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Majorana zero modes in a quantum wire platform without Rashba spin-orbit coupling
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We propose a platform for engineering helical fermions in a hybridized double-quantum-wire setup. When
our setup is proximity coupled to an s-wave superconductor, it can become a class D topological superconductor
exhibiting Majorana zero modes. The goal of this proposal is to expand the group of available Hamiltonians to
those without strong Rashba spin-orbit interactions which are essential to many other approaches. Furthermore,
we show that there exist electron-electron interactions that stabilize fractional excitations which obey Z3

parafermionic algebra.
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I. INTRODUCTION

Following two insightful theoretical proposals to realize
Majorana zero modes (MZMs) in quantum wires with strong
Rashba spin-orbit coupling [1–3], several experiments have
observed zero-bias conductance peaks which provide strong
support their existence [4,5]. Despite the success of this
particular proposal and a large number of subsequent works
which propose alternative platforms which might support
MZMs [6–10], it remains an open question as to which setup
will allow experiments to demonstrate the ultimate “smoking-
gun” signature of MZMs: braiding of MZMs to reveal their
non-Abelian statistics. One of the drawbacks of the Rashba
quantum-wire approach is the variable strength of the Rashba
coupling amongst materials and the fact that Rashba spin-orbit
coupling terms in the Hamiltonians break inversion symmetry.

In this paper, we propose a scheme for engineering MZMs
in a quantum-wire platform which does not rely on the appear-
ance of a Rashba spin-orbit coupling term in the low-energy
�k · �p Hamiltonian. Instead, we make use of the large variabil-
ity of effective Landé g factors in real materials (including
negative values) and the orbital-coupling of electrons to exter-
nal magnetic fields. The effective Landé g factor of electrons
in Bloch bands of periodic solids has for a long time [11,12]
been known to deviate from the bare value of gbare ∼ 2.
The interplay of lattice strain, quantum confinement, electron
interactions, and atomic spin-orbit coupling can lead to Landé
g factors nearly two orders of magnitude away from the bare
g-factor value and does not require inversion symmetry being
broken [13]. A recently proposed method to calculate the
effective Landé g factors using first-principles codes [14,15]
will help to further exploit this highly tunable degree of
freedom in engineering nanostructure proposals for MZMs.

Our paper is organized as follows. In Sec. II, we introduce
a model of two tunnel-coupled quantum wires with oppo-
site sign effective Landé g factors. We explore the energy
spectrum of this setup in an external magnetic field while
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accounting for both Zeeman coupling and the orbital coupling
of the electrons to the electromagnetic gauge field. We find
that the combined effect of spin-conserving interwire hopping
and a small magnetic field directed along the wires can lead
to emergent helical fermions, and we derive a low-energy
Hamiltonian to describe them. In Sec. III, we consider the
effects of interwire and intrawire pairing potentials, which
we take to originate from proximity coupling to the bulk
s-wave superconductor. We analytically construct the wave
functions of the MZMs which appear at the two ends of the
tunnel-coupled wires. We then remove the restriction of small
external magnetic fields along the wires and calculate the
topological phase diagram of our model using a Pfaffian rep-
resentation for the invariant. In Sec. IV, we analyze the effect
of strong electron-electron interactions by using bosonization
techniques and identify the conditions for fractional excita-
tions to appear. Finally, in Sec. V, we conclude and discuss
possible realizations.

II. ENGINEERING HELICAL FERMIONS
WITH MAGNETIC FIELDS

In this section, we describe how to engineer helical
fermions in a one-dimensional system which does not rely
on either Rashba spin-orbit coupling [2,3,16] or being on
the edge of a topological insulator phase of higher dimen-
sion [17,18]. We demonstrate that a low-energy subspace of
helical fermions can emerge in platforms consisting of two
quantum wires with opposite sign effective Landé g factors
when the wires are under the combined effects of orbital
coupling to an external magnetic field, and finite spin-flip
interwire electronic hopping. After the identification of the
low-energy Hamiltonian governing the helical fermions, we
add proximity coupling to an s-wave superconductor and
discuss the topological phase diagram of the system.

We begin by considering two quantum wires which are
sufficiently narrow that only a single (spin-degenerate) sub-
band is occupied in each wire. The two wires extend along
the x direction and are spatially separated at −y0 and y0 in the
y direction (see Fig. 1) and experience finite transverse and
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FIG. 1. Schematic diagram of the double nanowire platform. The
wires have effective Landé g factors of opposite signs. The wires
are closely spaced along the y direction by a distance 2y0 such
that a small interwire electron tunneling amplitude, t , is present.
The presence of a strong magnetic field in the z direction and the
particular gauge choice, �A = (−yBz, zBxsgn(y), 0), leads to shifts
in the band-energy minima which are in opposite directions in
momentum space for each of the two wires [see, e.g., Fig. 2 (a)].
These orbital shifts imitate the Rashba spin-orbit coupling effect.
The cooperative effect of a small staggered magnetic field in the
x direction, Bx , and the small spin-conserving interwire tunneling
amplitude, t , opens a gap between the lowest-energy and second-
lowest-energy subbands at px = 0, and gives a low-energy effective
Hamiltonian similar to the edge-states of two-dimension quantum
spin Hall insulators. When both wires are proximity-coupled to an
s-wave superconductor, Majorana quasiparticles can emerge. When
strong electron-electron interactions are accounted for, fractional
excitations become possible.

staggered in-plane magnetic fields, Bz and Bx, respectively.
We label the former as wire 1 and the latter as wire 2.
Before we consider adding interwire hopping, strong electron-
electron interactions, or proximity coupling to superconduc-
tors, each wire’s electronic properties are determined by their
effective mass, m1(2), and their effective Landé factor, geff

1(2).
The single-particle Hamiltonian of an electron in wire j is (at
this point) simply given by

Hwire j = 1

2mj

[
px − e

c
Ax(�r j )

]2
− geff

j μB

h̄
�S · �B, (1)

where Ax(�r j ) is the x component of the vector potential at the
position of an electron in the jth wire. The first term in Eq. (1)
is the kinetic energy. It is shifted in momentum due to the
orbital coupling to the transverse magnetic field. The second
term is the Zeeman coupling, where μB = eh̄/(2mec) is the
Bohr magneton with bare electron mass me. For simplicity,
we set effective mass in both wires to be equal, mi = mj = m.

