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Symmetry-protected topological phases in a two-leg SU(N) spin ladder with unequal spins
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Chiral Haldane phases are examples of one-dimensional topological states of matter which are protected by the
projective SU(N ) group (or its subgroup ZN × ZN ) with N > 2. The unique feature of these symmetry-protected
topological (SPT) phases is that they are accompanied by inversion-symmetry breaking and the emergence
of different left and right edge states which transform, for instance, respectively in the fundamental (N) and
antifundamental (N) representations of SU(N ). We show, by means of complementary analytical and numerical
approaches, that these chiral SPT phases as well as the nonchiral ones are realized as the ground states of a
generalized two-leg SU(N ) spin ladder in which the spins in the first chain transform in N and the second in N.
In particular, we map out the phase diagram for N = 3 and 4 to show that all the possible symmetry-protected
topological phases with projective SU(N ) symmetry appear in this simple ladder model.
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I. INTRODUCTION

Spin ladders have been a constant source of interest since
the original motivation that these systems are intermediates
between one and two dimensions which could shed light
on spin liquid physics in higher dimensions [1]. The sim-
plest of them is two spin-1/2 antiferromagnetic Heisenberg
chains (with spin exchange J‖ > 0) which are coupled to
each other by an interchain coupling J⊥. In the absence of
this interchain coupling, the Heisenberg spin chains have a
gapless energy spectrum with spin-spin correlations functions
displaying universal power-law behavior (up to logarithmic
corrections) [2,3]. The massless elementary excitations are the
spinons with fractional spin-1/2 quantum numbers and appear
only in pairs in any physical states with integer total spin
[4]. In this respect, the standard magnon excitations carrying
spin-1 quantum number are deconfined into two spinons and
this leads to an incoherent background in the dynamical spin
susceptibility measured in neutron-scattering experiments [5].

However, these massless spinon excitations become con-
fined into massive spin-1 triplons as soon as an infinitesimal
coupling J⊥ is introduced between the chains and a two-leg
spin ladder provides a fundamental system to investigate the
confinement of fractional quantum number particles [6,7].
Various gapful quantum phases have been predicted both ana-
lytically and numerically for two-leg spin ladders with a spin
exchange J× between the diagonals of the ladder [8–16], a
four-spin exchange interaction [17–22], and a zigzag coupling
[23–26]. One interesting phase, found in these spin ladders, is
a nondegenerate fully gapped phase adiabatically connected to
the Haldane phase of the spin-1 antiferromagnetic Heisenberg
chain [27,28]. The latter is the paradigmatic example of
one-dimensional (1D) symmetry-protected topological (SPT)

phases with spin-1/2 edge states protected by, e.g., (on-site)
Z2 × Z2 symmetry [29–31]. The emergence of this SPT in
two-leg spin ladder systems can be simply understood by
considering the limit of large ferromagnetic interchain cou-
pling J⊥ → −∞. In this limit, the strong J⊥ favors the triplet
states over the singlet one on each rung so that the low-energy
effective Hamiltonian is given by the spin-1 Heisenberg chain.
The resulting Haldane physics is adiabatically connected to
the weak-interchain limit where the low-energy physics is
described in terms of four massive Majorana fermions with
spin-1/2 edge states [6,32,33].

In this paper, we generalize this idea of stacking Heisen-
berg spin chains to realize various 1D gapped (SPT, in par-
ticular) phases to higher continuous symmetry group SU(N )
(N � 3). The 1D bosonic SPT phases with on-site (pro-
tecting) symmetry group G are known to be classified by
the second cohomology group H2(G, U(1)) [34–37]. When
G is the projective unitary group PSU(N) � SU(N )/ZN

or its subgroup ZN × ZN , H2(PSU(N), U(1)) = H2(ZN ×
ZN , U(1)) = ZN and N − 1 nontrivial SPT phases are ex-
pected [38–40], while in the case of spin-rotational invariance,
i.e., G = SO(3) � SU(2)/Z2, there is a single nontrivial SPT
phase. For practical purposes, it is convenient to label these
phases by a pair of projective representations (Re,Re) under
which the left and right edge states transform. One interesting
class of these SPT phases is the so-called chiral SPT phase
(Re,Re) = (N, N), which is a nondegenerate fully gapped
phase where the left (right) edge state belongs to the funda-
mental N (its conjugate N) representation of the SU(N ) group
[41–45]. The phase, which is protected by on-site PSU(N)
symmetry or ZN × ZN , is featureless but breaks the inversion
or site-parity symmetry [46] since the left and right boundary
spins are different (i.e., Re �= Re) and related by conjugation
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FIG. 1. (a) N-N two-leg ladder given by Eq. (1) and (b) its
equivalent representation.

[38,42]. These states are also interesting in the light of a
recent proposal [47] to use the two degenerate chiral SPT
states with broken parity to realize a stable topological qubit
(valence-bond-solid qubit).

For SU(N � 3), the two fundamental representations N
and N, which are SU(N ) analogs of spin 1/2, are not identical.
Therefore, we can think of two different generalizations of
two-leg spin-1/2 ladders to SU(N ). Clearly, an obvious gen-
eralization is to just replace the two spin-1/2 chains with two
identical SU(N ) spin chains in the defining representation N.
However, the Lieb-Schultz-Mattis-type argument [48,49] and
extensive analytical/numerical studies [50–52] convincingly
rule out SPT phases in such ladders with N � 3.

Alternatively, we could put spins in the conjugate repre-
sentation N on the second chain and couple two different
chains [see Fig. 1(a)]. Specifically, we investigate the zero-
temperature phase diagram of the following two-leg SU(N )
spin ladder with standard interchain coupling (J⊥) as well as
an interaction along the diagonals (J×):

HN-N = J‖
∑

i

(
SA

1,iS
A
1,i+1 + S

A
2,iS

A
2,i+1

)+ J⊥
∑

i

SA
1,iS

A
2,i

+ J×
∑

i

(
SA

1,iS
A
2,i+1 + S

A
2,iS

A
1,i+1

)
, (1)

where SA
1,i and S

A
2,i (A = 1, . . . , N2 − 1) denote the SU(N )

spin operators on the ith site on chains 1 and 2 which trans-
form in the fundamental representation N of SU(N ) and its
conjugate N, respectively. These spin operators are normal-
ized as Tr(SASB) = Tr(S

A
S

B
) = δAB/2. Precisely speaking,

each spin (SA or S
A
) transforms projectively under PSU(N )

and we cannot think of it as an on-site symmetry in the strict
sense. Nevertheless, if a pair of spins on each rung are grouped
into a supersite, it is possible to consider PSU(N ) acting
on each supersite (i.e., rung) [all the irreducible representa-
tions appearing in the product N⊗N transform linearly under
PSU(N )]. Throughout this paper, we use the terminology
“on-site PSU(N )” in this sense.

By combined use of analytical approaches (weak-coupling
low-energy field theories, large-N expansion, etc.) and numer-
ical density-matrix renormalization group (DMRG) calcula-
tions [53,54] (see, e.g., Ref. [55] for a review), we shall show
below that the two-leg spin ladder (1) with unequal SU(N )
representations exhibits a very rich phase structure. In partic-
ular for N = 3 and N = 4, we argue that the simple enough
ladder model (1) realizes all possible SPT phases protected by
on-site PSU(N ) symmetry, including the ones recently found
in the theoretical studies of SU(N ) ultracold fermions in a 1D
optical lattice [56–58]. Recently, the Hamiltonian (1) has been
investigated in the limit J⊥ → −∞ in Ref. [59] leading to
some interesting observations.

Another physical motivation to study this model is to
understand the mechanism of the chiral SPT phases recently
found numerically in the study of SU(N ) (with N-odd)
fermions trapped in a 1D array of optical double wells [58].
In fact, the model (1) appears, in the limit of strong on-site
interactions, as a skeletonized effective Hamiltonian of the
original fermion model (see Sec. II B in the Supplementary
Material of Ref. [58] for more details). Therefore, the study
of model (1) would help us to understand how chiral SPT
phases with spontaneously broken parity symmetry arise in
the Mott-insulating phase of the fermion model.

Some remarks are in order about useful limits of model
(1). In the absence of the interchain couplings (J⊥, J× = 0),
model (1) becomes two decoupled SU(N ) Sutherland models
[60] in which one of the two chains is in the fundamental
representation (N) and the other is in its conjugate (N). Both
models are exactly solvable by means of the Bethe ansatz
[60] and display a quantum critical behavior in the SU(N )1

universality class with central charge c = N − 1 [60–65].
As will be discussed in Sec. II, we expect several different
phases in the strong-coupling limit |J⊥| 	 |J‖|, |J×|; when
J⊥ > 0, the system is in a nondegenerate gapped singlet phase
which is the generalization of the rung-dimer (RD) phase
of the two-leg SU(2) spin ladder [1–3] to general N . When
J⊥ < 0, the model (1) reduces to a nontrivial SU(N ) spin
chain in the adjoint representation which is expected to host
several distinct phases. Preliminary investigation suggested
that there are various interesting competing phases (including
topological ones) in the positive J× region. Therefore, we will
consider mostly the case with J× > 0 in what follows and
leave the other cases for future work.

The line J× = J‖ is special in that the spin ladder (1) be-
comes the composite-spin representation of a single Heisen-
berg chain with the local SU(N ) spin operators defined by
GA

i = SA
1,i + S

A
2,i. Since the total SU(N ) “spin” of each rung

[i.e., the SU(N ) representation living on the rung which is
either in singlet or adjoint; see Eq. (2)] is conserved when
J× = J‖, the entire Hilbert space splits into disjoint sectors
corresponding to sets of SU(N ) representations on the individ-
ual rungs. When all the rungs are in the adjoint representation
(this is the case, e.g., when J⊥ is negatively large), then the
SU(N ) Heisenberg spin chain in the adjoint representation is
obtained. From the analysis of related models, it is suggested
that the ground states are translation invariant, fully gapped
phases with (spontaneously) broken inversion symmetry and
the emergent edge states (N, N) or (N, N) related by the
inversion symmetry for all N [45,66]. For the pure Heisenberg
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chain, its ground state has been shown numerically to be in the
same topological phase only for N = 3 [42,44].

Last, in the limit of large N , a substantial simplification
occurs and the ground state is understood by the energetics of
valence-bond patterns (see Sec. III). We shall use this property
to investigate the phase structure of the model (1) in the large-
N limit.

