean field parameters η = 〈χ̂†
i j〉 = 〈χ̂i j〉, ζs = 〈Â†

i j,s〉 = 〈Âi j,s〉, ξs =
〈B̂†

i j,s〉 = 〈B̂i j,s〉, and ξ ′
s = 〈B̂′†

i j,s〉 = 〈B̂′
i j,s〉, the quartic terms of Hamiltonian can be decoupled into quadratic and the mean-field

spinon Hamiltonian takes the form as

Hm f
sp = −ηJ

∑
〈i, j〉,s

[ĉ†i,sĉ j,s + H.c.] + D

2

∑
〈〈i j〉〉,s

[
iνi j sζ−sĉ

†
i,sĉ j,s + H.c.

]+ D

2

∑
〈〈i j〉〉,s

[
sξ−sĉ

†
i,sĉ j,s + H.c.

]

+ D′

2

∑
〈〈i j〉〉,s

[
iν ′

i j sζ−sĉ
†
i,sĉ j,s + H.c.

]+ D′

2

∑
〈〈i j〉〉,s

[
sξ ′

−sĉ
†
i,sĉ j,s + H.c.

]+
∑

i,s

(
λ − sB

2

)
ĉ†i,sĉi,s + 6NuJη2

− 6DNu

∑
s

sζsξ−s − 6D′Nu

∑
s

sζsξ
′
−s − 4SNuλ + 3NuJS2. (A4)
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Fourier transformation of the mean field Hamiltonian to mo-
mentum space yields

Hm f
sp =

∑
k∈BZ,s

�
†
k,s[gs(k)I + hs(k) · σ]�k,s + E0, (A5)

where �
†
k,s = (â†

k,s, b̂†k,s). â†
k,s and b̂†k,s are the creation op-

erators for Schwinger bosons on sublattice A and sublattice
B [see Fig. 1(a) of main text], respectively. σα (α = x, y, z)
represents the Pauli matrices. The other terms are given by

gs(k) = − sB

2
+ λ + sDξ−sγ

β
c + sD′(ξ ′

−sγ
β
c − ζ−sγ

β
s

)
,

hs(k) =

⎛
⎜⎝

−Jηγ α
c

Jηγ α
s

−Dsζ−sγ
β
s

⎞
⎟⎠,

E0 = 6NuJη2 − 6DNu

∑
s

sζsξ−s − 6D′Nu

∑
s

sζsξ
′
−s

− 4SNuλ + 3NuJS2, (A6)

where γ β
c = ∑

j cos(k · β j ), γ β
s = ∑

j sin(k · β j ), γ α
c =∑

j cos(k · α j ), γ α
s = ∑

j sin(k · α j ), and the vectors β j and
α j are shown in Fig. 1(a). Nu is the number of unit cells in
lattice. E0 is the energy of the ground state and the energies of
spinons are considered with respect to the ground state energy.

After diagonalizing the k-space Hamiltonian we get

Hm f
sp = E0 +

∑
k,s,τ

E τ
s (k)ĉ†k,τ,sĉk,τ,s, (A7)

where the relative energies,

E τ
s (k) = gs(k) + τ |hs(k)|, (A8)

refer to the upper (τ = +1) and the lower (τ = −1) band for
each spinon sector s = ±1.

From this we get the internal energy and the entropy of the
noninteracting system as

U = E0 +
∑
k,s,τ

ρτ
s (k)E τ

s (k),

S = kB

∑
k,s,τ

{[
1 + ρτ

s (k)
]

ln
[
1 + ρτ

s (k)
]− ρτ

s (k) ln ρτ
s (k)},

(A9)

where ρτ
s (k) = {exp [E τ

s (k)] − 1}−1 is the Bose-Einstein dis-
tribution of spin-s spinons in the τ band. The Helmohltz free
energy is given by

G = U − T S = E0 − kBT
∑
k,s,τ

ln

(
1

1 − exp
(−E τ

s (k)
kBT

)
)

.