The first important ingredient in our model is that we retain
the (often overlooked) orbital coupling of the electron to the
magnetic field (see Ref. [19] for an example where orbital ef-
fects are taken into consideration). We make the gauge choice
�A = (−yBz, zBxsgn(y), 0). Because of this orbital coupling,
the minima of the spectrum of Hwire j is shifted toward positive
momenta for wire j = 1 and toward negative momenta for
wire j = 2. The second important ingredient in our platform
is to use two wires which have opposite sign Landé factors,
sgn(geff

1 ) = −sgn(geff
2 ). The transverse magnetic field in the

z direction results in Zeeman splitting, where the spin-down
band in wire 1 is lowered in energy and the spin-up band
in wire 2 is lowered in energy. These two bands, which
have opposite spin, will form the basis for our low-energy

FIG. 2. Figures describing how the two-wire model yields heli-
cal fermions prior to introducing a finite superconducting proximity
coupling. Panels (a)–(c) are three schematic figures which exhibit
how the energy versus momentum band structure of the two-wire
setup evolves as Bz, t , and Bx are given nonzero values, respectively.
For definitions of Bz, t , Bx , and their values, refer to the main text.
In panel (d), we demonstrate that the lowest-energy band describes
helical fermions by plotting the projection of the electron spin in the
z direction against momentum. Transverse magnetic field, effective
electron mass, and orbital shift are set to Bz = 5, m = 1, and Ax = 2.
(a) Spectrum of the uncoupled bands, i.e., t = Bx = 0. Position of the
band minima are shifted due to the orbital shift Ax and lowest energy
value for each band are shifted due to Zeeman coupling. (b) Energy
spectrum when interwire hopping is turned on, t = 1.5 and Bx = 0,
which results in a gap opening, separating four bands into two
lower and higher energy bands. (c) Energy spectrum when in-plane
magnetic field is turned on, Bx = t = 1.5. This result in gaps opening
at px = 0 and isolating the lowest-lying band. (d) Expectation value
of the z component of spin in units of h̄

2 as a function of momentum
in the lowest-lying band. States with positive (negative) momenta are
spin down (up), forming a helical liquid.

subspace supporting helical fermions. At this point, our two
wires are uncoupled (i.e., unhybridized) and, furthermore,
the degeneracy between these two bands at px = 0 needs
to be lifted before we can obtain the desired helical fermions.
We can accomplish both of these goals by taking the wires
to be spaced closely enough for there to be a finite overlap
between the electron wave functions, which yields an inter-
wire spin-conserving hopping amplitude t . The gap opening at
E ∼ 10 near px = ±mBz/Ax in Fig. 2(b) demonstrates that
this hopping amplitude acts to hybridize electronic wave
functions of the two wires which have the same spin, but does
not hybridize electrons of opposite spin and therefore does
not open a gap at the px = 0 degeneracy point between the
lowest energy bands which are of opposite spin. To allow
spin-flip transitions when electrons hop between wires, we
add a finite Bx field, which is staggered in space to account
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for opposite Landé factors of two wires. Such a staggered
magnetic field can be realized by nanomagnets [20,21]. After
this addition, we observe a finite gap opening between the
lowest two energy bands in Fig. 2(c) for px = 0. When
both t and Bx are finite, the resulting second-quantized
Hamiltonian is

H�=0 =
∫

ψ†[H�=0]ψ dx, (2)

where ψ = (ψ1↑, ψ1↓, ψ2↑, ψ2↓)T and

H�=0 = p2
x + A2

x

2m
− μ − Ax px

m
ρz + Bzσzρz + Bxσx + tρx.

(3)
The Pauli matrices σ and ρ act on the spin and wire degrees
of freedom, respectively, and we have emphasized that no
proximity-induced pairing potential has yet been included
(i.e., � = 0). In Eq. (3) and Fig. 2, the units are chosen
such that e = c = μB = h̄ = 1 and the Landé factors are for
simplicity chosen to be equal in magnitude, and can thus
be absorbed into the components of the vector �B. When we
compare Eq. (3) with the Hamiltonians of quantum wires
with Rashba spin-orbit coupling [2,16,22], we observe that the
term (Ax/m)pxρz acts like spin-orbit coupling because of the
simultaneous presence of the large Bzσzρz term. Specifically,
the latter term acts to lower the energy of the up-spin (down-
spin) bands in wire 2 (wire 1), such that states with opposite
spin have equal energy but their wave function support is
now primarily residing in different wires. When only the

lowest-lying band is occupied in each wire, this Bzσzρz Zee-
man term enables the ρz matrix to effectively act on the spin
channel. Note that Hamiltonian Hwire j in Eq. (1) is symmetric
under inversion with respect to the center of the jth wire.
Therefore, we do not rely on inversion symmetry breaking (on
neither bulk nor structural inversion asymmetries) within each
wire to produce a sizable spin-orbit coupling [23]. However,
the overall system is still not inversion symmetric due to the
staggered magnetic field.

In the lowest energy band, the expectation value of the
spin z component, 〈Sz〉, takes values with 〈Sz〉 = sgn(px ), i.e.,
momentum states of positive (negative) sign have definite
down (up) spin states, as shown in Fig. 2(d). This illustrates
the formation of helical fermions in the isolated lowest energy
band. The Fermi energy sits inside the gap between the lowest-
energy and second-lowest energy bands in Fig. 2 when the
chemical potential is tuned via electrostatic gates near the
value

μgap = A2
x

2
−
√

B2
z + (Bx + t )2 +√B2

z + (Bx − t )2

2
. (4)

Next we want to find an effective Hamiltonian that de-
scribes the two lowest-energy bands so we can analyze the
topological properties of our model. We rearrange the basis of
the 4 × 4 Hamiltonian in Eq. (3) into (ψ1↓, ψ2↑, ψ1↑, ψ2↓)T

such that the upper-left block corresponds to the Hilbert space
that we want to project into, namely, the lowest two energy
bands spanned by the states (ψ1↓, ψ2↑):

H̃�=0 =

⎡⎢⎢⎢⎢⎣
−Bz − μ + (px−Ax )2

2m 0 Bx t

0 −Bz − μ + (px+Ax )2

2m t Bx

Bx t Bz − μ + (px−Ax )2

2m 0

t Bx 0 Bz − μ + (px+Ax )2

2m

⎤⎥⎥⎥⎥⎦. (5)

Now that we have written the Hamiltonian in a form

H̃�=0 =
[
H11 H12

H21 H22

]
, (6)

we can apply second-order perturbation theory to project the Hamiltonian onto the low-energy subspace of the two lowest energy
bands. This procedure relies on the energy scales of the of-diagonal Hamiltonians (i.e., Bx and t) being much smaller than
the energy scales of the diagonal Hamiltonians (i.e., ±Bz − μ + 1

2m (px ± Ax )2). The effective Hamiltonian in the low-energy
subspace is given by

Heff
�=0 = H11 + H12[H22]−1H21, (7)

which, when written out explicitly, looks like

Heff
�=0 =

⎡⎢⎢⎣−Bz − μ + (px−Ax )2

2m +
(

B2
x+t2

Bz−μ+(px−Ax )2/2m

)
2Bxt
(

Bz−μ+
(

A2
x+p2

x

)
/2m
)

(Bz−μ+(px+Ax )2/2m)(Bz−μ+(px−Ax )2/2m)

2Bxt
(

Bz−μ+
(

A2
x+p2

x

)
/2m
)

(Bz−μ+(px+Ax )2/2m)(Bz−μ+(px−Ax )2/2m) −Bz − μ + (px+Ax )2

2m +
(

B2
x+t2

Bz−μ+(px+Ax )2/2m

)
⎤⎥⎥⎦ . (8)

The off-diagonal terms in Eq. (8) provide the desired effective
coupling between spin-down states whose wave function is
primarily in the first wire and spin-up states whose wave-
function is primarily in the second wire, which to leading
order creates a gap at px = 0 which is ∼tBx/Bz. The addi-
tional terms appearing on the diagonals ∼(B2

x + t2)/Bz can

primarily be understood as a small correction to the global
zero of energy. We compare the eigenvalue spectra of H̃�=0

and Heff
�=0 in Figs. 3(a) and 3(b), respectively, which demon-

strates that the projection accurately captures the spectra of
the two lowest-lying bands in the energy window around the
near degeneracy at px = 0.
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FIG. 3. Plots of the energy spectra versus momentum, which
demonstrate that the low-energy Hamiltonian we derived in Eq. (8)
accurately reproduces the full four-band spectrum in the region
around the lowest energy band. This allows us to analyze the topolog-
ical transition (i.e., the gap opening and closing around px = 0) using
the more tractable 2 × 2 model. Panel (a) is the energy spectrum with
finite interwire hopping and in-plane magnetic field including all four
bands. All units and parameters are chosen to be same as Fig. 2(c).
Panel (b) is the energy spectrum of the projected Hamiltonian Heff

�=0.