The paper is organized as follows. In Sec. II, we dis-
cuss the strong-coupling regions |J‖/J⊥|, |J×/J⊥| → 0 of the
two-leg spin ladder (1). In particular, for ferromagnetically
large J⊥, we derive an effective extended Heisenberg model
in the adjoint representation that contains a new interaction
present only for N � 3. The competition between the ordinary
Heisenberg interaction and the additional one determines the
phase structure in the strong-coupling region. The large-N
limit, in which the determination of the ground state reduces
to simple energetics of valence-bond states, is considered in
Sec. III. There we find three dominant phases, one of which
is thought of as a large-N analog of the chiral SPT phases.
The low-energy approach appropriate in the weak-coupling
(J‖ > 0, |J⊥|, |J×|/J‖ 
 1) regions is presented in Sec. IV
and we argue that the low-energy physics is described by
an SU(N )2 and a ZN parafermionic conformal field theo-
ries (CFTs) [67]. Applying the semiclassical approximation,
we find a translationally invariant phase with spontaneously
broken inversion symmetry which we identify as the chiral
SPT phase. Unfortunately, the edge states, which give the
fingerprint of the SPT phases, cannot be explored within our
approach unlike in the N = 2 case [33] due to the lack of
free-field description of the underlying CFTs. The results of
extensive DMRG calculations in the N = 3 and N = 4 cases
are described in Sec. V where we map out the phase diagram
of the generalized SU(N ) two-leg spin ladder (1) with the
help of various local and nonlocal order parameters as well as
the entanglement spectrum. The phase diagrams presented in
Figs. 4 and 7 are the central results of this paper. By explicitly
calculating local spin densities, we also correctly identify the
edge states expected for the two chiral SPT phases. Finally,
a summary of the main results is given in Sec. VI and some
technical details are provided in the Appendixes.

II. STRONG-COUPLING LIMIT

The strong-coupling expansion starts from the case of
isolated rungs, i.e., J‖ = J× = 0. Then, the Clebsch-Gordan
decomposition,

N × N � 1 ⊕ (N2 − 1), (2)

tells that the N2 states on each rung are decomposed into the
singlet and the (N2 − 1)-dimensional adjoint representations.
Accordingly, the energy of each rung is given by

J⊥SA
1,iS

A
2,i =

{−J⊥(N2 − 1)/(2N ) singlet

J⊥/(2N ) adjoint
. (3)

Therefore, the strong-coupling region with J⊥ > 0 is in the
nondegenerate RD phase analogous to that found in the N = 2
case [1]; the ground state is a product of local SU(N ) singlets
on the individual rungs and the action of the SU(N ) generators
create (N2 − 1)-plet of gapful excitations [an SU(N ) general-
ization of the triplon] over this “nonmagnetic” ground state.

In the case of large negative J⊥, where N and N form
the (N2 − 1)-dimensional adjoint representation, the strong-
coupling limit is even less trivial. One may naively expect
that the SU(N ) Heisenberg chain for the preformed SU(N )
spins on the individual rungs is obtained as in the usual
S = 1/2 two-leg ladder. Below, we will show that the resulting
effective Hamiltonian contains an extra interaction that does
not exist in the SU(2) case (on the other hand, the above
expectation is correct in the case of the N-N ladder which is
symmetric in the upper and lower chains; see Appendix A1).

We start from the (N2 − 1)-fold degenerate ground states
on each rung:

|A〉 =
√

2
N∑

α,β=1

[SA]αβ |α〉 ⊗ |β̄〉 (A = 1, . . . , N2 − 1), (4)

where {SA} are the Hermitian SU(N ) generators in
the N-dimensional defining representation (N) satisfying
Tr(SASB) = δAB/2 (a possible choice of such generators is
given in Appendix D1), and |α〉 (|ᾱ〉) are the states in N (N).
It is easy to check that these are orthonormal:

〈A|B〉 = 2
N∑

α,β=1

N∑
μ,ν=1

[SA]∗μν[SB]αβ〈μ| ⊗ 〈ν̄|α〉 ⊗ |β̄〉

= 2
N∑

α,β=1

[SA]∗αβ[SB]αβ = 2 Tr(SASB) = δAB. (5)

The products of ⊗ j |Aj〉 j on the individual rungs form a
degenerate manifold of the strong-coupling ground states on
which the Hamiltonian (1) acts nontrivially.

To carry out degenerate perturbation theory, let us calculate
the matrix elements of the SU(N ) generators with respect to
{|A〉}. We begin by the generators in N which act on the states
of the first chain [i.e., on the N part of (4)]:

ŜA =
N∑

α,β=1

[SA]αβ |α〉〈β|. (6)

Using Eq. (4), we can readily evaluate

〈C|ŜA|B〉 = 2 Tr(SBSCSA) = 2 Tr(SCSASB), (7)

where we have used the Hermiticity of {SA}. Similarly, for the
generators in the conjugate representation N,

ŜA =
N∑

α,β=1

[−SA]T
αβ |ᾱ〉〈β̄|, (8)

we obtain the following:

〈C|ŜA|B〉 = −2 Tr(SCSBSA) = −2 Tr(SBSASC ). (9)

Now we want to simplify the expressions (7) and (9). First,
we note that, for N, we have the following commutation and
anticommutation relations:

[SA, SB] = i fABCSC,

{SA, SB} = dABCSC + 1

N
δAB1,

(10)
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where { fABC} are the usual completely antisymmetric structure
constants, while {dABC} are the symmetric structure constants
which do not exist in SU(2). Combining them, we see that the
product SASB can be written as

SASB = 1

2
i fABCSC + 1

2
dABCSC + 1

2N
δAB1, (11)

which enables us to rewrite (7) and (9) as

〈C|ŜA|B〉 = 2 Tr(SCSASB) = 1

2
i fABC + 1

2
dABC,

〈C|ŜA|B〉 = −2 Tr(SBSASC ) = 1

2
i fABC − 1

2
dABC .

(12)

Now it is convenient to introduce another set of (N2 − 1) ×
(N2 − 1)-dimensional matrices {DA} acting on the adjoint
representation:

[DA]CB ≡ dABC (A = 1, . . . , N2 − 1). (13)

Then, we have

〈C|(ŜA + ŜA)|B〉 = i fABC ≡ [SA]CB,

〈C|(ŜA − ŜA)|B〉 = dABC = [DA]CB,

(14)

where {SA} are the SU(N ) generators in the adjoint represen-
tation. The point is that when a pair of spins is made up of
different representations N and N, the action of the SU(N )

generators ŜA and ŜA on the adjoint module contains not only
SA but also the new matrices DA [note that, in the case of
SU(2), 〈C|(ŜA − ŜA)|B〉 = 0 identically and operators like DA

never appear].
Now we are ready to calculate the first-order perturbation.

First, we note that

J‖
{
ŜA

1,iŜ
A
1,i+1 + ŜA

2,iŜ
A
2,i+1

}+ J×
{
ŜA

1,iŜ
A
2,i+1 + ŜA

2,iŜ
A
1,i+1

}
= J‖ + J×

2

∑
i

(
ŜA

1,i + ŜA
2,i

)(
ŜA

1,i+1 + ŜA
2,i+1

)
+ J‖ − J×

2

∑
i

(
ŜA

1,i − ŜA
2,i

)(
ŜA

1,i+1 − ŜA
2,i+1

)
. (15)

Combining (14) and the above, we see that, in the strong-
coupling limit (J⊥ → −∞), the low-energy effective Hamil-
tonian is given by

Heff
N-N

= J‖ + J×
2

∑
i

SA
i SA

i+1 + J‖ − J×
2

∑
i

DA
i DA

i+1. (16)

Here we would like to stress that the strong-coupling limit of
the usual N-N two-leg SU(N ) (N � 3) spin ladder (1) with
J× = 0 is not the standard Heisenberg model for the adjoint
spins; only when J‖ = J×, we recover the pure Heisenberg
model which we know, at least for N = 3, is in the chiral
SPT phase [44]. As we show in Appendix A2, the SU(N )-
invariant DD interaction can be expressed by an eighth-
order (sixth-order for N = 3) polynomial in {SA} and the
deviation from J‖ = J× brings additional higher-order inter-
actions (biquadratic, bicubic, etc.) into the effective Hamilto-
nian. For sufficiently large N , DA

i DA
i+1 ≈ (2/N )(SA

i SA
i+1)2 [see

Eq. (A15a)] and the phase structure in the strong-coupling

crossed dimer (I)

slanted dimer (NE) slanted dimer (NW)

crossed dimer (II)

(a)

chiral SPT (NE) chiral SPT (NW)

(b)

FIG. 2. (a) Four degenerate states at the leading order in 1/N
when J× > J⊥. Crossed dimer (CD) and slanted dimer (SD) phases.
In CD, translation symmetry is broken spontaneously, while in SD,
reflection symmetry is broken. (b) Two chiral SPT states constructed
out of “preformed” adjoint spins on individual rungs. In terms of
valence-bond covering, these states consist of many dimer-pairing
patterns including long-range ones. The SD and chiral SPT phases
share the same topological properties.

region can be well captured by the following bilinear-
biquadratic Hamiltonian:

Heff
BLBQ = J‖ + J×

2

∑
i

SA
i SA

i+1 + J‖ − J×
N

∑
i

(
SA

i SA
i+1

)2
.

(17)
According to the known results for the SU(N ) bilinear-
biquadratic chain in the adjoint representation, the twofold-
degenerate singlet dimer phase (which should not be con-
fused with the nondegenerate RD phase mentioned above)
dominates when the coefficient of the biquadratic interaction
takes sufficiently large negative values [44,59]. This implies
that when J× is sufficiently larger than J‖ the original ladder
system is quadrumerized [as in the crossed dimer (CD) states
shown in Fig. 2(a)].

This is in stark contrast to the case of N = 2 where both the
usual two-leg ladder without the diagonal interaction [1] (J×)
and the composite-spin model (J× = J‖) [8–10] lead to the
same strong-coupling limit except for the overall numerical
factor. As has been mentioned in Sec. I, on the line J‖ = J×,
the system may be viewed as a single Heisenberg chain in the
adjoint representation that is cut into finite segments by singlet
rungs (J⊥ plays the role of “chemical potential” for these sin-
glets); when J⊥ < 0 is large enough (strong-coupling limit),
the singlet rungs are squeezed out and the uniform Heisenberg
chain [i.e., the model (16) with J× = J‖] is obtained. It is
known numerically that the spin chain (16) on the J× = J‖ line
is in the chiral SPT phases at least for N = 3 [44] and N = 4
[59]. Therefore, for sufficiently large negative J⊥, the original
ladder model (1) with J× = J‖ exhibits the chiral SPT order.
In analogy to a similar problem in the S = 1/2 ladder [10], we
expect a first-order transition driven by the energetics to occur
between the RD (large positive J⊥) and the chiral SPT phases
(large negative J⊥) on the line J× = J‖. In Sec. III, we shall
show that, in the large-N limit, the chiral SPT phase for large
negative J⊥ is replaced by a period-2 (i.e., plaquette, in the
ladder language) singlet phase as we increase J× (see Fig. 3).
This implies that the DD interaction in the strong-coupling
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slanted dimer (SD)

crossed dimer (CD)

rung dimer (RD)

FIG. 3. Phase diagram of N-N ladder (1) (with J‖ > 0) in the
large-N limit. On the line J× = J⊥, an effective quantum dimer
model (24) emerges at O(1/N ). On the equivalent lattice shown in
Fig. 1(b), CD and SD respectively translate to columnar dimer and
staggered dimer. The two degenerate SD states can be interpreted as
two chiral SPT states with nontrivial edge states.

effective Hamiltonian (16) drives the SPT-dimer (SPT-CD, in
the ladder language) transition.

