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We consider the thermal Hall effect of fermionic matter coupled to emergent gauge fields in 2 + 1 dimensions.
While the low-temperature thermal Hall conductivity of bulk topological phases can be connected to chiral
edge states and a gravitational anomaly, there is no such interpretation at nonzero temperatures above 2 + 1-
dimensional quantum critical points. In the limit of a large number of matter flavors, the leading contribution
to the thermal Hall conductivity is that of the fermionic matter. The next-to-leading contribution is from the
gauge fluctuations, and this has a sign which is opposite to that of the matter contribution. We illustrate this by
computations on a Dirac Chern-Simons theory of the quantum phase transition in a square-lattice antiferromagnet
involving the onset of semion topological order. We find similar results for a model of the pseudogap metal with
Fermi pockets coupled to an emergent U(1) gauge field. We note connections to recent observations on the
hole-doped cuprates: our theory captures the main trends, but the overall magnitude of the effect is smaller than
that observed.
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I. INTRODUCTION

Recent experiments have shown that the thermal Hall ef-
fect, also known as the Righi-Leduc effect, is a powerful probe
for the presence of unconventional excitations in correlated
electron systems. For instance, in the spin liquid candidate
α-RuCl3, the temperature and field dependence of the thermal
Hall coefficient κxy has been suggested to indicate the pres-
ence of neutral excitations with exotic statistics [1].

Grissonnanche et al. [2] measured the thermal Hall effect
in the normal state of four different copper-based super-
conductors. In the overdoped compounds, they observed a
conventional κxy, related to the electrical Hall conductivity σxy

by the Wiedemann-Franz law. Interestingly, with decreasing
doping, they observed the onset of a negative contribution to
κxy upon entering the pseudogap phase, which is unrelated to
σxy. This negative signal increases in magnitude with lowering
doping, and persists all the way into the insulator. Given that
a much smaller response is expected from conventional spin-
wave theory [3,4], Grissonnanche et al. argued that it indicated
the presence of exotic neutral excitations in the pseudogap
phase. In the present work, we employ a gauge theory for
the pseudogap phase [5–9], and propose that the emergent
gauge field is a neutral excitation which could help produce
the observed κxy.

In a previous study [10], we focused on the thermal Hall
effect in the insulator, and illustrated that the proximity to a
quantum phase transition—between the Néel state and a state
with coexisting Néel and semion topological order—could
explain the enhanced thermal Hall effect in the insulator. This
enhanced κxy was computed using the gauge theory for the
critical point, which had four different formulations, all dual
to each other. As the gauge theory is strongly coupled, the
computation relied on an expansion in 1/Nf , where Nf is
the number of flavors of matter fields. The calculation of κxy

at Nf = ∞ was described in Ref. [10], and we will present
further details here. We will also describe the structure of the
leading 1/Nf corrections to κxy; we argue that an important
component of these corrections (resulting from the analog
of the “Aslamazov-Larkin” diagrams) can be interpreted as
the contribution of the collective mode associated with the
emergent gauge field to κxy. This interpretation will be useful
to us when we turn to consideration of the doped case in the
latter part of this paper.

We now outline the models studied and the main results for
the undoped and doped cases in turn.

A. Undoped insulator

We focus our attention on one of the four duality-
equivalent gauge theories describing the vicinity of the onset
of semion topological order in the Néel state [10]: the SU(2)
gauge theory at Chern-Simons level k = −1/2, coupled to
a single flavor (Nf = 1) of a two-component Dirac fermion
� with mass m. We generalize the fermions to �� with � =
1, . . . , Nf flavors and consider the Lagrangian

L� = �̄� [iγ μ(∂μ − iAμ)]�� + m �̄� �� + k CS[Aμ], (1)

where Aμ is the SU(2) gauge field, k is the Chern-Simons
level, and � is a continuum field derived from the lattice
model in Appendix A; �̄ = �†γ 0. For Nf = 1 and k =
−1/2, the m > 0 phase of (1) is “trivial” and describes the
conventional Néel state, while the m < 0 phase of (1) has
semion topological order [10]. The derivation of this field
theory starting from a microscopic lattice model is sketched
in Appendix A.

The thermal Hall conductivity of (1) is expected to obey

κxy = k2
BT

h̄
K(m/T ), (2)
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FIG. 1. The fermion polarization bubbles that give the mean-
field Kubo (left) and internal magnetization (right) contributions to
the thermal Hall conductivity; the crossed circles represent thermal
current vertices.

where K is a dimensionless universal function of m/T , with m
the renormalized mass of the lowest quasiparticle excitations
and T the absolute temperature. In the limit |m|/T → ∞, the
exact values of κxy can be deduced from arguments based on
gravitational anomalies as [10–12]

κxy = πk2
BT

6h̄
sgn(k̂)

[
2|k̂| − 3|k̂|

|k̂| + 2

]
;

|m|
T

→ ∞, (3)

where the integer k̂ is defined by

k̂ = k + Nf

2
sgn(m), (4)

and the sign function vanishes for zero argument, i.e.,
sgn(0) = 0. We will obtain the large-Nf limit of the result (3)
below in a direct 1/Nf expansion, with k taken to be of order
Nf . Note that the first term in Eq. (3) is of order N1

f , while the
second term is of order N0

f .
Our 1/Nf expansion also yields a simple interpretation of

the two terms in (3). The leading term of order Nf is the
contribution of free Dirac fermions, where we assume that
the Chern-Simons term in Aμ was generated by integrating
out massive Dirac fermions. The contribution to the universal
scaling function K by the free Dirac fermions is specified by
(20) and plotted in Fig. 2. The subleading term of order N0

f is
the contribution of the fluctuations of Aμ. We will exploit this
interpretation when we consider the doped case.

We also consider the quantum critical limit, |m|/T → 0,
when neither an exact computation of κxy is possible, and nor
is κxy(h̄/(πk2

B)) expected to be quantized at a rational value.
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FIG. 2. The thermal Hall conductivity of a free Dirac fermion of
mass m. The values as T → 0 are ±π/12.

In this case, we obtain

κxy = πk2
BT

6h̄

[
2k + O

(
N0

f

)]
,

|m|
T

→ 0 . (5)

The computation of the O(N0
f ) number requires a lengthy

numerical computation which we will outline, but not carry
out to completion. We note that we do not expect κxy in the
limit |m|/T → 0 to be related to any gravitational anomaly
or contact terms [13,14]; the latter are evaluated at T = 0,
and not in the limit required for a quantum critical transport
coefficient, with frequencies much smaller than T [15,16].

B. Pseudogap at nonzero doping

We will describe the pseudogap by essentially the same
theory as that used in Ref. [6], which was successfully com-
pared with numerical studies of the Hubbard model [6,7,9]
and photoemission experiments on an electron-doped cuprate
[17]. In the limit of the insulating state, and in the vicinity of
the onset of semion topological order in the presence of Néel
order as discussed in Sec. I A, this theory can be related [10] to
one of the theories which are equivalent to (1) after duality—a
SU(2) gauge theory at Chern-Simons level 1, coupled to a
complex scalar which is a SU(2) fundamental. While the
fermionic SU(2) theory at level −1/2 in (1) was useful in
describing κxy in the insulator [10], the complex scalar SU(2)
theory is far more convenient in the doped case. This is
because the latter theory has fermionic charge carriers, and
this allows easy access to a metallic state at nonzero doping.

The pseudogap metal is described by transforming to a
rotating reference frame in spin space [5], which results in
a SU(2) gauge theory. The fluctuating spin density wave order
acts like a Higgs field, which breaks the SU(2) invariance
down to U(1). Coupled to the U(1) gauge field, aμ, we have
bosonic spinons and fermionic chargons fp with U(1) gauge
charges p = ±1. We focus on the fermionic chargons, as they
form Fermi pockets with charged gapless excitations on the
Fermi surface. We write down a simple effective theory for
these chargons [6,7,18]:

L f =
∑
v=1,2

∑
p=±1

f †
pv

(
∂

∂τ
− μ − ipaτ

− (∇ − ipa − ieAem )2

2m∗ + vdis(r)

)
fpv. (6)

Here, v is a valley index, m∗ is the effective mass of the
fermions (we have ignored mass anisotropies), μ is a chem-
ical potential, aμ = (aτ , �a) is the emergent U(1) gauge field,
and Aem is the fixed background electromagnetic gauge field
associated with the applied magnetic field B = ẑ · (∇ × Aem ).
We have included a disorder potential vdis(r), because we will
consider Hall transport in the weak-field regime ωcτ � 1,
where ωc is the cyclotron frequency and τ is the elastic
scattering time associated with the disorder.

First, let us ignore the internal gauge field aμ. Then, the f
fermions form a conventional Fermi liquid, and for ωcτ � 1,
the electrical and thermal Hall responses are given by familiar
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FIG. 3. (Left) Vertex diagram of the stress tensor. (Right) Dia-
gram of the stress tensor-stress tensor correlation function.

expressions involving the Wiedemann-Franz relation

ρxy = B

nec
, σxy � ρxy

ρ2
xx

, κ0
xy = π2T

3

(
kB

e

)2

σxy , (7)

where n is the total density of the f fermions. Now, let us
consider the contribution of aμ to the thermal Hall response.
We will compute this by a simple Maxwell-Chern-Simons
action for aμ

La = K1

2
(∇ × a)2 + K2

2
(∇aτ − ∂τ a)2 − iσxy

2e2
εμνλaμ∂νaλ.

