
PHYSICAL REVIEW B 101, 195106 (2020)

Drag viscosity of metals and its connection to Coulomb drag

Yunxiang Liao and Victor Galitski
Joint Quantum Institute, University of Maryland, College Park, Maryland, 20742, USA

and Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742, USA

(Received 2 January 2020; revised manuscript received 2 April 2020; accepted 3 April 2020;
published 4 May 2020)

Recent years have seen a surge of interest in studies of hydrodynamic transport in electronic systems. We
investigate the electron viscosity of metals and find a component that is closely related to Coulomb drag. By
using linear-response theory, viscosity, which is a transport coefficient for momentum, can be extracted from the
retarded correlation function of the momentum flux, i.e., the stress tensor. There exists a previously overlooked
contribution to the shear viscosity from the interacting part of the stress tensor which accounts for the momentum
flow induced by interactions. This contribution, which we dub drag viscosity, is caused by the frictional drag
force due to long-range interactions. It is therefore linked to Coulomb drag which also originates from the
interaction-induced drag force. Starting from the Kubo formula and using the Keldysh technique, we compute
the drag viscosity of two- and three-dimensional metals along with the drag resistivity of double-layer two-
dimensional electronic systems. Both the drag resistivity and drag viscosity exhibit a crossover from quadratic-
in-T behavior at low temperatures to a linear behavior at higher temperatures. Although the drag viscosity
appears relatively small compared with the normal Drude component for the clean metals, it may dominate
hydrodynamic transport in some systems, which are discussed in the conclusion.
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I. INTRODUCTION

Hydrodynamics is an effective description of dynamics
of system at length and time scales large compared with
that of local equilibration processes. It is governed by the
conservation laws, and the hydrodynamics equations can be
derived from the continuity equations along with the consti-
tutive relations which connect the conserved currents with the
hydrodynamics variables. It is useful to a wide variety of sys-
tems but is usually not relevant to electron liquid in solids due
to momentum-relaxing processes such as electron-impurity,
Umklapp, or electron-phonon scattering. However, if the dom-
inant scattering process is due to electron-electron interac-
tions, the electron liquid can be described hydrodynamically
as it reaches local equilibrium at the scale of electron-electron
scattering length which is much smaller compared with that
of momentum-relaxing processes. In recent years, hydrody-
namic behavior of electrons has attracted a lot of interest
[1–20] and has been observed experimentally in graphene
[21–23], Weyl semimetals [24,25], ultrapure PdCoO2 [26],
PtSn4 [27], and GaAs [28]

In the hydrodynamics equations, the underlying micro-
scopic physics is encoded by transport coefficients which
measure a fluid’s resistance to velocity or thermal gradients.
Viscosity is a transport coefficient for momentum and enters
the Navier-Stokes equation. For a fluid with inhomogeneous
flow velocity, the transverse velocity gradient induces a fric-
tion force which acts between the adjacent layers of fluid and
resists their relative motion. The shear viscosity is defined
as the ratio of induced force per unit area over the velocity
gradient; see Ref. [29] for a review. There exists another mo-

mentum transport coefficient named bulk viscosity which also
enters the Navier-Stokes equation but will not be considered
in the present paper. The ratio of shear viscosity to entropy
density has been considered as a measure of a fluid’s inter-
action strength, with a lower bound conjectured by Kovtun
et al. [30]. By using linear-response theory, viscosity can be
extracted from the Kubo formula, which relates viscosity to
the correlation function of momentum flux or stress tensor
(see Sec. II for details).

The viscosity of a three-dimensional (3D) Fermi liquid
was first studied by Pomeranchuk [31], who found a 1/T 2

temperature dependence through a dimensional analysis. This
result was later confirmed by Abrikosov and Khalatnikov
[32,33] by using the kinetic equation approach and is in good
agreement with the 3He experiment (see review [34]). It can
be recovered from a “Drude”-type diagram which corresponds
to the correlation function of the noninteracting part of stress
tensor [20].

As emphasized by Nishida and Son [35] as well as by Link
et al. [36], there exists an additional contribution to shear
viscosity from the interacting part of the stress tensor. As
shown in the present paper, this contribution is related to the
interaction-induced drag force and will be called drag viscos-
ity in the following. Interactions between two distant layers of
fluid with different transverse velocities give rise to the drag
force that acts between the two layers and tends to reduce their
relative motion, and the corresponding contribution to shear
viscosity is the drag viscosity.

The frictional force giving rise to drag viscosity is also
responsible for Coulomb drag, which was first proposed by
Pogrebinskii [37] and later by Price [38,39] in an attempt
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to separate electron-electron scattering from other scattering
processes and to study the direct effect of interactions on the
transport properties. In a standard setup, one considers two
closely spaced electronic layers, to one of which a current IL is
applied. Interlayer interactions induce a drag force which acts
on the electrons of the second layer and drags them along.
If no current is allowed to flow in that layer, this leads to
an induced voltage VR such that the resulting electric force
cancels the drag force. The ratio of the induced voltage VR
to the applied current IL is known as the drag resistance
RD = VR/IL.

Since the pioneering experiment by Gramila et al. [40] on
Coulomb drag of a double-layer two-dimensional electron gas
(2DEG) system, there have been extensive studies [18,41–50]
investigating the underlying mechanism (see reviews [51,52]
and references therein). It has been found that, in the ballistic
limit and in the temperature region where the plasmon con-
tribution is unimportant, the temperature dependence of drag
resistivity crosses over from quadratic in T [41–43] to linear
in T [44–46] as T increases. The plasmon contribution be-
comes important at higher temperature, leading to a deviation
from the linear behavior [42,46–48]. For strongly correlated
systems with large dimensionless interaction parameter rs �
1, a hydrodynamics approach has been employed by Apos-
tolov et al. [18,19] to study the drag resistivity, which is then
expressed in terms transport coefficients such as viscosity.

In this paper, we study drag viscosity along with Coulomb
drag, both of which result from the interaction-induced drag
force, with our emphasis placed on the close resemblance be-
tween them. By using linear response theory and the Keldysh
technique, we compute the drag viscosity, which remains
overlooked in the literature. In addition, we derive in an anal-
ogous manner the Coulomb drag in the clean limit and recover
the results obtained by using different theoretical approaches
from previous studies [41–46]. We compare the two quantities
and find that they exhibit the same temperature dependence
with different values of the crossover temperature.