III. LARGE-N LIMIT

To carry out large-N expansion [68,69], it is convenient to
express the original Hamiltonian (1) as

2

N
HN-N

= −J×
∑

j

{
P(N,N)

singlet (1, j; 2, j + 1) + P(N,N)
singlet (2, j; 1, j + 1)

}
−J⊥

∑
j

P(N,N)
singlet (1, j; 2, j) + 1

N
J‖
∑

j

{P (1, j; 1, j + 1)

+P (2, j; 2, j + 1)} + const., (18)

where P(N,N)
singlet (a, i; b, j) (a, b = 1, 2) denotes the projection

operator onto SU(N )-singlet on a pair of spins (a, i) and
(b, j), and P (a, i; b, j) [P (a, i; b, j)] permutes the spin states
in N (N) on the sites (a, i) and (b, j) (see Appendix B). It is
important to note that the interactions (J‖) connecting spins
in the identical representation (N-N or N-N) acquire an extra
factor 1/N and may be treated as perturbations in the 1/N
expansion.

A. Leading order

The leading [O(1)] order in 1/N , the Hamiltonian (18) just
counts the number of N-N bonds in the singlet state:

Eg.s. = −J×Nd − J⊥Nv, (19)

with Nd (Nv) being the number of singlets on diagonal
(vertical) bonds in Fig. 1(a). As there are two sites on both
edges of each singlet and any one site is never shared by more
than one singlet, the numbers of singlets Nd,v and the lattice
sites Nsite must obey the following constraint:

Nsite = 2Nd + 2Nv. (20)

Therefore, the ground states can be found by minimizing

E (0)
g.s. = (J⊥ − J×)Nd − NsiteJ⊥/2. (21)

The answer depends on (J×, J⊥) (J‖, J× > 0 is assumed). If
J× < J⊥, Eg.s. is minimized when Nd = 0 and the RD is the
only (nondegenerate) ground state with

E (0)
g.s./Nsite = −J⊥/2 ≡ e(0)

RD. (22)

If J× = J⊥, on the other hand, any nearest-neighbor singlet
(dimer) coverings on the lattice shown in Fig. 1(b) form a
highly degenerate ground-state manifold. The degeneracy is
lifted by O(1/N ) processes [69] (see Sec. III B) which can
be summarized into a quantum dimer Hamiltonian [70] with-
out potential terms. When J× > J⊥, the choice Nd = Nsite/2
(Nv = 0) minimizes the energy:

E (0)
g.s./Nsite = (J⊥ − J×)/2 − J⊥/2 = −J×/2 ≡ e(0)

CD/SD (23)

and the four states “crossed dimer (CD)” (twofold degenerate)
and “slanted dimer (SD)” (twofold degenerate) are degenerate
(any other dimer coverings are higher lying unlike when
J× = J⊥); see Fig. 2. There is no first-order [i.e., O(1/N )]
process that connects these four states and we need O(1/N2)
contributions to resolve the degeneracy.

B. First order in 1/N

As we have seen above, there is no first-order correction
for J× �= J⊥. When J× = J⊥, any nearest-neighbor dimer cov-
erings on the lattice shown in Fig. 1(b) form the manifold
of degenerate ground states and the degeneracy is lifted at
O(1/N ) by the processes within the ground-state manifold
(first-order degenerate perturbation). The O(1/N ) part of the
Hamiltonian is nothing but the quantum dimer model (QDM)
[69,70]:

H

(24)
where the two resonating plaquette-singlet states are defined
as

= 1

N

{
N∑

α=1

|α〉1,i ⊗ |ᾱ〉2,i+1

}
⊗
⎧⎨⎩

N∑
β=1

|β̄〉2,i ⊗ |β〉1,i+1

⎫⎬⎭,

(25a)

= 1

N

{
N∑

α=1

|α〉1,i ⊗ |ᾱ〉2,i

}
⊗
⎧⎨⎩

N∑
β=1

|β〉1,i+1 ⊗ |β̄〉2,i+1

⎫⎬⎭.

(25b)

If we interchange the upper and lower sites on every other

rung [see Fig. 1(b)], and Eq. (24) reduces to the
usual kinetic term of the quantum dimer model. For such a
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purely kinetic term, the ground state is known to be in a trivial
nondegenerate RD phase [71]. The point J× = J‖(= J⊥) is
very special [the SU(N ) generalization of the “composite-spin
model”] in that the rung-singlet state is the exact eigenstate of
the full ladder Hamiltonian (1). Correspondingly, the above
first-order correction vanishes identically.

C. Second-order correction

As we have seen in Sec. III A, when J× > J⊥, there are four
degenerate ground states at the leading order in the large-N
expansion and we need to proceed to the second order in 1/N
to resolve the degeneracy. Away from the line J× = J⊥, the
energies up to O(1/N2) are given as

ECD/Nsite = −J×/2 + 1

2N2

{
−2J× + J‖ − J2

‖
2J×

+ (J‖ − J⊥)(J‖ − J×)

J⊥ − J×

}
(26a)

ESD/Nsite = −J×/2 + 1

2N2

{
−2J× − 4J‖ + 2J×(J⊥ − 6J‖)

J⊥ − 2J×

}
(26b)

ERD/Nsite = −J⊥/2 − 1

2N2

2(J‖ − J⊥)(J‖ − J×)

J⊥ − J×
. (26c)

The resulting phase diagram is shown in Fig. 3.
To relate the large-N results to the phases at finite N , we

express the SU(N )-singlet columnar dimer state,

=
{

1√
N

∑
α

|α〉1a ⊗ |ᾱ〉2b

}
⊗
⎧⎨⎩ 1√

N

∑
β

|β̄〉1b ⊗ |β〉2a

⎫⎬⎭,

(27)

as a sum of the rung-singlet and the singlet made of two
adjoints. Using Eq. (4), it is easy to see that the (normalized)
singlet state made of a pair of preformed adjoint spins (shown
by the thick blue lines) is written as

(28)

Then, by the explicit expression (4) of |A〉 and the identity

N2−1∑
A=1

(SA)αβ (SA)μν = 1

2

(
δανδβμ − 1

N
δαβδμν

)
, (29)

we can express the CD state as

(30)

which implies that, in the large-N limit, the CD state is
dominated by the dimerized state of the (effective) adjoint
spins on the individual rungs.

Similar relations hold for the two classes of entangled
states (SD and chiral SPT), which are conveniently repre-
sented with matrix-product states (MPSs) as ⊗iASD−�(i) [for
SD; see (C2) and (C3)] and ⊗iMAKLT [for chiral SPT using
a generalization of the Affleck-Kennedy-Lieb-Tasaki (AKLT)
construction [41]; see (C5)]. From Eq. (C5), we see that the

two SD states are related to the two (reflection-broken) chiral
SPT states as

ASD-NE(i)ab =
√

N2 − 1

N
MAKLT-NE(i)ab

+ 1

N
δab

(
1√
N

N∑
c=1

|c〉1|c̄〉2

)
,

ASD-NW(i)ab =
√

N2 − 1

N
MAKLT-NW(i)ab

+ 1

N
δab

(
1√
N

N∑
c=1

|c〉1|c̄〉2

)
, (31)

implying the SD states connect adiabatically to the chiral
SPT states in the large-N limit. For this reason, we will not
distinguish between the SD and the chiral SPT phases in what
follows. Therefore, the transition between the SD phase and
the CD phase in the two-leg ladder in the large-N limit may
be viewed as an SPT-dimer phase transition occurring in the
effective Heisenberg chain (16) by varying the strength of the
DA

i DA
i+1 interaction.

IV. LOW-ENERGY DESCRIPTION OF CHIRAL SPT PHASE

In this section, we consider the model (1) for weak inter-
chain interactions and show how we describe the stabilization
of the SPT phase with broken parity symmetry (the chiral SPT
phase) within the framework of low-energy effective-field
theories.

A. Continuum limit

Without interchain coupling (J⊥, J× = 0), the model (1)
becomes two decoupled SU(N ) Sutherland models. As has
been mentioned already in the Introduction, the latter is
integrable and displays a quantum critical behavior in the
SU(N )1 universality class with the central charge c = N − 1
[60,62]. The low-energy properties of the Sutherland model
for the spins in the N (respectively N) representation can
be obtained by starting from the U(N ) Hubbard chain (E1)
at 1/N [respectively (N − 1)/N] filling and then taking the
limit of large repulsive interaction U [61,62,64,72–74]. At the

195121-6



SYMMETRY-PROTECTED TOPOLOGICAL PHASES IN A … PHYSICAL REVIEW B 101, 195121 (2020)

energy scale well below the charge gap, the SU(N ) operators
on the legs l = 1 and 2 in the continuum limit are expressed
as [61,62,64,72,73]

SA
1, j/a0 � JA

1,L(x) + JA
1,R(x)

+ ei2k1FxNA
1 (x) + e−i2k1FxNA†

1 (x),

S
A
2, j/a0 � JA

2,L(x) + JA
2,R(x)

+ ei2k2FxNA
2 (x) + e−i2k2FxNA†

2 (x),

(32)

where x = ja0 and k1F = π/(Na0) (a0 being the lattice spac-
ing) and k2F = π (N − 1)/(Na0) (see Appendix E for the
details). In Eq. (32), JA

l,L,R denote the left and right SU(N )1

currents [75], and the 2klF part involves the SU(N )1 Wess-
Zumino-Novikov-Witten (WZNW) primary field gl (in N)
with scaling dimension (N − 1)/N (see Appendix E):

NA
l = iC Tr(glS

A), (33)

where C is a nonuniversal real constant that results from the
average over the gapped charge degrees of freedom (see Ap-
pendix E for more details), and SA are the SU(N ) generators in
the fundamental representation defined in Sec. II. The one-site
translation symmetry Ta0 (SA

1,i → SA
1,i+1 or S

A
2,i → S

A
2,i+1) acts

differently on the g1,2 fields due to the difference in the filling
factors of the two chains:

Ta0 : g1 → ei2π/N g1, g2 → e−i2π/N g2. (34)

The effect of the site-parity symmetry Ps (or the inversion
symmetry such that SA

1,i → SA
1,−i and S

A
2,i → S

A
2,−i) on the g1,2

fields can be deduced from the low-energy expressions (32)
and (33):

NA
l (x)

Ps−→ NA†
l (−x),

gl (x)
Ps−→ −g†l (−x).

(35)

With these basic facts in hands, one can derive the con-
tinuum limit of the two-leg spin ladder (1) when the chains
are weakly coupled |J⊥, J×| 
 J‖. The leading part of the
continuum Hamiltonian reads as

H = HSU(N )1
1 + HSU(N)1

2 + λ1

∫
dx [Tr(g1g2) + H.c.]

+ λ2

∫
dx [Tr g1Tr g2 + H.c.], (36)

where HSU(N )1
l=1,2 denote the Hamiltonians of the SU(N )1

WZNW CFT for the chains l = 1, 2, and we have identified
the two coupling constants as

λ1 = −{J⊥ + 2J× cos(2π/N )}C2a0/2, λ2 = −λ1/N. (37)

The model (36) describes two SU(N )1 WZNW models per-
turbed by two strongly relevant perturbations with the same
scaling dimensions x = 2(N − 1)/N (< 2), which open the
spin gap |λi|N/2 (up to logarithmic corrections) as soon as the
interchain interactions are switched on (the gap opens more
slowly for larger N). In Eq. (36), we have not included the
marginal current-current interaction:

Vcc = 1

2
(J⊥ + J× − γ )IA

R IA
L − 1

2
(J⊥ + J× + γ )KA

R KA
L , (38)

where the sum IA
R,L = JA

1,R,L + JA
2,R,L is the SU(N )2 cur-

rents and the difference KA
R,L = JA

1,R,L − JA
2,R,L is the so-called

wrong currents [2]. In Eq. (38), the coupling γ > 0 comes
from the marginally irrelevant in-chain current-current pertur-
bation, which is responsible for the logarithmic corrections
to the SU(N )1 criticality of the individual Sutherland models
[72].