(A10)

After minimizing the Helmholtz free energy with respect to
the mean field parameters, we get six self consistent equations,
given by

2S = 1

2Nu

∑
k,τ,s

ρτ
s (k),

1 = − J

12Nu

∑
k,s,τ

τ
ρτ

s (k)

|hs|

∣∣∣∣∣∣
∑

j

eik·α j

∣∣∣∣∣∣
2

,

FIG. 6. Plot of mean-field parameters, for J = 1.0, D =
0.1, D′ = 0.05, B = 0.1.

Dξs + D′ξ ′
s = 1

6Nu

∑
k,τ

(
D′ − τ s

D2ζ−sγ
β
s

|hs|
)

ρτ
s (k)γ β

s ,

ζs = 1

6Nu

∑
k,τ

ρτ
s (k)

∑
j

cos(k · β j ). (A11)

The mean field parameters are obtained by solving these six
self-consistent equations. It is notable that the mean field pa-
rameter η can be chosen as real, absorbing the complex phase
factor into operator ĉi,s. Similarly, all the mean field parame-
ters can be chosen to be real valued. Using the parameters, we
plot the band structure and evaluate corresponding topological
information. For a fixed set of J, D, D′, B, the mean field
parameters are solved and plotted against temperature T in
Fig. 6. The parameters η and ζs represent short range corre-
lations identifying magnetic ordering and serve as order pa-
rameters for the transition from paramagnet with short-range
correlations to completely uncorrelated paramagnet at higher
temperatures [28]. The constraint λ is considered uniform
throughout the lattice to retain the translational symmetry of
the lattice.

At low temperatures, finite, nonzero values of η and ζ↑
denote ferromagnetic ordering. A positive B determines that
the spins are all aligned along the +ve z direction at T = 0.
In other words, the system is populated with up-spinons. As
the temperature increases, thermally excited down-spinons are
generated, resulting in a finite, nonzero ζ↓. Finally, at high
temperatures, a vanishing of all the mean field parameters
denotes a transition from paramagnetic phase with finite
short range correlations to a totally uncorrelated paramagnetic
phase. The paramagnetic phase transition with all zero corre-
lations is expected to be an outcome of large-N expansion.
It has been shown for the Heisenberg model that taking into
account the quantum fluctuations in the mean field parameter
removes the phase transition [29].

APPENDIX B: CALCULATION OF THE EDGE-STATE AND
VELOCITY DISTRIBUTION ON A STRIPE GEOMETRY

The Hamiltonian in the tight binding Hamiltonian can be
written as

H =
∑

i j

ti j |i〉〈 j|, (B1)
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FIG. 7. Honeycomb lattice structure of size (20 × 14) with peri-
odic boundary condition along x axis and open boundary condition
along y axis. The encircled sites are the basis of the unit cell.

where i and j are the sites of lattice and ti j is the hopping
amplitude. More explicitly the Hamiltonian can be written as
a matrix form as [30]

H =
∑
m,s

[�†
m,sUs�m,s + �†

m,sTs�m+1,s + �
†
m+1,sT

†
s �m,s],

(B2)
where �†

m,s = (b̂†1,m,s, â†
2,m,s, . . . , â†

Ni,m,s) and Ni is the number
of sites along the stripe (the sites inside the red circle of
Fig. 7 make one stripe) and m denotes the stripe index and
s denotes up- or down-spinon type. Us and Ts are Ni × Ni

matrices. Matrix Us contains all the on-site and intrastripe
hopping elements (inside the red circle of Fig. 7) and matrix
Ts contains all the interstripe hopping elements.

Imposing a periodic boundary condition along the longitu-
dinal direction as shown in Fig. 7, one can Fourier transform
the Hamiltonian with a 1D Bloch-wave vector, given by
�m,s = (1/

√
M )

∑M−1
k=0 �k,se−i2πkm/M , where M is the num-

ber of stripes along the x axis in Fig. 7. After Fourier transform
the Hamiltonian can be written as

H =
∑

k

�
†
k

[
Us + (

Ts ei 2kπ
M + H.c.

)]
�k,s =

∑
k

�
†
k Hk,s�k,s.

(B3)

The Hamiltonian can be diagonalized as

εk,s = P†Hk,sP, (B4)

where P is a unitary matrix and the corresponding eigenvector
is given by

�d
k,s = P†�k,s. (B5)

Diagonalizing the momentum space Hamiltonian, we
obtain the bands for the stripe geometry, as shown in
Figs. 3(b), 3(e) and 3(h) of the main text.