(8)
We assume that the predominant contribution to the Maxwell
terms arises from integrating out the gapped spinons. In-
tegrating out the fermionic chargons introduces the Chern-
Simons term in (8), proportional to the Hall conductivity of
the fermions in (7); such a term is also permitted under the
symmetry constraints on this gauge theory of doped antifer-
romagnets [19,20]. In general, because of the presence of
disorder, the couplings K1,2 will also be functions of spatial
position; we replace them by their spatial average, and do
not expect fluctuations to significantly modify the results
presented here. The fermions also introduce singular terms
in the transverse gauge field propagator arising from Landau
damping [21], so that a more complete effective action is

Sa =
∫

d2x dτ La +
∫

d2k dω

8π3
γk|ω| [aT (k, ω)]2 , (9)

where γk ∼ 1/k for kvF τ 	 1, and γk ∼ constant for kvF τ �
1. Although the term in (9) could make a significant contri-
bution to the thermal Hall effect, we leave an analysis of its
effects to future work.

Computing the thermal Hall response of the Maxwell-
Chern-Simons theory La in Sec. III, we find that it yields
a correction κ1

xy, which has the opposite sign from κ0
xy in

(7). This sign change is similar to that in (3) between the
O(Nf ) term (from the fermions) and the O(N0

f ) term (from the
gauge field). The universal function K in (2) for the Maxwell-
Chern-Simons theory is specified in (50) as a function of the
“topological mass” mt = σxy/(e2K2), and is plotted in Fig. 4.
Note that the universal function (20) for Dirac fermions in
Fig. 2 does not reduce to the gauge-field function in (50)
and Fig. 4 by a rescaling of axes: this is evidence that the
T > 0 thermal Hall conductivity is a bulk property and is
not specified by any topological field theory or gravitational
anomaly.

We begin our analysis by describing the thermal Hall re-
sponse of two free theories: a free Dirac fermion in Sec. II, and
free Maxwell-Chern-Simons theory in Sec. III. The results
of the Maxwell-Chern-Simons theory apply directly to the

0 2 4 6 8 10

−0.4

−0.2

0.0

0.2

0.4

FIG. 4. The thermal Hall conductivity due to the gauge fields,
from Eq. (50). mt is the topological mass.

effective theory for the doped pseudogap phase in Eq. (8). We
will combine Secs. II and III to obtain results for the Dirac
Chern-Simons theory (1) in the 1/Nf expansion in Sec. IV.

II. FREE DIRAC FERMION

In order to obtain a finite thermal Hall effect, time-reversal
symmetry must be broken: this can be achieved by either an
external magnetic field or intrinsic magnetic ordering [22].
However, initial attempts to calculate this response based on
direct application of the Kubo formula were found to suffer
from unphysical divergences at zero temperature [23,24]. This
is because in a system breaking time-reversal symmetry, a
temperature gradient drives not only the transport (heat) cur-
rent, but also an experimentally unobservable circulating cur-
rent [25,26]. Both contributions are present in the microscopic
current density calculated by the standard linear response
theory, necessitating a proper subtraction of the circulating
component. Reference [27] showed that the electromagnetic
and gravitomagnetic energy magnetizations [28,29] naturally
emerge as corrections to the thermal transport coefficients,
removing the aforementioned divergences in the process. A
subtlety pointed out in Ref. [30] is that the energy magneti-
zation and the thermal Hall coefficient are relative: only the
difference between two systems are physically meaningful.
We choose to normalize κxy such that the κxy/T → 0 as
m/T → 0, i.e., the vacuum has zero thermal Hall coefficient.

We now present details of the computation of the thermal
Hall coefficient of a free Dirac fermion with a mass m which
can be scanned through zero at T > 0. This is the theory
(1) without the gauge field Aμ. While we consider a single
two-component Dirac fermion, note that, because of the SU(2)
gauge index, the theory (1) has 2Nf such fermions. In the
following, we determine both the Kubo part and the mag-
netization separately, identifying precisely what the transport
currents and the magnetizations are, and illustrating how they
can be evaluated for a general continuum theory.

A. Transport contribution from the Kubo formula

The leading contribution to κxy is given by a single fermion
polarization bubble shown in Fig. 1.
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Summing over the internal momentum k and Matsubara
frequency iωn, this diagram evaluates to

�Q
xy(q, iεn) = 1

β V

∑
k,iωn

Tr
[
VQ

x (−q,−iεn)G(k − q/2, iωn)

× VQ
y (q, iεn)G(k + q/2, iωn + iεn)

]
, (10)

where G� (k, iωn) = 1/(−i ωn + σ · k + m σ z ) is the free
fermion Green’s function, and VQ

a (q, iεn) = σ a (iωn + iεn/2)
is the heat/energy-current vertex, derived in Appendix B. The
response function is defined as

Lxy = 1

εn
�Q

xy(q, iεn)

= T

2εn V

∑
k,iωn

−(εn + 2ωn)2

k2
x + k2

y + m2 + ω2
n

× 2kxky + m εn

k2
x + k2

y + m2 + (εn + ωn)2
as q → 0,

specializing to the case of zero external momentum. The
numerator of the polarization tensor �Q

μν consists of a part
proportional to kμkν and a term ∼ δμν ; we can drop the
former because it is odd in kx and ky and hence, vanishes
upon integration over all momenta. Performing the Matsubara
summation and converting the momentum sum to an integral,
we get

Lxy = − 1

εn

∫
d2k

(2π )2

m εn

2 ξk
tanh

(
βξk

2

)
, (11)

where ξk =√
k2

x +k2
y +m2 . Finally, introducing the shorthand u =

β ξk, we have

Lxy = −
∫ ∞

β|m|

du

4π β
m tanh

(u

2

)
= − m

2π β
ln
[
cosh

(u

2

)]∣∣∣∣∞
β|m|

. (12)

A few comments are in order about this result. First, we have
regulated the integral by introducing a UV cutoff � but, as we
shall see, this drops out eventually. Further, to obtain the DC
response, we need to analytically continue to real frequencies
iεn → ε + i0+, and then take the limit ε → 0 after q → 0.
The thermal Hall coefficient is then [27,31]

κKubo
xy ≡ Lxy

T

= m

2π

{
ln

[
cosh

(
β |m|

2

)]
− ln

[
cosh

(
β �

2

)]}
.

(13)

B. Internal magnetization

The second contribution to the conductivity comes from
the circulating heat current. The zero-field heat magnetization
can be calculated from the differential equation [27]

2MQ − T
∂MQ

∂T
= 1

2i
∇q × 〈K̂−q; ĴQ

q

〉
0

∣∣
q→0, (14)

where K̂q is the Fourier transform of K̂ (r) = h(r) − μ n̂(r), h
and n̂ being the local energy and number densities, respec-
tively. The correlator on the RHS is evaluated in the static
limit, i.e., q → 0 after ε → 0. We also point out to readers
that Eq. (14), cited from Ref. [27], only applies to systems
whose energy current depends on the gravitational field in a
particular way, while the general formalism is discussed in
Ref. [30].

Equipped with the structure of this modified vertex from
Appendix B, we now evaluate Eq. (14) piece by piece. Con-
sider the first term in the curl; retaining only the terms even in
the internal momentum,1 we get

∂qx

〈
K̂−q; ĴQ

y,q

〉
= ∂qx

⎛⎝ 1

βV

∑
k,iωn

2i m qx(εn + 2ωn)2

4
(|k − q/2|2 + m2 + ω2

n

)
× 1

(|k + q/2|2 + m2 + (εn + ωn)2)

⎞⎠∣∣∣∣
εn=0

= i
∫

d2k
(2π )2

m(β ξk + sinh (β ξk))sech2(β ξk/2)

4 ξk

= i
∫ ∞

β|m|

du

8π β
m u (u + sinh(u)) sech2(u/2)

= im u

4π β
tanh

(u

2

)∣∣∣∣∞
β|m|

. (15)

In the second line, we evaluate the sum at εn = 0 and then take
the qx derivative. Similarly, as expected by symmetry,

∂qy

〈
K̂−q; ĴQ

x,q

〉 = − i m u

4π β
tanh

(u

2

)∣∣∣∣∞
β|m|

. (16)

Plugging Eqs. (15) and (16) back into Eq. (14), we have

2MQ − T
∂MQ

∂T
= m

4π

[
� tanh

(
β �

2

)
− |m| tanh

(
β|m|

2

)]
,

(17)

which can be solved for MQ to obtain

MQ = c1T 2 − mT

4π

[
2Li2(−e−�/T )

�/T
− 2Li2(−e−|m|/T )

|m|/T

+ |m| − �

2T
+ 2 ln

(
e−|m|/T + 1

e−�/T + 1

)]
, (18)

where c1 is an arbitrary constant. Now, κ tr
xy = κKubo

xy +
2MQ/T . Collecting the terms proportional to �, we get

lim
�→∞

m

4π

[
− 2 ln

(
cosh

(
β�

2

))
+ β� − 4Li2(−e−β �)

β �

+ 4 ln(e−β � + 1)

]
= m

2π
ln 2, (19)

1This is allowed since we focus on the limit q = 0. More formally,
this corresponds to expanding the full integrand in powers of qx and
qy and then keeping only those terms of O(qx ) that would survive the
k integration.
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the first two terms cancel out the UV divergences and all
dependencies on the cutoff � drop out. Thus the physical
thermal Hall conductivity is given by

κ tr
xy = 2c1T + m

2π

[
2Li2(−e−|m|/T )

|m|/T
− ln(e−|m|/T + 1)

]
,

(20)
where the first part comes from the magnetization and the last
piece is the Kubo contribution.

