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Nodal lines inside the momentum space of three-dimensional crystalline solids are topologically stabilized by
a π flux of Berry phase. Nodal-line rings in PT -symmetric systems with negligible spin-orbit coupling (here
described as “nodal class AI”) can carry an additional “monopole charge,” which further enhances their stability.
Here, we relate two recent theoretical advancements in the study of band topology in nodal class AI. On the one
hand, cohomology classes of real vector bundles were used to relate the monopole charge of nodal-line rings
to their linking with nodal lines formed among the occupied and among the unoccupied bands. On the other
hand, homotopy studies revealed that the generalization of the Berry-phase quantization to the case of multiple
band gaps defines a non-Abelian topological charge, which governs the possible deformations of the nodal lines.
The present work has three aims. First, we present how to efficiently wield the recently discovered non-Abelian
topological charge. Second, we apply these methods to present an independent proof of the relation between
the monopole charge and the linking structure, including all the fragile-topology exceptions. Finally, we show
that the monopole charge flips sign when braided along a path with a nontrivial Berry phase. This facilitates a
new type non-Abelian “braiding” of nodal-line rings inside the momentum space, that has not been previously
reported. The work begins with a brief review of PT -symmetric band topology, and the geometric arguments
employed in our theoretical analysis are supplemented in the appendices with formal mathematical derivations.
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I. INTRODUCTION

Energy bands of electrons in crystalline solids can form
degeneracies inside the crystal-momentum (k) space. We call
these degeneracies band-structure nodes. They were first in-
vestigated in the context of three-dimensional (3D) metals
with time-reversal symmetry (T ) by Herring [1], who found
that such nodes generically occur along lines (at points) for
systems with (without) spatial inversion symmetry (P). This
finding is compatible with an older codimension argument by
von Neumann and Wigner [2]. Much later, after the concept
of Berry phase [3] was introduced to the band theory of
solids [4–6], the interplay between band-structure nodes and
space-group symmetry has been examined by Michel and Zak
[7]. The topological underpinning of band-structure nodes
became fully appreciated only after the discovery of topolog-
ical insulators [8–24] and superconductors [25–30]. In recent
years, a plethora of band-structure nodes were investigated in
3D systems, both theoretically and experimentally, including
nodal points [31–55], nodal lines [56–98], and nodal surfaces
[98–104]. Analogous degeneracies were also studied in exci-
tation bands of superconductors [105–112], superfluids [113],
photons [114–116], phonons [117,118], and magnons [119].
Recently, the classification of generic band-structure nodes for
all Altland-Zirnbauer symmetry classes [120] with or without
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P was developed [98] using homotopy theory [121–124]. The
relation between the space-group symmetry and the location
of the band-structure nodes has been investigated [125–128],
largely by considering symmetry-based indicators [129–134].

Nodal lines (NLs) are generically stabilized by quanti-
zation of Berry phase [4], which arises in various sym-
metry settings [57]. NLs can form intricate compositions,
including rings [61–63,67–75], chains [59,79,80], links
[81–83,109,110], knots [83–85], helices [86–88,110], nexuses
[89–91], gyroscopes [76–78], and nets [59,92–97]. In this
manuscript we consider, in particular, the case of PT -
symmetric 3D systems with negligible spin-orbit coupling
(SOC) [64–98], where the NLs are known to form all the
compositions listed above. In these systems, the antiunitary
PT -operator squares to +1 and commutes with the Bloch
Hamiltonian at every k. Motivated by the Altland-Zirnbauer
classification [120], we call the symmetry settings with such
an operator as nodal class AI [98]. Besides electron bands in
PT -symmetric 2D and 3D systems with weak SOC, nodal
class AI also encompasses excitation bands of photons and
of Goldstone bosons in PT -symmetric systems [117–119].
Nodal class AI also describes 2D materials with C2zT sym-
metry (both with or without SOC), where C2z is a π rotation
of the 2D plane [135–137].

Importantly, nodal-line rings (NL rings) in nodal class
AI [67–76] can exhibit an additional topological obstruction
called the monopole charge [71], which is independent of
the Berry phase quantization. NL rings with a monopole
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charge can be removed from the band structure only through
a pairwise annihilation [98], resembling the case of two Weyl
points with opposite chirality [31]. NL rings with a monopole
charge were proposed to exist in various systems, includ-
ing the electron bands of ABC-stacked graphdiyne [72,73],
Bogoliubon bands of a superconducting phase on the hyper-
honeycomb lattice [112], and magnon bands of antiferromag-
netic Cu3TeO6 [119].

In this work, we are especially concerned with two recent
theoretical advancements in the study of band topology in
nodal class AI. On the one hand, the Euler class and the
second Stiefel-Whitney class of real vector bundles spanned
by the occupied states were investigated [73,136,137]. This
led to the discovery that the monopole charge of NL rings
(assumed to be formed near the chemical potential) is related
to their linking structure with NLs formed among the occupied
and among the unoccupied bands [73]. We emphasize that
the previous statement involves several NLs formed inside
various band gaps, i.e., between various pairs of bands, and
thus falls outside the scope of the tenfold-way classification
[25–27]. Curiously, the Euler class was also shown to cor-
respond to the fragile-topology obstruction present in tight-
binding models of twisted bilayer graphene near the “magic
angle” [137–140].

On the other hand, a mathematical framework capable of
the simultaneous description of multiple NLs formed inside
various band gaps has been independently sought using ho-
motopic methods [98]. This search uncovered a non-Abelian
generalization of the Berry phase quantization [65], which is
different from the non-Abelian Berry-Wilczek-Zee connec-
tion [141]. More specifically, a pair of NLs formed inside two
consecutive band gaps were shown to carry noncommuting
topological charges, implying that they cannot be moved
across each other [142], and suggesting the possibility of non-
Abelian “braiding” of NLs in k space [143–145]. Analogous
behavior was reported by Ref. [137] for nodal points in
2D. Furthermore, the non-Abelian topological charge poses
constraints on the admissible NL-compositions, and on the
topological transitions between various such compositions.
Some of these constraints were recently observed in com-
putational studies of elemental Sc under strain [65] and of
MgSrSi-type crystals [66]. The non-Abelian charge has been
mathematically formulated [65] as a spinor generalization of
Wilson holonomy operators [146–148].

This manuscript has three goals. First, we present an
overview of the non-Abelian topological charge found by
Ref. [65]. Importantly, we provide this non-Abelian charge
a simple geometric interpretation, which can be used for an
efficient analysis of complicated NL-compositions using a
minimal amount of equations. Since some of the presented
methods can be understood as generalization of certain
conventional techniques, we begin the manuscript with a brief
but general review of band topology of PT -symmetric Bloch
Hamiltonians. The next two goals correspond to applications
of the presented methods to analyze the monopole charge of
NL rings. On the one hand, we present an independent proof
of the relation between the monopole charge of NL rings
and their linking with NLs formed inside other band gaps
[73], including all the fragile-topology exceptions reported
by Ref. [98]. On the other hand, we reveal a previously

unreported topological phenomenon, namely that the
monopole charge flips sign when moved along a closed
path with a nontrivial Berry phase, suggesting a yet another
possibility of non-Abelian braiding of NL rings in k space.
Such noncommutative behavior is analogous to the process
known to arise in uniaxial nematics, when a hedgehog defect
changes into an “antihedehog” when it is braided around a
disclination line [144]. The sign reversal of the monopole
charge can be formalized using the notion of Abe homotopy
[149–151] which naturally incorporates the action of the
fundamental group on the second (or more generally nth
homotopy group).

The manuscript is organized as follows. In Sec. II, we
provide a brief review of topological properties of NLs in
nodal class AI. This section can be skipped by experts in
the field, without impairing the continuity of our exposition.
We specifically comment here on the von Neumann-Wigner
argument, the quantization of the Berry phase, the monopole
charge, and on the recently revealed non-Abelian topological
charge. In Sec. III, we present how to efficiently wield the non-
Abelian topological charge, and how it leads to constraints on
admissible NL compositions. This discussion simplifies, but
also further expands, the supplemental material of Ref. [65].
We then proceed with applications of the develoepd meth-
ods. First, in Sec. IV, we rederive the relation between the
monopole charge and the linking structure using the geometric
description of the non-Abelian topological charge. Although
we reproduce here the findings of Ref. [73], we believe that
our arguments are easier to follow for readers not knowledge-
able in characteristic classes of real vector bundles. Finally,
we show in Sec. V how the monopole charge flips sign when
it is braided along a path with a nontrivial Berry phase,
suggesting a non-Abelian braiding of NLs formed inside the
same band gap. We conclude in Sec. VI by outlining the
broader scope of the possible applications of the non-Abelian
topological charge in the study of band topology.

We have attempted to keep the main text accessible
to a wide readership by avoiding advanced mathematical
techniques. In a sharp contrast, we review in the appendices
several mathematical tools which can be further employed
to formalize our reasoning. This technical complement of
our discussion is aimed at readers experienced with algebraic
topology. Our goal is to provide these readers concrete
examples of how these advanced tools can be applied in the
study of band-structure nodes. This discussion, which can be
read independently of the main text, is organized as follows.
First, in Appendix A, we formulate the relevant spaces of
Hamiltonians as coset spaces, and we explain why such a
formulation is convenient to study the homotopy invariants.
In Appendix B, we formulate the notion of the action of the
first homotopy group π1(M ) on the second homotopy group
π2(M ) for the case when M is a coset space. We subsequently
generalize this concept to general spaces M using the notion
of Abe homotopy in Appendix C. In the final Appendices
D and E, we employ a method adapted from Ref. [144] to
explicitly derive the action of π1(M ) on π2(M ) for all the
nodal classes supporting the monopole charge, especially for
all the fragile-topology exceptions. This discussion provides
an alternative derivation of the sign-reversal of a monopole
charge when the NL ring is moved along a path with a
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nontrivial Berry phase, which we also derive with the help of
the non-Abelian topological charge in Sec. V.

II. NODAL LINES WITH PT SYMMETRY

A. Overview

In this section, we briefly review the basic aspects of NLs
in 3D systems with PT symmetry and with negligible SOC.
Following Refs. [98,152], we refer to such symmetry settings
as nodal class AI. Its special feature is the reality condition:
the weak SOC allows us to ignore the spin degree of freedom,
such that the antiunitary PT operator squares to +1. A
suitable unitary rotation of the basis brings the PT operator to
complex conjugation, thus enforcing the Bloch Hamiltonian
H (k) to be real. The Hamiltonian eigenstates can be locally
expressed in a real gauge, although a global real gauge may
be absent, especially in the presence of band degeneracies.
(The same reasoning also applies to C2zT -symmetric systems
in 2D with or without SOC [135–137].)

Our discussion is structured as follows. In Sec. II B,
we review a codimension argument, showing why generic
degeneracies of nodal class AI in 3D are one-dimensional
lines [2]. In Sec. II C, we review the leitmotif of topological
classifications of band structures in crystalline solids [25,27],
with a special emphasis on the homotopy description of
band-structure nodes [98,121]. We continue in Sec. II D by
applying the homotopy technique to explain the topological
stability of NLs in nodal class AI, which is related to the
quantization of Berry phase [4]. In Sec. II E, we show how
the homotopy approach further predicts the existence of the
monopole charge of NL rings [71,98], which has recently
been related to the linking structure of NLs in k space [73].
Finally, in Sec. II F we provide a brief synopsis of the recently
discovered non-Abelian topology of NLs [65], which arises
when one tries to simultaneously describe NLs occurring
inside multiple band gaps. We present a handful of rules that
suggest how to efficiently apply the non-Abelian topological
charge to analyze complicated NL compositions. These rules
are properly justified in Sec. III, and we apply them to study
the monopole charge in Secs. IV and V.

The goal of the present section is to provide a summary
of the topic for nonexperts, and to introduce the terminology
employed in later sections. Experts in the field should be able
to jump directly to Sec. III.

B. Codimension argument

The observation that real Hamiltonians H (k) form band
degeneracies of codimension two can be traced back to
von Neumann and Wigner [2]. Their argument is based on
counting the dimension of the space of Hamiltonians with
prescribed degeneracies of energy levels. To figure out this
dimension, let us consider Hamiltonians with energy spectrum
consisting of nα-fold degenerate levels, where

∑
α nα = N

is the dimension of the Hilbert space. Let us further use f
to indicate the total number of energy levels. Any such a
Hamiltonian H (k) can be diagonalized as

H (k) =
N∑

j=1

∣∣u j
k

〉
ε

j
k

〈
u j

k

∣∣ with ε
j
k � ε

j+1
k , (1)

where |u j
k〉 is the eigenstate of H (k) with energy ε

j
k. Assuming

a local real gauge, the collection {u j
k}N

j=1 ≡ Uk ∈ O(N ) is an
orthogonal matrix, which constitute a space of dimension
dim O(N ) = 1

2 N (N − 1). Each level is further characterized
by an O(nα ) gauge degree of freedom, which reduces the
space of unique Hamiltonian matrices by v = ∑

α
1
2 nα (nα −

1). Finally, one needs to specify the values of the f energy
levels. Counting all the degrees of freedom, the dimension of
the space of Hamiltonians with the prescribed level degener-
acy equals1

d = 1
2 N (N − 1) + f − v (3)

as has been originally reported by Ref. [2].
When all the energy levels of H (k) are nondegenerate, we

have f = N and v = 0, leading to

dnondeg. = 1
2 N (N + 1). (4a)

On the other hand, in the presence of one double degeneracy,
only f = (N − 1) energies need to be specified, while the
internal rotations of the two degenerate states lead to v =
dim O(2) = 1. Therefore

d2-deg. = 1
2 N (N + 1) − 2. (4b)

The difference δ2-deg. = dnondeg. − d2-deg. = 2, known as codi-
mension, implies that two parameters need to be tuned to
encounter such a band degeneracy. Therefore, in 3D, we antic-
ipate band degeneracies to form 3 − δ2-deg. = 1-dimensional
manifolds inside the k space, i.e., NLs.

We remark that mirror symmetry can fix NLs to mirror-
invariant planes [64–70,76–80,90–97], thus allowing their
explanation using mirror eigenvalues of the bands. For nodal
class AI, however, breaking the mirror symmetry does not
remove such NLs from the band structure, but just releases
them to roam freely throughout the whole BZ [65–67,71–75].
This freedom is especially apparent for the case of NL links
and NL knots [83–88,110]. It is therefore preferred to explain
the stability of the NLs by referring only to the PT symmetry.

C. Leitmotif of topological classifications

Topological classifications of band structures are based on
considering the Hamiltonian H (k) in some region R inside
the Brillouin zone (BZ). Conventionally, one partitions the
N bands into n lower-energy (“occupied”) ones and � =
N − n higher-energy (“unoccupied”) ones.2 Furthermore, it is

1One can explicitly express this space as

MAI
{nα } f

α=1
= O(n1 + · · · + nf )

O(n1)×· · ·×O(nf )
×Conf f (R). (2)

The first factor is known in the mathematical literature as the gener-
alized real flag manifold, and Conf f (R) is an ordered configuration of
f real numbers (which is not a connected space). Explicit expressions
analogous to Eq. (2) were recently found particularly useful to
describe non-Hermitian band topology [154,155].

2We remark that we apply the terminology of occupied versus
unoccupied bands even if it does not reflect the actual occupancy
of the bands by electrons, e.g., as a result of a complicated band
dispersion.
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important that the region R exhibits an energy gap between
the highest occupied (HO) and the lowest unoccupied (LU)
band, i.e., for each k ∈ R we require the validity of a sharp
inequality εn

k < εn+1
k . The tenfold way classification of topo-

logical insulators and superconductors is based on choosing
R=BZ [25–27], while topologically stable band degenera-
cies (i.e., nodes) are revealed by considering p-spheres R�
S p inside BZ [98]. The central question of every topological
classification is whether the Hamiltonian H (k) on R can
be continuously deformed into the atomic limit (i.e., to a
Hamiltonian H0 constant on R), while preserving the spectral
gap on R during the deformation. For various situations,
such questions have been mathematically formalized using
K-theory and Clifford algebras [23–25,27,106–108,153], via
eigenvalue arguments and using combinatorics of irreducible
representations of little groups [7,18,59,76,127–133], and us-
ing homotopy groups [65,71,98,121,151,154,155].