The rest of the paper is organized as follows: In Sec. II,
we present the Kubo formula connecting the correlation func-
tion of the interacting stress tensor with drag viscosity and
compare it with the one connecting the correlation func-
tion of the drag force with drag resistivity. The derivation
of the interacting part of the stress tensor, which describes
the interaction-induced momentum flow, is also presented
in this section. Starting from the Kubo formula and using
the Keldysh technique, in Sec. III, we derive the general
expressions for the drag viscosity of clean electronic systems
in 2D and 3D along with the drag resistivity of double-
layer two-dimensional electron gases (2DEGs). The latter is
consistent with the result previously obtained in Ref. [46]
using the Boltzmann-Langevin kinetic theory. In Sec. IV,
we present and analyze the results in different temperature
regions. Finally, in Sec. V, we conclude with a brief summary
together with a discussion of open questions and directions
for future studies. In Appendix A, we provide an alternative
diagrammatic approach for the derivation of the correlation
function of the interacting stress tensor and that of the drag
force. In Appendix B, the explicit expressions for the polar-
ization operator from Refs. [53,54] are presented.

II. KUBO FORMULAE FOR DRAG VISCOSITY
AND DRAG RESISTIVITY

A. Drag viscosity and interacting stress tensor

Hydrodynamics is governed by the conservation of parti-
cle number, energy, and momentum. The dissipation which
affects the flux of these conserved quantities is described
in terms of the transport coefficients. One of them is the
viscosity, which measures the rate of momentum transport.
The corresponding conservation equation, i.e., the continuity
equation for momentum is given by

∂t gα (r, t ) + ∂βTαβ (r, t ) = 0. (1)

Here, gα (r, t ) represents the momentum density at position
r and time t in the α direction, and Tαβ (r, t ) denotes the
stress tensor (or the momentum flux). We have employed the
convention of summation over repeated indices.

The equation above suggests that the stress tensor is essen-
tial to the calculation of viscosity. By using linear-response
theory, it has been found that the shear viscosity η can be
obtained from the following Kubo’s formula [55–58]:

η = lim
ω→0

lim
q→0

−1

ω
Im G (R)

T (q, ω), (2)

where G (R)
T (q, ω) indicates the retarded correlation function of

the stress tensor Txy,

G (R)
T (q, ω) = −i

∫ +∞

−∞
dt
∫

dDreiωt−iq·r�(t )

×〈[Txy(r, t ), Txy(0, 0)]〉. (3)

The stress tensor is composed of a noninteracting part
T (0)

αβ accounting for the single-particle contribution to the

momentum flow, and an interacting part T (int)
αβ associated with

the momentum transport induced by interactions. The latter
contribution to shear viscosity is absent in the case of contact
interactions and is usually overlooked in previous studies. In
this section, we present a brief derivation of the interacting
part of the stress tensor. Only its zero-momentum Fourier
component (spatial average) Tαβ (Q = 0) = ∫

r Tαβ (r), which
enters the Kubo formula for shear viscosity η [Eqs. (2) and
(3)] is derived here. See Ref. [59] for the complete expression
of the stress tensor and the corresponding derivation, and
Ref. [60] for an alternative approach.

Consider a fermionic system described by the following
Hamiltonian,

H =
∫

r

1

2m
∇ψ†

σ (r, t ) · ∇ψσ (r, t )

+ 1

2

∫
r,r′

ψ†
σ (r, t )ψ†

σ ′ (r′, t )V (r − r′)ψσ ′ (r′, t )ψσ (r, t ),

(4)

where ψσ indicates the fermion with spin σ , and V (r − r′) =
V (|r − r′|) is the interaction potential. Throughout this paper,
we work with the units h̄ = kB = 1.

The momentum density g(r, t ) is given by

gα (r, t ) = 1

2i
[ψ†

σ (r, t )∂αψσ (r, t ) − ∂αψ†
σ (r, t )ψσ (r, t )].

(5)
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Using the equation of motion

i
∂

∂t
ψσ (r, t ) = − 1

2m
∇2ψσ (r, t )

+
∫

r′
ψ

†
σ ′ (r′, t )V (r − r′)ψσ ′ (r′, t )ψσ (r, t ),

(6)
the time derivative of the momentum density can be expressed
as

∂gα (r, t )

∂t
= −∂βT (0)

αβ (r, t ) −
∫

r′
ψ†

σ (r, t )ψ†
σ ′ (r′, t )

× ∂V (r − r′)
∂rα

ψσ ′ (r′, t )ψσ (r, t ), (7)

where

T (0)
αβ (r, t )

= 1

2m

{
∂αψ†

σ (r, t )∂βψσ (r, t )+ ∂βψ†
σ (r, t )∂αψσ (r, t )

− 1

2
δαβ∇2[ψ†

σ (r, t )ψσ (r, t )]

}
. (8)

Here the first term on the right-hand side of Eq. (7) arises
from the noninteracting part of the Hamiltonian, whereas the
second term is from the interacting part.

From the continuity equation for momentum [Eq. (1)], one
can deduce that the noninteracting part of the stress tensor
is given by T (0)

αβ (r, t ) defined in Eq. (8). The interacting part

T (int)
αβ (r, t ) is subject to the following condition:

∂βT (int)
αβ (r, t )

=
∫

r′
ψ†

σ (r, t )ψ†
σ ′ (r′, t )

∂V (r − r′)
∂rα

ψσ ′ (r′, t )ψσ (r, t ),

(9)
whose Fourier transform is

QβT (int)
αβ (Q, t ) =

∫
k,k′,q

ψ†
σ (k + q − Q, t )ψ†

σ ′ (k′ − q, t )

× qαV (q)ψσ ′ (k′, t )ψσ (k, t ). (10)

Here we have used the shorthand notation
∫

k ≡ ∫
dDk

(2π )D , with
D being the spatial dimensions.

In the calculation of shear viscosity, only the zero-
momentum Fourier component of the stress tensor Txy(Q = 0)
is needed [see Kubo’s formula (2) and (3)]. We thus expand
the right-hand side of Eq. (10) around Q = 0. At the zeroth
order in Q, the integrand is an odd function of q and vanishes
after integration. The first-order term is given by

− Qβ

∫
k,k′,q

∂qβ
ψ†

σ (k + q)ψ†
σ ′ (k′ − q)qαV (q)ψσ ′ (k′)ψσ (k)

= Qβ

∫
k,k′,q

ψ†
σ (k + q)∂qβ

ψ
†
σ ′ (k′− q)qαV (q)ψσ ′ (k′)ψσ (k)

+ Qβ

∫
k,k′,q

ψ†
σ (k+ q)ψ†

σ ′ (k′− q)∂qβ
[qαV (q)]

× ψσ ′ (k′)ψσ (k), (11)

where we have suppressed the time argument of the fermionic
field ψ for brevity and applied an integration by parts.