III. PROXIMITY-INDUCED S-WAVE
SUPERCONDUCTIVITY AND EMERGENT

MAJORANA ZERO MODES

In this section, we will add intrawire and interwire su-
perconducting pairing terms to our Hamiltonian. We take
these terms to originate from proximity coupling to an s-
wave superconductor on which the two wires are placed (see
Fig. 1). And while we do not explicitly consider it in this
paper, we note that it has been demonstrated that power-
law superconducting order generated by interactions native
to the quantum wire can, under certain circumstances, still
yield Majorana quasiparticles at the wire’s ends [24,25]. We
use the low-energy model derived in the previous section to
analytically construct the MZM’s wave function in the regime
where interwire hopping and in-plane Zeeman energies are
small compared to the out-of-plane Zeeman energy. We then
relax the condition of small interwire hopping and small
in-plane Zeeman coupling and we numerically calculate the
topological phase diagram throughout different regions of pa-
rameter space using a Pfaffian formulation for the topological
invariant.

We begin by adding a momentum-independent (i.e., s-
wave) intrawire pairing potential, �1, and interwire pairing
potential, �2, to obtain our full 8 × 8 Bogoliubov-de Gennes
(BdG) Hamiltonian,

HBdG =
(

p2
x + A2

x

2m
− μ

)
τz

−
(

Ax px

m
ρz − Bzσzρz − Bxσx − tρx

)
τz

− (�1σy + �2σyρx )τy , (9)

where our basis here is defined by

ψ = (ψ1↑, ψ1↓, ψ2↑, ψ2↓, ψ
†
1↑, ψ

†
1↓, ψ

†
2↑, ψ

†
2↓)T , (10)

and where the Pauli matrices σ, ρ, and τ act on spin, wire,
and particle-hole degrees of freedom, respectively. As in
Eq. (3), we have chosen the units here such that e = c =
μB = h̄ = 1 and the Landé factors are equal in magnitude
and can be absorbed into the components of the vector �B for
convenience.

One can define the antiunitary charge conjugation and
time-reversal operators, C and T , as τxK and iσyK , respec-
tively, where K is the complex conjugation operator. The
former satisfies {C,H} = 0 whereas the latter does not sat-
isfy [T ,H] = 0. This is expected, as the system contains
magnetic field and hence the time-reversal invariance is ex-
plicitly broken. Since C2 = 1, our Hamiltonian H belongs
to the D class in the tenfold way [26,27]. In spatial di-
mension d = 1, systems in this class carry a Z2 topological
invariant.

A. Majorana zero modes in the low-energy
subspace defined by Bx/Bz � 1

Just as we obtained an effective Hamiltonian describing
the low-energy sector of our model in the absence of super-
conductivity (see Sec. II), we want to identify how �1 and
�2 combine with the other parameters of our model to create
a single effective pairing potential �∗ which acts within the
low-energy sector to create Cooper pairs from our helical
fermions. We again start by reordering the 8 × 8 Hamiltonian
HBdG of Eq. (10) into a equivalent matrix H̃BdG which acts on
the basis

ψeff = (ψ1↓, ψ2↑, ψ
†
1↓, ψ

†
2↑, ψ1↑, ψ2↓, ψ

†
1↑, ψ

†
2↓)T . (11)

The Hamiltonian is now organized into a block form,

H̃BdG =
[

H̃BdG,11 H̃BdG,12

H̃BdG,21 H̃BdG,22

]
, (12)

and we can again project onto the low-energy subspace by
restricting ourselves to the limit in which the energy scales
of the terms in off-diagonal blocks are small compared to the
diagonal terms. We again apply Eq. (7) to obtain the 4 × 4
BdG Hamiltonian for the low-energy subspace:

Heff
BdG = H̃BdG,11 + H̃BdG,12[H̃BdG,22]−1H̃BdG,21. (13)

We refer to Appendix A for the explicit, and rather lengthy,
form of the effective BdG Hamiltonian.

We can now begin to analyze the topological phases of the
effective model governed by Heff

BdG. The presence of a finite �2

guarantees that when the chemical potential is such that only
the lowest energy band is occupied (i.e., μ � μgap), then there
is always a finite gap in this band at the Fermi momentum
±pF [i.e., a pairing gap opens where the red dashed line
marking the Fermi energy intersects the lowest energy band in
Fig. 3(b)]. And the degeneracy between the lowest two energy
bands which appears at px = 0 when either Bx = 0 or t = 0,
is also gapped by a finite �2. Just as in the proposal using
a single quantum wire with strong Rashba spin-orbit [2], we
will demonstrate that a topological phase emerges when the
gap at px = 0 is dominated by the spin-flip interwire hopping
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term (∼tBx/Bz) instead of the superconducting pairing term.
To demonstrate the emergence of MZMs in the topological
phase, we expand Heff

BdG around px ∼ 0 up to linear order
to obtain Heff

BdG(px ∼ 0). Both Heff
BdG and Heff

BdG(px ∼ 0) have

highly complicated forms that are inconvenient to show ex-
plicitly; see Appendix A for the details of the projection to
and expansion of Heff

BdG. The resulting linearized effective
Hamiltonian is reparametrized to have the form

Heff
BdG(px ∼ 0) =

⎡⎢⎣−u∗ px − μ∗ t∗ �px −�∗
t∗ u∗ px − μ∗ �∗ �px

�px �∗ −u∗ px + μ∗ −t∗
−�∗ �px −t∗ u∗ px + μ∗

⎤⎥⎦. (14)

In Appendix A, we give the explicit definitions for the new
parameters �∗, t∗, and u∗. These new parameters represent the
effective superconducting pairing potential (�∗ ∝ �2 + ...),
the effective interwire hopping term combined with a spin flip
(t∗ ∝ Bxt/Bz + ...), and the effective velocity which imitates
the spin-orbit coupling strength in wires with Rashba cou-
pling (u∗ ∝ Ax/m + ...), respectively. The term �px comes
from a higher order correction, namely, a combination of the
intrawire coupling �1 and spin-flip term ∝ Bx, and for the
parameter space investigated in this paper it satisfies � 

�∗, t∗, u∗.