At this point, the constant c1 arising from the solution of
the differential equation can be determined as follows. We
have seen above that κxy/T is a function of the dimensionless
variable |m|/T alone. Therefore, taking the limit m → 0 or,
equivalently, T → ∞ (where we know a priori that κxy/T
should go to zero), Eq. (20) reduces to

κ tr
xy = 2c1T + sign(m)

2π

(
−2

π2

12

)
T ≡ 0 (21)

and the last condition implies that c1 = sign(m) π/24. As
a result, when T → 0 keeping m �= 0 and fixed, we obtain
κ tr

xy/T = sign(m) π/12. The dependence of κ tr
xy on tempera-

ture and mass is shown in Fig. 2.

III. MAXWELL-CHERN-SIMONS THEORY

In this section, we consider the framing anomaly and
thermal Hall response of the U(1) Maxwell-Chern-Simons
theory (8). Our discussion will be restricted to the level of
an effective theory and we do not attempt to extract the
microscopic values of K1 and K2. As we will see, the effective
theory already provides a satisfactory interpolation between
the two topological phases.

The Maxwell-Chern-Simons theory has a speed of “light”
c0 = √

K1/K2. Since there is no other velocity scale in the
theory, we can set c0 = 1 (see also Appendix D). The MCS
theory (8) takes the following relativistic form in real time:

L = k

4π
εμρνaμ∂ρaν − 1

4g
fμν f μν, (22)

where fμν = ∂μaν − ∂νaμ. Here, the coupling g = 1/K2 has
dimensions of energy in 2 + 1D, and k = 2πσxy/e2 is the
Chern-Simons level. The large-Nf limit of fermion flavor
implies k = O(Nf ) and g = O(1/Nf ). If we are interested in
the thermal Hall effect of the gapped phases, we should take g
to be the largest energy scale and send g → ∞.

Chern-Simons theory has a gravitational anomaly called
the framing anomaly. It is well known that Chern-Simons
theory is topological and does not couple to spacetime ge-
ometry on the classical level. Witten [32] pointed out that at
the quantum level, the theory inevitably couples to a metric
because of the gauge-fixing procedure. However, this is not
adequate for writing down a sensible stress tensor, because
any vertex function due to the gauge-fixing procedure is
longitudinal and thus, vanishes when contracted with the
physical transverse propagator. Here, we will try an alternative
method, by considering the Maxwell-Chern-Simons theory.
The Maxwell term serves as a UV regulator and it enables us
to write down a stress-tensor vertex. According to Witten [32],
the gravitational anomaly appears as a gravitational Chern-

Simons term

CSg[gμν] = c

96π

∫
tr

(
� ∧ d� + 2

3
� ∧ � ∧ �

)
, (23)

where � is the Christoffel symbol associated with the metric
gμν . The prefactor c is the (chiral) central charge

c = − dim(G) k

(|k| + c2(G))
, (24)

where c2(G) is the dual Coxeter number of the gauge
group G.

In what follows, we perturbatively compute the gravita-
tional anomaly and thermal Hall effect of the above MCS
theory in the large-k (k ∝ Nf ) limit. Following Ref. [33],
we calculate the stress tensor-stress tensor correlation func-
tion �μν;ρλ(x, t ) = −i〈T μν (x, t )T ρλ(0, 0)〉 of the MCS the-
ory. We can interpret �μν;ρλ as the effective action (up to
a minus sign) Seff[gμν] of metric gμν in a weakly curved
background gμν = ημν + hμν, |hμν | � |ημν |. We will show
that at zero temperature �μν;ρλ agrees with the gravitational
Chern-Simons term (23).

This gravitational anomaly is proportional to the thermal
Hall coefficient at the next-leading large-Nf order via the
relation

κxy = π

6
c T . (25)

It is argued in Ref. [34] that a gravitational Chern-Simons
term cannot give rise to a thermal Hall effect from the Kubo
formula because it contains three derivatives rather than one.
In our calculation, we find that the thermal Hall effect actually
arises from the finite-temperature part of �μν;ρλ, which comes
from the same diagrams as the gravitational anomaly and
contains only one derivative.

At the next-leading large-Nf order, our approach works
both for Abelian and non-Abelian theories because c =
dim(G) + O(1/Nf ), and we simply include dim(G) copies of
gauge fields, which are noninteracting at this order.

A. Propagator

We add a gauge fixing term Lgf = (∂μaμ)2/(2ξg) and
work out the propagator. Some algebra leads to

S =
∫

d3 p

(2π )3

1

2g
aμ(−p)

×
(

pμ pν − ημν p2 + pμ pν

ξ
+ kg

2π
εμνρ ipρ

)
aν (p).

The propagator is thus

Dμν (p) = −g

p2 − m2
t

[
Pμν (p) + mt

p2
εμνρ ipρ

]
+ ξ

(p2)2
pμ pν,

(26)
where the topological mass mt = kg/(2π ) and Pμν (p) =
ημν − pμ pν/p2.

B. Stress-tensor vertex

In this section, we work out the stress-tensor vertex as
shown in Fig. 3. The stress tensor is given by the Maxwell
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term, which is

T μν = −1

g

[
f μρ f ν

ρ − 1

4
ημν fαβ f αβ

]
. (27)

It is worth noticing that the stress tensor above can be de-
rived solely from translation symmetry and gauge invariance,
without reference to Lorentz symmetry (see Appendix B).

We write the vertex function of Fig. 3 as

−�μν;αβ (p + q, q)/g, (28)

where

�μν;αβ (p + q, q) = [(p + q)μqν + (p + q)νqμ − ημν (p + q) · q]ηαβ + (p + q) · q(ημαηνβ + ημβηνα )

− [qα (ηβμ(p + q)ν + ηβν (p + q)μ) + (p + q)β (ηαμqν + ηανqμ) − ημνqα (p + q)β ]. (29)

C. Stress tensor-stress tensor correlation function

We compute the following stress tensor-stress tensor polar-
ization function:

�μν;ρλ(x, t ) = −i〈T μν (x, t )T ρλ(0, 0)〉. (30)

In general, the full polarization function should also contain
contact terms such as 〈δT μν (x, t )/δhρλ(0, 0)〉, but those terms
are symmetric in μρ and independent of external momentum,
so they do not contribute to either the gravitational anomaly
or the thermal Hall effect. We only need to consider the single
bubble diagram in Fig. 3, which yields

�μν;ρλ(p) =
∫

d3q

(2π )3

−i

2g2
�ρλ;αβ (p + q, q)iDα′α (p + q)

× �μν;β ′α′
(q, p + q)iDββ ′ (q). (31)

Here, we have included a symmetry factor of 1/2.
We want to extract the part which is antisymmetric in

μρ and symmetric in νλ, which should ultimately lead to a
gravitational Chern-Simons term and thermal Hall effect:

�
μν;ρλ

AS = 1
4 (�μν;ρλ − �ρν;μλ + �μλ;ρν − �ρλ;μν ). (32)

D. T = 0: gravitational Chern-Simons term

At zero temperature, the integrand has Lorentz symmetry,
and we can evaluate �AS using Feynman parameters:

1

q2(p + q)2(q2 − m2
t )
(
(p + q)2 − m2

t

)
= 6

∫ 1

0
dx1dx2dx3dx4 δ

(∑
x − 1

) 1

(l2 − �)4
, (33)

where

l = q + (x1 + x3)p, (34)

� = (x1 + x2)m2
t − (x1 + x3)(1 − x1 − x3)p2. (35)

After some algebra with MATHEMATICA, we have

�
μν;ρλ

AS (p)

= −εμρσ pσ (ηνλ p2 − pν pλ)

× 6
∫ 1

0
dx1dx2dx3dx4 δ

(∑
x − 1

)(−mt

15

)
×
∫

d3l

(2π )3

l4[10 − 63(x1 + x3)(1 − x1 − x3)] + O(l2)

(l2 − �)4
.

(36)

To obtain the gravitational Chern-Simons term, we isolate the
topological contributions by taking the limit mt → ∞. Note
that only the l4 term written above can survive the mt →
∞ limit. The integral can be evaluated using dimensional
regularization. The result is

�
μν;ρλ

AS (p) = −i

48π
sgn (mt )ε

μρσ pσ (ηνλ p2 − pν pλ), (37)

employing the integral formula∫
dd lE
(2π )d

(
l2
E

)a(
l2
E + D

)b = �
(
b − a − d

2

)
�
(
a + d

2

)
(4π )d/2�(b)�

(
d
2

) 1

Db−a− d
2

.

(38)

We can compare the above result to the gravitational Chern-
Simons term (3.2), which, to quadratic order in h, reduces to

CSg[h] = − c

192π

∫
d3 p

(2π )3
hμν (−p)εμρσ (ipσ )

× (p2ηνλ − pν pλ)hρλ(p). (39)

The correlation function is related to CSg by

�
μν;ρλ

AS (p) = −i〈T μν (p)T ρλ(−p)〉AS

= − δ2CSg[h]

δhμν (−p) δhρλ(p)
+ (symmetrization).