Through a change of variables, it is easy to prove that the
first term on the right-hand side of the equation above can be
rewritten as

Qβ

∫
k,k′,q

∂qβ
ψ†

σ (k + q)ψ†
σ ′ (k′ − q)qαV (q)ψσ ′ (k′)ψσ (k),

(12)

which equals the negative of the left-hand side of Eq. (11).
By using Eqs. (11) and (12), one obtains the first-order term

in Q on the right-hand side of Eq. (10):

1

2
Qβ

∫
k,k′,q

ψ†
σ (k + q)ψ†

σ ′ (k′ − q)∂qβ
[qαV (q)]ψσ ′ (k′)ψσ (k).

(13)

Comparing it with the left-hand side of the same equation,
we arrive at the zero-momentum Fourier component of the
interacting stress tensor:

T (int)
αβ (0, t ) =1

2

∫
k,k′,q

[
δαβV (q) + qαqβ

q
V ′(q)

]

× ψ†
σ (k + q, t )ψ†

σ ′ (k′ − q, t )ψσ ′ (k′, t )ψσ (k, t ).
(14)

From this result, one can see that the off-diagonal component
(α 
= β) of the interacting part of the stress tensor T (int)

αβ is
vanishing for contact interactions since V ′(q) = 0. We note
that the expression for the interacting stress tensor only de-
pends on the interacting part of the Hamiltonian [Eq. (4)] and
is therefore valid for dispersion other than parabolic.

In this paper, we investigate the contribution to the shear
viscosity from the interacting stress tensor T (int)

xy . In particular,
we focus on the part associated with the correlation function
of T (int)

xy , which will be called the drag viscosity ηD in the
following,

ηD = lim
ω→0

1

ω
Im
∫

r,t
eiωt i�(t )

〈[
T (int)

xy (r, t ), T (int)
xy (0, 0)

]〉
. (15)

There is an additional contribution from the correlation func-
tion of the noninteracting and interacting parts of the stress
tensor 〈[T (0)(r, t ), T (int)(0, 0)]〉, which has been thoroughly
studied in Ref. [36] for intrinsic graphene in the collisionless
regime at zero temperature. Here we ignore this contribution
because our emphasis is placed on the similarity between the
drag viscosity ηD and Coulomb drag. Furthermore, for some
systems with unscreened long-range interactions, due to the
appearance of the derivative of interaction potential V ′(q) in
the stress tensor formula [Eq. (14)], the contribution from the
drag viscosity may be dominant and is the focus of the present
paper.

B. Drag resistivity and drag force

The drag viscosity discussed in the previous section mea-
sures the transverse momentum transport induced by long-
range interactions. It is closely related to Coulomb drag which
arises from momentum transfer between two electronic layers
in the presence of interlayer Coulomb scatterings.

In Ref. [41], Zheng and MacDonald employ the memory
function formalism to investigate Coulomb drag and con-
vert the Kubo formula relating the current-current correlation
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function and drag conductivity into the one which connects
the force-force correlation function and drag resistivity:

ρD = −ρLR
xx = 1

nLnRe2
lim
ω→0

1

ω
Im G (R)

F (ω),

G (R)
F (ω) = −i

∫ +∞

−∞
dteiωt�(t )

〈[
F L

x (t ), F R
x (0)

]〉
. (16)

Here the drag force is defined as

FL(t ) = −FR(t ) =
∫

k,k′,q
iqVLR(q)ψ†

σ,L(k + q, t )

×ψ
†
σ ′,R(k′ − q, t )ψσ ′,R(k′, t )ψσ,L(k, t ).

(17)

L and R denote the layer indices. VLR(q) is the interlayer
interaction potential. nL (nR) indicates the density of electrons
in layer L (R), while FL (FR) represents the frictional drag
force acting on the electrons in layer L (R).

The drag force F [Eq. (17)] which enters the Kubo formula
for drag resistivity acquires a form analogous to that of
interacting stress tensor T (int)

xy [Eq. (14)] whose correlation
function gives the drag viscosity [Eq. (2)]. In the following,
we calculate the drag viscosity and drag resistivity in parallel
and show the close resemblance between the two.

III. DERIVATION OF DRAG VISCOSITY
AND DRAG RESISTIVITY

A. Keldysh formalism

In this section, we derive general expressions for drag
viscosity and drag resistivity expressed in terms of the po-
larization operator  and the bare interaction potential V .
The starting point is the partition function in the Keldysh
formalism:

Z =
∫

D(ψ̄, ψ ) exp(iS0 + iSint),

iS0[ψ] = i
∫

x,x′,t,t ′
ψ̄ (x, t )G−1

0 (x, t ; x′, t ′)ψ (x′, t ′),

iSint[ψ] = − i

2

∑
a=1,2

∑
i, j=R,L

ζa

∫
t,x

Vi j (x − x′)

× ψ̄ i
a,σ (x, t )ψ̄ j

a,σ ′ (x′, t )ψ j
a,σ ′ (x′, t )ψ i

a,σ (x, t ).
(18)

Here the fermionic field ψ resides on a closed Keldysh
contour that goes from t = −∞ to t = +∞ and back to t =
−∞, and its index a = 1 (a = 2) corresponds to the forward
(backward) part of the contour. ψ carries an additional spin
index σ ∈ {↑,↓}, as well as a layer index i ∈ {L, R} for the
double-layer system considered in the calculation of drag
resistivity. As for the drag viscosity problem, the layer index
i and the summation over it should be ignored. ζa is a sign
factor that takes the value of +1 (−1) for a = 1 (a = 2).

G0 stands for the noninteracting single-particle Green’s
function defined on the Keldysh contour:

G0(x, t ; x′, t ′) = −i〈Tcψ (x, t )ψ̄ (x′, t ′)〉0. (19)

Here Tc denotes the contour ordering operator, and the angular
bracket with subscript 0 indicates functional averaging that
does not include the interactions. In the Keldysh space, G0

assumes the following structure:

G0 ≡
[

G(T)
0 G(<)

0

G(>)
0 G(T̄)

0

]
, (20)

where G(T)
0 , G(T̄)

0 , G(<)
0 , and G(>)

0 represent, respectively, the
time-ordered, antitime-ordered, lesser, and greater Green’s
functions.

The interaction potential V (q) is given by V (q) = 4πe2/q2

[V (q) = 2πe2/q] for the calculation of viscosity of a 3D (2D)
electronic system. On the other hand, for drag resistivity of a
double-layer 2DEG, V (q) in the layer space takes the form

V (q) =
[

Vintra(q) Vinter(q)
Vinter(q) Vintra(q)

]
, (21)

where Vintra(q) = 2πe2/q [Vinter(q) = 2πe2e−qd/q] denotes
the intralayer (interlayer) interaction, with d being the inter-
layer distance.

