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Stable and metastable kinetic ferromagnetism on a ring
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Performing an exact diagonalization of the effective spin problem, a ferromagnetic ground state of kinetic
origin is shown to emerge in a system of N strongly correlated electrons on a L-site ring (L > N). A problem of N
constrained spinful electrons on a L-site ring is argued to reduce to that of the spinless fermions with an effective
flux threading through the ring. This phenomenon is brought about by the quantum necklace statistics originated
by the no-double-occupancy constraint, leading to a fractional shifted electron momentum quantization. As
a consequence of such special energy-level distribution, the kinetic ferromagnetism is stable only for N = 3.
For odd N > 3 the fully polarized FM-state energy is only a local minimum but it is protected by a finite
energy barrier that inhibits one spin-flip processes. The metastable ferromagnetic state survives perturbations
of small magnitude, opening up a possibility of being experimentally observed by an appropriate tuning of
interdot tunneling amplitudes in currently available quantum dot arrays.
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I. INTRODUCTION

The emergence of magnetism in itinerant electron systems
presents a challenging quantum many-body physics prob-
lem. Essentially, it originates in a rather delicate quantum-
mechanical balance between the potential energy saved by
building strong electron correlations into the many-body
wave function and a possible gain in the kinetic energy of
the delocalized electrons whose hopping is inhibited by the
emergent effective spin background due to correlations. A
reliable description of such a phenomenon clearly requires
nonperturbative approaches.

Because of this, there are only a few rigorous theoretical
results for kinetic ferromagnetism (FM), with the Nagaoka
FM being the most important among them [1,2]. Nagaoka’s
theorem predicts a FM ground state in the Hubbard model of
strongly correlated electrons with a single hole (one missing
electron) in the otherwise half-filled band, provided certain
conditions hold (square and other bipartite lattices, infinitely
strong on-site Coulomb repulsion, nearest-neighbor only cou-
pling, and periodic boundary conditions). In this scenario a
background of fully aligned electron lattice spins minimizes
the total energy of a single hole. Such an effective spin
background arises due to infinitely strong on-site Coulomb
repulsion that strictly prohibits a double electron occupancy of
the lattice sites. This is the key feature behind the Nagaoka ef-
fect. However, creating precisely one hole in a thermodynamic
system is obviously an impossible constraint. There is also no
consensus about the presence [3–6] or not [7,8] of the stable
kinetic FM at a nonzero finite hole concentration in the ther-
modynamic limit or even on the role of the electron-electron
interaction in this phenomenon [9]. The very fragile nature of
this phenomenon does not allow generalizations of Nagaoka’s

theorem to a finite density of holes in the thermodynamic
limit.

A natural question then arises as to whether Nagaoka’s FM
can really exist. The answer to this question turns out to be
affirmative. Nagaoka’s FM had been just a theoretical predic-
tion since the later 1960s before it was recently experimentally
observed in quantum dot arrays [10]. According to numerical
calculations [11–13], three strongly correlated electrons in
the 2 × 2 plaquette do form such FM ground state of kinetic
origin. The four-dot system with three electrons has been
analytically explored for many different plaquette geometries
in the presence of long-range Coulomb interactions, with and
without next-nearest-neighbor hopping. Specific predictions
on which geometries would lead to a fully or a partially po-
larized FM ground state of different four-dot arrays have been
thoroughly discussed [12]. However, a five-dot ring with four
electrons does not exhibit a fully polarized FM ground state,
despite its “Nagaoka-type” appearance (a single hole on top
of a Mott insulating state with one electron per site) [12]. A
general theoretical analysis is therefore warranted to explore
which arrangements of electron systems on a ring would lead
to a FM state and which would not. It is also important to
realize under what restrictions metastable FM ground states
could also emerge. Those issues have not been explored in
the literature so far, despite the fact that that would provide
more motivation for further experiments in currently available
semiconductor dot-based structures in small scale systems.