With the exception of the terms ∝�px, all the terms in
our effective model Eq. (14) have analogs to the terms which
appear in models of single quantum wires with strong Rashba
spin-orbit interactions (see, e.g., Ref. [2]). As such, we are
motivated to find the analytic form of the Majorana wave
function using the same procedure: We consider a spatial
variation of t∗ that generates two regions where the gap
at px = 0 is dominated either by t∗ or by �∗, and on the
boundary between these two regions MZMs emerge. More
explicitly, we use periodic boundary conditions and set t∗ =
�∗ + ax for a small connected interval around x = 0 and
t∗ = �∗ + a(l/2 − x) for a second small connected interval
around x = l/2. These two small intervals divide the circle of
length l into two regions with t∗ > �∗ and t∗ < �∗, where
t∗ is not varying. The necessity for the second interval stems
from considering periodic boundary conditions, wherein the
value of t∗ should match at 0 and l . As a result, we can easily
demonstrate that a MZM is bound to the small interval where
t∗ linearly varies. The zero energy MZM eigenvalue is found
by setting μ∗ = 0 and squaring the effective Hamiltonian,

[
Heff

BdG(px ∼ 0)
]2 =

⎡⎢⎢⎢⎣
ε iau∗ β ia�

−iau∗ ε ia� −β

β −ia� ε −iau∗

−ia� −β iau∗ ε

⎤⎥⎥⎥⎦,

(15)

where

ε = �∗2 + t∗2 + u∗2 p2
x + �2 p2

x (16)

and β = 2t∗�∗ − 2p2
xu. The terms iau∗ and ia� come from

the fact that the coupling t∗ now has a spatial dependence and,
due to the commutator [x, p] = i, these extra terms emerge. To
identify the zero-energy modes, we diagonalize Eq. (15) with

a unitary transformation defined by the rotation matrix:

U = 1

2
(iσz + τy − iσyτz − σyτx )

=

⎡⎢⎢⎢⎣
i
2 − 1

2 − i
2 − 1

2
1
2 − i

2 − 1
2 − i

2
i
2 − 1

2
i
2

1
2

− 1
2

i
2 − 1

2 − i
2

⎤⎥⎥⎥⎦. (17)

After diagonalizing the Hamiltonian, two out of the four
diagonal terms have the form of a simple harmonic oscillator,
namely, (u∗ + �)2 p2 + a2x2 ± a(u∗ + �), whereas the other
two diagonal elements have more complicated forms and are
not of interest to us. The corresponding eigenvalues are simply
given by E2 = 2a(u∗ + �)(n + 1/2) ± (u∗ + �)a. Depend-
ing on the sign of a, one or the other of the diagonals have a
n = 0 mode with zero energy. For any sign choice, we always
have two intervals in which one of the diagonals accommodate
the MZM. Although we keep the additional term �px in
Eq. (14), it does not affect the qualitative nature of the zero
modes. This effective term corresponds to a spin-triplet p-
wave superconducting pairing term and only appears in the
MZM wave function as a modification of the effective spin-
orbit coupling term u∗. Quantitatively, it increases (decreases)
the spread of the MZM wave function for � > 0 (� < 0) as
can be seen below.

The explicit form of the MZM can be found by apply-
ing the inverse transformation U −1 on the eigenvectors of
diagonalized matrix. Let a > 0 and consider the MZM at
x = 0, which corresponds to the eigenvector (0 1 0 0)T in the
diagonalized basis. Applying the inverse transformation gives
the following Majorana operator,

γ = γ † = 1/2(−ψ1↓ − iψ2↑ − ψ
†
1↓ + iψ†

2↑), (18)

which satisfies the defining property of a Majorana mode.
The spatial extent of the MZM is given by the well-known
n = 0 solution of the simple harmonic oscillator �(x) ∝
exp [−ax2/(2u∗ − 2�)].

B. Majorana zero modes for Bx/Bz � 1

In the last section, we identified the conditions for the
emergence of MZMs when our low-energy model is valid (i.e.,
when the energy scales associated with spin-conserving inter-
wire hopping and in-plane Zeeman coupling are much smaller
than the out-of-plane Zeeman coupling energy scale). We can
now ask whether or not a topological phase yielding emergent
MZMs can exist outside of the parameter space where the
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FIG. 4. Phase diagrams of the general Hamiltonian HBdG given in Eq. (10). Green (yellow) regions indicate the parameter values where
system is (not) topological, i.e., P f [H(px = 0)] < (�)0. Explicit definitions of the parameters are given in the main text. Panel (a) compares
the intrawire SC coupling �1 and in-plane magnetic field Bx , in which both are scaled with respect to transverse magnetic field Bz. The other
parameters are set to �2/�1 = 0.1, t/Bz = 0.1, Ax = √

0.16Bz, and δμ = 0. Panel (b) is plotted with the parameters �2/�1 = 0.1, t/Bz = 1,
Ax = √

0.16Bz, δμ = 0, and now �1 is scaled with respect to the interwire hopping amplitude, t . Panel (c) compares the strength of the in-plane
magnetic field with ratio of the interwire, �2, and intrawire, �1, SC couplings where �1/Bz = 0.1, t/Bz = 0.05, Ax = √

0.16Bz, and δμ = 0.
Finally, panel (d) compares the in-plane magnetic field and variation in chemical potential, δμ, with respect to interwire SC coupling with
�2/Bz = 0.01, �1/Bz = 0.1, t/Bz = 0.03, and Ax = √

0.16Bz.

low-energy model is valid. By numerically evaluating the Z2

topological invariant by using a Pfaffian representation [3,28],
we will answer this question in the affirmative.

We follow the procedure of Ref. [3] and look at the Pfaffian
of the skew-symmetric matrix HBdGτx, which has the same set
of eigenvalues. The Pfaffian of a skew-symmetric matrix gives
the square root of the determinant, which can be thought of
as multiplication of half of the eigenvalues [29]. The change
in sign of the Pfaffian indicates a gap opening and closing
transition implying a band inversion has occurred. This allows
one to build a topological invariant by comparing the signs of
the Pfaffian at px = 0 and px → ∞ [28]. The system is in
the topological superconducting phase and supports end-state

MZMs when the Pfaffian has opposite signs at these given
points,

Pf[HBdG(px = 0)τx] × Pf[HBdG(px → ∞)τx] = −1, (19)

and is in the trivial superconducting phase when the left-hand
side of Eq. (19) equals +1. We calculated the Pfaffian for
different px values by applying a freely available numerical
package [30]. We found that for a finite pairing potential �2

and for μ ∼ μgap, the Pfaffian is positive definite as px → ∞.
Hence, it is sufficient to look at only the sign of Pf[H(px =
0)τx]. This can be calculated analytically and is given by

Pf[HBdG(px = 0)τx] = A8
x

16m4
− A6

xμ

2m3
− A4

x

2m2

(
B2

x + B2
z + t2 − �2

1 − �2
2 − 3μ2)+ 2A2

x

m

((
B2

x + B2
z

)
μ − 2t�1�2 + t2μ

)
− 2A2

x

m

(
μ
(
�2

1 + �2
2 + μ2

))+ (2B2
z

(
t2 − �2

1 + �2
2 − μ2

)+ B4
x + B4

z + 2B2
x

(
B2

z − t2 − �2
1 − �2

2 − μ2
)

+ [(�2
1 + �2

2

)2 + (t − μ)2
][(

�2
1 − �2

2

)2 + (t + μ)2
])

. (20)

In Fig. 4, we present the topological phase diagram of
our system obtained using the Pfaffian formulation of the
topological invariant. As the parameter space is vast, we limit
our illustrations to cross sections of this space that yield some
important characteristics. In all panels of Fig. 4, the coupling
Ax is scaled by Ax → Ax

√
m and the chemical potential is set

to μ = μgap + δμ, where the first term is defined in Eq. (4)
and the second term describes variations. The yellow (green)
regions are where the system is trivial (topological) and on the
boundary between these regions a gap closing and reopening
takes place at px = 0 as the system undergoes a topological
phase transition.