It is convenient to introduce a Hubbard-Stratonovich (H.S.)
decoupling of the interaction:

eiSint =
∫

Dφ exp

[
i

2

∑
a

ζa

∫
q,ω

φi
a(q, ω)V −1

i j (q)φ j
a (−q,−ω)

− i
∑
a,i

ζa

∫
ε,k

∫
ω,q

φi
a(q, ω)ψ̄ i

a,σ (k+q, ε+ω)

×ψ i
a,σ (k, ε)

]
. (22)

Here φi
a is a bosonic field that carries a Keldysh index a and a

layer index i, and
∫
ω

is a shorthand for
∫∞
−∞ dω/2π .

To further simplify the calculation, we apply a Keldysh
rotation for the H.S. decoupling field φ:

φcl ≡ (φ1 + φ2)/
√

2, φq ≡ (φ1 − φ2)/
√

2, (23)

as well as a nonunitary transformation to the fermionic field
ψ in Keldysh space:

ψ (k, ε) → τ 3UKMF (ε)ψ (k, ε),

ψ̄ (k, ε) → ψ̄ (k, ε)MF (ε)U †
K . (24)

Here τ , UK, and MF (ε) are matrices that only act on the
Keldysh space. τ stands for the Pauli matrix in the Keldysh
space, while UK and MF (ε) are defined as

UK ≡ 1√
2
(1 + iτ 2), MF (ε) ≡

[
1 tanh

(
ε

2T

)
0 −1

]
. (25)

The transformation defined by Eq. (24) is a successive
application of a Keldysh rotation and a thermal rotation
which depends on the generalized fermionic distribution func-
tion tanh( ε

2T ). After this transformation, the noninteracting
fermionic Green’s function becomes distribution-function in-
dependent and diagonal in Keldysh space:

G′
0 =

[
G(R)

0 0

0 G(A)
0

]
⊗ 1σ ⊗ 1L. (26)
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Here 1σ and 1L represent, respectively, identical matrices in
the spin and layer spaces. G(R/A)

0 is the noninteracting retarded
(advanced) Green’s function for the fermionic field ψ and
takes the form

G(R/A)
0 (k, ε) = [ε − ξk ± iη]−1, (27)

where ξk ≡ k2/2m − μ, with μ being the chemical potential,
and η is a positive infinitesimal. Under the transformations
(23) and (24), the partition function changes to

Z =
∫

D(ψ̄, ψ )Dφ exp(iSφ + iSψ + iSc), (28a)

Sφ[φ] =
∫

q,ω

φcl(q, ω)V −1(q)φq(−q,−ω), (28b)

Sψ [ψ̄, ψ] =
∫

k,ε

ψ̄ (k, ε)G′−1
0 (k, ε)ψ (k, ε), (28c)

Sc[φ, ψ̄, ψ] = − 1√
2

∫
k,ε,k′,ε′

[φi
cl(k − k′, ε − ε′)ψ̄ i

σ (k, ε)MF (ε)MF (ε′)ψ i
σ (k′, ε′)

+φi
q(k − k′, ε − ε′)ψ̄ i

σ (k, ε)MF (ε)τ 1MF (ε′)ψ i
σ (k′, ε′)]. (28d)

As mentioned in Sec. II, the drag viscosity and drag resistivity are given by the retarded correlation functions of interacting
stress tensor and drag force, respectively. For simplicity, from now on we use a generalized force F̃ to indicate both the zero-
momentum Fourier component of the interacting stress tensor T (int)

xy (0) and the drag force ∓iF L/R
x . Prior to the transformation

Eq. (24), F̃ assumes the following form on branch a of the contour

F̃a(�) =
∫

q,ω

∫
k,ε

∫
k′,ε′

f (q)
[
ψ̄L

a,σ (k′, ε′)ψL
a,σ (k′ + q, ε′ + ω + �)

][
ψ̄R

a,σ (k + q, ε + ω)ψR
a,σ (k, ε)

]
, (29)

where f (q) is given by

f (q) ≡
{qxqy

2q
V ′(q), F̃ (�) = Txy(0,�),

qxVinter(q), F̃ (�) = ∓iF L/R
x (�).

(30)

The calculation of the drag viscosity and drag resistivity reduces to that of the retarded correlation function of F̃ :

G (R)
F̃

(�) = −i〈F̃cl(�)F̃q(−�)〉. (31)

Here F̃cl and F̃q stand for, respectively, F̃ ’s classical and quantum components,

F̃cl ≡ (F̃1 + F̃2)/
√

2, F̃q ≡ (F̃1 − F̃2)/
√

2. (32)

After the transformation (24), they acquire the form

F̃cl/q(�) = 1

2
√

2

∫
k,k′,ε,ε′,q,ω

f (q)

×{[ψ̄L
σ ′ (k′, ε′)MF (ε′)τ 1MF (ε′ + ω + �)ψL

σ ′ (k′ + q, ε′ + ω + �)
][

ψ̄R
σ (k+ q, ε+ ω)MF (ε+ ω)M1MF (ε)ψR

σ (k, ε)
]

+ [
ψ̄L

σ ′ (k′, ε′)MF (ε′)MF (ε′ + ω + �)ψL
σ ′ (k′ + q, ε′ + ω + �)

][
ψ̄R

σ (k + q, ε + ω)MF (ε + ω)M2MF (ε)ψR
σ (k, ε)

]}
.

(33)

Here, M1 and M2 are matrices acting only on the
Keldysh space and are given by M1 = τ 1 (M1 = 1)
and M2 = 1 (M2 = τ 1) for the classical (quantum)
component F̃cl (F̃q).

B. Random-phase approximation

It is useful to obtain first the dressed propagator of the H.S.
field φ. Integrating out the fermionic field ψ in Eq. (28), we
arrive at an effective action iSφ + 〈(iSc)2/2〉 to the leading
order in cumulant expansion. Here 〈(iSc)2/2〉 denotes the

expectation value of (iSc)2/2 [Eq. (28d)] with respect to the
weight exp(iSψ ) [Eq. (28c)] and can be expressed as

〈
1

2
(iSc)2

〉
≡
∫

D(ψ̄, ψ )eiSψ
1

2
(iSc)2

= − i

2

∫
q,ω

φ(−q,−ω)(q, ω)φ(q, ω). (34)
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 is the self-energy of the H.S. field φ and possesses the
following causality structure in the Keldysh space:

(q, ω) =
[

0 (A)(q, ω)
(R)(q, ω) (K )(q, ω)

]
. (35)

Its retarded component (R)(q, ω) is given by


(R)
i j (q, ω) = −iδi j

∫
k,ε

[
G(R)

0 (k + q, ε + ω)G(K )
0 (k, ε).