The effective Hamiltonian (36) and the marginal interac-
tions (38) thus describe the low-energy physics of the two-leg
spin ladder (1) in the weak-coupling regime |J⊥, J×| 
 J‖. It
takes a rather different form from the one obtained in Ref. [51]
[see Eq. (9) there] where the case of the two chains in the
identical representation N is considered [76], though the per-
turbing fields with the same scaling dimensions appear in both
cases. From the expressions (37) of the coupling constants,
we observe that the leading interactions in the low-energy
effective Hamiltonian (36) disappear if we fine-tune J⊥ =
−2J× cos(2π/N ) (J⊥ = 0 for N = 4). Then, on top of the
marginal current-current interactions (38), strongly irrelevant
perturbation with nonzero conformal spin of the generic form
NA

1 ∂2
x NA†

2 + H.c. must be taken into account. Unfortunately,
as is well known [2], no decisive conclusion can be drawn for
the latter kind of perturbation. The relevant perturbations of
Eq. (43) will be generated in higher orders of perturbation
theory as in the N = 2 case [14–16] since the field theory
(36) with independent λ1,2 couplings is the most general one
allowed by SU(N ) invariance, site parity, and translational
invariance. Although we will not precisely investigate the
physics along these special lines in the following, we naively
expect that these special lines describe the vicinity of the
quantum phase transitions between competing orders as the
numerical phase diagrams suggest.

B. Conformal-embedding approach

We now try to elucidate the physical nature of the phases
in the weak-coupling limit by exploiting the existence of the
following conformal embedding [77] as in Ref. [51]:

SU(N )1 × SU(N)1 ∼ SU(N)2 × ZN , (39)

where ZN is the parafermionic CFT with central charge c =
2(N − 1)/(N + 2) which describes the universal properties of
the phase transition of the two-dimensional ZN Potts model
[78]. The SU(N )2 CFT has the central charge c = 2(N2 −
1)/(N + 2) and is generated by the currents IA

R,L. The two
SU(N )1 WZNW fields g1,2 can be expressed in the new
SU(N )2 × ZN basis as [51,79]

(g1)αβ ∼ Gαβ σ1,

(g2)αβ ∼ Gαβ σ
†
1 ,

(40)

where α, β = 1, . . . , N and G is the SU(N )2 WZNW field
(in N representation) with scaling dimension �G = (N2 −
1)/N (N + 2). In Eq. (40), σ1 is the ZN spin field with scaling
dimension �σ = (N − 1)/N (N + 2) [67]. From Eqs. (34) and
(35), we can find the continuous description of the one-site
translation symmetry Ta0 and the site-parity transformation in
the new SU(N )2 × ZN basis. Using the identification (34), we
observe that the one-site translation symmetry Ta0 does not
act on the SU(N )2 WZNW G field but brings about the ZN
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transformation on the spin field:

σ1
Ta0−→ e2π i/Nσ1. (41)

On the other hand, the site-parity transformation (35) coin-
cides with the conjugation for G and σ1 fields:

G(x)
Ps−→ G†(−x),

σ1(x)
Ps−→ −σ

†
1 (−x).

(42)

With all these results, we can express the noninteracting
and interacting parts of the model (36) in the new SU(N )2 ×
ZN basis respectively as

HSU(N )1
1 + HSU(N)1

2 = HSU(N)2 + HZN ,

Hint = λ̃1

∫
dx{(Tr G)2 + Tr G2 + H.c.}

+ λ̃2

∫
dx{(Tr G)2 − Tr G2 + H.c.}ε1,

(43)

with the following set of coupling constants:

λ̃1 = −N − 1

2N
{J⊥ + 2J× cos(2π/N )}C2a0,

λ̃2 = N + 1

2N
{J⊥ + 2J× cos(2π/N )}C2a0.

(44)

The marginal current-current contribution (38) can also be
expressed in the new basis:

Vcc = 1

2
(J⊥ + J× − γ )IA

R IA
L + 1

2
(J⊥ + J× + γ )ε1Tr �adj,

(45)
where �adj is the SU(N )2 primary field in the adjoint repre-
sentation with scaling dimension 2N/(N + 2) and ε1 is the
first thermal operator, singlet under the ZN symmetry, with
scaling dimension �ε = 4/(N + 2) [67].

C. Field-theory description of chiral SPT phase

The resulting effective field theory is different from the
one for the two-leg SU(N ) spin ladder made of two identical
chains [51] in that none of the two strongly relevant perturba-
tions in Eq. (43) is integrable [see Eq. (27) in Ref. [51], where
the perturbation in the ZN sector is integrable]. Therefore, one
expects, on general grounds, that these terms will produce
spin-gapped phases with different physical properties from
the one found in Ref. [51]. To shed light on the possible
fully gapped phases of the original lattice model (1), we first
single out the relevant SU(N ) perturbation in Eq. (43) with
coupling constant λ̃1 which does not involve the ZN degrees
of freedom. A spectral gap �s is formed in the SU(N ) sector
and, after averaging over the SU(N ) sector, we obtain an
effective theory for the SU(N ) singlet ZN degrees of freedom
that governs the physics at the energy scale E 
 �s. This
phenomenological approach is expected to capture the spin-
gapped phases of the weakly coupled two-leg SU(N ) spin
ladder (1) in the regime where the spin gap �s is much larger
than that in the singlet ZN sector.

We focus our analysis on the description of the chi-
ral SPT ( i.e., the SD phase in Fig. 3) found within the

large-N limit by considering the situation λ̃1 > 0 [i.e., J⊥ <

−2J× cos(2π/N )]. The strongly relevant perturbation Tr G2 +
(Tr G)2 + H.c. of Eq. (43) opens a gap �s and its minimiza-
tion when λ̃1 > 0 gives a variety of solutions depending on N
(N > 2):

G =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

±iI (N = 4p � 4)

e±i2pπ/N I (N = 4p + 1 � 5)

±i diag(1, 1, 1, 1, 1,−1) (N = 6)

±i e±iπ/N I (N = 4p + 2 � 10)

e±i(N+1)π/2N I (N = 4p + 3 � 3)

,

(46)

with I being the N-dimensional identity matrix. It is important
to note that all these solutions break the conjugation symmetry
G → G† for all N and thus the site-parity (Ps) symmetry (42).
It thus opens the way to the description of a chiral SPT phase
within low-energy field-theory approaches.

Averaging over the G field in Eqs. (43) and (45), we
obtain the following effective action for the SU(N )-singlet ZN

parafermion sector:

Seff = SZN + λ̃

∫
d2x ε1, (47)

where SZN is the Euclidean action of the ZN CFT [78] with
the coupling constant defined by

λ̃ = N + 1

2N
{J⊥ + 2J× cos(2π/N )}C2a0

× 〈[(Tr G)2 − Tr G2 + H.c.]〉 + a0

2
(J⊥ + J× + γ )〈Tr�adj〉

= −{J⊥ + 2J× cos(2π/N )}A + (J⊥ + J× + γ )B
(48)

(the bracket 〈. . . 〉 denotes the average over the gapped SU(N )
sector and the two constants A and B are positive). The ZN

effective action (47) is integrable and describes a massive field
theory for all sign of λ̃ [80]. When λ̃ > 0, we have 〈ε1〉 < 0
and, in our convention, the underlying two-dimensional ZN

lattice model belongs to its high-temperature (paramagnetic)
phase where the ZN symmetry is restored. In our two-leg
spin ladder, it means that the one-step translation symmetry
Ta0 (41) is not spontaneously broken. On the other hand, the
site-parity symmetry Ps (42) is spontaneously broken [see
Eq. (46)] and twofold degenerate ground states result. In this
respect, the resulting spin-gap phase when λ̃ > 0 may be
identified with the chiral SPT ( i.e., the SD phase) discussed in
Sec. III within the large-N limit approach. This exotic phase
emerges in the phase diagram of generalized two-leg spin
ladder (1) within the weak-coupling regime when

J⊥ < −2J× cos(2π/N ),

(J⊥ + J× + γ )B > {J⊥ + 2J× cos(2π/N )}A.
(49)

Even within the weak-coupling region, mapping out the full
phase diagram needs the precise knowledge of the relative
values of the nonuniversal positive parameters A, B, and γ

in Eq. (49) which makes the actual analysis rather difficult.
In this respect, a direct numerical investigation that will be
carried out in the next section is indispensable to the precise
determination of the phases. Nevertheless, in some special
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FIG. 4. Phase diagram for N = 3 vs (J⊥, J×) obtained from
DMRG simulations on ladders of length L = 240. Except in the
trivial RD phase (which has no order parameter), symbols’ sizes
are proportional to the values of each order parameter; see text. For
completeness, data obtained for the strong-coupling effective Hamil-
tonian (16) are also plotted and correspond to the limit J⊥ → −∞.
Note that the fine-tuned line J⊥ = J× predicted by field theory seems
to describe the SPT-RD boundary in the weak-coupling region.

cases, one can conclude the emergence of the chiral SPT phase
without knowing the explicit values of the parameters A, B,
and γ . For instance, when N = 3, one observes from (49) that
J× > J⊥ and J× > −J⊥ are sufficient for λ̃1 > 0 and λ̃ > 0 to
hold. Our low-energy approach predicts then the formation of
the chiral SPT phase at least in this region of couplings. A
similar conclusion can be drawn for N = 4 when J⊥ < 0 and
J× > −J⊥. These are to be compared with the phase diagrams
Figs. 4 and 7 obtained numerically in the next section.

A more precise connection can be established between the
chiral SPT phase described within the low-energy approach
and the chiral SPT phase found in the large-N limit by con-
sidering, for instance, the special case N = 3 with J⊥ = 0 and
J× > 0 (in which the above analysis predicts the chiral SPT
phase). To this end, we add the following small anisotropy:

V = Kdiag

∑
i

(
SA

1,iS
A
2,i+1 − S

A
2,iS

A
1,i+1

)
(50)

between the spin exchange along the two diagonals of the
original ladder (1) which explicitly breaks the site parity Ps

thereby selecting one of the two degenerate chiral SPT states.
At low energies, using Eq. (32) and the identification (40), we
can derive the continuum-limit expression of V as

V � κ1

∫
dx i{(Tr G)2 + Tr G2 − H.c.}

+ κ2

∫
dx i{(Tr G)2 − Tr G2 − H.c.}ε1, (51)

with the two coupling constants given by

κ1 =
√

3Kdiag

6
C2a0, κ2 = −

√
3Kdiag

3
C2a0. (52)

When Kdiag > 0, one has κ1 > 0 and the minimization of
the first term in Eq. (51) uniquely selects one of the two
semiclassical solutions in Eq. (46), G = e−i2π/3I , that breaks
Ps while keeping the Z3 symmetry unbroken (〈ε1〉 < 0).
When Kdiag < 0, on the other hand, we get the site-parity
partner G = ei2π/3I . In either case, broken Ps and unbroken
Ta0 indicate that the solution found in each case corresponds
to one of the chiral SPT phases and may be identified, for
sufficiently large |Kdiag| 	 1, with the SD phase shown in the
lower panels of Fig. 2(a) that is characterized by the formation
of SU(3) singlets along one of the diagonals of the ladder.
When open-boundary conditions are used, the chiral SPT
phase with the edge states (3̄, 3) [respectively (3, 3̄)] emerges
for Kdiag > 0 (respectively Kdiag < 0).