Our goal in the present work is therefore twofold. First
we derive the exact conditions under which the kinetic
stable/metastable FM emerges on an L-site ring accommodat-
ing N electrons. Second, we discuss in what way our findings
can be used in experimental setups to observe the kinetically
driven FM states.
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II. EXACT DIAGONALIZATION OF
ONE-DIMENSIONAL RING

Nagaoka’s proof implies that the so-called connectivity
condition holds: Any two spin configurations can be trans-
formed into one another by an appropriate electron hopping
process. This is the case for a bipartite two-dimensional (2D)
and for regular lattices of higher dimension. However it breaks
down for a 1D ring. In this case Nagaoka’s theorem does
not apply. At first sight it may seem that the 1D solution
is trivial since in a chain with open boundary conditions
(BCs) the spectrum is completely degenerate with respect to
its spin content. The existence of boundaries as well as the
impossibility of exchanging the spin relative ordering prevents
the projected electrons to access different spin configurations.
Because of this the projected electrons behave essentially as
spinless fermions. As a matter of fact, the Lieb-Mattis theorem
tells us that in this case the ground state is realized as the
lowest total spin state [14].

In contrast, for periodic BCs the situation changes dras-
tically. The underlying configuration space is now a closed
loop—a ring—with L sites and N � L projected electrons. As
soon as an electron crosses the boundary the corresponding
spin configuration undergoes a cyclic permutation. In this way
the emergent spin configurations are decomposed into discon-
nected parts—the quantum “necklaces”—that cannot be trans-
formed into one another by permutations [15]. The importance
of the closed loops is well known and may lead to some
rather unexpected nontrivial results, such as an emergence
of the kinetic antiferromagnetic order on frustrated lattices
[16]. Strongly correlated electrons on a ring can be viewed
as spinless particles if they are subjected to open boundary
conditions. However, the periodic boundary conditions induce
the presence of an effective flux produced by the quantum
necklace rotation which results in the fractional shifted elec-
tron momentum quantization. It is shown that N constrained
spinful electrons on a L-site ring reduces to a problem of N
spinless fermions with an effective flux threading through the
ring.

Our consideration is based on the strong-coupling limit of
the Hubbard model—the single-band t − J model of strongly
correlated electrons that contains a competing kinetic energy
and spin-spin exchange interaction,

Ht−J = −
∑
i jσ

ti j c̃
†
iσ c̃ jσ + J

∑
〈i j〉

Si · S j . (1)

Here c̃†iσ = (1 − ni,−σ )c†iσ (c̃iσ = (1 − ni,−σ )ciσ ) is a con-
strained electron creation (annihilation) operator on a site
i with the spin projection σ =↑,↓. The electron number
operator ni,σ = c†iσ ciσ . The symmetric matrix ti j represents the
hopping amplitude with t > 0 between the nearest neighbor
sites and zero otherwise. The electron spin operator is given
in terms of the Pauli matrices σαβ ,

Si = 1

2

∑
αβ

c†iασαβciβ.

This model captures both the antiferromagnetic ordering
instability caused by the induced spin exchanges between
nearly localized electrons (∼J ) as well as the FM itinerant

magnetism due to the possible gain in the particle kinetic
energy (∼t ).

The Nagaoka limit implies that the spin exchange inter-
action is dropped by setting J = 0. In this case and also
for small-enough values of J � t (Fig. 3) we can neglect
the three-site contributions [17] which become important as
soon as this condition is relaxed. The model (1) becomes
exactly solvable in this limit in a 1D lattice. In this case, it
exhibits a spin charge separation in the following way: The
N-electron wave function of the L-site ring is decomposed as
|ψ〉 = |ψr〉|ψS〉 = |r1, r2, . . . , rN 〉|sz

1, sz
2, . . . , sz

N 〉, where ri =
1, . . . , L is the ith lattice site and sz

i = ± 1
2 is the spin projec-

tion of the ith electron. Due to the no-double-occupancy con-
straint and the presence of only nearest-neighbors hopping the
spin configurations are not affected by bulk hopping and they
simply undergo a cyclic permutation under cross-boundary
hopping. In this representation the Hamiltonian takes the form
[Ht−J (J = 0) =: H]:

H = −t
L−1∑
i=1

c†i ci+1 − t c†Lc1P̂ + H.c., (2)

where ci is the spinless fermion annihilation operator on the
site i that acts only on the spatial part of wave function |ψr〉.
The P̂ is the cyclic spin permutation operator which affects
only the spin part |ψS〉, with

P̂ · |sz
1, sz

2, . . . , sz
N 〉 = |sz

N , sz
1, . . . , sz

N−1〉. (3)