+ G(K )
0 (k + q, ε + ω)G(A)

0 (k, ε)
]
. (36)

G(K )
0 indicates the noninteracting Keldysh Green’s function

of the fermionic field ψ and is related to its retarded and
advanced counterparts [Eq. (27)] through the fluctuation-
dissipation theorem (FDT):

G(K )
0 (k, ε) = [

G(R)
0 (k, ε) − G(A)

0 (k, ε)
]

tanh(ω/2T ). (37)

From Eq. (34), one can also prove that self-energy’s advanced
(A) and Keldysh (K ) components are related to the retarded
one (R) through

(A)(q, ω) = [(R)(q, ω)]†,

(K )(q, ω) = [(R)(q, ω) − (A)(q, ω)] coth(ω/2T ). (38)

The last equation is a manifestation of the FDT relation
between the components of bosonic self-energy.

The dressed propagator for φ can be deduced from the
effective quadratic action iSφ + 〈(iSc)2/2〉:

Dab;i j (q, ω) ≡ −i
〈
φi

a(q, ω)φ j
b (−q,−ω)

〉
= [

D−1
0 (q, ω) − (q, ω)

]−1
ab;i j . (39)

D0 here represents the bare propagator for the H.S. field φ and
takes the form

D0(q, ω) =
[

0 V (q)
V (q) 0

]
, (40)

where the interaction potential V (q) is given by Eq. (21) in the
layer space. Inserting Eq. (35) into the Dyson equation (39),
one finds that D(q, ω) acquires the typical causality structure
of a bosonic field’s propagator:

D(q, ω) =
[

D(K )(q, ω) D(R)(q, ω)
D(A)(q, ω) 0

]
, (41)

and its retarded D(R), advanced D(A), and Keldysh D(K ) com-
ponents are given by, respectively,

D(R)(q, ω) = [V −1(q) − (R)(q, ω)]−1,

D(A)(q, ω) = [D(R)(q, ω)]†,

D(K )(q, ω) = [D(R)(q, ω) − D(A)(q, ω)] coth(ω/2T ). (42)

As indicated by the last equation, the dressed φ propagator
D(q, ω) satisfies the FDT relation.

We note that the leading-order cumulant expansion per-
formed above is equivalent to the random-phase approxi-
mation (RPA) valid in the high density (rs � 1) limit. The

+

= +

+ ...

+=

FIG. 1. The Dyson equation for the dressed Green’s function D
of the H.S. field φ. The red wavy line with a solid dot (open circle)
in the middle refers to the dressed (bare) propagator of the H.S. field
φ. The black line with arrow corresponds to the bare propagator G0

for the fermionic field ψ .

dressed propagator D(q, ω) given by Eqs. (41) and (42) is
the RPA interaction and is represented diagrammatically by
the Dyson series in Fig. 1. Hereafter, we use the red wavy
line with a solid dot (open circle) in the middle to describe
the dressed (bare) propagator of the H.S. field φ. The bosonic
self-energy (or the polarization operator)  is given by the
black bubble in Fig. 1 with black line representing the bare
propagator of the fermionic field ψ .

C. Retarded correlation function of stress tensor and drag force

We now calculate the retarded correlation function G (R)
F̃

(�)
of the force F̃ [Eq. (31)]. The diagrammatic representation of
the bare force F̃ is given by the second diagram in Fig. 2,
where the blue wavy line with a open box in the middle cor-
responds to the vertex f (q) [Eq. 30]. On the same (opposite)
side of this line, fermionic fields denoted by black lines carry
identical (opposite) layer and spin indices.

First, we introduce a source field J which couples to the
bilinear combination of the fermionic field ψ̄ψ in the same
way as the bosonic field φ. More specifically, we apply the
shift φ → φ + J in the part of the action Sc [Eq. (28d)], which
describes the coupling between ψ and φ, and leave the other
two parts Sψ [Eq. (28c)] and Sφ [Eq. (28b)] unchanged:

Z[J] =
∫

D(ψ̄, ψ )Dφ exp{iSφ[φ]

+ iSψ [ψ̄, ψ] + iSc[φ + J, ψ̄, ψ]}. (43)

Integrating out the fermionic degrees of freedom, one
arrives at

Z[J] =
∫

Dφ exp

{
i

2

∫
q,ω

φ(−q,−ω)D−1
0 (q, ω)φ(q, ω)

− i

2

∫
q,ω

[φ(−q,−ω) + J (−q,−ω)]

×(q, ω)[φ(q, ω) + J (q, ω)]

}
. (44)
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The retarded correlation function G (R)
F̃

(�) can be obtained by taking the functional derivatives of Z[J] with respect to the source
field J and then setting J to zero,

iG (R)
F̃

(�) = 1

2

∫
ω,q

∫
ω′,q′

f (q) f (−q′)

{
δ2

δJL
q (−q,−ω − �)δJR

q (q, ω)
+ δ2

δJL
cl(−q,−ω − �)δJR

cl (q, ω)

}

×
{

δ2

δJL
q (q′, ω′ + �)δJR

cl (−q′,−ω′)
+ δ2

δJL
cl(q

′, ω′ + �)δJR
q (−q′,−ω′)

}
Z[J]|J=0. (45)

Here we have utilized the fact that Z[J = 0] = 1. Using the RPA approximation, we argue that only the contributions from
q′ = q, ω′ = ω and q′ = −q, ω′ = −ω − � to the integral in Eq. (45) are important and will be considered in what follows.

Each term in Eq. (45) (with q′ = q, ω′ = ω or q′ = −q, ω′ = −ω − �) is of the form

δ4Z[J]

δJi
a(−q,−ω − �)δJ j

b (q, ω + �)δJm
c (q, ω)δJn

d (−q,−ω)

∣∣∣∣
J=0

= −[(q, ω + �) + (q, ω + �)D(q, ω + �)(q, ω + �)]ab
i j [(−q,−ω) + (−q,−ω)D(−q,−ω)(−q,−ω)]cd

mn

= −[D−1
0 (q, ω + �)D(q, ω + �)(q, ω + �)

]ab

i j

[
D−1

0 (−q,−ω)D(−q,−ω)(−q,−ω)
]cd

mn, (46)

where in the last equality, the Dyson equation (39) has been employed.
Combining the equation above with Eqs. (40), (35), and (41), we find that iG (R)

F̃
reduces to

iG (R)
F̃

(�) = − aL

2

∑
i∈{L,R}

∫
ω,q

f (q) f (−ζiq)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[V −1(q)(D(K )(q, ω + �)(A)(q, ω + �) + D(R)(q, ω + �)(K )(q, ω + �))]Li