V. DMRG CALCULATIONS

In this section, we map out the phase diagram of the
generalized two-leg spin ladder (1) for N = 3 and N = 4
by means of DMRG calculations [81]. Using the (N − 1)
U(1) conserved quantities (corresponding to the N − 1 Cartan
generators which we call “colors”) and keeping up to m =
4000 states, we were able to obtain converging results for
ladders of length L = 240 for N = 3 and L = 128 for N = 4
with a truncation error below 10−6 in the worst cases. Note
that we will fix J‖ = 1 as the unit of energy.

For later convenience, we briefly describe how we label the
topological phases protected by on-site projective SU(N ) [i.e.,
PSU(N)] symmetry [38]. If the state is invariant under on-
site symmetry G = PSU(N), the corresponding SPT phases
are labeled by the projective representations Re of G under
which the edge states transform. Since inequivalent projective
representations of PSU(N ) are labeled by the number of the
boxes nY (mod N) appearing in the Young diagram of Re

[38], there are (N − 1) nontrivial topological classes (as well
as one trivial one) specified by the ZN label ntop = nY (mod
N). In PSU(N ) (N � 3), there is an ambiguity in labeling
the topological class by the edge states. If the right edge
states transform like Re in a given topological phase, the left
ones transform like its conjugate Re which is distinct from
Re, in general. In the following, we define the topological
class by the right edge state and use the name “class-ntop”
for the topological phases with ntop = nY (mod N) (with the
class 0 corresponding to trivial phases). For instance, a pair of
chiral SPT phases with (N, N) and (N, N) belong respectively
to class 1 and class (N − 1), while the reflection-symmetric
phase (6, 6) identified in Refs. [56,57,82] for SU(4) is called
class 2.

To characterize the phases, we measured all local quan-
tities, i.e., color-resolved site densities (i.e., the eigenvalues
of the N − 1 Cartan generators), bond energies on the two
legs, rungs, and the two diagonal bonds, as well as the
entanglement spectrum when cutting the ladder in the middle.
In particular, the topological class can be easily identified
by determining the edge states which transform according to
some specific SU(N ) representations [58].

To probe the SPT phase, it is also convenient to mea-
sure some bulk correlations using the string-order parameters
(SOPs) [39,83,84] which allows direct access to the topo-
logical label ntop (i.e., the projective representations under
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which the edge states transform) [85,86]. As is discussed in
Appendix D, the building blocks of them are a pair of ZN

generators (P̂, Q̂) and the operators (X̂P, X̂Q) transforming
like ZN order parameters. Following Refs. [39] and [87], we
define

O1(m, n) = lim
|i− j|→∞

〈
{X̂P(i)}m

{
j−1∏
k=i

Q̂n
k

}
{X̂ †

P ( j)}m

〉
(53)

where the sets of integers (m, n) are chosen in such a way that
the set {O1(m, n)} distinguishes among all (N − 1) possible
SPT phases for a given N . It is known [39,87] that when the
SOP O1(m, n) is nonzero, (m, n) and the topological class ntop

must be related to each other by

m + n ntop = 0 (mod N ). (54)

For more details, see Appendix D.
Furthermore, to make connection with the effective Hamil-

tonian (16) that corresponds to the strong-coupling limit
J⊥ → −∞ of the original model (1), we also directly sim-
ulated this SU(N ) chain where each site transforms in the
adjoint representation.

A. SU(3) case

Regarding the SOP in the N = 3 case, we choose O1(1, 2)
and O1(1, 1) that satisfy (54) to detect the class-1 and 2
SPT phases, respectively. The pair of ZN generators Q and
P for the defining representation N are given in Appendix
D. To adapt these results for our 3-3̄ ladder, we need to
define all the operators in (53) on the individual rungs
and use Qrung(3 ⊗ 3̄) = Q(3) ⊗ Q(3̄) and X̂P,rung(3 ⊗ 3̄) =
X̂P(3) ⊗ 1 + 1 ⊗ X̂P(3̄) with

Q(3) =
⎛⎝1 0 0

0 ω 0

0 0 ω2

⎞⎠, XP(3) = i√
3

⎛⎝ ω−1 0 0

0 ω 0

0 0 1

⎞⎠,

Q(3̄) =
⎛⎝1 0 0

0 ω2 0

0 0 ω

⎞⎠, XP(3̄) = −i√
3

⎛⎝ ω2 0 0

0 ω 0

0 0 1

⎞⎠,

(55)

and ω = exp(i2π/3) (see Appendix D1 for the derivation). In
our DMRG computations, we fixed the rungs i and j in (53) at
positions L/4 and 3L/4 respectively so that we can measure
the bulk correlations free from the contributions due to the
edge states.

We start by showing the numerical phase diagram in Fig. 4,
which was obtained by DMRG simulations on ladders of
length L = 240 by measuring various bulk order parameters
described below. According to the field-theory analysis in
Sec. IV, the origin (J⊥, J×) = (0, 0) is an isolated critical
point corresponding to two copies of SU(3)1 WZNW CFTs
(with c = 4) and the spin gap opens as soon as we deviate
from the origin in any generic directions. First of all, the large
J⊥(> 0) region is dominated by the trivial RD phase (plotted
by triangles in Fig. 4) where all the above order parameters
vanish. This is very different from the phase diagram of the
two-leg ladder with identical chains in which we have an
extended critical phase described by c = 2 SU(3)1 WZNW
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FIG. 5. Local quantities obtained by DMRG simulations on lad-
ders of length L = 240 for J⊥ = −6 and J× = 0.5. The average
values of H 1

1,i ≈ H 1
2,i ≈ 0 (below 0.0001 in absolute values) are not

shown. We can see a large difference in the diagonal bond strengths,
which is a direct evidence of reflection-symmetry breaking in the
chiral SPT phase. By summing up the averages of the diagonal
(Cartan) generators around the right edge, we can detect the class-
1 SPT phase, with edge state weights (H1, H2) = (0.0,−0.816) �
(0, −√

2/3) corresponding to one of the three states in the funda-
mental representation of SU(3) [precisely, the state with weight �ω3;
see Eq. (E10) for the definition of the weights].

CFT at large enough J⊥ > 0 [52]. On top of the trivial RD
phase, we found the following gapped phases:

CD phase. Following Fig. 3, we can identify the CD phase
simply by measuring the difference between diagonal bond
strengths in the middle of the ladder,〈

SA
1,L/2S

A
2,L/2+1

〉− 〈SA
1,L/2+1S

A
2,L/2+2

〉
.

SPT phase. In the numerical phase diagram, Fig. 4, we
show the values of the SOP, i.e., the maximum of O1(1, 1)
and O1(1, 2), by the size of the pentagons. We also checked
the reflection-symmetry breaking associated with the chiral
SPT phases by measuring the difference between two diagonal
bonds in a central plaquette,〈

SA
1,L/2S

A
2,L/2+1

〉− 〈SA
2,L/2SA

1,L/2+1

〉
.

The SPT phases are stabilized in a large part of the phase
diagram. In fact, the region is much larger than the one
(J× > |J⊥|) predicted by field theory in Sec. IV C (this is not
surprising as the field-theory prediction has been made as the
sufficient condition).

Trimerized phase. One can test also whether the system
spontaneously breaks translation symmetry into a trimerized
phase. To this end, we measured the corresponding order
parameter〈

SA
1,L/2SA

1,L/2+1

〉− 1

2

〈
SA

1,L/2+1SA
1,L/2+2

〉− 1

2

〈
SA

1,L/2+2SA
1,L/2+3

〉
for trimerization.

To illustrate what typical local quantities look like in the
SPT phase, we plot them in Fig. 5 for J⊥ = −6 and J× = 0.5.
The characteristics of the chiral SPT phase can be seen in the
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FIG. 6. Entanglement spectra obtained by DMRG simulations
for a half -system. (a) N = 3 SPT phase with J⊥ = −6 and J× =
0.5. (b) N = 4 class-2 SPT phase with J⊥ = −4 and J× = −1.
(c) N = 4 class-1 SPT phase with J⊥ = −4 and J× = 1. Note that the
entanglement spectra are in full agreement with Refs. [44,58,59,87].

presence of the left and right edge states (which transform as
3 and 3̄, respectively, thus signaling the chiral SPT phase).
Note that due to its chiral nature, the SPT phase also breaks
reflection symmetry so that there is a sizable difference in the
diagonal bond amplitudes |〈SA

1,iS
A
2,i+1 − S

A
2,iS

A
1,i+1〉| in the bulk

(see Fig. 2). We also measured the string order parameters
in the bulk and found a nonzero value O1(1, 2) � 0.377 as
expected. In such an SPT phase, the entanglement spectrum
of a half system also exhibits characteristic features reflecting
the edge states, as can be seen in Fig. 6(a), where the degrees
of degeneracy are given by the dimensions of the SU(3) repre-
sentations with Young diagrams that contain nY = 1 (modulo
3) boxes [44,59].

B. SU(4) case

We now turn to the N = 4 case which is summarized in
the phase diagram of Fig. 7. To map out the SPT phases,

−∞ −4 −2 0 2 4

J⊥

−1

0

1

2

3

4

J
×

J× = J

RD
class-1,3 SPT
class-2 SPT
CD

FIG. 7. Phase diagram for N = 4 vs (J⊥, J×) obtained from
DMRG simulations on ladders of length L = 128. Except in the
trivial (RD) phase (which has no order parameter), symbols’ sizes
are proportional to the values of each order parameter; see text.
For completeness, data obtained on the strong-coupling effective
Hamiltonian (16) are also plotted and correspond to the limit J⊥ →
−∞.

we computed (53) with (m, n) = (1, 3), (2,1), and (1,1) to
detect class-1, -2, and -3 SPT phases, respectively. For our 4-4̄
ladder, we have the following definitions of the Z4 generator
on each rung Qrung(4 ⊗ 4̄) = Q(4) ⊗ Q(4̄) and the Z4 order
parameter X̂P,rung(4 ⊗ 4̄) = X̂P(4) ⊗ 1 + 1 ⊗ X̂P(4̄) with

Q(4) =

⎛⎜⎜⎜⎝
1 0 0 0

0 i 0 0

0 0 −1 0

0 0 0 −i

⎞⎟⎟⎟⎠, XP(4) = 1

2
e−i(π/4)Q†(4),

Q(4̄) = Q(4)∗, XP(4̄) = −1

2
e−i π

4 Q†(4). (56)

As before, in our DMRG computations, we fixed the rungs i
and j to positions L/4 and 3L/4, respectively so that we can
measure the bulk correlations without the edge contributions.
In the phase diagram shown in Fig. 7, the SPT phases were
identified by looking at the SOP values O1(1, 3), O1(2, 1),
and O1(1, 1). The observed numerical values of O1(1, 3)
or O1(1, 1) are significantly larger than those of O1(2, 1)
(typically a maximal value about 0.2 of the former compared
to 0.01 for the latter). This observation may be naturally
understood by the values expected for the model AKLT states
corresponding to each SPT phase (see Appendix D): using
our definitions, the class-1 and -3 AKLT states, built from
physical adjoint spin at each site, lead to an SOP value of
(8/15)2 � 0.284, while the class-2 SPT AKLT, which is built
with the same physical spin, exhibits a much smaller value
|O1(2, 1)| = (2/15)2 � 0.018.