(40)

When evaluating the variation, we get a trivial factor of 2
because CSg is quadratic in h. There is another hidden factor of
2 because, when considering variations, we have to include all
permutations of μ ↔ ν, ρ ↔ λ, which results in four terms.
One term is symmetric in μρ and can be dropped. Another
term has an apparent εμρσ ipσ factor. The other two terms are
not totally antisymmetric in μρ, but after antisymmetrization
they give another εμρσ ipσ factor. Therefore we get a prefactor
of c/(48π ).

Matching Eq. (37) with Eqs. (39) and (40), we see that the
MCS theory has central charge c = −sgn (mt ) = −sgn (k).

E. Finite T : thermal Hall effect

We now evaluate Eq. (32) at nonzero T . Since we are
interested in the thermal Hall effect, we will restrict ourselves
to the energy-current sector ν = λ = 0.

Following some algebra using MATHEMATICA, we find that
the (p + q)2 and q2 factor in the denominator of �AS cancels
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out [we only write down the (μ0; ρ0) component here, but the cancellation happens for all components]:

�
μ0;ρ0
AS (p) =

∫
d3q

(2π )3

−mt εμρσ uσ (p, q)(
q2 − m2

t

)(
(p + q)2 − m2

t

) , (41)

where uσ (p, q) are three polynomials in p, q (superscripts denote component, not square):

u0 = 1
2 [(p1)2q0 + p1q1(p0 + 2q0) + p2(p2q0 + q2(p0 + 2q0))],

u1 = 1
2 [(p0)2(−q1) + p0q0(p1 − 2q1) + 2(p1)2q1 + p2q1(p2 + 2q2) + p1(p2q2 + 2(q0)2 + 2(q1)2)],

u2 = 1
2 [(p0)2(−q2) + p0q0(p2 − 2q2) + 2(p2)2q2 + p1q2(p1 + 2q1) + p2(p1q1 + 2(q0)2 + 2(q2)2)]. (42)

To proceed, we note that �
μν;ρλ

AS satisfies the Ward identity from both sides, so we have the ansatz

�
μ0;ρ0
AS (p) = mt εμρσ pσ A(p) (43)

and

A(p) = 1

p2

∫
d3q

(2π )3

−p · u(
q2 − m2

t

)(
(p + q)2 − m2

t

) . (44)

We then evaluate the finite temperature part of A(p), by replacing the frequency integral with a Matsubara summation∫
dq0

2π
→ iT

∑
q0=2π iT n

.

The summation can be performed by standard contour methods; the finite-temperature part is

Aβ (p) = i

p2

∫
d2q

(2π )2

1

(Ep+q − Eq − p0)(Ep+q + Eq − p0)(Ep+q − Eq + p0)(Ep+q + Eq + p0)

×
{

nB(Ep+q)

Ep+q

[− p2E4
p+q + E2

p+q

(
E2

q p2 + (p0)2(3p · q + 2p2) − p · q(p · q + p2)
)

+ (p · q + p2)
(
E2

q − (p0)2
)
((p0)2 + p · q)

]
− nB(Eq)

Eq

[(
p2
(
E2

q + p · q
)+ (p · q)2

)(− E2
p+q + E2

q + (p0)2
)+ p · q(p0)2

(
E2

p+q + 3E2
q − (p0)2

)]}
, (45)

where we have dropped the zero-temperature contribution.
To get the thermal Hall conductivity, we need to compute

the Kubo conductivity κKubo
xy and the heat magnetization MQ.

As discussed earlier, because the gravitational Chern-Simons
term has three derivatives, it does not contribute to κKubo

xy
or MQ, so we only need to consider the finite-temperature
contributions. By inspecting (45), we see that Aβ (p0, p =
0) = 0, and therefore, κKubo

xy = 0.
Sending p0, p → 0 in the static limit, we get

A(p0 = 0, p → 0) = −i

4π
[|mt |nB(|mt |) − T ln(1 − e−|mt |/T )].

(46)

The heat magnetization can be obtained from the differential
equation

2MQ − T
∂MQ

∂T
= − 1

2i
∇p × �i0;00

AS (p0 = 0, p → 0)

= −imt A(p0 = 0, p → 0), (47)

where the different prefactor compared to Eq. (14) comes
from the definition of �μν;ρλ. Integrating the above

differential equation brings us to

MQ

T 2
= C(mt ) − 1

4π
f (mt/T ), (48)

where

f (x) = x ln(1 − e−|x|) − 2 sgn (x)Li2(e−|x|), (49)

and the integration constant C(mt ) is arbitrary function of mt .
This results in the thermal Hall conductivity

κxy

T
= 2MQ

T 2
= 2C(mt ) − 1

2π
f (mt/T ), (50)

which is plotted in Fig. 4.
We choose C(mt ) = − π

12 sgn (mt ) such that κxy/T vanishes
continuously at mt = k = 0. The physical motivations for this
choice are the following. First, at k = 0, we have the usual
Maxwell theory, which should have no thermal Hall effect
at any temperature. Secondly, in the high-temperature limit
T 	 mt , the system should be insensitive to the ground-state
energy gap (∼mt ) and the related topological distinctions,
so the thermal Hall coefficient should also vanish. Therefore
κxy/T should disappear continuously at mt = k = 0 and we
fix C(mt ) accordingly.
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−0.8
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−0.4

−0.2

0.0

FIG. 5. The thermal hall conductivity computed from Eq. (52)
upon including both light and heavy fermions of masses m and
M = −10, respectively for Nf = 2|k| = 1. The quantized value in
the topological phase at zero temperature is π/3, as expected from
mean-field theory. The temperature dependence of κxy/T calculated
in this continuum field theory is in excellent agreement with the
results on the lattice model in Ref. [10].

In the mt → ∞ limit, we obtain

κxy/T = −π

6
sgn (mt ) = −π

6
sgn (k), (51)

which, once again, yields central charge c = −sgn (mt ) =
−sgn (k).

IV. DIRAC CHERN-SIMONS THEORY

This section turns to a discussion of the thermal Hall
response of the SU(2) Dirac Chern-Simons theory in Eq. (1)
in the 1/Nf expansion. In order to sidestep subtle issues with
gravitational anomalies, we will view Eq. (1) as an effective
theory, in which the Chern-Simons term is obtained by inte-
grating out spectator heavy Dirac fermions. To obtain a SU(2)
Chern-Simons term at level k, we need 2|k| flavors of heavy
Dirac fermions with mass M obeying sgn(M ) = sgn(k). We
will always assume |M| 	 T , while the ratio of the light Dirac
fermion to temperature, m/T , can be arbitrary.

At leading order for large Nf , we ignore gauge fluctuations,
and simply add the contributions of the light and heavy Dirac
fermions, using the results in Sec. II. Owing to the SU(2)
gauge index carried by the � fermions in Eq. (1), we need to
multiply the contribution by an additional factor of 2 for each
flavor. In this manner, we obtain the thermal Hall conductivity

κxy = 2Nf κxy,D(m) + 4|k| κxy,D(M ), (52)

where κxy,D(m) is the Dirac fermion contribution in Eq. (20).
We show a plot of Eq. (52) in Fig. 5 for Nf = 2|k| = 1. In the
limit |M|/T → ∞ and |m|/T → ∞, Eq. (52) yields the first
term in the square brackets in Eq. (3).

Upon examining the effect of gauge fluctuations in the
1/Nf expansion, we find that there are Feynman graphs which
potentially contribute to the thermal Hall conductivity even at
Nf = ∞. However, evaluation of these graphs shows that they
vanish, as we will illustrate in Sec. IV A, so no corrections are
needed to Eq. (52) at this order. We then discuss the leading
1/Nf corrections in Sec. IV B.

q, i n

k − q/2, iωn

k + q/2, iωn + n

q, i n

FIG. 6. The sole Feynman diagram contributing at leading order
to gauge-field corrections in the limit Nf → ∞. The dressed gluon
propagator, indicated by a cross, is obtained by perturbatively inte-
grating out the fermions from the action S.

A. Gauge fluctuations in the Nf → ∞ limit

Explicitly expanding out the non-Abelian gauge field, the
appropriate modification of the Lagrangian (1), for a particular
fermion species, reads as

LNf ,SU (2) =
Nf∑
v=1

∑
b,s,t

i�̄vsγ
μ

(
∂μ − i√

Nf
ab

μτ b
st

)
�vt

+ m�̄vs�vs, (53)

where τ a are the generators of SU(2), Aμ = ab
μτ b, and the cou-

pling constant has been scaled by 1/
√

Nf for normalization.
The fermionic field is labeled simultaneously by the flavor
index v = 1, . . . , Nf as well as the color index i = 1, 2, 3;
the γ (or σ ) and τ Pauli matrices operate in Dirac and color
spaces, respectively. The fermion-gluon vertex corresponds to

t

s

μ; a ≡ − 1
Nf

τa
st σµ. (54)

Every fermion loop now bears an extra factor of Nf owing
to the summation over flavors, while each interaction vertex
carries a factor of 1/

√
Nf . The diagram in Fig. 1 is, therefore,

of O(Nf ). In the limit of large Nf → ∞, the only diagram that
contributes at the same order is shown in Fig. 6.