In this work, we adopt the homotopy approach since it
is well adapted for detecting band-structure nodes at generic
(i.e., low-symmmetry) positions [98]. Loosely speaking, the
pth homotopy group πp(M ) of space M lists the equiva-
lence classes [ f ] of continuous functions f : Sp → M. The
equivalence class [ f ] includes all the functions that can be
obtained using continuous deformations of f . Clearly, one
always finds the equivalence class of the constant function
on Sp. By nontrivial homotopy group we mean that there
is at least one function f : Sp → M that cannot be con-
tinuously deformed into (i.e., which is not equivalent to)
a constant function. To see how to define group structure
on the set of equivalence classes [ f ] ∈ πp(M ), see the dis-
cussion in Ref. [156], or in the supplementary materials of
Refs. [65,121].

When describing band-structure nodes, we take M to be the
space of Hamiltonians subject to some specified constraints
(such as symmetry, number of bands, and spectrum degen-
eracies). Functions f which we want to classify correspond to
compositions H ◦ ι, where ι : Sp ↪→ BZ is an embedding (i.e.,
a selected realization) of Sp inside BZ, while H : BZ → M
is the Hamiltonian of the system. It is assumed that the em-
bedding ι(Sp) ≡ S p (which we still call sphere for simplicity)
does not wind around BZ, and that H has a spectral gap on
S p. For p = 1, we sometimes write S1 ≡ 	 to emphasize that
one-dimensional spheres (i.e., circles) can be interpreted as
closed paths.

Importantly, if H (S p) corresponds to a nontrivial element
of πp(M ), then the sphere must enclose a node [71,98,121].
The reason is that if the interior Dp+1 of the sphere
(a contractible region of BZ with boundary ∂Dp+1 = S p) did
not contain a node, then S p could be shrunk to a point without
encountering a closing of the band gap, thus permitting a
continuous deformation of H (S p) into a constant. If the sphere
S p encloses just a single node, then we say that the node
carries a topological charge corresponding to the equivalence
class of H (S p) inside the group πp(M ).

D. Topological stability of nodal lines

Following the previous work of Refs. [71,98], we now
apply the homotopic reasoning to nodal class AI. Since

TABLE I. The first (left) and the second (right) homotopy groups
of the space MAI

(n,�) of Hamiltonians of the form in Eq. (5) with n
occupied and � unoccupied bands. The first homotopy group captures
the Berry-phase quantization on closed paths to 0 vs. π , while the
second homotopy group describes the monopole charge. The results
for n, � → ∞ are usually called the stable limit (tables adapted from
Ref. [98]).

π1

[
MAI

(n,�)

]
n = 1 n� 2 π2

[
MAI

(n,�)

]
n = 1 n = 2 n� 3

� = 1 Z Z2 � = 1 0 2Z 0
� � 2 Z2 Z2 � = 2 2Z Z⊕Z Z

� � 3 0 Z Z2

conventional topological classifications require us to preserve
only the energy gap between the HO and LU bands, it is
customary to spectrally flatten the energy of the occupied
(unoccupied) bands of H (k) to −1 (+1). This can be achieved
without closing the energy gap by continuously retracting ε

j
k

to sign[ε j
k]. We thus narrow our attention to Hamiltonians of

the form

H(k) = −
n∑

j=1

∣∣u j
k

〉〈
u j

k

∣∣ +
n+�∑

j=n+1

∣∣u j
k

〉〈
u j

k

∣∣ (5)

where the calligraphic font indicates the spectral flattening.
Taking into account the reality condition, Hamiltonians of
the form in Eq. (5) constitute an (n�)-dimensional space [25]
(called the real Grassmannian)

MAI
(n,�) = O(n + �)/O(n)×O(�), (6)

where the orthogonal O(n+�) group indicates the space of
all possible collections {|u j

k〉}n+�
j=1 ≡ Uk of real-gauged eigen-

states, while the factors O(n) and O(�) correspond to internal
rotations (i.e., a gauge degree of freedom) among the occupied
resp. among the unoccupied states, which leave H(k) invari-
ant.

The spaces in Eq. (6) have a nontrivial first homotopy
group π1[MAI

(n,�)], shown in left Table I, implying that robust
singularities of H(k) can be enclosed by circles. In 3D, such
singularities constitute 1D lines. Importantly, singularities of
H(k) in Eq. (5) correspond precisely to the occurrences of a
band degeneracy between the HO and LU bands, where the
absence of the gap renders the spectral projection impossible
[98]. Therefore nodal class AI in 3D supports robust nodal
lines, consistent with the codimension argument reviewed in
Sec. II B.

In the stable limit (n, � → ∞), the topological classifica-
tion on circles is Z2-valued [157], and corresponds to the
quantization of Berry phase on closed paths to 0 versus π [71].
The nontrivial value of the topological invariant is physically
manifested by the appearance of drumhead states [77,105]
on the material surface. Mathematically, the Z2 invariant
corresponds to the first Stiefel-Whitney class [73,158] of the
real vector bundle spanned by the occupied states on the
circle. It states whether the real vector bundle can (respec-
tively, cannot) be written in a global continuous gauge (akin
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to the dichotomy between an ordinary strip and a Möbius
strip).

E. Monopole charge of nodal-line rings

The spaces in Eq. (6) have also a nontrivial second ho-
motopy group π2[MAI

(n,�)], listed in right Table I. This result
implies robust nodal objects in 3D that can be enclosed by
two-dimensional spheres S2 [98]. Since the codimension of
generic nodes is fixed by PT to δ2D deg. = 2 [2], these nodal
objects generically constitute NL rings [53]. Importantly, if
H(S2) is nontrivial on a sphere enclosing a NL ring, then
the NL ring cannot disappear from the inside of the S2 under
continuous deformations of H (k), which preserve the gap on
the S2. This obstruction is called the monopole charge [71].
NL rings that carry a monopole charge can be removed from
the band structure only through a pairwise annihilation with
a NL ring carrying the opposite value of the charge, thus
enhancing their robustness. In contrast, a NL ring without
a monopole charge can be trivially removed on its own by
shrinking. Nontrivial values of the monopole charge have
been related to the appearance of anomalous Hall effect under
P-breaking perturbations [159], and to the appearance of
axion insulator [13,160] under T -breaking perturbations [73].
Although the monopole charge in the stable limit is Z2-valued
[71,157], several interesting exceptions occur in few-band
models [98].

Mathematically, the Z2-valued stable limit of the monopole
charge corresponds to the second Stiefel-Whitney class [158]
of the real vector bundle spanned by the occupied bands on
the S2 [73]. It expresses whether the vector bundle can be
consistently lifted into a spinor bundle. Furthermore, a fragile
Z-valued monopole charge(s) arises in few-band models,
which corresponds to the Euler class of the vector bun-
dle spanned by the two occupied (or the two unoccupied)
bands [73]. With these identifications, Ref. [73] related the
monopole charge of a NL ring to its linking [161] with
NLs formed inside other band gaps. More precisely, it was
found that the stable Z2 monopole charge of a NL ring
corresponds to the parity of the linking number of the ring
with NLs formed between the two highest occupied bands
(or equivalently, with NLs formed between the two lowest
unoccuppied bands). For further discussion of these methods,
and how they are related to the fragile-topology of twisted
bilayer graphene near the magic angle, we refer the readers to
the very pioneering work of Refs. [73,137].

F. Non-Abelian topology in multiband models

To handle statements about multiple NLs formed inside
various band gaps, it is necessary to generalize the “con-
ventional” classification methods outlined in Sec. II C. More
specifically, if we want to preserve the information about
NLs formed between all possible pairs of consecutive bands,
we need to modify the spectral projection of H (k) in a way
that preserves the spectral gap between each pair of bands.
Such a generalized topological description was very recently
developed by Ref. [65], and here we summarize some of its
key ingredients. A more practical summary is listed by rules
(1–4) below, which we properly justify in the next Sec. III.

In the presence of n + � ≡ N bands, we spectrally normal-
ize Hamiltonians H (k) as

H (k) =
N∑

j=1

∣∣u j
k

〉(
j − n − 1

2

)〈
u j

k

∣∣, (7)

i.e., we set the energy of the jth band to ε j = j − n − 1
2 ,

where n is the number of occupied bands. The script font
epmhasizes that H (k) is obtained by different spectral pro-
jection than H(k) in Eq. (5). We call the gap between bands
with energies j − n ± 1

2 ≡ G ± 1
2 as the Gth band gap [162].

If the original Hamiltonian in Eq. (1) has ε j = ε j+1 for some
j, the spectral normalization in Eq. (7) is unattainable. We
say that the band gap j − n ≡ G is closed, and we call the
manifold LG ⊂ BZ where such a condition occurs as nodal
line in Gth band gap (or more briefly as nodal line G). In
this notation, NLs formed among the occupied (unoccupied)
bands are characterized by G < 0 (by G > 0), while we have
G = 0 for NLs formed between the HO and LU bands.

The space of Hamiltonians of the form in Eq. (7) is

MAI
N = O(N )/O(1)×N . (8)

This is a straightforward generalization of Eq. (6), i.e., O(N )
still indicates the space of all ordered eigenstate combinations
{|u j

k〉}N
j=1 ≡ Uk. The quotient O(1)×N ∼= ZN

2 corresponds to
flipping the orientation of some of the eigenstates, which
keeps the form of H (k) invariant. Geometrically, O(1)×N

is the point-symmetry group of a generic N-dimensional
ellipsoid, generated by the reflections along the N principal
axes.

The work of Ref. [65] showed that the first two homotopy
groups of the space in Eq. (8) are

π1
(
MAI

N

) = PN (assuming N � 3), (9a)

π2
(
MAI

N

) = 0, (9b)

where PN is the Nth Salingaros group [163], discussed in
more details in the supplementary material Ref. [65]. For our
purposes, it suffices to state that this group is non-Abelian,
implying that the topological charge cannot be expressed as
a real or a complex number, but requires matrices. For the
special case N = 3, the charge can be expressed using the
multiplicative quaternion group,

π1
(
MAI

3

) = Q = {±1,±i,±j,±k}, (9c)

where i, j, and k are three anticommuting imaginary units. In
the discussion below, we indicate the composition of the group
elements with “·” (we call it multiplication), and we write the
identity element as +1.

For general N � 3, the group PN contains a unique element
−1 �= +1 with the property (−1)2 = +1. The final piece of
knowledge important for our analysis is the correspondence
between the elements of PN , and the species of NLs encircled
by closed paths inside BZ. It was found by Ref. [65] that

NL in Gth band gap ∼ ±gG, (10a)

i.e., NLs formed inside different band gaps are described
by N distinct elements gG, which can be understood as the
generators of PN . The ± sign in Eq. (13) allows us to assign
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each NL an orientation. Importantly,

∀G : gG · gG+1 = −gG+1 · gG, (10b)

i.e., a pair of NLs occurring inside consecutive band gaps
carry anticommuting topological charges, which implies ori-
entation reversal under a pairwise exchange (see Sec. III C).
On the other hand,

∀G′ �= G ± 1 : gG′ · gG = gG · gG′ , (10c)

meaning that a pair of NLs formed inside the same gap or
inside more distant band gaps have commuting topological
charges. Curiously,

∀ j : g2
G = −1, while g4

G = +1 (10d)

which we clarify in Sec. III F. Products of the form ±gα ·
gβ · . . . · gγ correspond to paths in BZ that enclose NLs
with indices G = α, β, . . . , γ . The topological obstruction
corresponding to −1 is special, because it survives in the
stable limit of many bands, yet it is not revealed by the Berry
phases of the individual bands.3 For further discussion of the
non-Abelian topological charge, we refer the readers to the
supplemental material of Ref. [65].

While the mathematical arguments leading to Eqs. (8)–(10)
are somewhat technical, the final conclusions are remarkably
simple, namely, (1) NLs formed inside multiple band gaps
can be described simultaneously. In such a description, the
charge of NLs forms a multiplicative group, of which any
two elements commute or anticommute. (2) Each NL segment
can be assigned an orientation. (3) A pair of NLs formed
inside consecutive band gaps have topological charges that
anticommute. This implies that the orientation of one of these
NLs is reversed when they are pairwise exchanged. (4) A
pair of NLs formed inside more distant band gaps or inside
the same band gap (i.e., with |G − G′| �= 1) have commuting
topological charges.

With these rules, the study of NL compositions translates
into a game of reversing orientations of linked lines of various
colors. Especially, the rules, which were noticed by Ref. [65],
imply (i) a path-dependent ability of a pair of NLs to an-
nihiliate (i.e., nontrivial “braiding” of NLs in k space), (ii)
constraints on admissible NL compositions, and (iii) that a
pair of NLs formed inside consecutive band gaps cannot move
across each other. In Sec. III, we justify rules 1–4, and we
study their further implications for NL compositions. In the
remaining Secs. IV and V, we apply the derived rules to
study properties of the monopole charge by invoking purely
geometric arguments.

3The stable topology of a real vector bundle on a closed path is
given by K̃O(S1) = Z2 [157]. Considering such an invariant for each
one of the N nondegenerate bands would suggest a ZN−1

2 topology
(one Z2 substracted because the total bundle is trivial). However,
such a description lacks the information about the band ordering.
An ordered set of (unoriented) vectors is known in the mathematical
literature as the complete flag [164]. The topology of a flag bundle
on a closed path is described by Eqs. (10). The element “−1” can
be related to a 2π rotation of the frame spanned by the eigenstates
[136].

FIG. 1. The black frame indicates a region of k-space, and the
wavy lines LG with G ∈ {−2,−1, 0,+1, +2} indicate NLs formed
inside band gap G. In the online version, we use color scheme
“ORBIT” (acronym for orange, red, blue, indigo, and tan) to plot
NLs occurring inside the five consecutive band gaps. Closed paths 	

on which we evaluate the non-Abelian topological charge are plotted
in green.

III. WIELDING THE NON-ABELIAN CHARGE

A. Overview

In this section, we develop several simple rules for an
efficient analysis of NL compositions through the prism of
the non-Abelian topological charge defined by Eqs. (9) and
(10). Our discussion is based on, and further expands, the
supplementary information file of Ref. [65]. The methods
developed here are employed in Secs. IV and V to analyze the
meaning and the braiding properties of the monopole charge,
listed in the right Table I.

This section is organized as follows. In Sec. III B, we
demonstrate certain nonuniqueness of the non-Abelian topo-
logical charge of NLs. We overcome this ambiguity in
Sec. III C, where we present a simple convention that allows
us to assign each NL segment in an arbitrarily convoluted
NL composition a unique topological charge and orientation.
We continue in Sec. III D by demonstrating that NLs carrying
noncommuting charges cannot move across each other [142].
In Sec. III E, we show that the non-Abelian topological charge
implies constraints on the admissible NL compositions.
Finally, in Sec. III F we clarify the meaning of Eq. (10d), i.e.,
why four NLs of the same type and orientation do not present
a robust topological obstruction.

Throughout the manuscript, we explicitly consider models
with up to 3 + 3 = 6 bands, when the Z2 stable limit of the
monopole charge is reached. In that extreme case, five dif-
ferent species of NLs need to be considered (corresponding to
G ∈ {−2,−1, 0,+1,+2}). To make our illustrations of multi-
band NL compositions more transparent, we color NLs inside
the five consecutive band gaps according to a mnemonic code
“ORBIT” (orange, red, blue, indigo, and tan) in the online
version of the manuscript (Fig. 1). Especially, NLs formed
between the HO and LU bands (i.e., near the Fermi level,
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FIG. 2. A point node LG inside a plane can be enclosed by
paths 	a

G and 	b
G, both based at point P. The two based paths

cannot be continuously deformed into each other due to the presence
of an additional point node LG′ . However, the two paths can be
related by a conjugation with path 	G′ enclosing LG′ , leading to a
conjugation relation between the topological charge on 	a

G and on
	b

G, cf. Eqs. (11).

G = 0) are always shown in blue. In the print version, the
species of NLs are indicated by the subscript G of their labels
LG. We use shades of green and symbol 	 to indicate closed
paths on which we calculate the non-Abelian invariant.

B. Nonuniqueness of the non-Abelian charge

Non-Abelian first homotopy group implies that the charge
c of a NL is defined only up to conjugacy c ∼ g · c · g−1 with
other elements g of the group [144]. To understand this, note
that the group structure of the homotopy group requires the
possibility to compose closed paths 	i on which we evaluate
the topological charge. We should therefore consider only
paths that begin and end at some fixed point in k space,
called the base point P. Under this constraint, a NL might be
enclosed by several closed paths that cannot be continuously
deformed into each other due to the presence of additional
NLs. However, any such pair of paths can be related through
a conjugacy with some other path based at P.