The phase diagram consists of four major phases (see
Fig. 7). As has been discussed in Sec. II, for large positive J⊥,
the local degrees of freedom on each rung are frozen into an
SU(4) singlet. As a result, in this part of the phase diagram,
there is a large region of a trivial gapped phase dubbed RD
in the previous sections (see Fig. 3). Note that, in the ladder
with identical chains, this region is occupied by a period-2
valence-bond crystal [52]. For J⊥ < 0 and J× ∼ 0, on the
other hand, we discovered quite surprisingly that the class-2
SPT phase with self-conjugate edge states (6, 6) is stabilized,
which was expected neither in the large-N expansion nor in
the field theory analysis. It turned out that this SPT phase
was not stable against a moderate J× ∼ 1 being replaced by
the (4, 4̄) or (4̄, 4) chiral SPT phases, as is expected from
the large-N results (Fig. 3) or the low-energy approach in
Sec. IV. This can be seen both in the change in the edge states
and in the structure of the entanglement spectrum, where the
sixfold degeneracy of the lowest level indicative of the class-
2 nonchiral (6, 6) SPT phase [for J⊥ = −4 and J× = −1;
Fig. 6(b)] changes to the fourfold degeneracy characteristic
of the class-1, -3 chiral (4, 4̄) SPT phase [for J⊥ = −4 and
J× = 1; Fig. 6(c)]. The transition point J× ≈ 0.38 (J⊥ →
−∞) determined in Ref. [59] is consistent with ours (data
not shown) and moreover does not depend strongly on J⊥
(see Fig. 7). Also since the chiral SPT phases break reflection
symmetry spontaneously, it can be detected by measuring
different diagonal bonds; see Fig. 8(b). This transition appears
to be of first order since, even around the transition point, the
entanglement entropy of a block does not seem to diverge with
the size of the block. Finally, let us emphasize that the chiral
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FIG. 8. Local quantities obtained by DMRG simulations on lad-
ders of length L = 128 for J⊥ = −4 and (a) J× = 0 or (b) J× = 0.5.
By summing up the averages of the (diagonal) Cartan generators over
the right edge, we can detect, respectively, (a) the class-2 SPT phase,
with edge state weights (H1, H2, H3) = (−0.707, 0.408, −0.577) �
(−1/

√
2, 1/

√
6,−1/

√
3) corresponding to one of the states in the

self-conjugate antisymmetric 6 representation of SU(4); (b) the
class-3 SPT phase, with edge state weights (H1, H2, H3) =
(0.707, −0.408, −0.289) � (1/

√
2, −1/

√
6,−1/

√
12) correspond-

ing to one of the four states in the 4̄ representation of SU(4) precisely,
state with weight −�ω2, see Eq. (E11) and very different diagonal
bond amplitudes.

SPT phase (class 1 or class 3) is stabilized in a large portion of
the phase diagram including the region J⊥ < 0 and J× > −J⊥
predicted by (weak-coupling) field theory in Sec. IV.

If one further increases J× (for negative or small J⊥), a
period-2 quadrumerized phase similar to the “crossed” dimer
(CD) phase found in the large-N limit (Fig. 2), where the unit
cell contains two rungs, is stabilized. As in the SU(3) case,
its order parameter is simply given by the difference in the
diagonal bond energies between the neighboring plaquettes in
the center of the ladder.

VI. CONCLUSION

We have studied the zero-temperature phase diagram of a
two-leg SU(N ) spin ladder (1), dubbed N-N ladder, where the

upper and lower legs are made of spins in the fundamental
(N) representation and its conjugate (N), respectively, as a
function of parameters J⊥ and J× (the leg interaction is set
to unity: J‖ = 1). For odd N , such a model can be derived as a
low-energy effective Hamiltonian of SU(N ) fermions trapped
in a 1D array of double wells [58].

When the interchain (or, rung) interaction is much larger
than the others |J⊥| 	 J‖, |J×|, each rung is either in the
singlet state (when J⊥ > 0) or in the adjoint (when J⊥ <

0). When J⊥ > 0, the system is in the SU(N )-singlet rung-
dimer (RD) phase with gapped (N2 − 1)-plet excitations that
are analogous to the triplon excitations in the usual spin-
1/2 ladder. When J⊥ < 0, on the other hand, the system is
described effectively by a generalized “spin” Hamiltonian
(16) in which there is a DD interaction as well as the usual
Heisenberg-like one. The addition of the DD interaction
amounts to adding higher-order polynomials in the SU(N )
generators.

To obtain some insights into the global structure of the
phases, we have used a large-N expansion and shown how
conventional phases can emerge, such as the trivial rung-
dimer (RD) phase, or the “crossed dimer” (CD) which breaks
one-site translation symmetry. On top of these phases, we
have found the “slanted dimer” (SD) phase which is adia-
batically connected to the chiral SPT phase with nontrivial
(N, N) or (N, N) edge states related by the inversion symme-
try.

A low-energy analysis has been carried out in the weak-
coupling regime (|J×|, |J⊥| 
 |J‖|), starting from decoupled
SU(N ) chains and then applying the conformal-embedding
approach where the low-energy effective theory is written in
terms of the SU(N ) degrees of freedom and the SU(N )-singlet
ZN parafermion. The situation is quite different from that
in the usual SU(N ) ladder with an identical (N) represen-
tation for both legs [51], and it generically leads to gapped
phases, either one with broken translation symmetry or topo-
logical chiral SPT phases that break reflection symmetry
instead.

A large-scale numerical (DMRG) analysis has fully con-
firmed these predictions and also provided some quantitative
phase diagrams for SU(3) (Fig. 4) and SU(4) (Fig. 7). For N =
3, all the approaches consistently point to the conclusion that
a simple one-dimensional model (1) hosts the two nontrivial
SPT phases, i.e., the (3̄, 3) chiral SPT phase and its parity-
partner (3, 3̄) characterized respectively by the topological
label ntop = nY = 1 and 2 (mod 3) in a fairly large portion
of the J⊥ � 0, J× > 0 region.

Quite surprisingly, for N = 4, on top of the class-1 [(4̄, 4)]
and -3 [(4, 4̄)] chiral phases that spontaneously break reflec-
tion symmetry, we have numerically found for small or neg-
ative J× the nonchiral class-2 SPT phase with self-conjugate
edge states (6, 6). Therefore, the simple N-N ladder (1) with
N = 4 can realize all the possible SPT phases, too. Besides
these chiral and nonchiral SPT phases and the standard RD
phase, a fully gapped phase with broken translation symmetry
[e.g., crossed dimer (CD) phase for all N and the trimerized
phase for N = 3] were also found.

We hope that some of these exotic phases will be explored
in future cold atom experiments using ytterbium or strontium
atoms, for instance.
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APPENDIX A: SOME REMARKS ON STRONG-COUPLING
LIMIT

1. Strong-coupling limit of two-leg ladder with identical legs

To highlight the peculiarity of the N-N ladder, let us
consider the following two-leg ladder with identical spins
(i.e., those in the defining representation N) on both legs
[51,52]:

HN-N = J‖
∑

j

{
SA

1, jS
A
1, j+1 + SA

2, jS
A
2, j+1

}+ J⊥
∑

j

(
SA

1, jS
A
2, j

)
+ J×

∑
j

{
SA

1, jS
A
2, j+1 + SA

2, jS
A
1, j+1

}
. (A1)

As a pair of spins on the rung j satisfy

N2−1∑
A=1

SA
1, jS

A
2, j =

{
1

2N (N − 1), symmetric two-tensor

− 1
2N (N + 1), anti-symmetric two-tensor

,

(A2)
in the strong-coupling limit |J⊥| 	 J , the state with symmet-

ric is chosen for J⊥ < 0 and antisymmetric for J⊥ > 0.

a. Case of J⊥ > 0

The N (N − 1)/2 basis states in the antisymmetric two-
tensor representation may be written as

|α, β〉 = 1√
2

(|α〉1 ⊗ |β〉2 − |β〉1 ⊗ |α〉2) (1�β < α�N ).

(A3)

It is straightforward to calculate the following matrix ele-
ments:〈

μ, ν
∣∣ŜA

1

∣∣α, β
〉

= 1

2

{
(SA)μαδβν − (SA)μβδαν − (SA)ναδβμ + (SA)νβδαμ

}
,〈

μ, ν
∣∣ŜA

2

∣∣α, β
〉 = 〈μ, ν

∣∣ŜA
1

∣∣α, β
〉
.

(A4)

These immediately imply〈
μ, ν

∣∣ŜA
( )∣∣α, β

〉 = 〈μ, ν
∣∣{ŜA

1 + ŜA
2

}∣∣α, β
〉

= 2
〈
μ, ν

∣∣ŜA
1

∣∣α, β
〉 = 2

〈
μ, ν

∣∣ŜA
2

∣∣α, β
〉
.

(A5)

Therefore, within the first-order perturbation, we obtain the
following strong-coupling effective (Heisenberg) Hamiltonian

[50]:

HN-N
eff (J⊥ > 0) = 1

2
(J‖ + J×)

∑
j

SA
j

( )
SA

j+1

( )
, (A6)

where {SA
j ( )} denote the spin operators in the representation

.

b. Case of J⊥ < 0

Now the single-rung ground state is in the symmetric two-
tensor representation , whose basis states are given by

|α̃, β〉 =
{|α〉1|β〉2, when α = β

1√
2
(|α〉1 ⊗ |β〉2 + |β〉1 ⊗ |α〉2), when α �= β

.

(A7)
As in the previous case, we obtain the matrix elements of ŜA

1
and ŜA

2 for the above basis states:〈
μ̃, ν

∣∣ŜA
1

∣∣α̃, β
〉

= 1

2

{
(SA)μαδβν + (SA)μβδαν + (SA)ναδβμ + (SA)νβδαμ

}
,〈

μ̃, ν
∣∣ŜA

2

∣∣α̃, β
〉 = 〈μ̃, ν

∣∣ŜA
1

∣∣α̃, β
〉
.