One might naively think that there are additional diagrams
beyond Fig. 6 because each new fermion bubble within the
gluon propagator is of O(1) in this expansion. Typically, these
contributions can be subsumed in a renormalized propagator,
denoted by a cross, by summing up the chain of bubble
diagrams in a geometric series as

≡ + + + · · · .

(55)

However, in 2 + 1D, the Maxwell kinetic term is irrelevant
and the bare (F a

μν )2 is thus suppressed by higher energy scales.
Indeed, in our formulation, the bare kinetic term comes from
integrating out the heavy fermions, and is proportional to
1/M. The renormalized gluon propagator should also include
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q, i n

k − q/2, iωn

k + q/2, iωn + n

q, i n

FIG. 7. The magnetization diagram at the same order in 1/Nf as
Fig. 6. One of the two thermal vertices in Fig. 6 is replaced by an
energy-density vertex here.

the contribution from integrating out light fermions, and in
fact, it is dominated by the light fermion bubble. To derive the
renormalized gluon propagator, we build upon the results of
Ref. [35] for the photon propagator at nonzero temperatures
in 2 + 1D U(1) gauge theories with fermionic and bosonic
matter. The full expression for the gluon propagator is detailed
in Appendix C.

It is now easy to observe the absence of gauge-field correc-
tions at leading order. Figure 6 is composed of two fermion
bubbles, each of which, following the Feynman rules listed
earlier, translate to

T

V

∑
k,iωn,s t

(
−τ a

st√
Nf

)
δst (iωn + iεn/2)

× Tr[G(k + q/2, iωn + iεn) σ ν G(k − q/2, iωn) σμ],
(56)

where the factor of δst comes from the fact that the thermal
vertex conserves color. Resultantly, Eq. (56) is just propor-
tional to Tr (τ a) and hence, is identically zero. By the same
reasoning, the diagram for the magnetization contribution
in Fig. 7 also vanishes. Therefore we conclude that upon
taking Nf → ∞, there are no corrections to the thermal Hall
conductivity due to SU(2) gauge-field fluctuations.

B. Gauge fluctuations at next-to-leading order

We are now positioned to consider the contributions to
κxy of the theory (1) at order N0

f . The Feynman diagrams
which contribute to this order are shown in Figs. 8 and 9.
Given the complexity of the gluon propagator in Appendix
C, and the differential equation that has to be solved for the
magnetization subtraction, we do not attempt a full numerical
evaluation of these graphs for general m/T . Instead, we will
be satisfied by examining them in the limit |m|/T → ∞
(recall that we always take the limit |M|/T → ∞). In this
limit, we expect that a description in terms of the effective

(a) (b) (c)

FIG. 8. The (a) and (b) density of states (DOS) and (c) Maki-
Thompson [36,37] diagrams, which contribute to κxy for the theory
(1) at O(N0

f ). Additionally, the magnetization subtraction requires
evaluation of the analogous graphs given by replacing a thermal
vertex with an energy-density vertex, like in Fig. 7.

FIG. 9. The “Aslamazov-Larkin” diagram responsible for the
thermal Hall response at order N0

f . The red triangles denote the
effective stress tensor-gauge field-gauge field vertex obtained from
integrating out fermionic loops in Fig. 10.

Maxwell-Chern-Simons theory in Sec. III applies, and we can
therefore deduce the contribution to κxy from results therein.
The MCS theory gives the second term in the bracket of
Eq. (3).

We now argue that the DOS and MT diagrams listed
in Fig. 8 are not important in the |m|/T → ∞ limit. The
DOS diagram is simply adding self-energy into the fermion
propagator. A standard computation yields a fermion mass
correction δm ∝ e2/Nf in the zero-momentum limit, where
e2 is the coupling constant of the gauge field. The DOS
diagram can also generate fermion anomalous dimension at
higher momentum. The MT diagram is a vertex correction
to the stress tensor. Using a gravitational Ward identity in
[38], it can be shown that the anomalous dimension from the
vertex correction cancels that from the self energy, and the net
effect is a fermion mass renormalization δm consistent with
the self-energy calculation. We note in passing that similar
behaviors have been observed in nonrelativistic calculations
[39]. As a result, a finite renormalization δm (also subleading
in large Nf ) can be ignored in the |m|/T → ∞ limit.

Therefore the important Feynman diagram in this limit is
the “Aslamazov-Larkin” diagram [40] drawn in Fig. 9. The
triangular vertices in Fig. 9 each reduce to the stress-energy
vertex used in Sec. III, as we now show.

Following the discussions of Appendix B, the gauge-
invariant stress tensor of the theory (53) is

T μν = i

2
�̄γ μ(

−→
∂ ν − ←−

∂ ν )� + aνb√
Nf

�̄γ μτ b�

− ημνLNf ,SU(2). (57)

For shorter notation, we have suppressed flavor and color
indices on the fermions.

Based on the above stress tensor, there are two types of
vertices contributing to the triangular vertex, as shown in

pαa

qβb

k
μν

pαa

qβb

μν

FIG. 10. The two types of diagrams for the triangular vertex.

195126-9



GUO, SAMAJDAR, SCHEURER, AND SACHDEV PHYSICAL REVIEW B 101, 195126 (2020)

Fig. 10.The first type is a fermion triangle; the corresponding effective vertex function is

�
μναβ

1 (p, q)
δab

2
=
∫

d3k

(2π )3
(−1)Tr

{[
γ μ (2k + q − p)ν

2
− ημν

(
2/k + /q − /p

2
+ m

)]
× i

/k − /p + m
iγ ατ a i

/k + m
iγ βτ b i

/k + /q + m

}
+ (pαa ↔ qβb). (58)

The second type is a fermion bubble, and the associated effective vertex is

�
μναβ

2 (p, q)
δab

2
=
∫

d3k

(2π )3
(−1)Tr

{
τ b(γ μηνβ − γ βημν )

i
/k + m

iγ ατ a i
/k + /p + m

}
+ (pαa ↔ qβb). (59)

In the equations above, we have factored out the color indices
on the left-hand side (LHS). Since we are looking at the
|m|/T → ∞ limit, we will only evaluate the above integrals
at zero temperature. The integrals can be performed with the
standard Feynman parameter tricks. While it is possible to ob-
tain closed-form results for arbitrary momenta and mass, the
resultant expressions are too long and not very enlightening.
We expand the result to second order in momenta and obtain

�
μναβ

1 (p, q) + �
μναβ

2 (p, q) = 1

12π |m|�
μναβ (p, q), (60)

where �μναβ (p, q) is the stress-tensor vertex function defined
in (29).

Given the identity of the stress tensor above, we can now
use the results of Sec. III on the Maxwell-Chern-Simons the-
ory to deduce the 1/Nf correction to the Dirac Chern-Simons
theory in the limit |m|/T → ∞. Each U(1) gauge field yields
the contribution in (51); for a SU(2) gauge field, we have three
U(1) gauge fields (which can be treated as independent at this
order in 1/Nf ), so we obtain the second term in (3) in the limit
of large |k̂|.

V. CONCLUSION

We have examined the thermal Hall conductivity in square-
lattice insulators near the quantum phase transition between
the Néel state and a state with coexisting Néel and semion
topological order. This transition is described by the Dirac
Chern-Simons field theory in (1) for Nf = 1 and k = −1/2.
The thermal Hall conductivity is expected to obey the uni-
versal scaling form in (2). In the limit of low T away from
the critical point, |m|/T → ∞, we have the exact result in
(3) obtained via a sophisticated mapping to conformal field
theories on the boundary of the sample. We obtained the lead-
ing and next-to-leading order results of (3) in a direct 1/Nf

expansion (with k taken of order Nf ). These computations can
also be applied to other values of m/T , and results to leading
order are in (20) and Fig. 5; however, the next-to-leading order
computations are numerically demanding.

One of the lessons of this computation is that the leading
contribution can be viewed as that of fermionic matter, while
the next-to-leading order terms arises from the quantum fluc-
tuations of the gauge fields (here we are viewing the Chern-
Simons term in the field theory as arising from integrating out
a massive fermionic matter field).

We applied this lesson to a model of the doped antifer-
romagnet described by (6). This theory contains fermionic

matter forming pocket Fermi surfaces: the thermal Hall con-
tribution of these pockets is assumed to obey the Wiedemann-
Franz law. The contribution of the gauge field was de-
duced from the Maxwell-Chern-Simons effective action in
(8), which has the thermal Hall contribution specified by (50).
Importantly, this contribution has the opposite sign from the
Wiedemann-Franz contribution, consistent with the experi-
mental trends [2]. We note that the Dirac fermion thermal Hall
conductivity in (20) and the Maxwell-Chern-Simons thermal
Hall conductivity in (50) correspond to distinct universal
scaling functions, a consequence of the nontopological nature
of the thermal Hall effect in the quantum-critical crossover
regime.