We illustrate this ambiguity using point nodes inside a 2D
plane, see Fig. 2. The point node LG can be enclosed by
path 	a

G as well as 	b
G, both based at P. The presence of the

additional point node LG′ makes it impossible to continuously
deform 	a

G into 	b
G if we keep the base point fixed. However,

if we encircle LG′ with path 	G′ as shown in the figure, we
find that

	b
G ∼ (	G′ )−1 ◦ 	a

G ◦ 	G′ . (11a)

The relation “∼” (called isotopy) means that the composition
of closed paths on the two sides of the equation can be contin-
uously deformed into each other without encountering a band
degeneracy. When composing several paths as in Eq. (17), our
convention is to first move along the rightmost path in the
composition, and progressively move along the paths to the
left.

If we denote the representation of path 	 inside the group
π1(MAI

N ) as g	 , then it follows from Eq. (17) that

g
	b

G
= g−1

	G′ · g	a
G

· g	G′ , (11b)

which is precisely the ambiguity advertised earlier. The con-
jugation by all possible elements gG′ divides the group into
several conjugacy classes. For Abelian groups, every ele-
ment forms a conjugacy class of its own, therefore the path-
dependence can be safely ignored. Such Abelian scenario
arises for all the nodal classes in the classification of band-
structure nodes developed in Ref. [98].

However, the first homotopy group in Eq. (9a), which de-
scribes NLs in the multiband context, is non-Abelian. There-
fore one can uniquely assign a given NL only the whole con-
jugacy class of elements rather than a single group element.
Owing to the (anti)commutation relations in Eq. (10), most
conjugacy classes of this group consist of a pair of elements
differing in the overall sign, i.e., {+g,−g}. Elements +1 and
−1 form one-element conjugacy classes [65]. The ambiguity
of the sign of the topological charge, ±gG, implies that the
ability of two NL segments in Gth band gap to annihilate
depends on the path used to bring the NL segments together
[65].

C. Defining the orientation of nodal lines

We now present a simple convention that allows us to
assign to each NL a unique topological charge, and thus
also a unique orientation, despite the ambiguity outlined in
Sec. III B. First, we fix a vantage point from which we observe
a 2D projection of the NL composition. The vantage point (the
observer’s eye) plays the role of the base point where all the
closed paths begin and end.

We ascribe to a specific segment of a NL a unique ori-
entation by limiting our attention only to a special class of
closed paths, illustrated in Fig. 3, which are composed of the
following three components: (1) a straight “ray” coming from
our eye to the vicinity of the NL segment, (2) a tight loop
encircling the NL segment, and (3) the same ray in the reverse
direction.

When viewed from the vantage point, the motion along the
straight rays is projected away. Our strategy fixes a canonical
choice of path to enclose any NL segment, thus leading to a
unique topological charge and orientation of each component
of the NL composition.

An important and nontrivial consequence of our conven-
tion is that the orientation of a NL is reversed each time
we see it passing under a NL formed inside a neighboring
band gap. To understand such orientation reversals, consider
a situation, plotted in Fig. 3(a), where a red NL (L−1) passes
over a blue NL (L0), and take two locations along L0 which
are located on the opposite sides (as seen from the vantage
point) of L−1. The charge of L0 at these two locations would
correspond to the homotopy classes of the Hamiltonian on
paths 	a

0 , respectively, 	b
0.

It follows from the discussion in Sec. III B [compare
Fig. 3(b) to Fig. 2] that the topological charges on the two
paths are related by a conjugacy with the topological charge
on path 	-1 characterizing L−1. Since NLs L−1 and L0 are
formed inside consecutive band gaps (cf. the subscripts and
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(a) (b)

FIG. 3. (a) Our convention to assign each NL inside a 3D k-space a unique orientation. We first fix a base point P from which we observe
the NL composition. To define an orientation of a chosen NL segment, we consider closed paths (green 	i ) composed of (1) a straight ray
going from P to the vicinity of the NL segment, (2) a tight loop around the NL segment, and (3) the same ray in reverse. As explained in
Sec. III C, the NL orientation defined this way is reversed each time we see it passing under a NL formed inside the neighboring band gap. In
the illustration, the orientation of a blue NL (L0) is reversed when we see it passing under a red NL (L−1). The reversal of the NL orientation is
indicated by a triangular arrowhead with the corresponding color (“�”). (b) Two-dimensional projection of the situation displayed in the left
panel. The colored dots along the projection of the blue (respectively, red) nodal line indicate the tightly enclosed points of the nodal lines.
This projection makes it clear that paths 	a

0 and 	b
0 are related by conjugation with path 	−1, in the same way as paths 	a

G, 	b
G, and 	G′ in

Fig. 2. The centers of the tight-loop component of paths 	a
0 and 	b

0 here should be identified with the same point LG in Fig. 2.

the color code in Fig. 1), we obtain from the anticommutation
relation in Eq. (10b) that paths 	a

0 and 	b
0 carry opposite

topological charges. In other words, the orientation of L0 is
reversed when it passes under L−1. In Fig. 3, we indicate
the orientation reversal of the blue NL by a blue triangular
arrowhead (“�”). It follows from Eq. (10b) that the same
argument applies to any pair of NLs formed in consecutive
band gaps.

D. Moving a pair of nodal lines across each other

In this section, we show that a pair of NLs formed inside
two consecutive band gaps (i.e., when the NLs carry anticom-
muting topological charges) cannot move across each other.
On the other hand, for all other pairs of NLs there is no
such constraint. In both cases, we first present a topological
argument based on the non-Abelian topological charge. After-
wards, we provide an alternative explanation using codimen-
sion arguments that generalizes the discussion from Sec. II B.

We begin with the topological argument, which is based
on the orientation reversals discussed in the previous section.
Therefore we fix the vantage point, and we consider our
canonical choice of paths (cf. Fig. 3) to define the orientation
of each NL segment. We argued in Sec. III C that the orienta-
tion of a NL is reversed each time it goes under a NL formed
inside a neighboring band gap. Here, we first consider a red
NL (L−1) passing under a blue NL (L0), as shown in Fig. 4(a).
The orientation of L−1 is reversed at the underpass, while L0

has the same orientation everywhere. We now compare this
to the situation in Fig. 4(b), when L−1 passes over L0. In
this scenario, L−1 has the same orientation everywhere, while
the orientation of L0 is reversed at the underpass. Clearly,
the situation in Fig. 4(a) cannot be continuously evolved into
the situation in Fig. 4(b), because the orientations of the four
outgoing segments of L−1 and L0 do not match. The argument

applies to any pair of NLs formed inside consecutive band
gaps. In contrast, pairs of NLs with commuting charges do not
influence the orientation of each other, such that the topologi-
cal obstruction described above does not arise. Therefore NLs
with commuting charges can freely move across each other.

While the argument presented in the previous section [and
illustrated by Figs. 4(a) and 4(b)] is rigorous, we supplement
it below with an alternative (although ultimately less strong)
codimension argument. This is achieved by properly adjusting
the argument by von Neumann and Wigner [2], reviewed in
Sec. II B. Note that if it were possible to move a pair of NLs
across each other, then the phase space should be divided
into two phases by a phase-transition region of codimension
one. In other words, one should be able to generically move
the NLs across each other by tuning a single parameter p of
the Bloch Hamiltonian H (k; p), and the NLs would intersect
when p is fine-tuned to one special value. Fine-tuning of p
comes in addition to specifying the three momentum coor-
dinates of the intersection point. Therefore we conclude that
for the pair of NLs to be able to move across each other, the
codimension to form intersecting NLs has to be δc = 4.

We now derive the actual codimension of such a pro-
cess using Eq. (3). First, a pair of intersecting NLs formed
inside two consecutive band gaps correspond to having a
threefold degeneracy at the intersection point. In this case,
f = N − 2 energy levels need to be specified, while there
are v = dim O(3) = 3 tunable parameters that do not change
the Hamiltonian. The dimension of the space of Hamiltonians
with a threefold degeneracy is

d3-deg. = 1
2 N (N + 1) − 5, (12)

from where we obtain the codimension, δ3-deg. = dnondeg. −
d3-deg. = 5 > δc. This implies that one has to tune two Hamil-
tonian parameters (rather than just one) to place the two nodal
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(a) (b) (c) (d)

FIG. 4. (a) A red NL L−1 passing below a blue NL L0 inside some region (the cube) of k space. The orientation of L0 is constant, while the
orientation of L−1 is reversed at the overlay (indicated by “�”). (b) A red NL L−1 passing over a blue NL L0. In this case, the orientation of
L−1 is the same everywhere, while the orientation of L0 is flipped at the overlay (indicated by “�”). The situation (a) cannot be continuously
evolved into the situation (b) because the orientations of the four outgoing NL segments do not match. (c) Analogous situation with two NLs
of the same color (here both blue). Since their topological charges commute, cf. Eq. (10c) for G = G′, there is no orientation reversal at the
overlay. This allows the two NLs La

0 and Lb
0 to freely move across each other. Furthermore, (d) near the critical points there is also a third

phase, in which the two NLs of the same color reconnect into L+
0 and L−

0 . The three phases near the critical point are analogous to Fig. 1(b) of
Ref. [85].

lines on top of each other, suggesting they cannot move across
one another.4

In contrast, a pair of intersecting NLs formed inside more
distant band gaps correspond to forming two double degen-
eracies at the intersection point. In this case, one still has
to specify f = N − 2 eigenvalues, but the number of tunable
parameters that do not change the Hamiltonian is reduced to
v = dim[O(2) × O(2)] = 2. This implies that

d2×2−deg. = 1
2 N (N + 1) − 4, (13)

and codimension δ2×2−deg. = dnondeg. − d2×2−deg. = 4. Since
this is equal to δc, such more distant NLs can move across
each other.

We remark that it is not necessary to consider situations
that exhibit several (i.e., two or more) coinciding NLs (carry-
ing charges g2

G = −1, and higher powers of gG). We describe
such NLs as composite, in contrast to the elementary NLs with
charge gG. The reason that we can ignore such possibilities
is that they require much fine-tuning. Therefore, if the phase
diagram allows us to evolve one NL composition into another
by invoking composite NLs, it is also possible to relate the
two NL compositions in the phase diagram via more generic
situations which involve only the elementary NLs. For this
reason, in the rest of our work we safely ignore the occurrence
of composite NLs.

To complete our analysis, we finally consider a pair of
NLs formed inside the same band gap. Here, the codimen-
sion analysis becomes more tricky, because apart from being
located on the two sides of each other, such NLs are also
allowed to reconnect, cf. Figs. 4(c) and 4(d), thus implying
three (rather than two) phases with topologically distinct NL
compositions near the critical point. Therefore, rather than of
delving into the codimension counting, we present here an

4A region of codimension two may separate two phases [in our case
the two nodal-line compositions in Figs. 4(a) and 4(b)] in a parameter
space only if there is a third phase bordering the other two phases
on regions of codimension 1. However, in Figs. 4(a) and 4(b), there
is no natural candidate for such a third phase, hence the encountered
region of codimension two is not a boundary between the two phases.
This implies that the two nodal lines cannot be moved across each
other.

explicit two-band Hamiltonian, adapted from Ref. [81],

H(k, m) = (m1kx − kykz )σ1 + (
k2

x + k2
y − k2

z − m2
2

)
σ3, (14)

which realizes the exchange of two NLs inside the same band
gap when parameters m1,2 are tuned. By including additional
flat bands at lower and higher energies, we get an analogous
model with arbitrarily many bands. Assuming first that m1 =
m2 ≡ m, the model in Eq. (14) exhibits a pair of NLs (one at
kx = kz and ky = +m, the other at kx = −kz and ky = −m)
inside the same band gap, which move across each other
as m changes sign. If m1 is not exactly equal to m2, then
there is an intermediate phase with a more complicated NL
composition. In spite of this subtlety, the Hamiltonian in
Eq. (14) convincingly demonstrates that a pair of NLs formed
inside the same gap can move across each other.

E. Admissible nodal line compositions

We now show that the non-Abelian topology implies strict
constraints on the admissible NL compositions. More specifi-
cally, we argue that closed NL rings in band gap G (i.e., with
charge ±gG) can only enclose an even number of NLs formed
inside the two neighboring band gaps (i.e., with charges gG±1

that anticommute with gG). This conclusion again follows
by considering the reversals of NL orientations which we
discussed in Sec. III C.

Since we have adopted a convention in which the orienta-
tion of each segment of a NL is uniquely defined, there must
be an even number of orientation reversals along every closed
NL ring. A reversal of the NL ring orientation can occur only
for the following two reasons.

(1) There is a NL with an anticommuting charge located in
front of the considered NL ring. Such a situation leads to an
even number of orientation reversals for the NL ring.

(2) There is a NL with anticommuting charge linked with
the considered NL ring. Such links lead to an odd number of
orientation reversal for the NL ring.

Therefore, for the orientation to be consistent along the
whole NL ring, it must be linked with (i.e., must enclose)
an even number of NLs with anticommuting charge. For
example, a Hopf link formed by a pair of NLs located in-
side consecutive band gaps would violate such conditions,
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(a) (b)

(c) (d)

FIG. 5. Four examples of NL compositions consistent with the
criteria formulated in Sec. III E. The indexing (in the online version
also the coloring) of the displayed NLs follow the scheme shown
in Fig. 1. The orientation reversals of the NLs are indicated by
triangular arrowheads (“�”) of the corresponding color. (a) A blue
NL ring L0 is located above a red NL ring L−1. Since L0 and L−1

are formed inside consecutive band gaps, L−1 reverses orientation
each time it goes under L0. Since both NL rings reverse orientation
an even number of times (0 vs 2), the NL composition is admissible.
(b) A composition of two red NL rings La,b

−1 and two blue NL rings
La,b

0 . Each NL ring is threaded by two NLs of the other color, leading
to two orientation reversal along each NL ring, as required by the
consistency criteria. (c) A composition of one red NL ring L−1, two
blue NL rings La,b

0 , and one indigo NL ring L+1. NL rings L−1 (in
band gap G = −1) and L+1 (in band gap G = +1) are each threaded
by two blue NLs La,b

0 (in a neighboring band gap G = 0), leading
to two orientation reversals. On the other hand, La

0 as well as Lb
0

are each threaded by L−1 and by L+1, both inside neighboring band
gaps. This implies an even number of orientation reversal of each
La,b

0 . We find that all NL rings in this composition reverse orientation
an even number of times, implying its consistency. (d) A Hopf link
formed a red NL ring L−1 and an indigo NL ring L+1. Since NLs with
G = ±1 are not formed inside consecutive band gaps, they ignore the
presence of each other, and no orientation reversals take place.

rendering it impossible. Four examples of admissible NL
compositions are shown and discussed in Fig. 5.

F. Four nodal lines of the same type are trivial

We finally discuss the meaning of Eq. (10d), i.e., why the
net charge of four NLs of the same type and orientation is
trivial. We show that, indeed, segments of such four NLs can
locally annihilate through a process illustrated in Fig. 6, which
involves the creation of two NL rings inside a neighboring
band gap. To see this, we consider in Fig. 6(a) four red
(G = −1) NLs pointing in the same direction, such that the
green path 	 enclosing them carries the trivial topological
charge g4

−1 = +1. (The argument easily generalizes to each
band gap G.)

By locally distorting the Hamiltonian, we create a blue
(G = 0) NL ring located behind the red NLs, as shown in
Fig. 6(b). In Fig. 6(c), we increase the size of the blue NL ring,
and we fold parts of the blue NL ring such that they appear
in front of the central two red NLs. A narrow “neck” of two
antiparallel blue NLs appears in front of the central two red
NLs, which allows us to reconnect the blue NLs as shown in
Fig. 6(d). The reconnection splits the original single blue NL
ring (which did not enclose any red NLs) into two blue NL
rings (each enclosing two red NLs), which can be vertically
separated. Because of the non-Abelian topological charge, the
orientation of the central two red NLs is flipped in the region
between the blue NL rings, which allows us to reconnect pairs
of red NLs as shown in Fig. 6(e). A nodeless region appears
at half the height of the indicated k-space region, allowing
us to shrink path 	 to a point without encountering a band
degeneracy.

With this example, we have explicitly demonstrated that
four parallel NLs of the same type and orientation can locally
annihilate, albeit at the cost of creating a pair of NL rings
inside a neighboring band gap. It will become apparent after
the discussion in Sec. IV that these two NL rings, which were
pairwise created, carry opposite value of the monopole charge.