Since the spin part of the total wave function is affected
only by the cyclic permutation operator P̂ we can diagonalize
the spin part of Hamiltonian Eq. (2) separately from its spatial
part. It should be noticed that P̂ is the block-diagonal matrix
where each block corresponds to the set of configurations
which can be obtained from each other by a cyclic permu-
tation. Indeed, the P̂ operator connects the | ↑↓↑↓〉 with the
| ↓↑↓↑〉 but not with | ↑↑↓↓〉. Thereby all the configurations
connected by the cyclic permutation are inside one single
spin block. The size of each block (the number of connected
configurations inside the νth block) is Nν , where ν enumerates
all possible disconnected spin blocks. In general, Nν = N/φν

where φν is an integer depending on the symmetry of the
configuration. In this way we can calculate all eigenvalues and
eigenstates of P̂:

λν (p) = e2π ip/Nν

|ψν (p)〉 = 1√
Nν

Nν−1∑
q=0

e2π ipq/Nν · P̂q |ψ̃ν〉, (4)

where |ψ̃ν〉 is any configuration from the νth block. The values
p = 0, . . . , Nν − 1 enumerate the eigenvalues within a given
fixed νth block. Physically, the p corresponds to the spin-wave
momentum induced by the cyclic permutation.

For example, a spin block with N = Nν = 2 can be thought
of as that generated by the configuration |ψ̃ν〉 = | ↑↓〉. In this
case Eq. (4) results in

|ψν (p = 0)〉 = 1√
2

(| ↑↓〉 + | ↓↑〉)
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FIG. 1. Momentum quantization at various values of p for the
L = 8 ring at N = 3.

and

|ψν (p = 1)〉 = 1√
2

(| ↑↓〉 − | ↓↑〉),

which represents an even and odd under spin permutation
states, respectively.

Using this basis, the Hamiltonian Eq. (2) becomes block
diagonal, e.g., H = ∑

ν ⊕Hν . The index ν together with all
available values of p may be considered as the new spin
quantum numbers. In each νth block we have

Hν (p) = −t
L−1∑
i=1

c†i ci+1 − t c†Lc1e2π ip/Nν + H.c. (5)

While the indexes ν and p define all possible spin con-
figurations, Hν (p) describes the corresponding spatial dis-
tribution of the electrons. It is essentially a tight-binding
Hamiltonian of spinless fermions placed on a ring with an
effective “magnetic” flux 
(ν) = 2π p/Nν threading through
the ring. Indeed, Eq. (5) implies twisted boundary conditions
for fermion amplitudes, ci = ei
(ν)

ci+L. By an appropriate
gauge transformation, ci → ei
(ν)xi/Lci, the periodic BCs can
be restored at the expense of the emergence of the Peierls
phase ai j ,

c†i c j → c†i c je
iai j , ai j = 
(ν)(x j − xi )

L
,

∑
plaquette

ai j = 
(ν).

Note also that the solution of Eq. (5) does not depend on
a specific form of the spin-wave function, but it is rather
determined by the values of p.

The one-electron solution is therefore a tight-binding elec-
tron wave function,

|ψ (k, p)〉 = 1√
L

∑
x

eix 2π
L (k+ p

Nν
)c†x |0〉

ε(k; p) = −2t cos

[
2π

L

(
k + p

Nν

)]
, (6)

with the electron momentum shifted by 2π p/(LNν ) (see
Fig. 1). The simplest example of such a solution is a single
electron wave function in the absence of correlations. In this

special case, all Nν = 1 and p = 0 for any ν. As a result, the
wave function reduces to that of a free electron as it should be.

For the many electron case the many-body wave function
is the Slater determinant of the single electron wave functions
with the momenta k := (k1, k2, . . . . , kN ) and with a fixed
value of p which is denoted as |�el(k, p)〉. As a result, all
eigenstates and eigenvalues of Hamiltonian (2) can be written
as:

|�(k; ν, p)〉 = |�el(k, p)〉 · |ψν (p)〉,

E (k; ν, p) =
N∑

i=1

ε(ki; p), (7)

where p = 0, . . . , Nν − 1 for each spin block ν. In this way
the energy eigenvalues are determined by both the values of
electron momenta k and the value of the spin-wave momen-
tum p. The correlations come into play through the p/Nν

corrections to the electron momentum. This is a collective
phenomena since the Nν is proportional to a total number
of electrons N . For a given spin configuration the available
values of p determine the eigenenergies. For example, in the
case of three electrons with the total spin S = 3/2 the ground-
state energy is given by E3/2 = −2t{cos( 2π

L 0) + cos( 2π
L 1) +

cos[ 2π
L (−1)]} while the ground-state energy correspond-

ing to S = 1/2 becomes E1/2 = −2t[cos( 2π
L

1
3 ) + cos( 2π

L
4
3 ) +

cos( 2π
L

−2
3 )]. It is easy to see that E3/2 < E1/2 due to the

relative momentum shift by a factor of 2π
L

1
3 .