The gauge-field contribution has the correct sign to ac-
count for the additional negative contribution to κxy/T in
the pseudogap regime, as observed in Ref. [2]. However, its
magnitude is bounded by π/6 [see (50)] for the case a single
U(1) gauge field. The observed magnitude is larger by, at
least, a factor of 2; the coupling constants in (8) only appear
in the crossover energy scale mt = σxy/(e2K2) and not in the
overall magnitude of κxy. It is possible that other models of the
pseudogap with additional gauge fields could account for the
discrepancy. Alternatively, the phonon contribution [41] needs
to be combined with the emergent gauge field to understand
the observations, and a phonon-emergent photon coupling
could provide the needed chirality in the phonon transport.
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APPENDIX A: LOW-ENERGY FIELD THEORY

The form of the continuum field theory is clear: upon
inspection of the spectrum of the lattice model in Ref. [10]
close to the phase transition, we observe two Dirac cones (of
complex fermions) that result from the two sublattices of our
ansatz. Therefore the (2 × 2) Dirac matrices, γμ, will act in
sublattice space. From the lattice theory, with spinon operators
fiσ , σ =↑,↓, we know that there will be an SU(2) gauge field.
The lattice gauge transformations act locally in the lattice
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model,

SU(2)g :

(
f †
i↓

fi↑

)
−→ Ug(i)

(
f †
i↓

fi↑

)
, Ug(i) ∈ SU(2); (A1)

as such, they cannot mix different sublattices in the continuum
model. It will therefore have the Lagrangian

LD = i�̄γ μ(∂μ − iAμ)� + m�̄� − 1
2 CS[Aμ], (A2)

with �̄ = �†γ 0. As usual, the Dirac matrices satisfy the
Clifford algebra, {γ μ, γ ν} = 2ημν with η = diag(+,−,−).
The Chern-Simons term is an obvious consequence of the
additional massive fermions and will be omitted in the fol-
lowing. To set up the notation, let us write Eq. (A2) more
explicitly:

LD = i�†
sα (γ 0γ μ)ss′ [∂μ − i(Aμ)αα′ ]�s′α′ + m�†

sα (γ0)ss′�s′α,

(A3)

with sublattice and gauge index s and α, respectively. Here,
the gauge transformations act as

SU(2)g : �sα → (Ug)αα′�sα′ ;

Aμ → Ug AμU †
g − i(∂μUg )U †

g . (A4)

In the remainder of this section, we will derive Eq. (A3)
from the lattice model and, thereby, relate � explicitly to the
lattice fermions. We note that the lattice model also contains
monopole operators, but we assume that these are irrelevant at
the critical point [42].

For simplicity, let us focus on the case without a Zeeman
field, BZ = 0, and use the same gauge as in Ref. [10]. We
define the Fourier transform as

fiσ = 1√
N

∑
k

eikxi fkσ s(i), xi = (ix, iy),

s(i) =
{

A, ix + iy even,

B, ix + iy odd.
(A5)

The spectrum of the lattice model has minima at Q and
−Q, where Q = (π/2, 0)T , with spin polarization ↑ and ↓,
respectively. Let us expand around these minima by defining
new “slow,” low-energy fields

cq,s,v=+ := fQ+q,↑,s, cq,s,v=− := f−Q+q,↓,s, |q| � 1/a,

(A6)

for each of the two “valleys” v = ± and sublattices s = A, B.
Equivalently, this corresponds to

fi↑ ∼ eiQxi cs(i)+(xi ), fi↓ ∼ e−iQxi cs(i)−(xi ) (A7)

in real space, i.e., cs,v (r) := N−1/2∑�
q eiqrcq,s,v with some

cutoff � � 1/a. With these definitions, the mean-field Hamil-
tonian can be written as

HMF ∼ − ivF

∫
dr c†

s,v[v(τx )ss′∂x + (τy)ss′∂y]cs′,v

+ m
∫

dr c†
s,vv(τz )ss′cs′,v (A8)

at low energies. Here, vF = 2t1 (which we will set to 1 in the
following) and m = −(4t2 + Nz/2), where, as in Ref. [10], t1,
t2, and Nz are the nearest-, next-nearest-neighbor hopping, and

the Néel order parameter, respectively; furthermore, τ j denote
Pauli matrices in sublattice space.

As follows from comparison of Eqs. (A1) and (A7), gauge
transformation act as

SU(2)g : Cs(r) → U (s)
g (r)Cs(r), Cs(r) :=

(
c†

s,−(r)

cs,+(r)

)
(A9)

in the low-energy theory. Naively, one might think that the
gauge transformations in the two sublattices are independent
as they were in the lattice model. However, this is would
enhance the gauge symmetry to SU(2) × SU(2) in the con-
tinuum model which is not the case; the reason is that not
all gauge transformations allowed on the lattice act entirely
in the low-energy field theory. In fact, we will see that U A

g (r)
and U B

g (r) are related by a similarity transformation within the
continuum field theory,

U A
g (r) = V †U B

g (r)V, V ∈ SU(2). (A10)

This means that there is a gauge, reached by performing a
gauge transformation with Ug(i) = V † for ix + iy even and
Ug(i) = 1 for ix + iy odd, where the gauge transformation is
independent of s in the continuum model. To see this, just note
that the new field after the gauge transformation,

C̃s = VsCs, V A = V †, V B = 1, (A11)

transforms as C̃s(r) → V †
s U (s)

g (r)VsC̃s(r); with the above
choice for Vs, it holds that V †

s U (s)
g (r)Vs = U B

g (r), independent
of s.

To add gauge-field fluctuations to the mean-field Hamilto-
nian (A8), we rewrite the latter in terms of the Nambu field
Cs. Denoting Pauli matrices in Nambu/valley space by η j ,
we get

HMF ∼ i
∫

drC†
s [(τx )ss′∂x + (τy)ss′∂y]ηzCs′

+ m
∫

drC†
s (τz )ss′η0Cs′ . (A12)

To bring the theory to the form of Eq. (A3), we have to
transform ηz into η0 in the first term. This can be done by
introduction of a new field C̃s as defined in Eq. (A11) with
V = −iη3; we get

HMF ∼ i
∫

dr C̃†
s [(τy)ss′∂x − (τx )ss′∂y]η0C̃s′

+ m
∫

dr C̃†
s (τz )ss′η0C̃s′ .+ (A13)

In this form, it becomes apparent that only gauge trans-
formations, C̃s(r) → Ũ (s)

g (r)C̃s(r), that are independent of s,
Ũ (s)

g (r) = Ũg(r), can appear in the low-energy theory. Based
on our discussion above, we see that this indeed corresponds
to Eq. (A10) with V = −iη3.

To match the common conventions for the Dirac matrices,

(γ 0, γ x, γ y) = (τy, iτz, iτx ), (A14)

we perform yet another unitary transformation in sublattice
space only (which, thus, does not affect the gauge transforma-
tion properties),

�s(r) = (
ei π

4 τx ei π
4 τz
)

ss′C̃s′ (r), (A15)
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leading to

HMF ∼ i
∫

dr �†
s [(τx )ss′∂x − (τz )ss′∂y]�s′

+ m
∫

dr �†
s (τy)ss′�s′ . (A16)

As �sα (r) → (Ug(r))αα′�sα′ (r) under gauge transformations,
adding gauge fluctuations to Eq. (A16) in the action formal-
ism leads precisely to Eq. (A3). We now know the relation
between the field � and the lattice degrees of freedom.

APPENDIX B: DERIVATION OF HEAT CURRENT AND
THE ASSOCIATED FEYNMAN RULES

Since our eventual interest lies in the (thermal) current-
current correlation functions, our first step is to compute the
associated heat current vertex. There are two approaches as
described below.

1. Equation-of-motion approach

To develop the formalism, we begin with a generalized
Hubbard-like model on a lattice described by the Hamiltonian

H =
∑
i jμν

tμν
i j ψ

†
iμψ jν ≡

∑
i

hi ;

hi = 1

2

∑
jμν

(
tμν
i j ψ

†
iμψ jν + tνμ

ji ψ
†
jνψiμ

)
, (B1)

for which we shall evaluate the thermal current using the
equation-of-motion technique [43]. We emphasize that H and
the ψ fermions need not be the same as those of the lattice
model in Ref. [10]; in practice, we extract H solely from
the effective theories such as Eq. (B9) below. In the equation
above, hi stands for the local energy density; i, j are the lattice
sites, whereas μ, ν connote any other degrees of freedom. It
readily follows [44] that

ḣi = 1

2

∑
jμν

[
tμν
i j (ψ†

iμψ̇ jν − ψ̇
†
iμψ jν )

+ tνμ
i j (ψ̇†

jνψiμ − ψ
†
jνψ̇iμ)

]
, (B2)

where Ȯ = i[H,O]. From the continuity equation for the
energy current [26,30,45], ḣi + ∇ · JE

i = 0, we find

JE
q = 1√

V

∑
i

e−iq·ri JE
i

= i

2
√

V

∑
kμν

∂hμν

k

∂k
(ψ†

k−q/2,μ
ψ̇k+q/2,ν

− ψ̇
†
k−q/2,μ

ψk+q/2,ν
), (B3)

where hμν

k is the second-quantized Hamiltonian and we have
used the approximation hk+q/2 − hk−q/2 � (∂hk/∂k) · q, con-
centrating on the small q limit. Using the Heisenberg equation

of motion, this simplifies to

JE
q = − 1

2
√

V

∑
k,μνρ

(
∂hμρ

k

∂k
hρν

k+q/2 + hμρ

k−q/2

∂hρν

k

∂k

)
× ψ

†
k−q/2,μ

ψk+q/2,ν
.