× [V −1(q)D(R)(−q,−ω)(R)(−q,−ω)]Rī

+ [V −1(q)D(R)(q, ω + �)(R)(q, ω + �)]Li

× [V −1(q)(D(K )(−q,−ω)(A)(−q,−ω) + D(R)(−q,−ω)(K )(−q,−ω))]Rī

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

(47)

whose imaginary part takes the form

Im G (R)
F̃

(�) = aL

4

∑
i∈{L,R}

∫
ω,q

f (q) f (−ζiq)

[
coth

(
ω + �

2T

)
− coth

( ω

2T

)]

×{[V −1(q)(D(R)(q, ω + �)(R)(q, ω + �) − D(A)(q, ω + �)(A)(q, ω + �))]Li

× [V −1(q)(D(R)(−q,−ω)(R)(−q,−ω) − D(A)(−q,−ω)(A)(−q,−ω))]Rī}. (48)

Here the sign factor ζi = 1 (−1) when i = L (R), and ī is defined such that L̄ = R and R̄ = L. The combinatorial factor aL takes
the value of 2 (1), for F̃ = Txy(0) (∓iF L/R

x ). This factor accounts for the contributions from q′ = q, ω′ = ω and q′ = −q, ω′ =
−ω − � to the retarded correlation function of the interacting stress tensor [given by the integral in Eq. (45)].

The retarded correlation function G (R)
F̃

in Eq. (47) is represented by the diagrams in Fig. 3, which can also be considered as
the noninteracting correlation function of the dressed force F̃ (d ) and the bare force F̃ [see Eq. (A1) in Appendix A]. The dressed
force F̃ (d ) is defined diagrammatically in Fig. 2, and its explicit expression is given by Eq. (A2). The dressed and bare forces,
illustrated respectively as the first and second diagrams in Fig. 3, can be distinguished by the box in the middle: the solid (open)
box corresponds to the dressed (bare) force. From Fig. 2, i.e., the diagrammatic definition of the dressed force F̃ (d ), one can
immediately see that the noninteracting correlation function of the dressed and bare forces (see the first diagram in Fig. 3) is
equivalent to the summation of diagrams shown on the right-hand side of the equal sign in Fig. 3. Note that the red wavy line
with a red solid dot in the middle is the dressed propagator of the H.S. field φ which is given by the infinite geometric series in
Fig. 1. As a result, G (R)

F̃
is also an infinite diagrammatic series with repeated insertion of polarization bubbles. See Appendix A

for a diagrammatic derivation of G (R)
F̃

[Eq. (48)].

D. General formulas for drag viscosity and drag resistivity

Substituting Eqs. (48) and (30) into the Kubo formulas Eqs. (15) and (16) and expressing the dressed propagator D in terms
of the self-energy  and the bare propagator D0 [Eq. (42)], we find the general expressions for the drag viscosity

ηD =
∫

q,ω

[ qxqy

2q V ′(q)V −2(q)
]2

T sinh2
(

ω
2T

) [Im (R)(q, ω)]2

{[V −1(q) − Re (R)(q, ω)]2 + [Im (R)(q, ω)]2}2
, (49)
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and for the drag resistivity

ρD = 1

2nLnRe2

∫
ω,q

[qxVinter(q)]2

T sinh2
(

ω
2T

) Im 
(R)
LL (q, ω) Im 

(R)
RR(q, ω)∣∣−1 + [


(R)
LL (q, ω) + 

(R)
RR(q, ω)

]
Vintra(q) + 

(R)
LL (q, ω)(R)

RR(q, ω)
(
V 2

inter(q) − V 2
intra(q)

)∣∣2 .

(50)

Here we have used the fact that the bosonic self-energy (R) is diagonal in the layer space. In the case where the two layers are
identical, 

(R)
LL = 

(R)
RR, the expression for drag resistivity ρD reduces to

ρD = 1

2n2e2

∫
ω,q

[qxVinter(q)]2

T sinh2
(

ω
2T

)
[

Im 
(R)
LL (q, ω)

]2∣∣1 + 
(R)
LL (q, ω)(Vinter(q) − Vintra(q))

∣∣2∣∣1 − 
(R)
LL (q, ω)(Vinter(q) + Vintra(q))

∣∣2 . (51)

Hereafter, for simplicity, we consider only the case of two
identical layers and use (R)(q, ω) to indicate the single-layer
retarded polarization operator, which was previously denoted
as 

(R)
LL/RR(q, ω).

Equation (51) was derived earlier by Chen et al. [46]
through the Boltzmann-Langevin approach, whereas Eq. (49)
is obtained now for the drag contribution to viscosity. We
want to emphasize the close resemblance between these two
expressions. Nowhere in the derivation here have we used the
specific forms of interaction potential V (q) and that of the
dispersion ξk. The general formulas for drag viscosity and
drag resistivity [Eqs. (49) and (51)], are therefore applicable
to other interacting fermionic systems described by Eq. (18).
Long-range interactions with any form of bare potential V (q)
will induce frictional drag forces acting on the charge carries,
which result in drag viscosity and Coulomb drag. We note

+++=

FIG. 2. Diagrammatic definition of dressed interacting stress
tensor and dressed drag force. The dressed force F̃ (d ) is defined as
the summation of all the diagrams on the right-hand side of the equal
sign, and the bare force F̃ is described by the second diagram in this
figure. The dressed force F̃ (d ) and bare force F̃ are differentiated by
the solid and open blue box in the middle. Note that the blue wavy
line with a box is used to characterize the vertex f (q) of the force F̃ .
The layer and spin indices carried by the fermionic fields indicated
by the black lines here are identical on the same side of the blue wavy
line.

that the bare potential V (q) enters the formula for Coulomb
drag while the derivative V ′(q) enters that for drag viscosity,
which is strong only with large V ′(q). Furthermore, the RPA
approximation employed here is only valid in the high-density
limit (rs � 1). To go beyond RPA, one way to estimate the
result is by replacing the noninteracting polarization operator
(R) with the interacting one [61], as in Ref. [46] for Coulomb
drag. We note that the expression for the retarded correlation
function G (R)

F̃
can also be used to deduce the dynamical drag

viscosity [62] using ηD(ω) = − Im G (R)
T (0, ω)/ω.