IV. MONOPOLE CHARGE FROM LINKING

A. Overview

In this section and in the next Sec. V, we apply the de-
veloped geometric description of the non-Abelian topological
invariant to characterize the monopole charge of NL rings. For
the purpose of the present section, recall that Ref. [73] used
cohomology classes of vector bundles to relate the stable Z2

monopole charge of a NL ring to its linking structure with

(a) (b) (c) (d) (e)

FIG. 6. Manifestation of Eq. (10d), i.e., why four NLs of the same type and orientation are topologically trivial. (a–e) show a process
that locally annihilates segments of four parallel red NLs. The process involves the creation of a pair of blue NL rings located inside a
neighboring band gap. For a detailed discussion of the process, see Sec. III F. The arrowheads (“�”) indicate orientation reversals of NLs of
the corresponding color, as explained in Sec. III C.
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FIG. 7. Summary of our notation. We consider a NL ring L1
0

formed inside the G = 0 band gap, which is not linked with other
NLs L2,3,...

0 formed inside the same band gap. We find a two-
dimensional disk D2 that is bounded by L1

0 and which is not inter-
sected by L2,3,...

0 . Nodal lines LG′ �=0 inside other band gaps G′ �= 0
can be linked with L1

0, leading to intersection points LG′ ∩ D2 =
{Pa

G′ }a∈I . Depending on the orientation of the NL just above the disk,
we assign to each intersection point with G′ = ±1 a flux wa

G′ = ±1
(for the illustrated example w1

−1 = +1, w2
−1 = −1, and we do not

define w1
+2). To assign L1

0 a monopole charge, we inflate D2 into a
thin “pancake” containing L1

0. The surface of the pancake is topolog-
ically a sphere S2 that preserves the G = 0 band gap. We relate the
monopole charge on S2 to the linking structure of L1

0 with NLs inside
the neighboring band gaps. The linking structures are encoded in the
fluxes wa

±1, which we use to calculate the linking numbers defined
in Eqs. (15). For better clarity, we do not draw the pancake surface
S2 in the following figures. The triangular arrowheads (“�”) indicate
orientation reversals of NLs of the corresponding color.

NLs formed inside neighboring band gaps. Here we rederive
the same conclusion using the non-Abelian topological charge
found by Ref. [65]. Our analysis is purely geometrical and
involves a minimal amount of equations. The presented ar-
guments employ the properties of NLs derived in Sec. III,
especially that (i) the orientation of a NL is reversed when it
passes under a NL formed inside a neighboring band gap, and
that (ii) a pair of NLs formed inside neighboring band gaps
cannot move across each other. Our discussion is split into
several subsections, corresponding to models with different
number of occupied and of unoccupied bands, which exhibit
various group structures of the monopole charge (cf. the right
Table I).

B. Strategy

To express our main finding, we need to introduce some
notation, illustrated in Fig. 7. We consider a blue NL ring
formed inside the zeroth (G = 0) band gap (i.e., between
the HO and LU bands). We label this NL ring as L1

0. We
assume that L1

0 is not linked with additional NLs L2,3,...
0 formed

inside the same gap. If this condition were not fulfilled, the
second-homotopy charge of L1

0 would be undefined.5 Then

5This is because there would be no sphere S2 that simultaneously
(i) encloses L1

0, (ii) does not enclose L2,3,...
0 , and that (iii) preserves

the band gap G = 0.

we can find a two-dimensional disc D2 that has the NL
ring as a boundary (i.e., ∂D2 = L1

0) and that preserves the
G = 0 band gap everywhere except on its boundary (i.e., on
D2\∂D2). To find the monopole charge of L1

0, we inflate the
disk D2 into a thin “pancake” containing L1

0. The surface
of the pancake is topologically a sphere (S2) that does not
cross L2,3,...

0 . Importantly, we allow nodal lines LG′ �=G formed
inside other band gaps G′ �= 0 to be linked with L1

0. This
leads to the presence of intersection points with the disk,
LG′ ∩ D2 = {Pa

G′ }a∈I , where I is the appropriate index set.
We assign to each intersection point Pa

G′ with G′ = ±1 its
flux wa

G′ = ±1, which expresses whether the orientation (as
defined in Sec. III C) of the intersecting NL is directed away
from (wa

i = +1, i.e., sources) or towards (wa
G′ = −1, i.e.,

sinks) the disk D2. The anticommutation of topological charge
of NLs L0 with the charges of NLs L−1 and L+1, captured
by Eq. (10b), guarantees that the “away” versus “towards”
definition leads to the same values of wa

G′ for G′ = ±1 on both
sides of the disk D2.

Our key finding is that the group structure of the monopole
charge (listed in the right Table I) on the pancake sphere is
exactly mimicked by the group structure of quantitities

η± =
∑

a

wa
±1 ∈ Z (15a)

and

ν± = 1
2 (η+ ± η−) ∈ Z, (15b)

which characterize the linking of the NL ring L1
0 with NLs

formed inside the neighboring band gaps. (Below, we call
these quantities linking numbers, since they are related to
the Gauss linking invariant [161].) This exact correspondence
allows us to interpret the monopole charge as the information
about the linking structure.

To be more precise, the proof of the equivalence between
the monopole charges and the linking numbers (defined more
precisely in the sections below) consists of three logical steps.

(1) Show that both quantities remain invariant under the
same set of conditions. The linking number is well-defined
only if the disk is not intersected by another blue node, while
the element in second-homotopy group exists only if the
pancake is not intersected by a blue node. Since the disk and
the pancake are assumed to be infinitesimally close to each
other, these are clearly equivalent conditions.

(2) Show that under continuous deformations of the Hamil-
tonian both quantities define the same number of distinct
equivalence classes. This step is very carefully analyzed
in Secs. IV C–IV H using the geometric rules reviewed in
Sec. III.

(3) Show that both quantities exhibit the same group struc-
ture under binary composition. This follows easily, because
the linking numbers (argued to be the “manifestations”’ of
the Z2 and Z monopole charges) are clearly additive under
merging several NL rings together, exactly as expected for the
monopole charge.

We find that the specific linking numbers encoding the
monopole charge depends on the number of occupied and
unoccupied bands, which leads us to split the discussion
below into several sections.
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FIG. 8. The monopole charge assigned to NL ring L1
0 may de-

pend on the choice of the inscribed disk D2. The flat gray disk D2
a

(only a section of the disk is shown) exhibits four intersection points
with L−1, all having the same orientation, leading to η− = +4. In
contrast, the cap-shaped green disk D2

b is not intersected by L−1,
leading to a different value η− = 0. The ambiguity arises because an
additional NL ring L2

0 makes it impossible to continuously deform
D2

a into D2
b while preserving the G = 0 spectral gap. In Sec. V, we

relate this ambiguity to nontrivial braiding of the monopole charge
around NLs of the same color.

Before delving into the detailed discussion further below,
let us briefly argue here why the correspondence between the
monopole charge and the linking numbers in Eqs. (15) should
appear plausible. First, we know from Sec. III E that each NL
ring is linked with an even number of NLs formed inside
the neighboring band gaps, implying that the sum η+ + η−
is even. This already foreshadows a stable Z2 classification
into cases where η± are both even vs. both odd. [This also
explains why ν± are integer, cf. Eq. (15b).] Since NLs formed
inside band gaps G = ±1 are not able to move across the NL
ring L1

0, one may naïvely expect the quantities ν± to form a
Z ⊕ Z topological charge. This is indeed true for (2 + 2)-band
models, when L±1 are the only NLs that can be linked with the
NL ring L1

0. However, this simple expectation fails in models
with more bands, when L±2 are able to freely move across the
NL ring L1

0. Although such more distant NLs do not directly
enter the formulas in Eqs. (15), the anticommutation relations
{g+1, g+2} = 0 = {g−1, g−2} may flip the sign of some fluxes
wa

±1 in Eq. (15a), thus leaving only the parity of η± invariant.
One final remark is necessary before proceeding with the

analysis, namely that our definition of η± and ν± in Eqs. (15)
for a given NL ring L1

0 may depend on the choice of the disk
D2 inscribed into the NL ring. Although somewhat surprising,
this is compatible with the fact that the second homotopy
group, discussed in Sec. II E, assigns a topological invariant
to a sphere containing the NL ring, rather than to the NL
ring itself. An example when such a nonuniqueness of the
monopole charge arises is shown for a (2 + 1)-band model
(with second homotopy group π2[MAI

(2,1)] = 2Z) in Fig. 8. In
this example, we first incribe into the blue NL ring L1

0 the
flat (gray) disk D2

a . Since D2
a is intersected by red nodal lines

L−1 four times, each time with the same orientation, we find
η− = +4. On the other hand, for the cap-shaped (green) disk
D2

b we find no intersections with L−1, leading to a different
result η− = 0. Note that D2

a cannot be continuously deformed

into D2
b , because of the NL ring L2

0 contained inside the
region bounded by D2

a ∪ D2
b . As a consequence, the pancakes

associated with discs D2
a and D2

b cannot be continuously
deformed into each other while preserving the G = 0 band
gap, thus allowing their monopole charges to differ. In Sec. V
as well as in the appendices, we relate this ambiguity to a
noncommutative braiding of NL rings with a monopole charge
around NLs of the same color. For the purpose of the current
section, we simply assume the disk D2 to be fixed.

C. Models with 2 + 1 bands

We consider models with n = 2 occupied and � = 1 un-
occupied bands (analogous discussion also applies to systems
with flipped values n ↔ �), when the group structure of the
monopole charge (defined on spheres preserving the G = 0
spectral gap) is

π2
[
MAI

(1,2)

] = π2
[
MAI

(2,1)

] = 2Z. (16)

Following the color code in Fig. 1, we indicate NLs formed
inside the G = 0 band gap (i.e., between the HO and LU
bands) with blue and label them L0. NLs formed in the G =
−1 band gap (i.e., formed between the two occupied bands)
are indicated with red and labeled L−1.

We apply the prescription outlined in Sec. IV A, i.e., we
consider a blue NL ring L1

0 which can be linked with nodal
lines L−1. We inscribe into L1

0 a disk D2 that preserves the
G = 0 band gap. The disk can be inflated into a thin pancake
containing L1

0. We claim that the monopole charge of L1
0

on this pancake corresponds to the linking number η− ∈ 2Z
defined in Eq. (15a).

Since there are no higher-energy bands, automatically
η+ = 0, and the quantities defined in Eq. (15b) are not
relevant. The even parity of η− follows from the anticommu-
tation of the charge of blue (G = 0) NLs with the charge of the
red (G = −1) NLs. More precisely, the discussion in Sec. III E
forces the blue NL ring L1

0 to be linked with an even number
of red NLs L−1. This implies an even number of intersection
points Pa

−1 of L−1 with the disk D2, such that the parity of η−
is indeed even.

We further need to show that all admissible manipulations
of NLs [achieved by continuous deformations of H (k)] that
preserve the G = 0 band gap on S2 keep the value of η− ∈ 2Z
invariant. To that end, we consider the processes that might
potentially change the number and the flux of the intersection
points Pa

−1. Such changes could occur due to the following
reasons.

(i) A segment of a red NL L−1 might move across the NL
ring L1

0. This would change the number of intersection points
Pa

−1 by ±1, and also the value of η− by ±1. However, since the
charge of blue NLs anticommutes with the charge of red NLs,
such processes are topologically forbidden (cf. Sec. III D).

(ii) A segment of L−1 could move across the disk D2

bounded by L1
0. Such a motion produces two intersection

points P1,2
−1 with opposite fluxes, w1

−1 = −w2
−1. Therefore this

process does not change the linking number η− in Eq. (15a)
[cf. Figs. 9(a) and 9(b)].

(iii) A pair of red NLs that intersect the disk D2 at points
P1,2

−1 could reconnect, removing the two intersection points
in the process. However, this is possible only if the two red
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(a)

(c)

(e) (f)

(d)

(b)

FIG. 9. The possible strategies to change the linking number η−
of a blue (G = 0) NL ring L1

0 with red (G = −1) NLs L−1. None of
these strategies is succesful. [(a) and (b)] Moving a segment of L−1

across the disk produces two intersection points P1,2
−1 with opposite

flux. [(c) and (d)] Local reconnection of two antiparallel segments
of L−1 annihilates two intersection points P1,2

−1 with opposite flux.
[(e) and (f)] Local annihilation of four parallel segments of L−1 is
possible, following the strategy of Fig. 6, but produces two new
NL rings L2,3

0 inside the G = 0 band gap. Their presence makes
it impossible to bulge the disk D2 into the region where the four
segments of L−1 have annihilated, because L2

0 would temporarily
close the G = 0 band gap on the sphere S2 [the sphere is shown
explicitly in (e)] obtained by inflating the disk. In (b) and (c), the
triangular arrowheads (“�”) indicate the orientation reversal of NLs
of the corresponding color. For better clarity, such reversals are not
explicitly shown in (e) and (f).

NLs have opposite orientation. This implies that the removed
points carry opposite fluxes w1

−1 = −w2
−1, and their disap-

pearance does not change η− [cf. Figs. 9(c) and 9(d)].
(iv) We showed in Sec. III F that four parallel NLs inside

the same gap are, in certain sense, trivial [cf. Eq. (10d)]. One
could thus consider a local annihilation of four parallel red
NL segments. However, as shown in Fig. 6, such a process
necessarily produces a pair of blue NL rings L2,3

0 . These
additional NL rings present an obstacle standing in the way

between the disk D2 and the region where the four red NL
segments have annihilated [cf. Figs. 9(e) and 9(f)]. Therefore
this process does not allow us to change the fluxes on the
disk D2.

All the presented strategies to change the linking number
η− are unsuccessful.

Note however that there is, in fact, a very simple process
that does change η−: Sweeping a blue NL in front of L1

0 [cf.
Figs. 11(a) and 11(c)]. According to Sec. III C, this flips the
sign of all the fluxes wa

−1, resulting in an overall sign reversal
of the linking number. However, this process is special, and
corresponds to braiding L1

0 around the NL. We show in
Sec. V and in the appendices that this interesting exception
can be treated separately. More concretely, it corresponds to
a nontrivial action induced by the first homotopy group on
the second, i.e., this observation too is in accordance with the
homotopic description of the monopole charge..

Keeping in mind this caveat, which we postpone until
Sec. V, we find that η− ∈ 2Z is a topological invariant char-
acterizing L1

0 on the pancake sphere obtained by inflating the
disk D2 in (2 + 1)-band models. Following the overall strat-
egy outlined in Sec. IV B, we have proved that the monopole
charge of such models exactly corresponds to the linking
number η−.

D. Models with 2 + 2 bands

We now consider systems with n = 2 occupied and � = 2
unoccupied bands, when the group structure of the monopole
charge is

π2
[
MAI

(2,2)

] = Z ⊕ Z, (17)

This analysis easily generalizes the case of (2 + 1)-band
models: besides the blue (G = 0) NLs L0 at the Fermi level,
and the red (G = −1) NLs L−1 formed by the two occupied
bands, there are now additional indigo (G = +1) NLs L+1

formed by the two unoccupied bands.
We want to analyze the linking numbers of a blue NL

ring L1
0 with the other two species of NLs. Since the charges

g+1 and g−1 commute, the red and the indigo NLs ignore
each other’s presence. This suggests that we can apply the
arguments from Sec. IV C independently to linking of L1

0 with
the red NLs and with the indigo NLs. This is almost true. The
only caveat is that, since now both η± could be nonzero, one
gets a consistent NL composition not only when η± are both
even, but also when η± are both odd. To capture this even-
even versus odd-odd disparity, it is more convenient to work
with linking numbers (ν+, ν−) ∈ Z ⊕ Z defined in Eq. (15b)
[164]. Arguments completely analogous to those illustrated in
Fig. 9 then prove that these two integers are invariant under
all admissible manipulations of the NLs which preserve the
G = 0 band gap (with the single exception—the action of π1

on π2 discussed in Sec. V). Therefore the monopole charge
of (2 + 2)-band models corresponds to the linking numbers
(ν+, ν−).