(B4)

In this notation, it is clear that the indices μ, ν keep track of
the component of the Dirac fermion under consideration. The
heat current (JQ) is related to the energy current by JQ = JE −
μJ. Switching to frequency domain from Eq. (B3), at μ = 0,
we obtain

JQ(q, iεn) = 1

β
√

V

∑
k,iωn

(
∂k hμν

k

)
(iωn + iεn/2)

× ψ
†
k−q/2,μ

(iωn) ψk+q/2,ν
(iωn + iεn),

(B5)

where ωn and εn are fermionic and bosonic Matsubara fre-
quencies, respectively. This defines the heat/energy-current
vertex

(B6)

supplemented with a factor of 1/(βV ) for each internal three-
momentum. Likewise, recognizing that

h(q) = 1√
V

e−iq.ri hi

= 1

2
√

V

∑
k,μν

(
hμν

k+qψ
†
k,μ

ψk+q,ν
+ hνμ

k ψ
†
k,ν

ψk+q,μ

)
, (B7)

we have, for K̂q as defined in Eq. (14), the second vertex:

(B8)

On top, for each independent momentum, a factor 1/(β V )
remains from the corresponding Fourier transform.

Lastly, since there is no specific advantage in using the
conventional relativistically invariant notation of Eq. (1) at
T �= 0, in some convenient situation, we use the following
equivalent form of the fermion action

L = �†
α (∂τ − iAτ − iσ · (∇ − iA))�α + m �†

α σ z �α. (B9)
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Then, it is not difficult to see that propagator for the fermions
is simply

(B10)

The action and propagator for the light and heavy fermions
are exactly analogous, up to an appropriate substitution of m�

or M for m in Eq. (B10).

2. Noether procedure

Since, most of the time, we are dealing with a continuum
field theory, it is also beneficial to directly write down the
energy current or stress tensor of the field theory. In this
section, we will use the Noether procedure to derive the stress
tensor.

First, we shall point out that our situation is different from
the standard relativistic field theory because the space-time is
not Lorentzian. For example, the Dirac-Chern-Simons theory
(1) comes from the underlying lattice model in Appendix A,
and the gamma matrices in (1) acts on band index instead
of physical spin index. Therefore, under space-time rotation,
the fermions transform as spinless fields, and we have ex-
plicitly broken spin-statistics relation. The consequence of
non-Lorentzian space time is that it is not always possible
to covariantly couple the theory to conventional Riemannian
metric and the stress tensor does not have to be symmetric.
While it is possible to couple the theory to Newton-Cartan or
Bargmann space-time [46], we shall derive the stress tensor in
a simpler approach by using the Noether procedure.

Next, we review the conventional Noether procedure for
the stress tensor. We first apply a gauged space-time transla-
tion xμ → xμ + εμ(x) to the system. Because the system is
translation invariant, the leading order response to ε should be
∂ε, and the coefficient is defined to be the stress tensor:

δS = −
∫

d3xT μ
ν ∂μεν. (B11)

If we assume all fields transform as φa(x) → φ′
a(x) =

φa(x) − εμ∂μφa(x), we get(
T μ

ν

)
incor. = ∂L

∂ (∂μφa)
∂νφa − δμ

ν L. (B12)

Here, φa denotes all the field contents of the theory.
The above formalism needs further improvement, because

it does not respect gauge invariance, as can be seen by
applying (B12) to a Maxwell theory. The conventional Be-
linfante improvement (see, for example, Ref. [47]) is not
applicable because it requires Lorentz symmetry. The space-
time-independent improvement is pointed out in Ref. [48], by
requiring the gauge field to transform correctly as a one-form:

δaa
μ = −εν∂νaa

μ − ∂μενaa
ν . (B13)

The additional term only depends on ∂ε, so it does not modify
the global symmetry.

The improved stress tensor is therefore

T μ
ν = (

T μ
ν

)
incor. +

(
∂L
∂aa

μ

− ∂α

∂L
∂
(
∂αaa

μ

))aa
ν . (B14)

Applying the above formalism to the Dirac-Chern-Simons
theory (1), we get

T μ
ν = 1

2 �̄l iγ
μ(

−→
∂ ν − ←−

∂ ν )�l + �̄lγ
μaν�̄l − δμ

ν L�. (B15)

For the Maxwell-Chern-Simons theory (8), with K1 and K2

being constant, we get

T μν = − f̄ μρ f ν
ρ + 1

4ημν f̄αβ f αβ, (B16)

where f̄0i = − f̄i0 = K2 f0i and f̄i j = − f̄ ji = K1 fi j . For the
special case K1 = K2 = 1/g, we get back to the standard result

T μν = −1

g

[
f μρ f ν

ρ − 1

4
ημν fαβ f αβ

]
. (B17)

APPENDIX C: GLUON PROPAGATOR

The first component required to stitch together the diagram
6 is the gauge boson propagator. In this section, we extend
the calculations of Ref. [35] to the case of massive fermions
interacting with a SU(2) gauge field. The general structure of
the gluon effective action at large-N follows from the Ward
identity and is given by

SA = T

2

∑
εn

∫
d2q
4π2

[
(qi Aτ − εnAi )2 D1(q, εn)

q2

+ Ai Aj

(
δi j − qi q j

q2

)
D2(q, εn)

]
, (C1)

where D1 and D2 are functions that can be evaluated at large-
N by perturbatively integrating out both the fermions starting
from the action S in Eq. (B9). In Coulomb gauge qiAi = 0,
this yields the nonzero elements of the propagator to be

Dab
00(q, εn) = 4 δab

D1(q, εn)
,

(C2)

Dab
i j (q, εn) =

(
δi j − qiq j

q2

)
4 δab

D2(q, εn) + (ε2
n/q2

)
D1(q, εn)

,

where i and j run over the spatial indices only. The matrix
structure in color space comes from inverting the product of
Pauli matrices associated with the fermion loops in the func-
tions D1,2 as

∑
st τ a

stτ
b
ts = Tr (τ aτ b) = δab/4. No fermions

remain in the action SA and all their effects are encapsulated
in Eq. (C1) through these two functions alone.

Let us begin by calculating D1, which is defined as

D1(q, εn)

= −N
∫

k,ωn

Tr[G(k, ωn)G(q + k, ωn + εn)]

= 2N
∫

k,ωn

ωn(ωn + εn) − m2 − k · (k + q)(
ω2

n +k2+m2
)
((ωn+εn)2+(k+q)2+m2)

,

(C3)

where we use the shorthand
∫

k,ωn
= T

∑
ωn

∫
d2k/(4π2) to

signify a summation on the internal frequencies and momenta.
Using the Passarino-Veltman reduction formula [49], this can
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be manipulated into

D1(q, εn) = N
∫

k,ωn

[ −2

ω2
n + k2 + m2

+ (2ωn + εn)2 + q2(
ω2

n + k2 + m2
)
((ωn + εn)2 + (k + q)2 + m2)

]
. (C4)

For the first of the two integrals here, the UV divergence is linear, so it is most convenient to use ζ -function regularization [50]
in which ∫ ∞

0
dx = 0,

∫ ∞

1

1

x
dx = arbitrary. (C5)

Then, within this scheme,

N
∫

k,ωn

−2

ω2
n + k2 + m2

= −N
∫

d2k
4π2

tanh
(

1
2β
√

k2 + m2
)√

k2 + m2

= N

2π

∫
dk

(
1 − k tanh

(
1
2β

√
k2 + m2

)
√

k2 + m2

)
= N T

π

[
ln 2 + ln

(
cosh

(
β |m|

2

))]
. (C6)

The second integral in Eq. (C4) can be evaluated by introducing Feynman parameters and shifting the loop momentum k →
k − uq:

N
∫ 1

0
du
∫

k,ωn

(2ωn + εn)2 + q2[
u (ωn + εn)2 + (1 − u) ω2

n + (k + uq)2 + u(1 − u) q2 + m2
]2 (C7)

=N T

4π

∑
ωn

[(2ωn + εn)2 + q2]I (0)
n ; with I (0)

n =
∫ 1

0
du

1

u (ωn + εn)2 + (1 − u) ω2
n + u(1 − u) q2 + m2

=N T

4π

∑
ωn

{
((2ωn + εn)2 + q2)

1

An
ln

(
2m2 + q2 + 2ω2

n + ε2
n + 2ωnεn + An

2m2 + q2 + 2ω2
n + ε2

n + 2ωnεn − An

)}
, (C8)

where An ≡ √
4m2q2 + (q2 + ε2

n )(q2 + (2ωn + εn)2). We shall encounter the integral I (0)
n in multiple contexts later so it is handy

to define it separately. The summation over the fermionic Matsubara frequencies can only be performed numerically, and in this
regard, it is useful to establish the large-ωn behavior of the terms since ωn is not bounded above. After symmetrizing over positive
and negative frequencies and subtracting the divergent piece using a ζ regulator, the 1/ωn expansion for the terms within the
curly braces in Eq. (C8) stands as