The velocity operator, used to evaluate the spinon transport
properties, are expressed in terms of the k-space eigenstates
as [31,32]

v̂ =
∑

i j

vi j |i〉〈 j|, (B6)

where the coefficient vi j is given by

vi j = 〈i|v̂| j〉 = − i

h̄
〈i|[r̂,H]| j〉 = − i

h̄
(ri − r j )ti j . (B7)

We have calculated the distribution of the velocity compo-
nent along the x axis across the cross section of the ribbon,

which is shown in Figs. 3(c), 3(f) and 3(i) of the main
text.

APPENDIX C: CALCULATION OF THE DYNAMICAL SPIN
STRUCTURE FACTOR

To calculate the dynamical spin structure factor, we have
used the Holstein-Primakoff transformation as in Eq. (10).
For the case of a ferromagnet with up spin at each site, the
Holstein-Primakoff boson represents the down-spinons in the
Schwinger-boson picture at low temperature. For simplicity,
we calculate dynamical spin structure factor using Holstein-
Primakoff bosons. However the lattice geometry and the
diagonalization procedure are same as in Appendix B. For the
site 1 of mth stripe (see Appendix B),

b̂1,m(t ) = 1√
M

M−1∑
k=0

b̂1,k (t )e−i 2πkm
M

= 1√
M

M−1∑
k=0

∑
n

P1,nb̂d
n,k (t )e−i 2πkm

M , (C1)

where P is the unitary matrix for diagonalization and b̂d
n,k is

the bosonic operator after diagonalization and n denotes the
band-index. The Hamiltonian can be written as

Hk =
∑

n

εn(k)b̂d†
n,kb̂d

n,k . (C2)

Using the above relation and Heisenberg’s equation of motion
it can be proved that

b̂d†
n,k (t ) = b̂d†

n,k (0)eiεn (k)t ,

(C3)
b̂d

n,k (t ) = b̂d
n,k (0)e−iεn (k)t .

The dynamical spin structure factor is given by

S (�) =
∑

m∈edge

[
Sxx

mm(�) + Szz
mm(�)

]

=
∑

m∈edge

[∫ ∞

−∞
dt e−i�t

(− i
〈
Ŝx

1,m(t )Ŝx
1,m(0)

〉)

+
∫ ∞

−∞
dt e−i�t

(− i
〈
Ŝz

1,m(t )Ŝz
1,m(0)

〉)]

= − i
∑

m

∫ ∞

−∞
dt e−i�t

[
S

2
〈b̂1,m(t )b̂1,m(0)

+b̂1,m(t )b̂†1,m(0) + b̂†1,m(t )b̂1,m(0) + b̂†1,m(t )b̂1,m(0)〉

+〈S2 − Sb̂†1,m(0)b̂1,m(0) − Sb̂†1,m(t )b̂1,m(t )〉
]

[Using Holstein-Primakoff transformation and

neglecting the higher order terms]. (C4)
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Using Eq. (C1) and Eq. (C3), we get

〈b̂†1,m(t )b̂1,m(0)〉 =
〈

1√
M

M−1∑
k=0

∑
n

P∗
1,nb̂d†

n,k (t )ei 2πkm
M

× 1√
M

M−1∑
k′=0

∑
n′

P1,n′ b̂d
n′,k′ (0)ei 2πk′m

M

〉

= 1

M

M−1∑
k=0

∑
n

M−1∑
k′=0

∑
n′

P∗
1,nP1,n′eiεn (k)t

× 〈
b̂d†

n,k (0)b̂d
n′,k′ (0)

〉

= 1

M

M−1∑
k=0

∑
n

|P1,n|2eiεn (k)t n(εn(k)), (C5)

where n(εn(k)) is the Bose-Einstein distribution for energy
εn(k).

Similarly,

〈b̂1,m(t )b̂†1,m(0)〉 = 1

M

M−1∑
k=0

∑
n

|P1,n|2e−iεn (k)t n(εn(k)),

〈b̂†1,m(t )b̂†1,m(0)〉 = 〈b̂1,m(t )b̂1,m(0)〉 = 0,

(C6)

〈b̂†1,m(t )b̂1,m(t )〉 = 1

M

M−1∑
k=0

∑
n

|P1,n|2n(εn(k)),

〈b̂†1,m(0)b̂1,m(0)〉 = 1

M

M−1∑
k=0

∑
n

|P1,n|2n(εn(k)).