E. Models with 3 + 1 bands

Let us now consider models with n = 3 occupied and
� = 1 unoccupied bands (analogous discussion also applies to
models with interchanged values n ↔ �). We thus consider
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FIG. 10. Changing the linking number η− of the blue (G = 0) NL ring L1
0 in a (3 + 1)-band model by ±2. The change is achieved by

moving an orange (G = −2) NL L−2 to the inside of the NL ring L1
0. The anticommutation of the charge g−2 of orange NLs L−2 with the

charge g−1 of red (G = −1) NLs L−1 allows us to revert the flux of some of the intersection points Pa
−1, thus changing the value of η− by

multiples of 2. As a consequence, η− can be made zero, and the blue NL ring L1
0 can be completely unlinked. Triangular arrowheads (“�”)

indicate the orientation reversals of NLs of the corresponding color. For a more detailed discussion of the process illustrated in (a)–(d), see
Sec. IV E.

a blue (G = 0) NL ring L1
0 formed between the HO and

LU bands, which could be linked with red (G = −1) NLs
L−1 and with orange (G = −2) NLs L−2 formed among the
occupied bands. Clearly, this scenario augments the case of
(2 + 1)-band models from Sec. IV C in a different way than
the (2 + 2)-band case discussed in Sec. IV D. The homotopy
theory predicts that

π2
[
MAI

(3,1)

] = π2
[
MAI

(1,3)

] = 0, (18)

i.e., that there is no monopole charge. We show that this
behavior is mimicked by the absence of topological invariance
of linking numbers η± defined in Eq. (15a).

Let us explain this behavior. First note that, just as for
(2 + 1)-band models, we have η+ = 0 [there is no higher-
energy band to form indigo (G = +1) NLs], such that η−
has to be an even integer [compatibility requires that an
even number of red NLs L−1 are linked with L1

0]. What
has changed since Sec. IV C is the presence of additional
and more deeply located NLs L−2. Such orange NLs carry
topological charge g−2 that commutes with the charge g0 of
blue NLs, while it anticommutes with the charge g−1 of red
NLs. The commmutation relation [g−2, g0] = 0 allows us to
freely move L−2 to the inside of the NL ring L1

0, while pro-
ducing intersection points Pa

−2. The anticommutation relation
{g−2, g−1} = 0 allows us to flip the orientation of some red
NLs, thus reverting the flux of some intersection points Pa

−1
between values +1 ↔ −1, which changes η− in Eq. (15a) by
multiples of two. Since the linking number η− in (3 + 1)-band
models is even, repeating the described procedure sufficiently
many times can always bring the value of η− to zero.

We illustrate the described process on an example shown
in Fig. 10. In Fig. 10(a), we consider a blue NL ring L1

0 linked
with two red NLs L−1 of the same orientation. The NLs L−1

intersect the disk D2 inscribed into L1
0 at two points P1,2

−1,
which both have the same flux w1

−1 = w2
−1 = +1, leading

to η− = +2. In Fig. 10(b), we have moved an orange NL
L−2 across L1

0, such that it now crosses the disk D2 at point
P−2. This is allowed because the charges g−2 and g0 of these
two species of NLs commute. [We remark that if the original
model does not exhibit any orange NL, one such NL ring
can always be produced by a local band inversion, similar to
Fig. 6(b).]

Furthermore, we have deformed a segment of L−2 such that
it passes in front of one of the red NLs. This flips the flux
of P1

−1 to w1
−1 = −1. Since the intersection points P1,2

−1 now
carry opposite flux, they can annihilate in front of L−2. This is
achieved through a process of reconnecting the two red NLs
as shown in Fig. 10(c). The NL ring L1

0 is now not crossed
by any segments of L−1, so clearly η− = 0. In the last step,
shown in Fig. 10(d), L−2 is again moved outside of the NL
ring L1

0, such that L1
0 has become completely unlinked.

F. Models with 3 + 2 bands

In this section, we consider models with n = 3 occupied
and � = 2 unoccupied bands (analogous discussion pertains to
systems with flipped values n ↔ �). We consider a blue (G =
0) NL ring L1

0 formed by HO and LU bands, which can be
linked with red (G = −1) NLs L−1 and orange (G = −2) NLs
L−2 formed among the occupied bands, as well as with indigo
(G = +1) NLs L+1 formed among the unoccupied bands. The
homotopy theory predicts the monopole charge

π2
[
MAI

(3,2)

] = π2
[
MAI

(2,3)

] = Z. (19)

We argue that this group structure is exactly mimicked by the
linking invariant η+. Especially, we find that the decrease of
the order of the monopole charge from Z ⊕ Z in (2 + 2)-band
models to Z in (3 + 2)-band models has the same origin as
the decrease from Z in (2 + 1)-band models to 0 in (3 + 1)-
band models. Namely, the more distant NLs with charge g±2

can be freely moved inside the NL ring L1
0 with charge g0,

which allows us to flip the flux of some intersection points
Pa

±1, which in turn changes η± by multiples of two.
To see the argument in a bit more detail, note that η± can

be arbitrary integers. The compatibility condition discussed
in Sec. III E only requires them to have the same parity.
However, we already know from the analysis of (3 + 1)-band
models in Sec. IV E that η− can be changed by integer mul-
tiples of 2, i.e., it can be brought to η− = 0 (for η+ even) or
η− = +1 (for η+ odd). On the other hand, the absence of tan
(G = +2) NLs L+2 in (3 + 2)-band models keeps the value
of the linking number η+ ∈ Z invariant. By repeating the
arguments presented in the previous sections, this is sufficient
to claim that the monopole charge of (3 + 2)-band models
exactly corresponds to the linking number η+.
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G. Models with 3 + 3 bands

We finally consider models with n = 3 occupied and � = 3
unoccupied bands. Assuming a blue (G = 0) NL ring L1

0, the
compatibility conditions from Sec. III E require the linking
numbers η± ∈ Z to obey η+ = η− (mod 2). The presence
of orange (G = −2) NLs L−2 allows us to change η− by
integer multiples of 2, and the presence of tan (G = +2)
NLs L+2 implies the same ambiguity for η+. In both cases,
the procedure to achieve the change by ±2 is analogous to
the process illustrated for η− in Fig. 10. This freedom reduces
the invariance of topological numbers η± to their Z2 parity.
This is compatible with the prediction of homotopy theory that
the monopole charge is now expressed by

π2
[
MAI

(3,3)

] = Z2. (20)

We remark that considering models with n � 4 or � � 4 is not
going to augment the results derived in the individual parts
of Sec. IV, since the topological charge of such very distant
NLs L±3 commutes both with the charge of the NL ring L1

0, as
well as with the charge of NLs L±1 which define the linking
numbers η± in Eq. (15a). This is compatible with having
reached the stable limit, observed in the right Table I. We have
thus proved a relation between the linking numbers η± (resp.
ν±) and the monopole charge of NL rings in PT -symmetric
models for arbitrary number of occupied/unoccupied bands.

H. Monopole charge in nodal class CI

Before concluding the present section, we investigate one
final class of models. It has been shown by Ref. [98] that the
monopole charge of NL rings also appears in centrosymmetric
and time-reversal symmetric singlet superconductors [112].
On top of PT symmetry, such systems also exhibit the
chiral symmetry C that anticommutes with the Bogoliubov-de
Gennes Hamiltonian H (k) at every k. This implies that NLs
appear symmetrically around zero energy, i.e., as manifolds
LG = L−G, and also that η+ = η−. This produces special
constraints on the situations studied in Secs. IV D and IV G.
Here we briefly discuss the consequences.

Let us first consider the case of (2 + 2) bands. The linking
numbers fulfill η+ = η− ∈ Z. We argued in Sec. IV D that
admissible manipulations of NLs that preserve the G = 0
spectral gap on the inflated disk cannot change η− nor η+
in (2 + 2)-band models. Clearly, the more restricted space of
C-symmetric Hamiltonians also cannot change their values,
meaning that η+ = η− ≡ η defines a Z-valued topological
invariant, which is compatible with

π2
[
MCI

2

] = Z (21a)

found by Ref. [98]. In contrast, for n = � � 3 the anticommu-
ation of L±1 with L±2 implies that η+ = η− can be simultane-
ously changed by +2 or by −2. Therefore only the Z2 parity
of η± is invariant, compatible with

π2
[
MCI

3

] = Z2. (21b)

Similar to Sec. IV G, adding more bands does not change the
result. The group in Eq. (21b) corresponds to the stable limit
of the monopole charge in nodal class CI [98].

V. BRAIDING OF THE MONOPOLE CHARGE

A. Overview

In this section, we present another application of the geo-
metric description of the non-Abelian band topology. Recall
that we have encountered in Sec. IV A an ambiguity in the
definition of the monopole charge of NL rings, namely that it
may depend on the choice of the inscribed disk D2 (cf. Fig. 8).
Another ambiguity emerged in Sec. IV C, where the monopole
charge of a blue NL ring L1

0 flipped sign when another blue NL
was swept in front of it [cf. Figs. 11(a) and 11(c)].

Here, we argue that the encountered nonuniqueness of the
monopole charge emanates from a nontrivial action induced
by the Berry phase (corresponding to the first homotopy
group, “π1”, cf. Sec. II D) on the monopole charge (corre-
sponding to the second homotopy group, “π2”, cf. Sec. II E).
This phenomenon implies that a monopole charge can be
“braided” nontrivially around NLs, or more precisely, that
the ability of two NL rings to annihilate may depend on the
trajectory used to bring them together. We emphasize that this
property arises in addition to the path-dependent ability of
NLs themselves to annihilate, found by Ref. [65] and reviewed
in Sec. III B of this work. The noncommutative behavior of
the monopole charge of NL rings discussed here has not been
previously reported. From a mathematical perspective, it is
similar to the nontrivial braiding of hedgehog defects around
vortex lines, known to arise in uniaxial nematics [165].

Our discussion is structured as follows. In Sec. V B, we
explain the origin of the nontrivial action of π1 on π2 us-
ing the geometric description of the non-Abelian topological
charge. We find that this phenomenon arises as a consequence
of the orientation reversals of NLs discussed in Sec III C.
To strengthen the geometric arguments presented here, we
provide an independent and more formal discussion of the
phenomenon in the appendices. First, following Ref. [144],
we mathematically formulate what we mean by the action of
π1 on π2 in Appendix B. In Appendix C, we reformulate this
action using the notion of Abe homotopy [149,150]. Finally,
in Appendices D and E we explicitly compute the action
of π1(M ) on π2(M ), where M are the spaces of few-band
Hamiltonians belonging to PT -symmetric nodal classes AI
and CI. The formal derivations presented in the appendices
are consistent with the geometric arguments presented here.

B. Explanation using the non-Abelian topology

The argument using the non-Abelian topological charge
follows in two steps. As the first step, note that when a NL
ring L1

G formed in Gth band gap is moved behind another
NL L2

G inside the same band gap G, then all the NLs formed
inside band gaps G ± 1 which are linked with L1

G necessarily
reverse orientations, cf. Sec. III C. These orientation reversals,
in turn, imply that all the fluxes wa

G±1 of the intersection points
of LG±1 with the inscribed disk D2 flip sign, cf. Sec. IV A.
However, we argued in Sec. IV that the monopole charge is
proportional to the sum of these fluxes. We thus conclude
that the monopole charge of a NL ring flips sign when it is
moved behind a NL formed inside the same band gap. Using
the language of very recent Ref. [151], the nodal line acts on
the monopole charge as an Alice string.
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(a) (b)

(c) (d)

FIG. 11. (a) A pair of blue (G = 0) NL rings L1,2
0 which exhibit opposite values of the linking number η− with red (G = −1) NLs L1,2

−1 ,
namely η− = ±2. According to the arguments presented in Sec. IV, the linking numbers reveal that L1,2

0 carry opposite values of the monopole
charge. (b) We merge the two NL rings L1,2

0 along a trajectory that does not pass under another blue NL. We observe that the combined NL
ring L1+2

0 exhibits net linking number ηtot.
− = 0, meaning that its monopole charge is trivial. (c) Alternatively, we bring the blue NL rings L1,2

0

together along a trajectory that encloses another blue NL L3
0. In this process, the blue NL L3

0 moves in front of all the intersection points inside
the NL ring L2

0 (namely, P3
−1 and P4

−1), inducing a reversal of their fluxes (i.e., the numbers w3
−1 and w4

−1). (d) When moved together along
such an alternative path, the blue NL rings L1,2

0 exhibit the same linking number η− = +2, such that the total linking after they are merged into
L1+2

0 is ηtot.
− = 4, implying a nonvanishing monopole charge. The path-dependent ability of the two monopole charges to cancel resp. to add up

indicates a nontrivial action induced by the Berry phase (carried by the blue NL L3
0) on the monopole charge (carried by the blue NL ring L2

0).
For better clarity, in this figure we do not explicitly indicate orientation reversals of the NLs.

As the second step, notice that when a NL ring L1
G is

moved along a closed trajectory that encircles a chosen NL,
then the NL ring L1

G is moved behind that NL once (or, more
generally, an odd number of times). By combining the two
steps, we conclude that the monopole charge of L1

G reverses
sign when moved along a closed trajectory that encircles a NL
formed inside the same band gap. Finally, as both considered
NLs are formed inside the same band gap, we can invoke the
“conventional” spectral flatenning from Eq. (5), and state that
the monopole charge [corresponding to π2(MAI

(n,�) )] flips sign
when braided along a closed trajectory with a nontrivial Berry
phase [corresponding to π1(MAI

(n,�) )].
The previous paragraph constitutes the complete proof for

all values n, � of occupied resp. unoccupied bands. Neverthe-
less, to get a more solid understanding of the argument, let
us explicitly discuss the example illustrated in Fig. 11, where
we set G = 0. We begin in Fig. 11(a) with two blue (G = 0)
NL rings L1,2

0 , each linked with two red (G = −1) NLs L1,2
−1.

The orientations of the red NLs are such that the linking
numbers are η− = +2 and η− = −2 for the two blue NL
rings, respectively. Therefore, if we merge the blue NL rings
into a single NL ring L1+2

0 along a trajectory that does not pass
under other blue NLs, as shown in Fig. 11(b), the total linking
number would be ηtot.

− = 2 + (−2) = 0, implying a vanishing
monopole charge. Indeed, it is obvious from Fig. 11(b) that
one could remove through shrinking first the red NL rings
L1,2

−1, and subsequently also the blue NL ring L1+2
0 , without

encountering any obstruction.

In contrast, in Fig. 11(c), we move L2
0 towards L1

0 along
a trajectory that passes under additional blue NL L3

0. During
this process, the fluxes w3,4

−1 of intersection points P3,4
−1 with

red NLs reverse orientation, such that now η− = +2 for both
blue NL rings L1,2

0 . Therefore merging the two NL rings
into a single blue NL ring L1+2

0 along this alternative path
produces a total linking number ηtot.

− = 2 + 2 = 4, suggesting
a nonvanishing monopole charge. Indeed, it is manifest from
the resulting geometry, shown in Fig. 11(d), that there are
obstructions for removing the merged blue NL ring L1+2

0
from the band structure. We have thus demonstrated that the
ability of two NL rings with a monopole charge to annihilate
depends on the trajectory used to bring them together. The
dependence of the combined monopole charge of two NL
rings on the trajectory used to bring them them together,
observed in Fig. 11, is ultimately equivalent to the dependence
of the monopole charge of a single NL ring on the choice of
the inscribed disk, observed in Fig. 8.

VI. CONCLUSIONS AND OUTLOOK

In this manuscript, we discussed the new perspectives
into the topology of NLs protected by PT -symmetry, which
are offered by the non-Abelian topological charge recently
discovered by Ref. [65]. After explaining in Sec. III how to
efficiently wield the non-Abelian topological charge, and how
to geometrically interpret it using orientation reversals of the
NLs, we presented two applications of these ideas to study the
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topological properties of NL rings with a monopole charge
[71]. First, we used the non-Abelian charge in Sec. IV to pro-
vide a geometric proof of the relation between the monopole
charge and the linking structure of the NLs, where we repro-
duced and supplemented the results of Ref. [73]. Second, in
Sec. V we used this new tool to provide a simple geometric
argument for a previously unreported phenomenon, when NL
rings that carry a monopole charge braid nontrivially around
other NLs formed inside the same gap. The derivations that
take advantage of the non-Abelian topological charge are less
technical than the alternative derivations based on the “con-
ventional” spectral projection of the Hamiltonian, e.g., those
presented in Refs. [73,137] and in the appendices of this work.