The general formulas for the drag viscosity ηD [Eq. (49)]
and drag resistivity 2n2e2ρD [Eq. (51)] can be rewritten as∫

q,ω

f̃ 2(q, ω)R(q, ω), (52)

where f̃ (q, ω) acquires the form

f̃ (q, ω) ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (q)

∣∣∣∣D(R)(q, ω)

V (q)

∣∣∣∣
2

, for ηD,

f (q)

∣∣∣∣∣D
(R)
LR (q, ω)

Vinter(q)

∣∣∣∣∣, for ρD,

(53)

and R(q, ω) is defined as

R(q, ω) ≡ [Im R(q, ω)]2

T sinh2
(

ω
2T

) . (54)

= +

++

FIG. 3. The retarded correlation function G (R)
F̃

of the force F̃ is
given by the noninteracting correlation function of the bare force F̃
and the dressed one F̃ (d ), which is defined diagrammatically in Fig. 2.
It is equivalent to the summation of the four diagrams shown on the
right-hand side of the equal sign in this figure.
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If one ignores the interaction correction to G (R)
F̃

(i.e., consid-
ering only the second diagram in Fig. 3 and neglecting the
contribution from the rest), the resulting drag viscosity and
drag resistivity can also be expressed as Eq. (52) with f̃ (q, ω)
replaced by the bare vertex f (q) [Eq. (30)].

Insertion of the single-particle fermionic Green’s function
G0 [Eq. (27)] into Eq. (36) leads to

(R)(q, ω) =
∫

k

tanh
( ξk+q

2T

)− tanh
(

ξk
2T

)
ω + ξk − ξk+q + iη

, (55)

whose imaginary part can be expressed as

Im (R)(q, ω)

= 2π

∫
k
δ(ω− ξk+q+ ξk )nF(ξk )[1− nF(ξk+q)](e− ω

T − 1)

= 2π

∫
k
δ(ω− ξk+q+ ξk )[1 − nF(ξk )]nF(ξk+q)(1 − e

ω
T ).

(56)

Here nF(ξ ) = 1/(eξ/T + 1) is the Fermi distribution function.
Making use of Eq. (56), one finds that R(q, ω) can be written
as [52]

R(q, ω) = [Im R(q, ω)]2

T sinh2
(

ω
2T

)
= 16π2

T

∫
k1,k2

δ
(
ω + ξk1 − ξk1+q

)
× δ

(
ω − ξk2 + ξk2−q

)
nF
(
ξk1

)
× [

1 − nF
(
ξk1+q

)]
nF
(
ξk2

)[
1− nF

(
ξk2−q

)]
,

(57)

which is therefore related to the phase space available for
interlayer scattering processes with momentum transfer q and
energy transfer ω. R(q, ω) is related to the number of particle-
hole excitations with momentum q and energy ω. In the
present paper, we only consider sufficiently low temperatures
at which the contribution from particle-hole continuum is
dominant and that from the plasmons can be ignored.

IV. RESULTS

To calculate the drag viscosity and drag resistivity using
Eqs. (49) and (51), we still need the explicit expression for
the polarization operator (R). Its value at zero temperature
was calculated by Lindhard [54] and Stern [53] in 3D and 2D,
respectively. In both dimensions, the zero-temperature polar-
ization operator (R)(q, ω) can be expressed in terms of two
dimensionless parameters u ≡ ω/vFq and z = q/2kF, with kF,
vF = kF/m being the Fermi momentum and Fermi velocity,
respectively. See Appendix B for the explicit expressions of
(R)(q, ω). In the following, we only consider sufficiently
low temperatures at which the polarization operator can be
approximated by its zero-temperature result. Using the finite-
temperature expression leads to a correction that is of higher
order in T/EF.

A. Drag viscosity

Let us first consider the drag viscosity at temperatures
T/EF � α. α ≡ κ/kF is the ratio of the Thomas-Fermi
screening wave vector κ over the Fermi momentum kF. κ takes
the value of κ = (4πe2ν0)1/2 (κ = 2πe2ν0) in 3D (2D), with
ν0 = mkF/π2 (ν0 = m/π ) being the density of states at the
Fermi level. In terms of dimensionless interaction parameter
rs, α = (16/3π2)1/3√rs (α = √

2rs) in 3D (2D).
Because of the screened interactions and the thermal factor

1/ sinh2(ω/2T ), the most significant contribution to the inte-
gral in Eq. (49) comes from small momentum q � κ and small
frequency ω � T . As a result, at low temperatures T/EF � α,
one may approximate the polarization operator (R)(u, z) by
its value at u, z � 1, which leads to the following static limit
(ω � vFq) expression for drag viscosity:

ηD =1

4

∫
q,ω

[
qxqy

q
Ṽ ′(q)

]2 [Im (R)(q, ω)]2

T sinh2
(

ω
2T

) . (58)

Here Ṽ (q) denotes the static screened Coulomb potential

Ṽ (q) ≡ [V −1(q) + ν0]−1 =
{ 1

ν0

κ2

q2+κ2 , in 3D,

1
ν0

κ
q+κ

, in 2D.
(59)

Equation (58) is obtained by replacing the retarded Green’s
function for the H.S. field D(R)(q, ω) in Eq. (53) with the
static screened interaction Ṽ (q) and making use of the fact
that V ′(q)V −2(q) = Ṽ ′(q)Ṽ −2(q).

Im (R)(u, z) is well approximated by −πν0
2 u�(1 − |u|)

[−ν0u�(1 − |u|)] in 3D (2D) for u, z � 1. Inserting these
expressions into Eq. (58), one obtains the drag viscosity:

η
(3D)
D = 1

240π

κ4

v2
F

∫ ∞

−∞
dω

ω2

T sinh2
(

ω
2T

) ∫ ∞

|ω|
vF

dq
q4

(q2 + κ2)4

= π2

2880

κT 2

v2
F

= 1

1280

(
π7

12

) 1
3 1

r5/2
s a3

0

(
T

EF

)2

, (60a)

η
(2D)
D = 1

27π2

κ2

v2
F

∫ ∞

−∞
dω

ω2

T sinh2
(

ω
2T

) ∫ ∞

|ω|
vF

dq
q

(q + κ )4

= 1

288

T 2

v2
F

= 1

576

1

r2
sa2

0

(
T

EF

)2

, (60b)

in 3D and 2D, respectively. Here, in the last equality of both
equations, the drag viscosities are expressed in terms of rs,
dimensionless temperature T/EF, and the Bohr radius a0 =
1/me2.