−12m2 + q2 + ε2
n

3 ω2
n

+ 120 m4 + 10m2
(
q2 − 15ε2

n

)− q4 + 8q2ε2
n + 9ε4

n

30 ω4
n

+ 1

ω6
n

[
1

210

(
q2 + ε2

n

)(
q4 − 19q2ε2

n + 50ε4
n

)− 4m6 − m4
(
q2 − 15ε2

n

)− 1

15
m2
(
q4 − 14q2ε2

n + 105ε4
n

)]
(C9)

followed by terms of O(1/ω8
n ). Note that Eq. (C9) reduces correctly to the expressions documented in Ref. [35] in the limit

m → 0. This asymptotic behavior can then be summed by using the identities

∞∑
n=M+1

1

(2n − 1)2
= 1

4M
− 1

48M3
+ 7

960M5
+ . . . ,

∞∑
n=M+1

1

(2n − 1)4
= 1

48M3
− 1

96M5
+ . . . ,

∞∑
n=M+1

1

(2n − 1)6
= 1

320M5
+ . . . , (C10)

while retaining the exact functional dependence of Eq. (C8) for small ωn up to 2π (±M + 1/2)T .
We can employ a similar procedure for the second function in Eq. (C2):

D2(q, εn) = − q2

qx qy
N
∫

k,ωn

Tr[σ x G(k, ωn) σ y G(q + k, ωn + εn)] (C11)

= − 2 q2

qx qy
N
∫

k,ωn

2kxky + kxqy + kyqx + m εn

(ω2
n + k2 + m2)((ωn + εn)2 + (k + q)2 + m2)

= N T

2π

q2

qx qy

∑
ωn

∫ 1

0
du

2 qx qy u (1 − u) − m εn

u (ωn + εn)2 + (1 − u) ω2
n + u(1 − u) q2 + m2

= N T

2π

q2

qx qy

∑
ωn

[
2 qx qy I (2)

n − m εn I (0)
n

]
, (C12)
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where I (0)
n has already been calculated earlier and I (2)

n is defined as the integral

I (2)
n =

∫ 1

0
du

u (1 − u)

u (ωn + εn)2 + (1 − u) ω2
n + u(1 − u) q2 + m2

, (C13)

=
[(

2q2(m2 + ω2
n

)+ εn(2ωn + εn)
(
q2 + 2εnωn + ε2

n

))
ln

(
(Cn − q2)2 − (ε2

n + 2ωnεn
)2

(Cn + q2)2 − (ε2
n + 2ωnεn

)2
)

+ Cn

(
εn(2ωn + εn) ln

(
m2 + (ωn + εn)2

m2 + ω2
n

)
+ 2q2

)]
1

2 Cnq4
(C14)

with Cn ≡
√

4q2(m2 + ω2
n ) + (q2 + εn(2ωn + εn))2. The full expression for Eq. (C12) is forbiddingly complex and is also not

particularly insightful. Instead, akin to Eq. (C9), we can symmetrize over the frequencies and write out D2 for large ωn in a
series expansion as

D2(q, εn) = N T q2

2π

∑
ωn

[
qxqy − 3mεn

3 qx qy ω2
n

+ 5mεn(6m2 + q2) − 2qxqy(5m2 + q2) − 25mε3
n + 7qxqyε

2
n

30 qx qy ω4
n

+ 1

210 qx qy ω6
n

{(
210m5εn − 70m4qxqy + 70m3εn

(
q2 − 9ε2

n

)− 14m2qxqy
(
2q2 − 13ε2

n

)
+ 7mεn

(− 13ε2
n q2 + q4 + 16ε4

n

)+ qxqy
(
34ε2

n q2 − 3q4 − 13ε4
n

))}+ O
(

1

ω8
n

)]
, (C15)

which is convergent at large ωn. Once again, when m = 0, this correctly reproduces the results of Kaul and Sachdev [35].

1. Limit of zero external momentum

While the propagator derived above holds for all momenta, the q = 0 limit, in particular, involves some subtleties and must
be dealt with care. In the limit where the external momentum is zero, D1 is finite, and according to Eq. (C8), goes to

N T

4π

∑
ωn

|2ωn + εn|
|εn| ln

(
2m2 + ω2

n + (εn + ωn)2 + |εn||2ωn + εn|
2m2 + ω2

n + (εn + ωn)2 − |εn||2ωn + εn|
)

, (C16)

so the temporal component of the gluon propagator Dab
00 is nonzero. The more nontrivial part is the spatial component

Di j (q, εn) = q2δi j − qi q j

q2 D2(q, εn) + ε2
n D1(q, εn)

, (C17)

and specifically, the behavior of D2(q, εn) as q → 0:

lim
q→0

q2 D2(q, εn) = N T

2π

∑
ωn

{
εn(2ωn + εn) ln

(
m2 + (ωn + εn)2

m2 + ω2
n

)

− 2m q4εn

qxqy|εn||2ωn + εn|
[

tanh−1

(
ε2

n + 2ωnεn

|εn||2ωn + εn|
)

+ tanh−1

(
ε2

n − 2ωnεn

|εn||2ωn + εn|
)]}

. (C18)

Rewriting this in polar coordinates, and assuming cos, sin θ �= 0, we find

Di j (q, θ, εn) ∼ q2δi j − q2(cos4−i− j θ sini+ j−2 θ )
q4

q2 cos θ sin θ
χ0 (εn ) + χ1 (εn )

= q4(δi j − cos4−i− j θ sini+ j−2 θ ) cos θ sin θ

q4 χ0 (εn ) + q2 cos θ sin θ χ1 (εn )
= 0,

where the χ are functions of εn alone, independent of q. Thus, the spatial components of the gluon propagator are zero when the
external momentum is zero. The same result can be proved even when the assumption above is relaxed by successively taking
the limits qx → 0, qy → 0.

APPENDIX D: FRAMING ANOMALY IN
THE “WRONG” METRIC

In the main text, we have calculated the framing anomaly
using a metric compatible with the speed of “light” c0 =√

K1/K2. It would also be interesting to put the theory in
an incompatible metric whose speed of “light” is different

from c0 and redo the computation. We expect the result to
be essentially the same as the one obtained from a compatible
metric.

Let us assume we are in a space-time with metric ημν =
(1,−1,−1), and the MCS theory (8) has a speed of “light”
c0 = √

K1/K2 �= 1.
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In momentum space, the MCS theory has the following
form (we have included a gauge-fixing term):

S =
∫

d3 p

(2π )3

K2

2
aμ(−p)aν (p)

×
(

c2
0Pμν

1 (p) + Pμν
2 (p) + pμ pν

ξ
+ mtε

μνρ ipρ

)
. (D1)

Here P1 and P2 are the transverse projectors corresponding to
B2 and E2, respectively:

Pμν
1 =

(
0 0

0 pi pj − δi j p2

)
, (D2)

Pμν
2 =

(
p2 p0 pj

p0 pi (p0)2δi j

)
. (D3)

Inverting the matrix in the parenthesis of Eq. (D1), we get the
gauge field propagator (in ξ = 0 gauge)

Dμν (p) = A1Pμν
1 + A2Pμν

2 + A3ε
μνρ ipρ, (D4)

where

A1 = 1

K2 p2
(
p̃2 − m2

t

) (2 − c2
0

)
(p0)2 − p2

p2
, (D5)

A2 = 1

K2 p2
(
p̃2 − m2

t

) p̃2

p2
, (D6)

A3 = −mt

K2 p2
(
p̃2 − m2

t

) , (D7)

and p̃2 = (p0)2 − c2
0 p2.

Next, we discuss the stress tensor T μν . Since K1 �= K2,
there is no natural way to couple the system to a background
metric, so we have to use Noether’s theorem to derive T μν . To
ensure gauge invariance, we use a modified Noether procedure
which is described in Appendix B. Using the transformation
law (B13), we can write down the stress tensor

T μν = − f̄ μρ f ν
ρ + 1

4ημν f̄αβ f αβ, (D8)

where f̄0i = − f̄i0 = K2 f0i and f̄i j = − f̄ ji = K1 fi j . This result
agrees with the energy-momentum tensor of classical electro-
dynamics in a medium.

The computation of the gravitational Chern-Simons term
and the thermal Hall effect can now be carried out in the same
way as in the main text. In this calculation, the cancellation of
the p2 factors seen in (41) also happens. Therefore the denom-
inator of the integrand is now ( p̃2 − m2

t )(( p̃ + q̃)2 − m2
t ). At

zero temperature, the momentum integral can be performed in
standard ways after rescaling the zeroth component, yielding
the following gravitational Chern Simons term:

CSg[h] = −c

192π

∫
d3 p

(2π )3
hμν (−p)εμρσ (ipσ )P̃νλ

T hρλ(p),

(D9)

where P̃T is a transverse projector in the compatible metric:

η̃μν = (
c2

0,−1,−1
)
, P̃T μν = η̃μν

p̃2

c2
0

− pμ pν . (D10)

A subtlety here is that all indices are raised and lowered with
the incompatible metric ημν = (1,−1,−1).

As for the thermal hall effect, we compute the antisym-
metrized polarization analogous to (41), which now becomes

�
μ0;ρ0
AS =

∫
d3q

(2π )3

−mtε
μρσ ũσ(

q̃2 − m2
t

)(
( p̃ + q̃)2 − m2

t

) , (D11)

and the ũσ ’s are related to the uσ ’s in the main text by simple
scaling:

ũ0(p0, q0, p, q) = c2
0u0(p0, q0, c0 p, c0q), (D12)

ũi(p0, q0, p, q) = c0ui(p0, q0, c0 p, c0q). (D13)

Carrying out the integration, we found that (46) is not
altered, and therefore the thermal Hall coefficient remains
to be

κxy = π

6
c T . (D14)
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