We emphasize that the scope of applications of the non-
Abelian topological charge is much broader than revealed
by this work. Especially, the presented ideas apply generally
to all the PT -symmetric models and materials with NLs
studied in Refs. [64–84,86–98], given that there are three or
more bands. For example, the non-Abelian topological charge,
together with further constraints put forward by the presence
of additional crystalline symmetry [65], could predict the
behavior of intricate NL compositions under applied strain,
including the case of nodal chains [79,80], nexuses [89–91],
gyroscopes [76–78], and nets [92–97]. It would also be inter-
esting to check, whether constraints on the ability of band-
structure nodes to annihilate that were previously reported in
different contexts [121,166], could also be described using
non-Abelian topological charges. Furthermore, it should be
possible to generalize the presented topological classification,
based on the alternative spectral normalization of the Bloch
Hamiltonian in Eq. (7), to insulating systems. Some rudimen-
tary steps in this direction were already taken by Ref. [65]
to describe 1D insulators, and by Refs. [154,155] to describe
certain non-Hermitian topological bands.

What is currently missing is a more tangible relation
between the non-Abelian topological charge and physical
observables. It is well understood that the conventional Berry
phase quantization is related to bulk polarization [167,168],
which explains the origin of the “drumhead” states on the sur-
faces of NL semimetals [34]. Similarly, the work of Ref. [65]
observed unusual edge states in 1D systems with nontrivial
values of the non-Abelian charge, which could not be ex-
plained using solely the Berry phase quantization. However,
the absence of a physical interpretation of the non-Abelian
charge left those observations unexplained. As the first step
towards understanding the surface states protected by the
non-Abelian topological charges, it should prove fruitful to
develop a rigorous mathematical relation between the homo-
topic methods applied here and the method of characteristic
classes employed by Refs. [73,137]. We leave these questions
open for future studies.
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APPENDIX A: COSET SPACES

1. Coset spaces for Lie groups

Because the spaces of Hamiltonians considered in this
work can be recast as coset spaces for Lie groups, we present
here some facts and results pertinent to this subject that are
relevant to us. A Lie group is essentially a smooth manifold
that is also an abstract group. The (left) action α of a Lie group
G on a topological space X is defined as a continuous map
α : G × X → X such that α(g1g2, x) = α(g1, α(g2, x)) for all
g1, g2 ∈ G and x ∈ X , and the action of the identity element
e in G is trivial, i.e., α(e, x) = x. For any g ∈ G, we denote
by αg a homeomorphism from X to itself. The concatentation
αh ◦ αh−1 is the identity homeomorphism. Therefore one may
view the action α as a group homomorphism between G and
the group of automorphisms of X , denoted Aut(X ).

Sets of the form Gx = {α(g, x)| g ∈ G} ⊂ X are called G
orbits of the point x ∈ X . Two G orbits Gx, Gx′ are either
identical or have a null intersection. In other words the orbits
constitute a partition of X . The set of all orbits is called the
orbit space, denoted X/G.

Let H be a submanifold of G as well as a (sub)group. Then
H is a Lie subgroup of G, denoted as H < G. There is a natural
proper and free action of G on H given by the group action.
The H-orbits Hg = {gh|h ∈ H} are called (left) cosets. The set
of all such cosets is called the (left) coset space, denoted G/H.
If H is a normal subgroup of G (∀h1 ∈ H : ∀g ∈ G : ∃h2 ∈ H :
gh1 = h2g), then the coset space has a natural group structure.

For a Lie group G of dimension n and a Lie subgroup H <

G, of dimension k, the coset space G/H has a natural structure
of a manifold of dimension n − k, such that the canonical map
π : G → G/H is a fiber bundle with fiber diffeomorphic to H.
In other words the sequence

0 → H → G
π→ G/H → 0 (A1)

is a fibration [170]. This will be important for us in what
follows as we will make ample use of the long exact sequence
of homotopy groups for a fibration.

2. Homotopy groups of coset spaces

To derive the homotopy groups of a space of Hamiltonians
(or of an order-parameter space) M, it is often possible and
convenient to represent it as a coset space M = G/H where G
is a Lie group of transformations, and the isotropy subgroup
H < G corresponds to transformations that keep a chosen
Hamiltonian (or order parameter) in M unchanged. In this
section we review some basic relations for the homotopy
groups of coset spaces. In what follows, we use H0 to denote
the connected component of group H which contains the
identity element.

195130-17



APOORV TIWARI AND TOMÁŠ BZDUŠEK PHYSICAL REVIEW B 101, 195130 (2020)

First we recall some properties of Lie groups. Due to a
theorem by Cartan [171,172], for any Lie group

π2(G) = 0 (A2a)

where by 0 we mean the trivial one-element group. Fur-
thermore, any Lie group either consists of simply connected
components, or it has a universal covering group with such a
property [156]. This implies that we can always construct the
coset space M = G/H such that

π1(G) = 0. (A2b)

Finally, by taking the appropriate subgroup, we can always
rewrite M = G/H such that G has just one connected compo-
nent, meaning that we can also assume

π0(G) = 0. (A2c)

With this information and using the long exact sequence of
homotopy groups [156] for the fibration (A1), i.e.

· · · → πn(H)
in→ πn(G)

jn→ πn(G/H)
δn→ πn−1(H)

in−1→ · · ·
(A3)

we obtain two very useful relations. First we isolate the
following two sections,

0
j2→ π2(G/H)

δ2→ π1(H)
i1→ 0 (A4a)

0
j1→ π1(G/H)

δ1→ π0(H)
i0→ 0 (A4b)

The first sequence implies that that ker(δ2) = im( j2) = 0, i.e.,
δ2 is injective, as well as im(δ2) = ker(i1) = π1(H), which
implies δ2 is surjective. Together these two statements imply
the isomorphism

π2(G/H) = π1(H0). (A5)

Using completely parallel argumentation for δ1 instead of δ2,
we arrive at the isomorphism

π1(G/H) = π0(H) = H/H0. (A6)

It can be checked that H0 is a normal subgroup of H. It follows
from the discussion in Appendix A 1 that H/H0, understood
as the set of connected components of H, has a natural group
structure inherited from H.

APPENDIX B: AUTOMORPHISMS INDUCED
BY π1(M) ON πp(M) FOR M � G/H

1. Action of π1(M) on itself

When describing the topological charge of a band-structure
node using homotopy groups, we study the homotopy class
[H ◦ ι] of the Hamiltonian on a sphere S p = ι(Sp) ⊂ BZ that
tightly encloses the node. According to the formal definition
of homotopy groups [156], the sphere should be understood as
I p/∂I p, i.e., as a p-dimensional cube with quotiented bound-
ary. We use I = [0, 1] to denote the closed interval on the real
line with unit length. The identification of the boundary ∂I p

with a single point is achieved by mapping it to a fixed point
(the “base point”) m ∈ M. In practice, this is done by choosing
a point P ∈ BZ such that H(P) = m, and an embedding ι :

I p ↪→ BZ such that ι(∂I p) = P. Then the composition H ◦ ι :
I p → M maps ∂I p to m, and can be classified using the based
homotopy group πp(M,m). The equivalence class of [H ◦ ι]
does not change under continuous deformations of the sphere
I p/∂I p � Sp and of the Hamiltonian H, provided that H(S p)
is kept gapped (such that it remains inside M, cf. Sec. II D)
and that H(P) ∈ M is kept constant. In the following, we write
f ≡ H ◦ ι for the composed map from Sp to M.

In the presence of multiple nodes, it may be possible to
enclose the node by various spheres ι(Sp), which cannot be
continuously deformed into one another when the base point
P is fixed. We already encountered this ambiguity in Sec. III B
of the main text. Let us consider here again the case of nodes
of codimension δ = 2 [characterized by π1(M )], illustrated in
Fig. 2 of the main text. In this example, the node LG can be
encirlced with two based paths, 	a

G and 	b
G, which cannot be

deformed into each other while keeping the base point P fixed,
because of the additional node LG′ . However, if we encircle
this additional node by a based path 	G′ , then 	b

G ∼ 	G′ ◦
	a

G ◦ (	G′ )−1 (i.e., they are isotopic). This implies that the
corresponding elements in π1(M ), defined by the Hamiltonian
H along each 	, fulfill the conjugation relation in Eq. (11b)
of the main text. As a consequence, the topological charge
of a node is defined only up to conjugacy. Mathematically,
the result in Eq. (11b) can be understood as an automorphism
αh ∈ Aut[π1(M )] induced by an element of h ∈ π1(M ),

∀g ∈ π1(M ) : αh(g) = hgh−1. (B1)

We call such self-induced automorphism of π1(M ) as the
action of π1(M ) on itself.

2. The action of π1(G/H) on π2(G/H)

We have mathematically formalized the nonuniquness of
the first-homotopy charges of nodes using the action of π1(M )
on itself. The nonuniqueness of the second-homotopy charge,
encountered in Sec. V, can be similarly understood as a
nontrivial action of π1(M ) on π2(M ). Here, we describe this
action for the case when M is a coset space. A more general
description of this action for arbitrary topological space M is
given in Appendix C.

First, we consider a continuous map f : I p → G/H with
p � 2 that fulfills f (∂I p) = He (understood as a coset of
G/H). In other words, we choose the base point m ∈ G/H
to be the coset of the identity element e ∈ G. The map f can
be lifted into a continuous map f↑ : I p → G that fulfills (1)
f↑ : ∂I p → He (understood as a subset of G), and (2) f↑ :
J p−1 → e, where J p−1 is the top face of the cube I p [121,144].
We denote the restriction of f↑ to the boundary ∂I p as f↑|∂I p ≡
∂ f↑, and we call it the boundary map. The continuity of f↑
implies that the image im ∂ f↑ lies inside a single connected
component H0 < He. For p = 2, the isomorphism in Eq. (A5)
implies that the equivalence class [ f ] ∈ π2(G/H, He) corre-
sponds to the equivalence class [∂ f↑] ∈ π1(H0, e).

We further consider a closed path 	 : I → G/H, which
is also based at He. By the isomorphism in Eq. (A6), 	

corresponds to some element [	] ∈ H/H0. To understand this
isomorphism, note that 	 can be lifted into an open-ended
path 	↑ : I → G that starts at 	↑(0) = e. Since 	 was based
at He, the other end-point of the lift lies at 	↑(1) = h ∈ H.
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FIG. 12. Schematic illustration of the considerations in
Appendix B 2. The projection G

π→ G/H corresponds to the
fibration in Eq. (A1). The closed path 	 : I → G/H shown in blue
(right) is lifted to an open-ended path 	↑ : I → G (left). The path
	↑(I ) starts at the identity e and ends at an element h contained
inside the connected component hH0 of coset He. Similarly, the
continuous based map f : I p → G/H shown in green (right) is lifted
into f↑ : I p → G (left) in a way that the top face J p−1 ⊂ ∂I p of the
cube is mapped to the identity e [121,144]. The gray sheets indicate
connected components H0 and hH0 of coset He. The image im f↑
looks like a cap (green), while the image of the composition of 	↑
with f↑|∂I p ≡ ∂ f↑ looks like a tube (blue). The black rings along the
tube indicate several images 	↑(t ) · ∂ f↑ with fixed t ∈ I , and they
project onto the black dots shown along 	(I ) inside G/H. Since
the green cap and the blue tube share a boundary, we can compose
them. Finally, we shift this composition such that its boundary lies
inside H0. This is achieved by a right multiplication with h−1. We
find that the composition of f with 	 induces the automorphism
�h ∈ Aut[πp(G/H)], called the action of π1(G/H) on πp(G/H),
which we describe in the text. For p = 2, the automorphism is given
explicitly by Eq. (B3).

Eq. (A6) states that the equivalence class [	] corresponds to
the connected component hH0 containing h.

We finally consider both maps, f and 	, simultaneously.
By inflating path 	 into a thin tube, it is possible to interpret 	

as a based p-sphere (admittedly a somewhat degenerate one),
allowing us to compose 	 and f to form a new p-sphere,
denoted 	 ◦ f . We ask what is the homotopy class of such a
composed map. To answer this question, we construct a map

	↑ · ∂ f↑ : I × ∂I p → G (B2a)

defined by

	↑ · ∂ f↑ : (t, y) �→ 	↑(t ) · f↑(y) (B2b)

for all t ∈ I and y ∈ ∂I p, where “·” is the group composition
in G. The image im (	↑ · ∂ f↑) can be understood as a tube
connecting im(∂ f↑) ⊂ H0 to h · im(∂ f↑) ⊂ Hh, shown in blue
in the left part of Fig. 12. This tube can be continuously
attached to the image im( f↑), which in Fig. 12 we show
as the green “cap” with boundary im(∂ f↑) inside H0. The
composition im (	↑ · ∂ f↑) ∪ im( f↑) looks like an elongated
cap, with boundary h · ∂ f↑ inside the connected component
hH0 of He.

Let us now restrict our attention to the case p = 2. We
would like to interpret the elongated cap as the lift of the com-
position 	 ◦ f , and to classify this composition by an equiv-
alence class of π2(G/H, He) = π1(H0, e). However, since the
boundary of the elongated cap lies inside hH0, we need to
shift the cap inside G by h−1. This is achieved through a right

action on G by h−1. Therefore we find that the composition of
f with 	 has transformed the boundary map as

∂ f↑ �→ h(∂ f↑)h−1. (B3a)

The relation in Eq. (B3a) induces an automoprhism �h ∈
Aut[π2(G/H)] = Aut[π1(H0)], acting as

�h : [∂ f ] �→ [h · (∂ f ) · h−1], (B3b)

which we call the action of π1(G/H) on π2(G/H). The phys-
ical manifestation of this action is that the second-homotopy
charge of a node depends on the choice of a based sphere S2

used to enclose the node.

APPENDIX C: ABE HOMOTOPY AND ACTION
OF π1(M) ON πp(M) FOR GENERAL M

In this section, we show that much of our understanding
about the existence of and the interaction between the quan-
tized Berry phase and the monopole charge can be cast into
the mathematical framework of the so-called Abe homotopy
groups [149,150]. The second Abe homotopy group, denoted
κ2(M,m), comprises of homotopy classes of based maps from
a pinched torus to M and naturally encodes the action of
π1(M,m) on π2(M,m).

Although we mostly restrict ourselves to p = 2, the frame-
work we describe in this section is quite general. The pth Abe
homotopy group κp(M,m) contains the based fundamental
group, the based pth homotopy group and the action of
π1(M,m) on πp(M,m). It can be thought of as homotopy
classes of maps from Sp−1 × I to M such that Sp−1 × (∂I )
maps to m ∈ M. This of course is the p-dimensional gener-
alization of the pinched torus.

In Appendix B 1, we discussed the construction of based
maps from the Brillouin zone BZ to the space of Hamiltonians
M. Before proceeding further, let us set up some notation.
By Map[Sp

BZ, M]0 we denote the space of maps H ◦ ι that
map p-spheres embedded in BZ and based at P into M, such
that P ∈ Sp ⊂ BZ is sent to m ∈ M. The physically interest-
ing scenario corresponds to p = 1, 2 and π1(M ) �= 0 and/or
π2(M ) �= 0 which corresponds to the existence of Berry phase
and/or monopole charge obstructions in the corresponding
models. First, since π1(M,m) is in general a non-Abelian
group, we label NLs by conjugacy classes rather than by
elements in π1(M,m). This accounts for the action of π1 on
itself as discussed previously in Appendix B 1. In order to
analyze the monopole charges, we need to study the maps
f ∈ Map[S2

BZ, M]0. By [ f ] we denote a homotopy class in
Map[S2

BZ, M]0. As discussed in the main text (see Sec. V) and
in Appendix B 2 (in the context of coset spaces), there may
be the possibility of the Berry phases and monopole charges
interacting. This interaction is captured by the action � of
π1(M ) on π2(M ), i.e.,

� : π1(M ) → Aut[π2(M )] (C1)

In order to say something meaningful about the action of
π1(M ) on π2(M ), we need to be able to define a product of
a path 	 : I → M and some f ∈ Map[S2

BZ, M]0. To this end,
we first define a map f � whose domain is a based cylinder
S1 × I (see Fig. 13) such that the region S1 × (∂I ) ∪ P × I
with point P ∈ S1 is mapped to m ∈ M. Such a map f � ∼ f ∈

195130-19



APOORV TIWARI AND TOMÁŠ BZDUŠEK PHYSICAL REVIEW B 101, 195130 (2020)

FIG. 13. A map f � : S1 × I → M such that the green portion,
i.e., S1 × (∂I ) ∪ P × I , is mapped to a base point m ∈ M.

Map[S2
BZ, M]0. This can be shown by explicitly constructing

the homotopy, cf. Fig. 14.
Furthermore it is straightforward to define a product be-

tween a based loop 	 : I → M and f �. This product is
achieved by stacking cylinders, and by thinking of 	 : I ×
S1 → M such that 	(x, θ ) = 	(x, θ ′) for all x ∈ I and all
θ, θ ′ ∈ S1(see Fig. 15). Therefore a path in BZ is viewed as
a cylinder (or a foliation of circles) such that each horizontal
slice is mapped to a single point in M. Similarly a product
structure can be defined for π2(M,m) by stacking cylinders
that correspond to a degenerate embedding of 2-spheres as
illustrated in Fig. 16.