Using Eq. (C5) and Eq. (C6) in Eq. (C4), we get

S (�)= −iπ (M−1)

[
S

2

M−1∑
k=0

∑
n

|P1,n(k)|2n(εn(k))δ(�+εn(k))

+ S

2

M−1∑
k=0

∑
n

|P1,n(k)|2n(εn(k))δ(� − εn(k))

+
{

MS2 − 2S
M−1∑
k=0

∑
n

|P1,n(k)|2n(εn(k))

}
δ(�)

]
.

(C7)

APPENDIX D: MODULATION OF EDGE STATE
DISPERSION IN THE PRESENCE OF OTHER

INTERACTIONS IN A HONEYCOMB FERROMAGNET

The spin model discussed in the main text is very ideal.
For example, the long range Heisenberg interactions are ne-
glected. Moreover, the criteria to get the antichiral DM term
D′ is to break the inversion symmetry at the center of each
honeycomb plaquette. The breaking of such symmetry might
raise the nearest-neighbor out of plane DM interactions and
also in plane DM interactions. At low temperature, the in
plane interactions can be neglected, which gives rise to three
magnon interactions in terms of Holstein Primakoff bosons.
But, at high temperature, where the spin system can be treated
in terms of Schwinger bosons, the in plane DM interaction
gives rise to the mixing of two spinon sectors, in the presence
of which the quasiparticles are mixed eigenstates of spin-up
and spin-down sectors. Neglecting any presence of in plane
DM interaction at low temperature, we can rewrite a more
general Hamiltonian of the material as

H = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j + J3

∑
〈〈〈i, j〉〉〉

Si · S j + D1

∑
〈i j〉A

νi j ẑ · (Si × S j ) + D2

∑
〈i j〉B

νi j ẑ · (Si × S j )

+ D
∑

〈〈i j〉〉B

νi j ẑ · (Si × S j ) + D′ ∑
〈〈i j〉〉B

ν ′
i j ẑ · (Si × S j ) + B

∑
i

Si, (D1)

where, the DM interactions D1 and D2 are defined on the
nearest-neighbor bonds 〈i j〉A and 〈i j〉B as shown in Fig. 8.

FIG. 8. DM interactions on nearest-neighbor bonds.

Furthermore, single ion anisotropy like terms act as a chem-
ical potential for the spin excitation, which is taken into
account in the magnetic field. To consider a more realistic
situation, we have fixed the Heisenberg interactions present
in the material CrI3 [2], J1 = 2.09 meV, J2 = 0.16 meV,
and J3 = 0.18 meV. The nearest-neighbor DM terms and
magnetic field are fixed as D1 = 0.1 meV, D2 = 0.15 meV,
and B = gμBBz = 0.01 meV. We transformed the spin Hamil-
tonian into the magnon Hamiltonian using the Holstein Pri-
makoff transformation defined in Eq. (10). Then, we plot-
ted the band structure and dynamical spin structure factor
in Fig. 9. It is noticeable that the qualitative behavior of
the edge states is mostly dependent on the DM interactions
D and D′. The presence of other interaction terms in the
Hamiltonian just distorts the linear dispersion of the edge
states.
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FIG. 9. Band structure of stripe geometry for parameters (a) D = 0.31 meV, D′ = 0.01 meV, (b) D = 0.31 meV, D′ = 0.28 meV, and
(c) D = 0.01 meV, D′ = 0.31 meV. The dynamical spin structure factor for upper edge at T = 0.4 for parameters (d) D = 0.31 meV, D′ =
0.01 meV, (e) D = 0.31 meV, D′ = 0.28 meV, and (f) D = 0.01 meV, D′ = 0.38 meV. The dynamical spin structure factor for lower edge at
T = 0.4 for parameters (g) D = 0.31 meV, D′ = 0.01 meV, (h) D = 0.31 meV, D′ = 0.28 meV, and (i) D = 0.01 meV, D′ = 0.38 meV.
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