(A8)

Again we have similar relations,〈
μ̃, ν

∣∣ŜA
( )∣∣α̃, β

〉 = 〈μ̃, ν
∣∣{ŜA

1 + ŜA
2

}∣∣α̃, β
〉

= 2〈μ̃, ν|ŜA
1 |α̃, β〉 = 2〈μ̃, ν|ŜA

2 |α̃, β〉,
(A9)

and we can readily see that the first-order (in J) effective
Hamiltonian for J⊥ < 0 is given again by the Heisenberg
Hamiltonian:

(A10)

with the spins belonging to the symmetric two-tensor rep-
resentation . If we interpret the SU(N ) spins {SA

l, j} (l =
1, 2) coming from N-colored fermions, this corresponds to
the situation considered in Appendix A of Ref. [88]. There-
fore, in the case of the SU(N) two-leg ladder with identical
representations for the two legs, the strong-coupling limit
(|J⊥| 	 1) is described by the usual Heisenberg Hamiltonian

in or regardless of the sign of J⊥, while an additional
DD interaction appears in the case of the N-N ladder [see
Eq. (16)].

The results (A6) and (A10) imply that, in contrast to the
case of asymmetric ladder where we have several phases when
−J⊥ 	 J‖, J×, there is only a single phase in the strong-
coupling regions of the symmetric N-N ladder.

2. DD interaction

In this Appendix, we try to express the DD interaction
appearing in Sec. II in terms of the SU(N ) spin operators. To
this end, we start from the Clebsch-Gordan decomposition of
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a product of two adjoint representations of SU(N ):

(A11)
Precisely, this is valid only for N � 4 and the fourth represen-
tation on the right-hand side does not appear in SU(3). Note
that there are two different adjoint representations that are
conveniently distinguished by, e.g., the two eigenvalues +1
(S) and −1 (A) of the two-site permutation operator. Being
SU(N ) invariant and parity symmetric, the DD interaction
can be decomposed into the projectors onto the irreducible
representations appearing in (A11):

(A12)
All the terms but the projector onto the symmetric (S) adjoint
(the second one) are expressed as eighth-order [sixth-order in
SU(3)] polynomials in X ≡ SA

i SA
i+1. To express the projector

onto the symmetric adjoint, it is convenient to introduce
the following reflection-symmetric SU(N )-invariant six-spin
operator [45]:

Ki,i+1 ≡ dABCdDEFSA
i SD

i SE
i SF

i+1SB
i+1SC

i+1, (A13)

where the SU(N ) generators {SA
i } are in the adjoint represen-

tation and the symmetric structure constants dABC are defined
in Eq. (10). Then, we can rewrite the projector with K and a
polynomial of X as

(A14)

Plugging this into (A12), we obtain (X = SA
i SA

i+1):

N2−1∑
A=1

DA
i DA

i+1 = 2

N2
X + 2(N2 + 2)

N3
X 2 − 2

N2
X 3

− 4

N3
X 4 + 8

N3
Ki,i+1 − 2

N
(A15a)

for N � 4 and

8∑
A=1

DA
i DA

i+1 = −4

9
X + 22

27
X 2 + 8

27
X 3 + 8

27
Ki,i+1 − 2

3
(A15b)

for N = 3.

APPENDIX B: PROJECTION AND PERMUTATION
OPERATORS

In this Appendix, we summarize some useful relations used
in Sec. III. For SU(2), it is well known that the permutation
operator that exchanges the two S = 1/2 states is given simply
as P (i; j) = 1/2 + 2Si·S j . The simplest way of deriving this
would be to write P (i; j) = a + bSi·S j and use that P (i; j) =
1 (−1) for triplet (singlet). For a pair of N or N of SU(N ), we
can follow the same strategy and use Eq. (A2) to obtain

P (i; j) =
N∑

a,b=1

|a〉i|b〉 j〈b|i〈a| j = 2
N2−1∑
A=1

SA
i SA

j + 1

N
,

P (i; j) =
N∑

a,b=1

|ā〉i|b̄〉 j〈b̄|i〈ā| j = 2
N2−1∑
A=1

S
A
i S

A
j + 1

N
.

(B1)

For the pair N and N, the permutation is not defined.
Nevertheless, the projection operators onto the irreducible
representations can be defined. As the pair N and N may be
decomposed as (2), any projection operators can be expressed
as a + b

∑N2−1
A=1 SA

i S
A
j . Using the values in Eq. (3), we can

determine the values of a and b to obtain

P(N,N)
singlet (i; j) =

(
1√
N

)2 N∑
a,b=1

|a〉i|ā〉 j〈b|i〈b̄| j

= − 2

N

N2−1∑
A=1

SA
i S

A
j + 1

N2
.

(B2)

APPENDIX C: MATRIX-PRODUCT STATES

As both the SD states and the SU(N ) chiral AKLT states
are correlated many-body states, it is convenient to express
them in terms of matrix-product states. One (NW) of the two
SD states shown in Fig. 2 is expressed as

. . . 1√
N

N∑
a=1

|a〉1R|ā〉2,i
1√
N

N∑
b=1

|b〉1,i|b̄〉2,i+1
1√
N

N∑
c=1

|c〉1,i+1|c̄〉2L . . .

=
N∑

a=1

N∑
b=1

N∑
c=1

. . . |a〉1RASD-NW(i)ASD-NW(i + 1)|c̄〉2L . . . ,

(C1)

where the matrices A are defined by

[ASD-NW(i)]ab ≡ 1√
N

|b〉1,i|ā〉2,i (a, b = 1, . . . , N ). (C2)

Similarly, we can express the other state (NE) with

[ASD-NE(i)]ab ≡ 1√
N

|a〉1,i|b̄〉2,i. (C3)
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Two different chiral SPT states [see Fig. 2(b)] can be con-
structed out of the preformed eight-dimensional spins (in the
adjoint representation) and are given in the form of a product
of N×N matrices MAKLT−�:

⊗iMAKLT-�(i) (� = NE, NW) (C4)

with

MAKLT-NW(i)ab =
√

2N

N2 − 1

N2−1∑
A=1

(SA)ab|A〉i

= N√
N2 − 1

ASD-NW(i)ab

− 1√
N2 − 1

δab

∣∣∣∣ 〉
i

,

MAKLT-NE(i)ab =
√

2N

N2 − 1

N2−1∑
A=1

(SA)T
ab|A〉i

= N√
N2 − 1

ASD-NE(i)ab

− 1√
N2 − 1

δab

∣∣∣∣ 〉
i

, (C5)

where we have used Eqs. (4) and (29) and the singlet state
on a rung is defined by∣∣∣∣ 〉

i

= 1√
N

N∑
c=1

|c〉1,i|c̄〉2,i. (C6)

APPENDIX D: ZN×ZN-SYMMETRY AND STRING ORDER
PARAMETERS

1. Generators and order parameters

It is well known that we can think of the SPT phases
protected by on-site PSU(N) symmetry as protected by its dis-
crete subgroup ZN×ZN [39,40]. Since the string-order param-
eters are defined with respect to this subgroup of PSU(N ), we
first show how we identify ZN×ZN in the language of SU(N ).
For the SU(N ) generators, we use the following generalized
Gell-Mann matrices, in which the (N − 1) Cartan generators
Hk (k = 1, . . . , N − 1) in the defining representation N are
diagonal (see, e.g., Chap. 13 of Ref. [89]):

[Hk (N)]i j = 1√
2k(k + 1)

δi j

(
k∑

l=1

δ jl − kδ j,k+1

)
. (D1)

The other N (N − 1) off-diagonal generators are defined sys-
tematically as

S1 = Ms(1, 2), S2 = Ma(1, 2), S3 = H1, S4 = Ms(1, 3),

S5 = Ma(1, 3), S6 = Ms(2, 3), S7 = Ma(2, 3), S8 = H2,

S9 = Ms(1, 4), S10 = Ma(1, 4), S11 = Ms(2, 4),

S12 = Ma(2, 4), S13 = Ms(3, 4), S14 = Ma(3, 4),

S15 = H3, . . . (D2)

using the following matrices:

[Ms(a, b)]i j = 1

2
(δa,iδb, j + δa, jδb,i ),

[Ma(a, b)]i j = − i

2
(δa,iδb, j − δa, jδb,i ),

(1 � a < b � N, 1 � i, j � N ).

(D3)

It is convenient to choose Q to be diagonal, i.e.,

Q(N) =

⎛⎜⎜⎜⎝
1 0 · · · 0
0 ω · · · 0
...

...
. . . 0

0 · · · 0 ωN−1

⎞⎟⎟⎟⎠
≡ e−iπ[(N−1)/N] exp

[
i
2π

N
Hρ (N)

]
(ω ≡ ei(2π/N ) ),

(D4)

where the Cartan generator Hρ (N) is expanded by the (N − 1)
fundamental weights { ��α} of SU(N ) as

Hρ =
N−1∑
k=1

{
N−1∑
α=1

[ ��α]k

}
Hk . (D5)

The reason why we chose Hρ this way is that the operator
QN with Q = ei(2π/N )Hρ is the identity 1 up to a phase in any
irreducible representations.

The generator P in the defining representation is given by
the permutation operator:

P(N) =

⎛⎜⎜⎝
0 0 · · · 1
1 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0

⎞⎟⎟⎠. (D6)

It is convenient to assume the following expansion similar to
(D4):

P(N) = e−iπ[(N−1)/N] exp

[
i
2π

N
Gρ (N)

]
(D7)

in which Gρ is expanded in the SU(N ) generators since
det(ei(2π/N )Gρ (N) ) = 1. We can easily see that these operators
satisfy the unitarity and

Q(N)N = P(N)N = 1,

Q(N)P(N) = ωP(N)Q(N).
(D8)

These equations imply that the two ZN are represented pro-
jectively in N. As Q and P for arbitrary representations are
constructed by tensoring Q(N) and P(N), it is obvious that
Q and P are commuting when the number of boxes ny in the
Young diagram is divisible by N .

The expressions (D4) and (D7) are convenient as once we
establish them for N, it is straightforward to generalize them
to any irreducible representations. The generators Hρ and Gρ

for N = 2 are nothing but the z and x components of the spin
operators [90], while for N = 3 they are given by

Hρ = 2S3, Gρ = S1 + S4 + S6 + 1√
3

(S2 − S5 + S7)

(D9)
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with SA being the Gell-Mann matrices. We can repeat the same
steps to find Hρ and Gρ for N � 4.

On top of the Z3 generators P and Q, we need a set of
operators {XP, XQ} transforming as

P†XPP = ω−1XP, Q†XQQ = ωXQ (ω = ei(2π/N ) ),

QXP = XPQ, PXQ = XQP (D10)

for any irreducible representations of SU(N ). To find XQ, we
first express XQ in terms of the SU(N ) generators and solve[

Hρ, X (1)
Q

] = X (1)
Q ,

[
Hρ, X (2)

Q

] = −(N − 1)X (2)
Q ,[

Gρ, X (1)
Q + X (2)

Q

] = 0,
(D11)

which determines XQ = X (1)
Q + X (2)

Q up to an overall factor.
The other operator XP can be found similarly. For N = 2, we
reproduce the well-known results XQ = Sx and XP = Sz. The
results for N = 3 and 4 are a bit more complicated:

X N=3
P = S3 − iS8,

X N=3
Q = 1√

3
{S1 + iS2 + S4 − iS5 + S6 + iS7}, (D12a)

X N=4
P = 1

3
√

2
{3S3 + (1 − 2i)

√
3S8 − (1 + i)

√
6S15},

X N=4
Q = 1

2
{S1 + iS2 + S6 + iS7 + S9 − iS10 + S13 + iS14}.