Explicitly, these wave functions can be written in the fol-
lowing way: The fully polarized state |ψ f p(p)〉 = | ↑↑ . . . ↑〉
is already an eigenstate of the system with the eigenvalue
λ f p = 1. Since cyclic permutation does not affect the config-
uration, we then have Nν = 1 and only the p = 0 condition is
allowed. The state with S = N/2 is N + 1 times degenerate
with respect to the different values of Sz = −N/2,−N/2 +
1, . . . , N/2 and all of those states have the only one available
p = 0 value. The energy of the fully polarized system equals
the total energy produced by the free spinless fermions, as
expected.

Now let us consider a spin flipped case |ψsf〉 = | ↓↑ . . . ↑〉.
There are N states with Sz = N

2 − 1, with Nν = N and all
of these states are connected by cyclic permutations. The
corresponding eigenstates have the form:

|ψsf (p)〉 = 1√
N

N−1∑
q=0

e2π ipq/N · P̂q | ↓↑ . . . ↑〉 (8)

with eigenvalues λsf (p) = e2π ip/N and the spin-wave momen-
tum runs over p = 0 · · · N − 1. Here the p = 0 state is the
S = N/2 state with the spin projection Sz = N/2 − 1 while
the states with p > 0 correspond to the total spin S = N/2 − 1
and Sz = N/2 − 1. As a result, the fully polarized case S =
N/2 with all possible projections Sz has the only one available
p = 0 value for the spin-wave momentum while for the one
spin flipped case S = N/2 − 1 the available values are p > 0.
It is easy to see that for any value of the spin projection Sz

there must be one state with S = N/2 and p = 0 and also
N − 1 states with S = N/2 − 1 and p > 0.

Finally, for the states with Sz � N/2 − 2 we always have
more than one disconnected spin block, which leads to further
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FIG. 2. The ground-state energy structure for different electron
numbers N .

degeneracy of the levels. As an example, in the Sz = N/2 − 2
case we have �N/2� disconnected blocks and the p = 0 level
is �N/2� fold degenerate (the symbol � � stands for the floor
function). While one of this degenerate levels is defined as the
state with S = N/2 and Sz = N/2 − 2, all the other �N/2� − 1
states correspond to S = N/2 − 2 total spin (the S = N/2 − 1
states with p = 0 being forbidden). As a result both the p =
0 and the p > 0 values are available for the state with S =
N/2 − 2. Exactly the same behavior is a characteristic feature
of the states with S < N/2 − 2.

Due to the fact that the exact eigenvalues in Eq. (7) are
well known it is easy to analyze how the ground-state energy
depends explicitly on p. For an even number of electrons
the presence of the spin wave with the nonzero value of p
produces a decrease of the eigenenergy with the minimum
reached at p = N/2. Considering that the p = N/2 value is
available for all values of spin except for S = N/2 the fully
ferromagnetic state cannot be the ground state. Due to the
degeneracy of the p = N/2 state the ground state is then a
mixture of the states with a total spin S � N/2 − 1.

In contrast, for an odd number of electrons a nonzero value
of p leads to an increase of the energy. While the minimum
of the energy corresponds to p = 0, the next energy level
corresponds to p = 1. As a result, the states with S = N/2

and S � N/2 − 2 have the same energy minimal value, with
p = 0, while the state with S = N/2 − 1 has only the p = 1
level which is higher than the p = 0 one. That is the fully
FM state with S = N/2 is separated from the states with
S � N/2 − 2 by an energy barrier E due to the existence of
the state S = N/2 − 1 with higher energy (Fig. 2). A one-spin
flip process implies that the system goes over into the higher
energy state, which costs a certain energy. Explicitly, a value
of such a Nagaoka barrier is

E = 2t
(N−1)/2∑

k=−(N−1)/2

{
cos(

2π

L
k) − cos

[
2π

L

(
k + 1

N

)]}
.

(9)
The ground state of the odd number of electrons is thus a

mixture of the FM S = N/2 state with the S � N/2 − 2 states
which are not truly FM. The only one possibility to get true
FM state is to put three electrons on a ring, in which case there
are no longer states with S � N/2 − 2. The only available
states are now the S = 3/2 and S = 1/2 states and

E = 4t sin2

(
π

3L

)[
1 + 2 cos

(
2π

L

)]
, (10)

with the condition that L > 3. Moreover, this barrier survives
not only in the presence of infinity strong on-site Coulomb
repulsion but also in more realistic cases including a weak-
enough short-range Coulolomb repulsion, antiferromagnetic,
and spin-orbit interactions, etc. [13].