In order to study the effect of π1(M ) on π2(M ), we
introduce a generalization of the notion of homotopy groups
wherein the notion of a base point is replaced with the notion
a base space. More precisely, let μ ⊂ M be a connected
subspace of M. Then we denote the second homotopy group
based on μ as the set ζ2(M, μ) = {[ f ] ∈ π2(M,m) ∀ m ∈ μ}
with the equivalence relation π2(M,m1) � [ f1] ∼ [ f2] ∈
π2(M,m2) if there exists a path 	 : I → M where 	(0) =
m1 and 	(1) = m2 such that [ f2] = [	]−1 ◦ [ f1] ◦ [	]. The
corresponding equivalence classes form a group which we
shall denote π2(M, μ). In particular, if μ ⊂ M contains a
nontrivial element of [γ ] ∈ π1(M ), then this implies

[ f ] ∼ [γ −1] ◦ [ f ] ◦ [γ ], (C2)

where [ f ] ∈ π2(M,m) and γ ∈ π1(M,m).
Next we will show that the action of π1(M ) on π2(M ) by

conjugation as in Eq. (C2) can be cast into the second Abe
homotopy group κ2(M,m). Firstly, it is helpful to notice that

FIG. 14. A map f � as in Fig. 13 is isomorphic to a map f ∈
Map[S2

BZ, M]0 via the above construction. The first horizontal arrow
corresponds to mapping the cylinder S1 × I to S2 such that the top
and bottom circles getted mapped onto chosen points in S2. The
second arrow maps S2 to itself such that the entire green portion gets
mapped to a single point.

FIG. 15. Maps f � and 	 ∈ Map[S1
BZ, M]0 can be composed by

stacking cylinders.

the conjugation of an element [ f �] ∈ π2(M,m′) by a path 	

from m to m′ can be understood as a stacking of cylinders as
illustrated in Fig. 17. The first (bottom) cylinder maps to a
path from m ∈ M (green point) to an arbitrary point m′ ∈ M
(red point), the second cylinder maps to 2-sphere at m′ while
the third cylinder maps to a path back from m′ to m. We
emphasize that m′ is an arbitrary point, a special case of which
is m = m′ which corresponds to Eq. (C2).

The second Abe homotopy group is defined in a similar
construction as above. Consider the space of maps of the form

f a : S1 × I → M

: S1 × (∂I ) �→ m ∈ M. (C3)

Since f a(S1 × ∂I ) = m, this can be thought of as a map from
a pinched torus to M. We denote the set of all such maps
K2(M,m). The set of equivalence classes of maps of the kind
f a form a based Abe homotopy groups which we shall denote
κ2(M,m) (Fig. 18). It was shown in Ref. [150] that this group
is a semidirect product κ2(M,m) = π1(M,m) � π2(M,m),
where πp(M,m) is the based pth homotopy group of M.

The Abe homotopy group fits in the following short exact
sequence

0 → π2(M,m)
�∗−→ κ2(M,m)

�∗−→ π1(M,m) → 0. (C4)

Here, following [150] we sketch a constructive proof of the
exactness of the above sequence. Further details can be found
in [149]. We sketch this in two steps.

(1) Construct an injection �∗ : π2(M,m) → κ2(M,m):
Given some f ∈ Map[S2

BZ, M]0 we can obtain f a = f ◦ ψ2 ◦
ψ1 ∈ K2(M,m) as illustrated in Fig. 19. This map is in-
jective as there is an explicit construction for each f ∈
Map[S2

BZ, M]0. However, it is not a surjection as the map ψ2

does not exist for all f a ∈ K2(M,m). In fact, the obstruction
for the existence of such a map is exactly π1(M,m). We think
of �∗ as a homomorphism of groups

�∗ : π2(M,m) → κ2(M,m)

: [ f ] �→ [ f ◦ ψ2 ◦ ψ1]. (C5)

FIG. 16. Maps f �

1,2 ∈ Map[S2
BZ, M]0 can be composed by stack-

ing cylinders such that all the marked (green) portions are mapped to
the marked (green) point m ∈ M.
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FIG. 17. The action of π1(M,m) on π2(M,m) is understood as a
concatenation of cylinders. The bottom cylinder and the top cylinder
are foliations of circles, where each foliation is mapped to the same
point in M. The bottom and the top circles are mapped to the green
point in M. Similarly, the middle cylinder is essentially a map from
S2 to M with all the red regions mapped to the (arbitrary) red point
in M.

(2) Construct a surjective map �∗ : κ2(M,m) →
π1(M,m): First, we fix a point P ∈ S1 and construct
a map �∗ : f a(x, t ) → 	(t ) := f a(P, t ) where x ∈ S1

and t ∈ I . Since 	(0) = 	(1) = m, it follows that
	 ∈ Map[S1

BZ, M]0. Furthermore, �∗([ f a]) = [	] therefore
�∗ : κ2(M,m) → π1(M,m). Similarly we can construct an
inclusion ι : π1(M,m) ↪→ κ2(M,m) by simply thickening a
closed loop into a pinched torus as illustrated in Fig. 20.

Therefore we have shown that im(�) = ker(�). Equiva-
lently, κ2(M,m) can be expressed as ([	], [ f ]) ∈ π1(M,m) ⊗
π2(M,m) with the composition rule

([	], [ f ]) ∗ ([	′], [ f ′]) = ([	 ◦ 	′], [	′� f ◦ f ′]), (C6)

where [	′� f ] ≡ [	′] ◦ [ f ] ◦ [	′]−1. In the presence of non-
trivial Berry phase, monopole charges and nodal lines should
therefore be labeled by conjugacy classes of the Abe homo-
topy group rather than π2(M,m) and π1(M,m), respectively.

Before moving on to concrete computations pertaining to
the Abe homotopy groups of spaces of Hamiltonians which
are of immediate interest in the present work, we make a
few comments about a more general mathematical framework
of which the Abe homotopy groups are a part of. The first
and the second homotopy groups along with some additional
data can be reformulated as a categorification of the funda-
mental group known as the strict fundamental 2-group or
fundamental crossed module [173–178]. More precisely this
object includes (first and second) homotopy groups of the
reduced CW-complex representing a space (denoted M∗), the
action � along with an additional piece of data which is a
homomorphism from the first to the second homotopy group
of M∗. Together, these four pieces of data need to satisfy some
coherence relations that ensure they work well together. Fur-
thermore, equivalence classes of strict fundamental 2-groups
are described by so-called weak 2-groups [175] that include

FIG. 18. Abe homotopy group κ2(M,m) can be defined as ho-
motopy classes of based maps from a pinched torus to M. As a set,
κ2(M,m) can be identified with π1(M,m) × π2(M,m), however the
product structure on κ2(M,m) corresponds to a semidirect product.

FIG. 19. There exists an injection �∗ : π2(M,m)→κ2(M,m)
such that �∗(g) = ga = ψ1 ◦ ψ2 ◦ g. The map ψ1 shrinks the top and
the bottom circles of the cylinder to the north and the south poles of
the 2-sphere, respectively, while ψ2 is a smooth map that sends the
north pole to an arbitrary point on the 2-sphere while keeping the
south pole fixed.

π1(M,m), π2(M,m), �, and [β] ∈ H3
�(π1, π2). The last piece

of data encodes the violation of associativity of π1 within the
weak 2-group. Recently there has been much interest in the
appearance of 2-groups within the context of gauge theories
[179–183]. It is tempting to cast the topological interactions of
Berry phases and monopole charges within the framework of
homotopy 2-groups. In particular the physical interpretation
of [β] in the present context remains intriguing. We postpone
this for a future work.

APPENDIX D: ACTION OF π1 ON π2

IN NODAL CLASS AI

In this Appendix, we explicitly compute the action of
π1(M,m) on π2(M,m) for the cases where M ≡ MAI

(n,�) are
the spaces of spectrally flattened Hamiltonians in symmetry
class AI, given by Eq. (6) of the main text. The corresponding

FIG. 20. There exists an inclusion ι : π1(M,m) ↪→ κ2(M,m) ob-
tained by “thickening” a closed loop into a pinched torus.
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homotopy groups are listed in Tables I of the main text [98].
Case by case, we consider situations with different number
of occupied and unoccupied bands, which exhibit different
group structure of the monopole charge. For simplicity, we
drop the base point m from our notation in this Appendix.
Nevertheless, the reader should keep in mind that that we
always consider based homotopy groups.

The general strategy employed to compute the action is
adapted from Mermin [144], and involves writing M as a coset
space G/H with πi(G) = 0 for i = 0, 1, 2. Using Eqs. (A5)
and (A6), we first construct the first and the second homotopy
groups of M. The generators of π0(H) and π1(H) correspond
to the generators of π1(M ) and π2(M ), respectively. The
action of π1(M ) on π2(M ) is extracted by looking at the
action of π0(H) on π1(H) through conjugation, as outlined in
Appendices B 2 and C. The results presented in this Appendix
are consistent with those obtained in Sec. V of the main text
using the non-Abelian topological charge.

1. Models with 2 + 1 bands

According to Eq. (6) of the main text, Hamiltonians H(k)
of nodal class AI with two occupied and one unoccupied
bands constitute the space [98]

MAI
(1,2) = O(3)/O(2) × O(1). (D1a)

To derive its homotopy groups, it is convenient to rewrite this
space as [65,144]

MAI
(1,2) = SO(3)/D∞ = SU(2)/D̄∞. (D1b)

To get from Eq. (D1a) to Eq. (D1b), we first narrowed our
attention to the connected component of the group of trans-
formations (and we performed the corresponing restriction in
the isotropy subgroup). In the second step, we constructed the
simply connected double cover of the group of transforma-
tions (and we performed the corresponding lift in the isotropy
subgroup).

Let us discuss these two steps in more detail. First, the
quotient D∞ < SO(3), called the infinite dihedral group,
consists of O(2) × O(1) matrices with positive determinat.
Explicitly,

R0(α) = eαL3 =
⎛⎝cos α − sin α 0

sin α cos α 0

0 0 1

⎞⎠ (D2a)

and

R1(α) = eαL3 eπL1 =
⎛⎝cos α sin α 0

sin α − cos α 0

0 0 −1

⎞⎠, (D2b)

where α ∈ [0, 2π ). The matrices {Li}3
i=1 form the basis of

Lie algebra of so(3), and they can be described using the
Levi-Civita symbol as (Li ) jk = −εi jk [184]. As a topological
space, D∞ looks like a disjoint union of two circles. We
set the subscript a ∈ {0, 1} of Ra(α) according to the corre-
sponding element of the zeroth homotopy group π0(D∞) =
D∞/SO(2) = Z2.

The second step in Eq. (D1b) is achieved by replacing the
generators

so(3) � Lj �−→ t j = − i
2σ j ∈ su(2), (D3)

where {σ j}3
j=1 are the Pauli matrices. This replacement pre-

serves the structure constants of the Lie algebra, and yields
the simply connected covering group Spin(3) = SU(2) upon
exponentiation [184]. Performing the same replacement in the
isotropy subgroup leads to

R̄0(α) = eαt3 =
(

e−i α
2 0

0 ei α
2

)
(D4a)

and

R̄1(α) = eαt3 eπt1 =
(

0 −ie−i α
2

−iei α
2 0

)
, (D4b)

where α ∈ [0, 4π ). The matrices in Eqs. (D4) together con-
stitute the double point group D̄∞ < SU(2). As a topological
space, D̄∞ is still homeomorphic to a disjoint union of two
circles. The subscript of R̄a(α) is again chosen according to
the corresponding element of π0(D̄∞) = Z2. We remark that
we use the horizontal bar, as in R̄a(α), to indicate double point
symmetries throughout the rest of the appendices.

By applying the identities from Eqs. (A5) and (A6) in
Appendix A 2, it follows that

π1
(
MAI

(1,2)

) = π0(D̄∞) = Z2, (D5a)

π2
(
MAI

(1,2)

) = π1(D̄∞) = Z, (D5b)

which correspond to the Berry phase and to the monopole
charge, respectively. It remains to be checked whether the
Berry phase induces a nontrivial action on the monopole
charge. To that end, it can be checked that

R̄b(0)R̄a(α)R̄−1
b (0) = R̄a((−1)bα), (D6)

i.e., the conjugation with a nontrivial element b = 1 of
π1(MAI

(1,2)) reverses the angle of rotation, which determines the
equivalence classes in π2(MAI

(1,2)). Comparing to Eq. (B3b) of
Appendix B 2, we say that the action induced by a nontrivial
element of group (D5a) on group group (D5b) is nontrivial.
In physical terms, we find that the sign of the monopole
charge is reversed when it is carried along a closed path with a
nontrivial Berry phase. This agrees with our findings obtained
in Sec. V using the non-Abelian topological charge.

2. Models with 2 + 2 bands

We want to rephrase the space of Hamiltonians

MAI
(2,2) = O(4)/O(2) × O(2) (D7)

as G/H, where G is a simply connected Lie group. Similar
to the case of 2 + 1 bands, we first narrow our attention to
rotations with positive determinant. This lowers the group of
transformations to SO(4). The restricted isotropy subgroup
corresponds to the subset of O(2) × O(2) matrices with posi-
tive determinant, namely

R0(α, β ) = R2D(α) ⊕ R2D(β ), (D8a)

R1(α, β ) = [σ3R2D(α)] ⊕ [σ3R2D(β )], (D8b)
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where

R2D(ϕ) =
(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)
(D9)

describes rotations of a plane. From a topological perspective,
the group of matrices in Eqs. (D8) looks like a disjoint union
of two tori. The subscript of Ri(α, β ) corresponds to the zeroth
homotopy group of this group.

We further need to find the lift of the isotropy subgroup
into the double cover Spin(4) ∼= SU(2) × SU(2) ≡ G [185],
because SO(4) itself is not simply connected. To achieve this,
first note that the generators of SO(4)

L1 =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 −1 0

0 +1 0 0

0 0 0 0

⎞⎟⎟⎟⎠; M1 =

⎛⎜⎜⎜⎝
0 0 0 −1

0 0 0 0

0 0 0 0

+1 0 0 0

⎞⎟⎟⎟⎠,

L2 =

⎛⎜⎜⎜⎝
0 0 +1 0

0 0 0 0

−1 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠; M2 =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 −1

0 0 0 0

0 +1 0 0

⎞⎟⎟⎟⎠,

L3 =

⎛⎜⎜⎜⎝
0 −1 0 0

+1 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠; M3 =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 0 −1

0 0 +1 0

⎞⎟⎟⎟⎠
fulfill the commutation relations

[Li, Lj] = εi jkLk, [Mi, Mj] = εi jkLk, [Li, Mj] = εi jkMk .

(D10)

Clearly, this is not an ideal basis to relate so(4) to the direct
sum su(2) ⊕ su(2). However, linear combinations

Xi = 1
2 (Li + Mi ) and Yi = 1

2 (Li − Mi ) (D11)

form an so(4) basis with commutation relations

[Xi, Xj] = εi jkXk, [Yi,Yj] = εi jkYk, [Xi,Yj] = 0. (D12)

This coincides with the commutation relations of

X̄i =
(

− i

2
σi

)
⊕ 0 and Ȳi = 0 ⊕

(
− i

2
σi

)
, (D13)

which form a natural basis of Lie algera su(2) ⊕ su(2).
Now that we know how to perform the lifts from SO(4)

to SU(2) × SU(2), we express the elements of the isotropy
subgroup in Eqs. (D8) using the so(4) generators as

R0(α, β ) = eαL3 eβM3

= e(α+β )X3 e(α−β )Y3 , (D14a)

R1(α, β ) = eπM2 eαL3 eβM3

= eπX2 e(α+β )X3 e−πY2 e(α−β )Y3 . (D14b)

By replacing the generators with those in Eq. (D13), we obtain
the elements of the isotropy subgroup H < G,

R̄0(α, β ) = e(α+β )X̄3 e(α−β )Ȳ3 , (D15a)

R̄1(α, β ) = eπ X̄2 e(α+β )X̄3 e−πȲ2 e(α−β )Ȳ3 , (D15b)

where α, β ∈ [0, 4π ), and the group of transformations G =
SU(2) × SU(2) is simply connected.