The four panels of Fig. 4 reveal a number of interesting
results for us to discuss. Figure 4(a) confirms the presence
of the topological phase which we previously discovered in
Sec. III, wherein we derived an effective low-energy 4 × 4

BdG Hamiltonian which was valid in the limit of small Bx

and t . It is reassuring that the MZMs are also found when the
topological invariant is calculated by calculating the Pfaffian
of the full 8 × 8 BdG Hamiltonian. Note that the thin hori-
zontal yellow line in Figs. 4(a) and 4(b) is nothing other than
a symptom of our choice to fix �2 = 0.1�1 and �2 must
be finite for the gap in the lowest energy band (away from
px = 0) to be finite. In Fig. 4(b), we consider a large interwire
spin-conserving hopping term, t = Bz, which is outside of the
regime of validity for the low-energy model we derived using
second-order perturbation theory, but yet a topological phase
transition is still present. This is likely due to the fact that,
although our perturbation theory for the low-energy subspace
breaks down and we cannot use Heff

BdG, the physics of the
topological phase transition is still governed by a competi-
tion between two gapping sources of the near degeneracy at
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px = 0, and indeed the topologically nontrivial region in
Fig. 4(b) still satisfies 2�2 � tBx/Bz. We find in Fig. 4(c) that
when Bx < 2Bz, the interwire pairing potential should be less
than the intrawire pairing potential for a nontrivial phase to
emerge; �2 < �1 is indeed the case in almost all real world
systems. Finally, in Fig. 4(d), we demonstrate that there is an
almost constant window for varying the chemical potential,
i.e., δμ �= 0, which can be interpreted as some measure of
the gap in units of �2. This range appears to be linearly
proportional to the relative strength of t but independent of
Bx. Also, we observe that the topological phase persists for
even large values of in-plane Zeeman coupling, Bx/Bz > 1.

IV. EMERGENT FRACTIONAL EXCITATIONS

Ever since Kane et al. [31] demonstrated that electron-
electron interactions in a two-dimensional-array of tunnel-
coupled quantum wires can yield fractionally charged ex-
citations analogous to the anyonic excitations appearing in
fractional quantum Hall phases of two-dimensional electron
gases, numerous studies have applied the same approach for
generating topological phases and fractionalized quasipar-
ticles [22,32–37]. In this section, we incorporate electron-
electron interactions into our model using bosonization tech-
niques. We then discuss how and for which specific regions
of our model’s parameter space, these interactions generate
fractional zero modes that obey Z3 parafermionic algebra in
place of the MZMs which appear in the noninteracting system.

We begin by considering our model, Eq. (3), when the
density of electrons has been tuned by external electrostatic
gates so only the lowest energy band in Fig. 2(c) is occupied.
More specifically, we set the chemical potential such that
the Fermi energy lies below the gap separating the lowest
and second-lowest energy bands. We restrict ourselves to
considering electron-electron interactions whose strength, U ,
is much less than the energy difference, �Eband, of the lowest
energy band between its two degenerate band minima and the
gap to the second band. When the temperature is also signifi-
cantly less than this bandwidth (kBT 
 �Eband), the effective
Hilbert space of our model is then reduced to the electronic
states within the lowest energy band which are within a small
energy window near the four Fermi points ±kF ± kA, where kA

is the shift in the Fermi wave vector due to orbital coupling.
We can approximate the dispersion of the lowest energy band
(when the chemical potential is close to the doubly degenerate
band-edge) as two parabola, (px ± Ax )2/2m, and introduce a
Fermi wave vector to define the density of electrons in each
parabola, kF = ρi=1,2/π . Since the fermions in the lowest
energy band are helical [see Fig. 2(d)], the states in the two
parabola have opposite spin. The resulting model’s nonin-
teracting dispersion is then identical to Ref. [16]. Using the
standard bosonization scheme, we linearize the spectrum at
the four points, ±kF ± kA, which gives us two right movers
and two left movers, one for each spin channel (see Fig. 6 in
Appendix B).

In terms of the traditional spin-resolved charge-density and
current-density fields [38], ∇φ↑(↓) and ∇θ↑(↓), respectively,
the low-energy Hamiltonian can be written as

HB =
∑

i=C,S

∫
dx

2π

[
uiκi(∇θi )

2 + ui

κi
(∇φi )

2

]
, (21)

where θC(S) = (θ↑ ± θ↓)/
√

2 and φC(S) = (φ↑ ± φ↓)/
√

2. The
definitions for the velocities ui, and Luttinger parameters, κi,
can be found in Ref. [38]. Note that in Eq. (21) we have
not yet accounted for any proximity-induced superconducting
pairing terms. And although Eq. (21) accounts for most types
of electron-electron scattering processes, it neglects any terms
which cannot be written as quadratic powers of the θ and φ

fields.
Electron interaction terms which cannot be written as

quadratic powers of the θ and φ fields will generally appear
in the Hamiltonian as cosines acting on linear combina-
tions of these fields. Sources of these terms include spin-flip
scattering, umklapp backscattering, superconducting pairing
processes, and (N >2)-particle scattering processes. Whether
or not these terms lead to spontaneous formation of gaps at the
Fermi energy can be determined from a renormalization group
analysis [38]. Following Ref. [16], we include the following
three-body backscattering term:

OBS
3b = gBS

3b [(ψ†
L↓ψR↓)(ψ†

L↓ψR↑)(ψ†
L↑ψR↑) + H.c.], (22)

which requires special parameters of the model to be momen-
tum conserving. In our case, we can enforce a momentum
conservation condition (kA = 3kF ) by adjusting either the total
electron density (as in the case of Ref. [16]) or by adjusting
the distance separating the two wires, y0, or the magnitude of
the external field, Bz.

One can also consider the effect of spin-flip interwire
hopping t∗ in Eq. (14), which gives the following term:

Ot∗ = 2t∗ ∑
τ, τ ′ = R, L

σ =↑, ↓

[ψ†
τ,σψτ ′,−σ e−iσ (6+τ−τ ′ )kF x + H.c.], (23)

where τ, τ ′ is +1(−1) for R(L) and σ is +1(−1) for ↑ (↓)
in the exponent. This term is suitable within the assumptions
made in Sect. III where we derived a low-energy noninteract-
ing Hamiltonian for the subspace spanned by the two lowest-
energy bands. When written in the bosonization language, we
obtain eight integrals over terms cos(ϕτ ′,−σ − ϕτ,σ − σ (6 +
τ − τ ′)kF x). This term averages to zero when the integral
over x is carried out because the ϕ fields vary much slower
then kF x.

Next we will incorporate the effects of superconducting
pairing terms which are enabled by placing our double-
wire setup in proximity to an s-wave superconductor. From
Eq. (14), we identify a term proportional to �∗ which looks
like a spin-singlet s-wave pairing potential, and a term propor-
tional to �px which looks like a spin-triplet p-wave pairing
potential. For the latter, we obtain the following term:

OSC
trip = �

∑
τ = R, L
σ =↑, ↓

[ψ†
τ,σ pxψ

†
τ,σ e−i2(3σ−τ )kF x + H.c.], (24)

where we again note that � now denotes the renormalized
parameter which is appropriate to the energy scale at which
linearization of the noninteracting spectrum has been taken.
When written in the bosonization language, we obtain four
integrals over terms cos(2ϕτ,σ + 2(3σ − τ )kF x) which again
averages to zero when the integral over x is carried out.
Turning our attention to the spin-singlet s-wave pairing term,
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we find

OSC
sing. = 2�∗ ∑

τ, τ ′ = R, L

[ψ†
τ,↑ψ

†
τ ′,↓e−i2(1+ττ ′ )kF x + H.c.]. (25)