(D12b)

[These operators are normalized as Tr(X †
QXQ) =

Tr(X †
P XP ) = 1 for the representation N.] In fact, these

expressions are valid for any representations and, to obtain
(XP, XQ) for a given representation R, we just use the
generators SA in R. The expressions in Eqs. (55) and (56) are
obtained in this way.

2. String order parameters

With these operators in hand, we can define the following
string order parameters:

O1(m, n) ≡ lim
|i− j|↗∞

〈
{XP(i)}m

⎧⎨⎩ ∏
i�k< j

Q(k)n

⎫⎬⎭{X †
P ( j)}m

〉
,

(D13a)

O2(m, n) ≡ lim
|i− j|↗∞

〈{XQ(i)}m

⎧⎨⎩ ∏
i<k� j

P(k)n

⎫⎬⎭{X †
Q( j)}m

〉
.

(D13b)

These operators are related to the topological classes
through the selection rules [85,86]. In fact, using the proper-
ties of (infinite-size) MPS, we can show [39,87] that unless
the projective representations corresponding to the two ZN

generators P and Q have a particular projective phase, the
above string order parameters are identically zero. On the
other hand, when both O1(m, n) and O2(m, n) are nonzero,
the topological label ntop must satisfy the following relation
(54):

m + n ntop ≡ 0 (mod N ) (D14)

(the converse is not always true). Therefore, if we make an
appropriate choice of the set {(m, n)}, we can identify the
topological class of a given phase. Specifically, we take for
N = 3,

(m, n) =
{

(1, 2) for class-1
(1, 1) for class-2 (D15a)

and

(m, n) =
⎧⎨⎩(1, 3) for class-1

(2, 1) for class-2
(1, 1) for class-3

(D15b)

for N = 4. Strictly speaking, we need to check both O1(m, n)
and O2(m, n). However, for systems possessing full SU(N )
symmetry, O1(m, n) = O2(m, n) is always guaranteed and it
suffices to compute only O1(m, n).

It is interesting to calculate these order parameters
O1(m, n) for several model wave functions of the PSU(N )
SPT phases. The prototypes of the wave functions of the
class-1 and -2 (chiral) SPT phases in SU(3) are given by
the states AKLT-NW and AKLT-NE defined in Eq. (C5). For
these two states, the order parameters are given as

(O1(1, 2),O1(1, 1)) =
{

(27/64, 0) for class 1
(0, 27/64) for class 2.

(D16)

There are two different ways to split a single SU(4) spin in
the adjoint into two pieces:

(D17a)

(D17b)

If we apply the valence-bond (or AKLT) construction to
the above two decompositions, we can construct the model
MPSs for the chiral (4, 4̄) (class 3) [or (4̄, 4); class 1] and the
nonchiral (6, 6) (class 2), respectively. The values of SOP for
these model states are

(O1(1, 3),O1(2, 1),O1(1, 1))

=
⎧⎨⎩((8/15)2, 0, 0) for class 1

(0, (2/15)2, 0) for class 2
(0, 0, (8/15)2) for class 3.

(D18)

APPENDIX E: NON-ABELIAN BOSONIZATION AND SU(N)
SPIN CHAIN

In this Appendix, we review in a nutshell the continuum
description of the SU(N ) spin operator of Eq. (32) in terms
of the currents JA

R,L and the WZNW primary field g of the
SU(N )1 CFT. As is well known, the low-energy properties
of the SU(N ) Sutherland model can be extracted from the
one-dimensional U(N ) Hubbard chain in the large repulsive U
limit for a 1/N filling with Fermi wave vector kF = π/(Na0)
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with Hamiltonian

HHubbard = − t
∑

i

N∑
α=1

(c†α,i+1cα,i + H.c.)

+ U

2

∑
i,α,β

nα,inβ,i(1 − δαβ ),

(E1)

where c†α,i creates a spinless fermion in the band α = 1, . . . N

of the site i and nα,i = c†α,icα,i is the occupation number. When
the Hubbard interaction U is sufficiently large, the system
becomes a Mott insulator and the charge degrees of freedom
gets decoupled from the low-energy physics. The physical
properties of this Mott-insulating phase are described by the
SU(N ) Sutherland model [61,62,64,72–74]:

HSutherland = J
∑

i

N2−1∑
A=1

ŜA
i ŜA

i+1, (E2)

where J = 4t2/U is the spin exchange and ŜA
i =

c†α,i[S
A]αβcβ,i [Tr(SASB) = δAB/2] is the SU(N ) spin operator

on site i. To guarantee the defining representation N at each
site, we impose the local constraint:

∑
α nα,i = 1 (∀i). The

model (E2) is integrable and has N − 1 gapless modes that are
described by the SU(N )1 CFT with central charge c = N − 1.
A continuum description of the SU(N ) spin operator can be
derived from the continuum expression of the lattice fermion
in terms of N chiral Dirac fermions:

cα,i/
√

a0 → e−ikFxLα (x) + eikFxRα (x), (E3)

which enables us to obtain

ŜA
i /a0 ∼ JA

R + JA
L + ei2kFxL†

α[SA]αβRβ + H.c., (E4)

where JA
L = L†

α[SA]αβLβ is the left SU(N )1 current with the
right one defined similarly. The 2kF SU(N ) spin density NA

of Eq. (33) is obtained by taking the average over the fully
gapped charge mode: NA = 〈L†

α[SA]αβRβ〉c. We then intro-
duce N left-right moving bosons ϕαL,R to bosonize the Dirac
fermions [2,64]:

Lα = κα√
2πa0

e−i
√

4πϕαL , Rα = κα√
2πa0

ei
√

4πϕαR , (E5)

where [ϕαR, ϕβL] = iδαβ/4 and κα are Klein factors to en-
sure the anticommutation of fermions with different colors:
{κα, κβ} = 2δαβ , κ†

α = κα . The 2kF SU(N ) spin density can
thus be expressed in terms of these bosonic fields as

NA = κακβ iδαβ

2πa0
[SA]αβ

〈
ei

√
4πϕαL+i

√
4πϕβR

〉
c (E6)

after averaging over the gapped charge sector (〈. . . 〉c). The
average in Eq. (E6) can be conveniently done by switching to a
new basis where the charge degrees of freedom are separated.
Specifically, we introduce a charge boson field �c and N − 1
“spin” [i.e., SU(N )] fields �s

m (m = 1, . . . N − 1) through the

following orthogonal transformation [73,91]:

�c
R,L = 1√

N

N∑
α=1

ϕαR,L,

�s
mR,L =

N−1∑
p=1

[Hm(N)]ppϕpR,L,

(E7)

where the diagonal Cartan generators {Hm(N)} are defined in
(D1) The inverse transformation can be written in a compact
way as

ϕαR,L = �c
R,L√
N

+
N−1∑
m=1

[�ωα]m�s
mR,L

≡ �c
R,L√
N

+ �ωα · ��s
R,L,

(E8)

where �ωα/
√

2 (α = 1, . . . , N) are the (N − 1)-dimensional
weight vectors in the fundamental representation N of the
SU(N ) which satisfy the following simple relations:

N∑
α=1

�ωα = �0, (E9a)

N∑
α=1

[�ωα]m[�ωα]m′ = δmm′ , (E9b)

�ωα· �ωβ = δαβ − 1

N
. (E9c)

For instance, in the N = 3 case, we have

�ω1 =
(

1√
2
, 1√

6

)
, �ω2 =

(
− 1√

2
, 1√

6

)
, �ω3 =

(
0,−

√
2
3

)
,

(E10)
and in the N = 4 case, we have

�ω1 =
(

1√
2
, 1√

6
, 1√

12

)
, �ω2 =

(
− 1√

2
, 1√

6
, 1√

12

)
,

�ω3 =
(

0,−
√

2
3 , 1√

12

)
, �ω4 =

(
0, 0,−

√
3

2

)
. (E11)

The Hamiltonian of the Sutherland model in the far infrared
regime neglecting the marginal irrelevant current-current in-
teraction takes then a simple form in terms of these spin
bosonic fields:

HSutherland = v

∫
dx

N−1∑
m=1

{(
∂x�

s
mL

)2 + (∂x�
s
mR

)2}
= v

∫
dx
{(

∂x ��s
L

)2 + (∂x ��s
R

)2}
. (E12)

A free-field representation of the 2kF SU(N ) spin density can
also be obtained from the identity (33) NA = iλ Tr(gSA) and
(E6):

λ =
√

N

2πa1/N
0

〈ei
√

4π/N�c〉c, (E13a)

gβα = κακβ iδαβ−1

√
N

: ei
√

4π �ωα · ��s
L+i

√
4π �ωβ · ��s

R :, (E13b)
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where �c ≡ �c
R + �c

L. A more rigorous free-field represen-
tation of the SU(N )1 WZNW g primary field was obtained
in Ref. [92] (see Appendix B) where the Klein factors were
constructed out of the zero mode operators of the spin bosonic
fields.

We now argue that the nonuniversal constant λ in
Eq. (E13), which results from the average over the fully
gapped charge sector, can be chosen real. To this end, we need
to determine the umklapp term which opens the mass gap in
the charge sector and pins the charge field �c. As discussed in
Ref. [73], when N � 2, this term is generated at higher orders
in perturbation theory. As the fermion operators are expanded,
at low energies, as the Hubbard Hamiltonian (E1) consisting
of the lattice fermion operators cα,i (E3) has the following
expansion in the momentum change q:

HHubbard � Hq=0 + Hq=±2kF + Hq=±4kF + . . . . (E14)

Since kF = π/(Na0), the umklapp terms with q = ±2NkF

give a uniform (i.e., nonoscillatory) contribution which can
open a gap in the charge sector. The umklapp operator which
is an SU(N ) singlet and translation invariant with the lowest
scaling dimension is

N∏
α=1

L†
αRα + H.c. (E15)

Its generation depends on the parity of N . When N = 2p, the
operator (E15) appears from p − 1 operator product expan-
sions (OPEs) between two Hq=±4kF terms so that

HN=2p
umklapp ∼ (−1)p−1U p

N∏
α=1

L†
αRα + H.c.

∼ −U p cos(
√

4πN�c),

(E16)

where we have used the identification (E5) and the definition
(E7) of the charge field �c. The sine-Gordon potential (E15)
leads us to conclude that the charge field is locked on configu-
rations such that 〈�c〉 = k

√
π/N (k: integer). One can freely

choose the ground state of the sine-Gordon umklapp potential
such that 〈�c〉 = 0 so that λ in Eq. (E13a) can be taken real.
When N = 2p + 1 is odd, we need p − 1 OPE between two
Hq=±4kF terms and then a last OPE with Hq=±2kF to produce
the umklapp term (E15). We thus find

HN=2p+1
umklapp ∼ i(−1)pU p+1

N∏
α=1

L†
αRα + H.c.

∼ −U p+1 cos(
√

4πN�c), (E17)

from which we conclude as in the even N case that λ is real.
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