From the topological perspective, the isotropy group within
SU(2) × SU(2) still looks like a disjoint union of two tori.
The subscript of R̄i(α, β ) is chosen according to the corre-
sponding element of the zeroth homotopy group. Using the
relations in Eqs. (A5) and (A6), we find

π1(MAI
(2,2)) = π0(H) = Z2, (D16a)

π2(MAI
(2,2)) = π1(H) = Z ⊕ Z, (D16b)

Furthermore, an explicit calculation reveals that

R̄−1
b (0, 0)R̄a(α, β )R̄b(0, 0) = R̄a((−1)bα, (−1)bβ ), (D17)

implying a nontrivial action of π1 on π2, namely one that flips
the sign of both of the Z monopole charges.

3. Models with 3 + 2 bands

In analogy to the previous two cases, next we study models
with n = 3 occupied and � = 2 unoccupied bands. The rele-
vant space of Hamiltonians is

MAI
(3,2) = O(5)/[O(3) × O(2)]. (D18)

Following Mermin [144], we aim to express MAI
(3,2) as G/H

with a simply connected Lie group G. To that end, we first
limit our attention to the connected component

G̃ = SO(5) < O(5) (D19a)

of the group of transformations, which narrows the isotropy
subgroup to the semidirect product

H̃ = (SO(3) × SO(2)) � Z2 < O(3) × O(2). (D19b)

Here, the group Z2 < SO(5) is generated by a direct sum of
a matrix in O(3) and of a matrix in O(2), which both have
negative determinant and which both square to +1.

To further describe the isotropy subgroup, recall that
SO(5) has 10 generators Li j with 1 � i < j � 5, which have
matrix components

(Li j )ab = −δiaδ jb + δibδ ja, (D20a)

and which fulfill the commutation relations

[Li j, Lk�] = δikL j� + δ j�Lik − δi�δ jk − δ jkLi�. (D20b)

Let us assume that the SO(3) matrices act on the first three
coordinates of R5, while the SO(2) matrices act on the last
two coordinates. Then all the elements of SO(3) × SO(2)
can be expressed by exponentiating linear combinations of
{L12, L23, L13, L45}. Furthermore, we can set the generator of
the Z2 subgroup to be diag (1, 1,−1, 1,−1) = eπL35 . If we
define a vector L123 = (L12, L23,−L13), then all the elements
of H̃ in Eq. (D19b) can be expressed as

R0(n, α; β ) = eαn·L123 eβL45 , (D21a)

R1(n, α; β ) = eπL35 eαn·L123 eβL45 , (D21b)

where n is a unit vector in R3, and α, β ∈ [0, 2π ). Since the
triplet L123 is isomoprhic to Lie algebra so(3), it is manifest
from Eqs. (D21a) that both connected components of H̃ are
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topologically equivalent to SO(3) × SO(2). The subscript of
Ri(n, α; β ) indicates the corresponding element of π0(H̃).

In order to implement Mermin’s recipe, we require
πi(G) = 0 for i = 0, 1, 2. Since π1(SO(5)) = Z2, we need to
consider the double cover of G̃ = SO(5), i.e., Spin(5), which
fits into the short exact sequence

0 → Z2 → Spin(n) → SO(n) → 0. (D22)

It can be checked using the long exact of homotopy groups
that G = Spin(5) satisfies the required conditions. The lift H
corresponding to H̃ retains two connected components. Both
components are diffeomorphic to the lift of SO(3) × SO(2),
which is topologically equivalent to S3 × S1. Therefore

H � S0 × S1 × S3. (D23)

with homotopy groups

π0(H) = π1
(
MAI

(3,2)

) = Z2, (D24a)

π1(H) = π2
(
MAI

(3,2)

) = Z, (D24b)

in agreement with the results of Ref. [98]
To extract the action of the first homotopy group on the

second, we need to explicitly lift the matrices Ri(n, α; β ) ∈
H̃ ⊂ SO(5) to the covering group Spin(5). To achieve this,
we note that replacing the generators

Li j �−→ ti j = − 1
4 [γi, γ j], (D25)

where we employed Dirac matrices {γi}5
i=1 obeying {γi, γ j} =

2δi j , preserves the structure constants defined by Eq. (D20b).
Matrices ti j with 1 � i < j � 5 form the basis of Lie algebra
spin(5) [186]. If we again organize (t12, t23,−t13) ≡ t123, then
the elements of the isotropy subrgroup H are obtained through
exponentiation as

R̄0(n, α; β ) = eαn·t123 eβt45 , (D26a)

R̄1(n, α; β ) = eπt35 eαn·t123 eβt45 . (D26b)

with α, β ∈ [0, 4π ). The homotopy classes of π1(MAI
(3,2)) are

encoded by the subscript of R̄i(n, α; β ), while the homotopy
classes of π2(MAI

(3,2)) correspond to the winding of the angle
β. To check the action, we choose a basis

γ1 = σ1 ⊗ τ1, γ2 = σ1 ⊗ τ2, γ3 = σ1 ⊗ τ3,

γ4 = σ2 ⊗ 1, and γ5 = σ3 ⊗ 1. (D27)

An explicit calculation reveals that

R̄b(n1, 0; 0)R̄a(n2, 0; 0)R̄−1
b (n1, 0; β )

= R̄a(n2, 0; (−1)bβ ). (D28)

Hence, the nontrivial element of π1(MAI
(3,2)) = Z2, corre-

sponding to Berry phase π , acts on the monopole charge
π2(MAI

(3,2)) = Z nontrivially by flipping the sign.

4. Models with 3 + 3 bands

Next we consider the situation with three occupied and
three unoccupied bands, when

MAI
(3,3) = O(6)/[O(3) × O(3)]. (D29)

Following the same strategy as in the previous section, we
first narrow our attention to G̃ = SO(6), which decreases the
isotropy subgroup to

H̃ = (SO(3) × SO(3)) � Z2 (D30)

in complete analogy with Eq. (D19b). Its homotopy groups
are

π1(H̃) = Z2 ⊕ Z2 and π0(H̃) = Z2.

However, since SO(6) is not simply connected, we have to
perform the lift to the covering group Spin(6) = G. We fur-
ther need to identify the lift H corresponding to H̃. At this step,
our analysis starts to differ from the previous subsections.
Especially, it is important to notice that the double group of
SO(3) × SO(3) is not diffeomorphic to SU(2) × SU(2). The
reason is that 2π rotation in the first resp. in the second SO(3)
factor [which both correspond to 1 ∈ SO(6)] should be lifted
to the same element −1 ∈ Spin(6). In contrast, the naïve lift
wrongly produces different matrices (−1) ⊕ 1 and 1 ⊕ (−1)
in SU(2) × SU(2).

To see how this problem arises, we need to recall basics of
singular homology theory [156]. For a given manifold M, a
p-cycle a ⊂ M is a p-dimensional submanifold of M without
boundary, and a homology class [a] is an equivalence class
of p-cycles modulo boundaries. The torsion coefficient is the
smallest positive integer T such that composing T copies of a
is homologous to the trivial or zero cycle. Homology classes
of p-cycles form the pth (singular) homology group of M,
which we denote Hp(M ). Furthermore, since circles S1 are
1-cycles, there is a relation between π1(M ) and H1(M ). As-
suming that M is path-connected, it follows from the Hurewitz
theorem that H1(M ) is equal to the Abelianization of π1(M ).

Let us denote the two generators of π1(H̃) = H1(H̃) as [ã]
and [b̃]. We may indicate the generators explicitly by writing
the group as Z[ã]

2 ⊕ Z[b̃]
2 . The space SO(3) � RP3 has, up

to homology, a single 1-cycle with torsion coefficient T = 2
[156]. Without loss of generality we may pick this cycle to
be the closed path 	tor. that maps α ∈ [0, 2π ] to eαL1 . We
set the generators [ã] and [b̃] to be the equivalence classes
of an analogous path inside the first resp. inside the second
SO(3)-factor of H̃ in Eq. (D30). Importantly, the lift of 	tor.

in SU(2) is not a 1-cycle, but an open-ended path connecting
1 to −1. However, we get a cycle by going around 	tor.

twice, although this is homologous to zero. Let us now apply
analogous reasoning to the lift H. By composing the lifts
[a], [b] of [ã], [b̃], we get three candidates for 1-cycles in H,
namely 2[a], 2[b] and [a] + [b]. The first two are homologous
to zero by the same argument as before. However, [a] + [b] is
nontrivial, and generates a nontrivial first homology (as well
as homotopy) group Z[a]+[b]

2 .
After this detour, we can confidently state that

π1(H) = π2
(
MAI

(3,3)

) = Z2, (D31a)

π0(H) = π1
(
MAI

(3,3)

) = Z2, (D31b)

The presented discussion trivially generalizes to arbitrary
n, � � 3, as anticipated in the stable limit of nodal class AI.
In this case, we do not need to compute the action of π1 on
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π2, since Z2 does not admit nontrivial automorphisms (i.e.,
Aut[Z2] = 0).

APPENDIX E: ACTION OF π1 ON π2

IN NODAL CLASS CI

We finally consider nodal class CI, which also supports
a monopole charge [98,112]. In addition to PT symmetry,
systems in this symmetry class also exhibit a chiral sym-
metry C that anticommutes with the Bogoliubov-de Gennes
Hamiltonian at every k. This nodal class is physically real-
ized by PT -symmetric singlet superconductors without SOC.
The chiral symmetry reduces the space of Hamiltonians to
[25,187]

MCI
(n) = U(n)/O(n), (E1)

which is called the Lagrangian Grassmannian. We are inter-
ested in their first and the second homotopy groups, as well as
in the action of the first group on the second.

1. General considerations

In order to compute the homotopy groups of the
Lagrangian Grassmannian, it is useful to write it in terms of a
fibration [188]

0 → O(n) → U(n) → U(n)/O(n) → 0. (E2)

Since the zeroth/first/second homotopy groups of both O(n)
and U(n) are known, we may use the long exact sequence of a
fibration (A3) to extract the homotopy groups of the quotient
space. First let us focus on the following section of the long
exact sequence:

π2[U(n)]
j2→ π2[U(n)/O(n)]

δ2→ π1[O(n)]
i1→ π1[U(n)].

(E3)

Since π2(G) = 0 for any Lie group [171], im( j2) = 0 =
ker(δ2) which implies im(δ2) = π2[U(n)/O(n)]. Furthermore
the map π1[O(n)] → π1[U(n)] has image 0 as π1[U(n)] cor-
responds to the winding number of the phase of the determi-
nant, while the determinant of O(n) matrices is constant. Then
using exactness, we learn that

π2[U(n)/O(n)] = π1[O(n)] =
{
Z, if n = 2

Z2, if n > 2
. (E4)

Furthermore, the other unknown homotopy group fits into
a short exact sequence

0 → Z
j1→ π1[U(n)/O(n)] → Z2 → 0. (E5)

There are two possible group extensions of Z2 by Z: (i) ei-
ther the unknown homotopy group π1[U(n)/O(n)] is Z ⊕ Z2

(in which case im j1 = Z × {0} < Z ⊕ Z2, where {0} is the
identity of the Z2 factor), (ii) or it is π1[U(n)/O(n)] = Z
(in which case im j1 = 2Z are even integers). In both cases,
j1 is not surjective. In order to narrow in on one of the
two possibilities, we take a look at the cokernel of j1, i.e.,
π1[U(n)/O(n)]/im( j1). This comprises of a path in U(n) that
connects a matrix with determinant +1 to a matrix with deter-
minant −1. Within U(n), this is an open-ended path, so it is
not classified by homotopy group. However, upon quotienting

the O(n) subgroup, this path becomes closed. This is the
nontrivial generator of π1[U(n)/O(n)]. The crucial question
is what is the square of this element. If it were trivial within
π1[U(n)/O(n)], then it would follow that π1[U(n)/O(n)] =
Z ⊕ Z2. However, this is not the case! Instead, taking two
copies of this path produces a closed path in U(n) with wind-
ing number +1. Since ker j1 = 0, this element is nontrivial
inside π1[U(n)/O(n)] too, implying that

π1[U(n)/O(n)] = Z. (E6)

2. Models with 2 + 2 bands

To compute the action for MCI
(2) = U(2)/O(2), we employ

a different strategy than in Appendix D. Recall that two
matrices u1,2 ∈ U(2) produce the same element of MCI

(2) (i.e.,
they are equivalent, denoted u1 ∼ u2) if they differ by an
orthogonal matrix o ∈ O(2). We indicate such an equivalence
by writing

∀u ∈ U(2) : ∀o ∈ O(2) : u ∼ o · u. (E7)

Note also that each element u ∈ U(2) can be written as u =
e2π i f s where f ∈ R and s ∈ SU(2). We indicate this decompo-
sition by writing u = [ f | s]. However, such a decomposition
is not unique. Performing a half-integer shift of f while
flipping the sign s �→ −s encodes the same u, i.e., [ f | s] =
[ f + 1

2 | − s]. Furthermore, since s and −s differ by an O(2)
transformation, we find an equivalence

∀ f ∈ R : ∀s ∈ SU(2) : [ f | s] ∼ [ f + 1
2 | s]. (E8a)

The half-integer (rather than integer) shifts come from the ZN

quotient in U(N ) = SU(N ) × U(1)/ZN for N = 2.
The advantage of the encoding u = [ f | s] is that G = R ×

SU(2) is simply connected, thus fulfilling the assumptions of
Eqs. (A5) and (A6). Investigating the equivalence relations,
such as the one in Eq. (E8a), allows us to comprehend the
isotropy subgroup H < G. To achieve our goal, we decom-
pose using the sign of the determinant O(2) = SO+(2) ∪
SO−(2), and we denote the corresponding elements as o+,
respectively, o−. It follows from Eq. (E7), and by checking
the determinants, that

[ f | o+ · s] ∼ [ f | s], (E8b)

[ f | o− · s] ∼ [
f + 1

4 | s
]

(E8c)

for all f ∈ R, s ∈ SU(2), and o± ∈ SO±(2). These relations
come in addition to Eq. (E8a). The three Eqs. (E8) implicitly
describe the isotropy subgroup of MCI

(2) = G/H with a simply
connected G = R × SU(2).

Note that the isotropy subgroup H has only two generators:
(1) an infinitesimal o+ ∈ SO+(2) rotation of s, corresponding
to Eq. (E8b), and (2) a quarter-integer shift of f followed
by a multiplication of s by σ3 ∈ SO−(2), corresponding to
Eq. (E8c). The relation in Eq. (E8a) is obtained by applying
the second generator twice. The two generators allow us to
express each element h ∈ H using two pieces of information:
a quarter integer n/4, and an O(2) matrix (σ3)po+(α) with p ∈
{0, 1}, and α ∈ [0, 2π ). Furthermore, a shift by odd multiples
of 1/4 always brings about one factor of σ3, meaning that the
power p = p(n) equals the parity of n. We indicate these two
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pieces of information concisely in the form h = h(n, α). This
element of H transforms a general element of G as

h(n, α) : [ f | s] �→ [
f + n

4 | (σ3)p(n)o+(α)s
]
. (E9)

By applying the action of elements in H on [ f | s] ∈ G twice
[one needs to be careful about correctly commuting a power
of σ3 with o+(α)], we find the composition rule

h(n, α) ◦ h(m, β ) = h(n + m, (−1)p(m)α + β ). (E10)

The inverse elements are given by

h(n, α)−1 = h(−n,−(−1)p(n)α), (E11)

which we use below to derive the action of π1 on π2.
To see what the previous discussion implies for the homo-

topy groups, recall that π0(H) counts the disjoint components
of H. We now know that disjoint components of H correspond
to the quarter-integer shifts of f , on which one naturally
defines a Z group structure, cf. Eq. (E10). Therefore

π0(H) = π1
(
MCI

(2)

) = Z, (E12)

which gets generated by h(1, 0). Furthermore, π1(H) counts
the winding number of α in SO+(2) � S1 for any connected
component with a fixed value of n. Therefore

π1(H) = π2
(
MCI

(2)

) = Z. (E13)

With this information, we can finally study the action of π1 on
π2. An explicit calculation reveals that

h(n, 0) ◦ h(m, α) ◦ h(n, 0)−1 = h(m, (−1)p(n)α). (E14)

Therefore, closed paths characterized by odd values of n flip
the sign of α, thus reversing the sign of the second-homotopy
charge. The physical manifestation is that the monopole
charge of NL rings in singlet superconductors [98] changes
sign when carried along a path with a nontrivial winding
number.
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