Out of the four terms in this sum, only two of them have
vanishing exponential, when τ = −τ ′, and must therefore
be analyzed within the renormalization group analysis we
pursue below. Similar to � which appears in Eq. (24), �∗
here represents the renormalized value of the parameter which
appears in Eq. (14). Finally, in addition to the three-body term
given in Eq. (22), we also consider a momentum-conserving
three-body scattering process which includes superconducting
pairing:

OSC
3b = gSC

3b [ψ†
L↑(ψ†

L↑ψR↑)(ψL↓ψ
†
R↓)ψ†

R↓ + H.c.]. (26)

We can write Equations (22), (25), and (26) in the
bosonization framework using ψ(R/L)(↑/↓) ∼ eiϕ(R/L)(↑/↓) and the
transformation⎛⎜⎝φC

φS

θC

θS

⎞⎟⎠ =

⎡⎢⎢⎢⎣
1
2 − 1

2
1
2 − 1

2
1
2 − 1

2 − 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

⎤⎥⎥⎥⎦
⎛⎜⎝ϕL↑

ϕR↑
ϕL↓
ϕR↓

⎞⎟⎠ . (27)

We obtain in the new basis⎧⎪⎨⎪⎩
OBS

3b

OSC
sing

OSC
3b

⎫⎪⎬⎪⎭ =
⎧⎨⎩

gBS
3b cos(3φC − θS )

�∗[cos(θC − φS ) + cos(θC + φS )]
gSC

3b cos(3φS + θC )

⎫⎬⎭, (28)

and we can now write down explicitly the full Hamiltonian
which governs the phase diagram of our double-wire system
when in proximity to an s-wave superconductor,

HB+SC

∣∣∣∣
kA=3kF

=
∑

i=σ,ρ

∫
dx

2π

[
uiκi(∇θi )

2 + ui

κi
(∇φi )

2

]

+
∫

dx
[
OBS

3b + OSC
sing + OSC

3b

]
. (29)

We want to demonstrate that the ground-state wave function
of this Hamiltonian can possess fractional excitations in cer-
tain circumstances (i.e., in the strongly correlated regime).
To obtain fractional zero modes, we require the spectrum
to be fully gapped. The terms in the first line of Eq. (29)
describe a gapless and transitionally invariant system with
linearly dispersive charge and spin excitations. However, each
cosine term in the second line of Eq. (29) will try to pin the
combination of fields which appear in its arguments to the
value π mod 2π , and when the coupling constants for these
terms, (gBS

3b ,�∗, gSC
3b ), are sufficiently large, the charge and/or

spin excitation spectrum can become gapped. Whether or not
this happens depends on the material-specific values of the
coupling constants (gBS

3b ,�∗, gSC
3b ) and whether they grow (i.e.,

are relevant operators) as we follow the renormalization group
(RG) flow to long wavelengths. We follow the discussion in
Refs. [16,39,40] and aim simply to argue that the fully gapped
state which can support fractional excitations is not precluded.

Since OBS
3b and OSC

sing do not commute with each other,
only one or the other can be good quantum numbers of
the system, but neither one can fully gap both the charge

and spin excitations of the system on their own. The terms
OBS

3b and OSC
3b , however, do commute and as we shall show

below, they fully gap the bulk excitation spectrum while
simultaneously creating emergent fractional zero modes at
the ends of the wires. Since the bare values of the model
[i.e., the value of (gBS

3b ,�∗, gSC
3b )] get renormalized as we

consider lower-energy and longer-wavelength scales, we must
find which interaction grows during the process. To do this, we
calculate the scaling dimensions for each interaction in terms
of Luttinger interaction parameters (κS, κC) for the spin and
charge channels. As is common for the sine-Gordon equation,
the scaling dimensions of the operators, (OBS

3b ,OSC
sing,OSC

3b ),
directly lead to the one-loop renormalization group equations
for the coupling constants, (gBS

3b ,�∗, gSC
3b ), respectively [38].

We find the scaling dimensions to be⎧⎪⎨⎪⎩
γ BS

3b

γ SC
sing

γ SC
3b

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
(
9κC + κ−1

S

)
/2(

κ−1
C + κS

)
/2(

κ−1
C + 9κS

)
/2

⎫⎪⎬⎪⎭. (30)

These demonstrate that it is not possible for a system to have
parameters κC and κS which simultaneously make γ BS

3b < 1
and γ SC

3b < 1, which is required for these interactions to both
flow to large coupling values regardless of how arbitrar-
ily small the initial bare values of the coupling constants,
(gBS

3b , gSC
3b ), are assumed to be. If one of (OBS

3b ,OSC
3b ) is relevant,

then the other is irrelevant in the renormalization group sense.
Luckily, we are dealing with finite length wires, and therefore
even if a operator is irrelevant in the RG sense, if it starts with
a large enough bare value then it may still remain fairly large
at the length scales similar to the wire length, and can thus
still gap the bulk system.

Now we can consider what zero modes exist at the bound-
ary in the case of a finite-length system in the strong-coupling
limit, where OBS

3b and OSC
3b pin the combination of fields in

the argument of their cosines to π mod 2π . We make the
following transformation of fields:⎧⎪⎪⎨⎪⎪⎩

�1

�2

�3

�4

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 (θC − 3φC + θS − 3φS )
1
2 (θC + 3φC − θS − 3φS )
1
2 (θC + 3φC + θS + 3φS )
1
2 (θC − 3φC − θS + 3φS )

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (31)

such that the interactions simplify to{
OBS

3b

OSC
3b

}
=
{

gBS
3b cos(�1 − �2)

gSC
3b cos(�3 + �4)

}
. (32)

To uncover the presence of fractional zero modes at the ends
of the wire governed by Eq. (32), we apply the open boundary
conditions via the well-known unfolding scheme [38,41]. In
the spinless single-band quantum wire case, open boundary
conditions demand that ϕL(x) = ϕR(−x) for 0 � x � l , which
in turn allows us to double the size of the wire ([0, l] →
[−l, l]) while unfolding either the right or left movers into
the new extended part. Therefore, the finite length wire with
two fields can be described after unfolding by a wire of
doubled length in which each half contains only right movers
or only left movers. We use this fact to enforce the following
boundary conditions in our own setup:

�1(x) = �3(−x) �2(x) = �4(−x) 0 � x � l. (33)
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 l

 -l

z

y

g>0
g<0

 0
x

gSC
Ψ1
Ψ2

Ψ3
Ψ4

3-body

3-bodygBS

FIG. 5. Schematic representation of the unfolding scheme. Using
the open boundary conditions allows unfolding one of the right or
left mover fields into the virtually extended part of the wire (hallow).
The process effectively doubles the size of the system. As a result,
interactions are confined within opposite regions and opens gaps of
different nature. At the interfaces, which are the ends of the original
wire, localized fractional zero modes emerge (yellow).

Using this identification, we can define two fields in total for
the extended wire:

�R(L)(x) =
{
�1(2)(x) 0 � x � l
�3(4)(−x) −l � x � 0.

(34)

Comparing with Eq. (32) reveals that the two interactions
which are required to fully gap the bulk of the double-wire
setup each live within only one-half of the unfolded setup
of double the length (see Fig. 5). Because each half of the
wire is gapped by a different interaction, zero energy modes
can possibly emerge at the boundary. This is the interacting
version of the statement that a system governed by the massive
Dirac Hamiltonian supports zero energy modes where the sign
of the mass changes [42].