In the case of an odd N > 3 the ground state is spin
degenerate. However, realistic interactions remove this degen-
eracy. Since the antiferromagnetic exchange interaction has a
major impact on the system compared to the other possible
interactions the ground state tends to be that of the minimum
spin magnitude so that the global minimum in the energy
corresponds to the nonferromagnetic state. On the other hand,
for weak-enough spin-spin exchange interaction the S = N/2
state remains separated from the S � N/2 − 2 states by the
barrier rendering thereby the FM state a local minimum in the
energy.

FIG. 3. (a) The transition between stable and metastable Nagaoka ferromagnetism with a change in the topology of the quantum dot array
from 2D to 1D (changing the t ′ value). (b) The ground-states energies for the different values of total spin S for the t − J model with J = 0.05t ,
L = 6, N = 5.
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In the limit of N � 1 and L � 1, N/L = ne- fixed the
energy difference E reduces to

E = 2tL

π
sin(πne)

[
1 − cos

(
2π

NL

)]
≈ 4πt

N2L
sin(πne).

(11)
It is therefore clear that such Nagaoka barrier vanishes in
the thermodynamic limit. Both the presence of the disturbing
interactions and the rapid decrease of the barrier with the
increasing of the ring size and the number of electrons could
seem to hinder experimental observation of this phenomenon.
In spite of that, it can still manifest itself in quantum dot arrays
through the appearance of the metastable FM states.

To explicitly demonstrate how a metastable FM state can
be experimentally realized, let us consider the 2 × 3 quantum
dot array in the framework of t − J model [Eq. (1)] with the
large-enough value of the Coulomb repulsion corresponding
to J = 0.05 and the hopping amplitude be t ′ [Fig. 3(a)]
measured in units of t . Varying t ′ from −1 to 0 corresponds to
a change in the dimension of the array from 2D cluster to 1D
ring. On cooling down to a sufficiently low temperature the
2D cluster with t ′ �= 0 displays the fully polarized FM ground
state according to Nagaoka’s theorem. The breaking of the t ′
link leads to the decrease of the S = 1/2 state energy relative
to the S = 3/2 and S = 5/2 states. However, the S = 5/2
state remains with lower energy than the S = 3/2 one at all
possible values of t ′ thereby protecting electrons from the
spin flipping by the barrier E even at a small but finite J . If
the temperature is low enough, then the five-electron system
remains in the metastable S = 5/2 state for a finite time. It
should be noted that the system cooled with t ′ = 0 goes over
to the global-minimum S = 1/2 state.

Qualitatively, the same results were obtained for the Hub-
bard model with the corresponding value of U = 4t2/J =

80t . Such value of Coulomb repulsion is too large to be
obtained in regular materials but could well be reproduced in
quantum dots experiments, where the typical value of t is t ≈
102 μeV and the value of the barrier is then E ≈ 10−2t ≈
1 μeV. To observe such an effect requires that the condition
kT � E or T � 10−2 K should necessarily be satisfied.
The fact that modern experiments are carried out already at
temperatures of the order of T ≈ 10–100 mK allows us to
suggest that experimental observation of such an effect is
likely to happen soon.

III. CONCLUSION

It is shown that a problem of N constrained spinfull
electrons on a L-site ring reduces to a problem of spinless
electrons with an effective flux threading through the ring. The
flux arises due to the nonconnectivity of the emergent spin
configurations. It gives rise to the fractional shifted electron
momentum quantization induced by the cyclic permutations
group. Nagaoka’s ferromagnetism sets in only in the case in
which there are three electrons on the ring with L > 3. For an
odd number of electrons greater than three the FM state can
only be realized as a local energy minimum state protected by
a corresponding Nagaoka barrier. As a result, the fully polar-
ized state for N > 3 is truly a metastable state. The progress in
quantum dots fabrication provides a real possibility to observe
such metastable ferromagnetism experimentally. Specifically,
we present experimental signatures of the metastable FM
using a quantum dot device to host a 2 × 3 lattice of electrons.
Effectively tuning the geometry of the system from a 2D
cluster to a 1D ring automatically drives the system into the
metastable ground state.
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