Going back to the canonical fields, pinning gives the con-
ditions

3φC − θS = π + 2πm̂ and 3φS + θC = π + 2π n̂ , (35)

where m̂ and n̂ are integer-valued operators. Following
Ref. [43], we calculate the commutation relation for m̂ and
n̂. Using [φ(x), θ (x′)] = iπ�(x − x′) and the fact that the
domain of m̂ is always to the right of the domain of n̂, we
find

π2[m̂, n̂] = 9[φC, φS] + 3([φC, θC] − [θS, φS]) − [θS, θS]

= i3π ⇒ [m̂, n̂] = i3

4π
. (36)

We then define the operator α = exp[i2π (m̂ + n̂)/3] which
commutes with the Hamiltonian at the boundary of two
regions, i.e., an infinitesimally small region where the
Hamiltonian contains only the quadratic in θC(S) and φC(S)

terms. Moreover, we have α3 = 1 which satisfies the Z3

parafermionic algebra [44]. Hence, in the neighborhoods of
the interface between the regions gapped by OSC

3b and gapped
by OBS

3b , we establish the existence of emergent fractional zero
modes in our particular setup.

We note that these fractional zero modes are not stable
against local perturbations, i.e., the ground-state degeneracies
higher than two are not topologically protected and, thus,
can be lifted by disorder, as discussed in Refs. [16,45–48].
Therefore, a highly clean and fine-tuned setup is needed to
minimize disorder. Alternatively, stacking many copies of

the proposed one-dimensional setup into an effectively two-
dimensional setup may suppress the lifting of the degeneracies
as recently shown in the Ref. [49].

We conclude this section with a brief discussion of how
the parameters of our specific setup can be best chosen to
yield fractional modes. The most important condition is to
meet the momentum conservation condition kA = 3kF . When
kA − 3kF = δ, the interaction strength gBS

3b is reduced by a
factor ∼exp(−δ�), where � is the length of the wires. Strain
and external fields can impact the effective value of the
Landé g factors [13], which together with the magnetic field
strength determines kA, as discussed in Sec. III. Since OSC

3b and
OBS

3b cannot simultaneously be made relevant in an RG sense,
it is important that at least one of them has a large bare cou-
pling constant, gSC

3b and gBS
3b , respectively. These coupling con-

stants are gSC
3b ∼ �∗V2kF and gBS

3b ∼ t∗V 2
2kF

, respectively, where
V2kF is the Fourier transformation of the electron-electron
interaction in one-dimension evaluated at q = 2kF [38]. See
Appendix A for the parameters �∗ and t∗ expressed in terms
of the original parameters of the model. In general, unless the
number of electrons per unit cell approaches to an integer, the
interaction physics of the system will be described by a long-
range Coulomb interaction rather than an on-site Hubbard
interaction [50,51]. Since fractional modes emerge in the
strong-coupling limit, it is necessary for the electron density
to be small. Electrostatic gating of the double-wire system
is a possible route to satisfying both kA − 3kF = δ and that
the system lives in the strong-coupling limit, kF ∝ r−1

S << 1.
Besides satisfying the momentum conservation condition for
the scattering processes OSC

3b and OBS
3b , one or the other must

have a large bare coupling constant. In the event that it is not
possible to identify a material with strong bare values of gSC

3b
and gBS

3b , it seems more important that κC(S) is chosen such
that gBS

3b is assumed to be the larger one. In this case, it is
possible that gBS

3b is significantly greater than �∗, which is
important because OBS

3b does not commute with OSC
sing. And

even if it starts from a small bare coupling, gSC
3b can still flow

to strong coupling faster than �∗ for choices of κC(S) such that
κ−1

C + κS > κ−1
C + 9κS < 1.

V. SUMMARY AND DISCUSSION

We have proposed a platform for MZMs and fractional
zero modes in tunnel-coupled quantum wires where Rashba
spin-orbit coupling is either small or completely absent. The
latter scenario is always realized in systems with no inversion
asymmetry, neither in the bulk nor in the structure. As a
first step, in Sec. II we demonstrated that one-dimensional
helical fermions can appear in a highly tunable setup which
consists of two tunnel-coupled quantum wires with opposite
sign Landé g factors. We demonstrated that the cooperative
effect of interwire spin-conserving tunneling and a small
magnetic field along the direction of the wire leads to an
effective low-energy Hamiltonian describing electrons whose
spin orientation flips for opposite momentum states (i.e.,
helical fermions).

Before commenting on the effect of proximity-induced
superconductivity or strong correlations, let’s discuss the real-
istic values of parameters for our model. For definiteness, we
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consider the quantitative values used to obtain Fig. 2(c), which
clearly demonstrates helical fermions in the lowest energy of
the four bands. Assuming a modest value for the perpendicular
magnetic field, Bz ∼ 10 T, we have the following expression
for the interwire separation distance: y0 = √|g∗|m∗ 7.26 nm.
Here m∗ is the ratio of the effective mass to the bare electron
mass, and g∗ is the ratio of the effective Landé factor to the
bare value in either wire (for simplicity, we assume they have
equal and opposite effective g factors). As mentioned in the
introduction, the effective g factor depends on many influ-
ences (strain, confinement, many-body interactions, atomic
spin-orbit interactions), but can vary by almost two orders of
magnitude from the bare value [15,52–57]. And the effective
mass is similarly tunable over a large range by selecting
particular materials, from m∗ ∼ 0.01 in InSb to m∗ ∼ 10 for
SrTiO3 based nanowires [58]. Assuming large mass and g
factor of m∗ = 10 and |g∗| = 50, respectively, we find that
our two wires should be separated by y0 ∼ 160 nm, which
is within the range commonly used in a variety of double-
quantum-wire experiments [59–62]. In addition to the pos-
sibility to experimentally realize our platform with quantum
wires, nanotubes, nanoribbons, and lithographically defined
1D channels on two-dimensional electron gases, we believe
our model could also be realized using tunnel-coupled 1D
chains of adatoms analogous to Refs. [8,63].

In Sec. III, we described how the presence of an s-wave
superconducting pairing potential in our model’s Hamiltonian
leads to emergent MZMs. Zero-bias conductance peaks in

recent experiments on proximity-coupled quantum wires with
strong Rashba spin-orbit interactions have provided strong
evidence for Majorana zero modes, and our proposal opens the
possibility for observing these non-Abelian quasiparticles in a
wider class of Hamiltonians (i.e., those with inversion symme-
try). One notable weakness of our model is the dependence
on interwire superconducting pairing. This type of pairing
is still possible, however, when the size of Cooper pairs in
the superconductor is larger than the interwire separation
distance [64,65]. Moreover, it has recently been demonstrated
that interwire pairing can exceed intrawire pairing in the pres-
ence of strong interactions [66]. Enhancing the magnitude and
penetration depth of the proximity-inducing superconducting
pairing gap remains an ongoing engineering problem with
wide interest. An adatom approach can also be beneficial to
finally observing in an experimental setting the interaction-
induced fractionalization of the Majorana zero mode. For
example, if constructed using the tightly bound d- or f -atomic
orbitals with significantly larger electron-electron interaction
energy scales compared to the semiconductor-based 1D mate-
rials from which most quantum wires are built.
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APPENDIX A: DETAILS OF PROJECTION FROM HBdG to Heff
BdG

In this Appendix, we give details of the projection from the 8 × 8 full Hamiltonian HBdG to 4 × 4 effective low-energy
description Heff

BdG using a similar methodology as used for obtaining Eq. (7). First, we again start by rearranging the terms in
HBdG into 4 × 4 blocks given in Eq. (12) where matrices H̃BdG,11 and H̃BdG,22 correspond to the bases (ψ1↓, ψ2↑, ψ

†
1↓, ψ

†
2↑)T

and (ψ1↑, ψ2↓, ψ
†
1↑, ψ

†
2↓)T , respectively. In this rearrangement, the explicit form of H̃BdG is

H̃BdG =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ− − Bz 0 0 −�2 Bx t −�1 0
0 ξ+ − Bz �2 0 t Bx 0 �1

0 �2 Bz − ξ+ 0 �1 0 −Bx −t
−�2 0 0 Bz − ξ− 0 −�1 −t −Bx

Bx t −�1 0 ξ− + Bz 0 0 �2

t Bx 0 �1 0 ξ+ + Bz −�2 0
−�1 0 −Bx −t 0 −�2 −Bz − ξ+ 0

0 �1 −t −Bx �2 0 0 −Bz − ξ−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A1)

We then apply second-order perturbation theory,

Heff
BdG = H̃BdG,11 + H̃BdG,12[H̃BdG,22]−1H̃BdG,21, (A2)

which delivers the effective 4 × 4 Hamiltonian,

Heff
BdG =

⎡⎢⎢⎣
ξ− − Bz + E1 BxC1 pxC2 −�2 − C3

BxC1 ξ+ − Bz + E2 �2 + C′
3 pxC′

2

pxC2 �2 + C′
3 Bz − ξ+ + E3 −BxC′

1

−�2 − C3 pxC′
2 −BxC′

1 Bz − ξ− + E4

⎤⎥⎥⎦, (A3)

where ξ± = (px ± Ax )2 − μ, Ei(i = 1, 2, 3, 4) are the corrections to the diagonal dispersions and Ci,C′
i with i = 1, 2, 3 are

corrections to the coupling terms. The explicit equations for Ei, Ci, and C′
i are far too complicated to be given here. We note that

Eq. (A3) is not quite what is given in Eq. (14). In particular, we have Ei �= Ej and Ci �= C′
j for i �= j. It turns out that difference
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Ei − Ej is of higher order in px and upon expanding around px = 0 vanish. Linearizing at this px = 0 delivers

Heff
BdG(px ∼ 0) =

⎡⎢⎢⎣
−u∗ px − μ∗ t∗ �px −�′∗

t∗ u∗ px − μ∗ �∗ �px

�px �∗ −u∗ px + μ∗ −t∗

−�′∗ �px −t∗ u∗ px + μ∗

⎤⎥⎥⎦, (A4)

where

μ∗ = 2m
(
A2

x

(
t2 − �2

1

)+ 2m
(
Bz
(
t2 − �2

1

)+ �2
1μ − μt2 + 2�1�2t

))
4mA2

x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
)

+ 2mB2
x

(
A2

x + 2m
(
Bz − μ

))
4mA2

x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
) + A2

x

2m
− Bz − μ, (A5)

u∗ = 4mAx
(
�2

1 − t2
)

4mA2
x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
)

+ 8m
(
2mAx

(
Bz − μ

)+ A3
x

)(
A2

x

(
t2 − �2

1

)+ 2m
(
Bz
(
t2 − �2

1

)+ �2
1μ − μt2 + 2�1�2t

))(
4mA2

x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
))

2

− 4mAxB2
x

(
4mA2

x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z − �2

2 + μ2
))(

4mA2
x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
))

2
+ Ax

m
, (A6)

t∗ = 4mBx
(
tA2

x + 2m
(
tBz + �1�2 − μt

))
4mA2

x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
) , (A7)

� = 8mAxBx
(
4mA2

x

(
�1Bz − �1μ − �2t

)+ �1A4
x

)(
4mA2

x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
))

2

+8mAxBx
(
4m2

(− 2Bz
(
�1μ + �2t

)+ �1B2
z + �1μ

2 − �1�
2
2 + 2�2μt

))(
4mA2

x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
))

2
, (A8)

�∗ = �2−
4m
(
m
(− 2�1tBz− �2

1�2 + �2t2 + 2�1μt
)− �1tA2

x

)
4mA2

x

(
Bz− μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
) + 4�2m2B2

x

4mA2
x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
)

+ 8mAx px
(
2mA2

x

(
2�1tBz − �2B2

x + �2
1�2 − �2t2 − 2�1μt

)+ �1tA4
x

)(
4mA2

x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
))

2

+ 8mAx px
(
4m2

(− Bz
(
�2B2

x − �2
1�2 + �2t2 + 2�1μt

)+ �1tB2
z + �2μ

(
B2

x − �2
1

)+ �2μt2 + �1t
(
μ2 − �2

2

)))(
4mA2

x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
))

2

(A9)

�′∗ = �2 − 4m
(
m
(− 2�1tBz − �2

1�2+ �2t2+ 2�1μt
)− �1tA2

x

)
4mA2

x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz+ B2
z + �2

2 + μ2
) + 4�2m2B2

x

4mA2
x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
)

−8mAx px
(
2mA2

x

(
2�1tBz − �2B2

x + �2
1�2 − �2t2 − 2�1μt

)+ �1tA4
x

)(
4mA2

x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
))

2

− 8mAx px
(
4m2

(− Bz
(
�2B2

x − �2
1�2 + �2t2 + 2�1μt

)+ �1tB2
z + �2μ

(
B2

x − �2
1

)+ �2μt2 + �1t
(
μ2 − �2

2

)))(
4mA2

x

(
Bz − μ

)+ A4
x + 4m2

(− 2μBz + B2
z + �2

2 + μ2
))

2
.

(A10)

We observe that linearized effective Hamiltonian Heff
BdG has almost the same form as Hamiltonian Eq. (14) except the modified

pairing potentials �∗ and �′∗. Focusing on these terms, we realize that the only difference between them is the last two terms
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FIG. 6. Evolution of the lowest-lying band given in Fig. 3(b) as we zoom into smaller energy ranges. (a) Choosing an appropriate chemical
potential allows us to stay away from the gap. (b) Focusing on the energies below the gap leads to two disjoint bands where there are four
Fermi points at ±4kF , ±2kF . (c) We linearize at these four Fermi points to obtain two right and two left movers of opposite spin.

having opposite signs. Note that both of these terms also have a px dependence which is ignored in the Hamiltonian Eq. (14).
We justify omitting these terms, demanding that Bz is the largest energy scale in the model. Therefore, the denominator of the
difference �∗ − �′∗ is negligible compared to the other terms. Therefore, we take �∗ ≈ �′∗ up to corrections O(px ).

APPENDIX B: LINEARIZED SPECTRUM

Finally, we address how the lowest energy band is linearized around four Fermi points. For demonstrative purposes, we start
with the band structure in Fig. 3(b). In Fig. 6(a), the spectrum zoomed around the lowest energy band is shown where the
second-lowest energy level is also present. Choosing an appropriate chemical potential and focusing on energies below the gap,
say E (−2.5,−1) as in Fig. 6(b), we then observe that the spectrum reduces effectively to two bands that are populated by helical
fermions, see Sec. II. We can linearize at four Fermi points given by ±kA ± kF = ±4kF ,±2kF , which results in two right- and
two left-mover modes of opposite spin as shown in Fig. 6(c). Finally, these fermionic modes can be bosonized to yield fractional
modes upon adding interactions.
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