At higher temperatures T/EF � α that are still small com-
pared with the Fermi temperature T/EF � 1, the dominant
contribution arises from z � 1 and arbitrary u [as long as
Im (R)(u, z) is nonvanishing]. For this reason, we use the
expression for the polarization operator at z = 0 and arbitrary
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u and find

η
(3D)
D = 1

60π

κ4

kF

EF

T

∫ ∞

0
dx
∫ 1

0
du

1

sinh2
(

α
T/EF

ux
)

× u2x7{[
x2 + 1 − u

2 ln
(

1+u
1−u

)]2 + (
π
2 u
)2}2 , (61a)

η
(2D)
D = 1

32π2

κ3

kF

EF

T

∫ ∞

0
dx
∫ 1

0
du

1

sinh2
(

α
T/EF

ux
)

× x4u2(1 − u2)

{(x + 1)2 − [(x + 1)2 − 1]u2}2
, (61b)

where x ≡ q/κ .
The thermal factor 1/ sinh2(αuxEF/T ) in Eq. (61) can be

approximated by (T/EFαux)2 for T/EF � α, which leads to
the linear temperature dependence of ηD in both dimensions:

η
(3D)
D = 0.0013κ2kF

T

EF
= 0.0062

1

r2
sa3

0

T

EF
, (62a)

η
(2D)
D = 0.0022κkF

T

EF
= 0.0063

1

rsa2
0

T

EF
. (62b)

In Fig. 4(a) [4(b)], we depict the 3D (2D) drag viscosity in
units of a−3

0 (a−2
0 ) as a function of dimensionless temperature

T/EF. As shown in this figure, at sufficiently low temperatures
T/EF � α the drag viscosity exhibits a quadratic temperature
dependence which becomes linear as the temperature is raised
to T/EF � α. Apart from the explicit value of the crossover
temperature (which equals EFα for drag viscosity and vF/d
for drag resistivity as will become apparent later), this tem-
perature dependence is also noted for the drag resistivity of
double-layered 2DEGs [40,44–46,51].

B. Drag resistivity

In the following, we compute the drag resistivity in a
manner analogous to that of drag viscosity. The interlayer dis-
tance d is assumed to be much larger than the Thomas-Fermi
screening length κ−1. In this case, the integral in Eq. (50) is
dominated by momentum q � d−1 and frequency ω � T . At
temperatures T/EF � (kFd )−1, the main contribution comes
from the region u � 1, and the drag resistivity [Eq. (51)] is
well approximated by its static limit (ω � vFq) expression

ρD = 1

2n2e2

∫
ω,q

[qxṼinter(q)]2 [Im (R)(q, ω)]2

T sinh2
(

ω
2T

) (63)

[cf. the analogous static formula (58) for drag viscosity]. Here
Ṽ (q) denotes the static screened interaction and is given by

Ṽ (q) = [V −1(q) + ν01L]−1. (64)

For large enough interlayer distance d � κ−1, one has

Ṽinter(q) = 1

2ν0κ

q

sinh qd
, (65)

where κ = 2πe2ν0.
Combining Eq. (63) with the fact that Im (R)(q, ω) =

−ν0
ω

vFq in the static limit ω � vFq, one finds the drag resis-
tivity of a clean double-layer 2DEG at temperatures T/EF �

FIG. 4. Temperature dependence of drag viscosity ηD and drag
resistivity ρD. Panel (a) shows the drag viscosity of a 3D metal in
units of a−3

0 , panel (b) illustrates the corresponding 2D result in
units of a−2

0 , and panel (c) depicts the drag resistivity of a double-
layer 2DEG in units of e−2. They are obtained from numerical
computation of Eqs. (61a), (61b), and (67), respectively. The inset
in each panel shows an expanded view of the drag viscosity or drag
resistivity in the low-temperature region. Both the drag viscosity
and drag resistivity exhibit a crossover from quadratic-in-T behavior
at low temperatures and a linear one at higher temperatures. In
all panels, the dimensionless interaction parameter rs has been set
to be rs = 0.2, and in panel (c) the interlayer distance d is set
to 5a0.
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1/kFd [41–43,51]:

ρD = 1

26π2

1

n2e2κ2v2
F

∫ ∞

−∞
dω

ω2

T sinh2
(

ω
2T

) ∫ ∞

|ω|
vFq

dq
q3

sinh2 qd

= ζ [3]π2

16

1

e2k2
Fκ2d4

(
T

EF

)2

= ζ [3]π2

128

r2
s

e2

(a0

d

)4
(

T

EF

)2

.

(66)

At higher temperatures T/EF � 1/kFd , the static-limit re-
sult [Eq. (66)] is no longer valid. Insertion of the expression
for the polarization operator (R)(u, z) at z = 0 and arbitrary
u into Eq. (51) leads to

ρD = 1

32π2

1

n2e2

vF

κ2d7

∫ ∞

0
dx
∫ 1

0
du

1

T sinh2
(

vFxu
2dT

)
× u2(1 − u2)

x6

sinh2 x
. (67)

Here x ≡ qd , and we have used the fact that κd � 1.
Approximating 1/ sinh2( vFxu

2dT ) with ( vFxu
2dT )−2 in Eq. (67),

one finds that the drag resistivity is given by the following
expression at temperatures T/EF � 1/kFd [40,44–46]:

ρD = π4

180

1

e2κ2k3
Fd5

T

EF
= π4

1440
√

2

r3
s

e2

(a0

d

)5 T

EF
. (68)

Using Eq. (51) derived from Kubo formula (16), we have
proved that the drag resistivity crosses over from quadratic
behavior ρD ∝ T 2 for temperatures below vF/d to linear
behavior ρD ∝ T for temperatures above vF/d; see Fig. 4(c).

C. Discussion

As shown in the previous sections, both the drag viscosity
and drag resistivity exhibit a quadratic-in-T behavior at low
temperature T � Tc and a linear-in-T behavior at higher
temperature T � Tc. Here the crossover temperature takes
the value of Tc/EF = α [α = (16/3π2)1/3√rs in 3D and α =√

2rs in 2D] for the drag viscosity and Tc/EF = 1/kFd for
the drag resistivity. It is determined by the boundary of the
particle-hole continuum ω = vFq.

In Eq. (52), we show that both the drag viscosity [Eq. (49)]
and drag resistivity [Eq. (51)] can be expressed as a two-
variable integral with the integrand being a product of the
square of the dressed vertex f̃ (q, ω) and phase-space factor
R(q, ω). The typical energy transfer ω is of the order of the
temperature T , while the typical momentum transfer q is of
the order of the Thomas-Fermi screening wave vector κ for
the drag viscosity and of the inverse of interlayer spacing d−1

for the drag resistivity (assuming d � κ−1). The crossover
temperature Tc is the temperature at which the typical energy
transfer ω and typical momentum transfer q reach the particle-
hole continuum boundary ω = vFq, and as a result equals vFκ

for the drag viscosity and vFd−1 for the drag resistivity.
At temperature T � Tc, the energy transfer ω, which is of

the order of T , is much smaller compared with vFq, which
is of the order of Tc. Therefore, the dressed vertex f̃ (q, ω)
in Eq. (52) can be approximated by f (q) with the bare inter-
action V (q) replaced by the static screened one Ṽ (q). Now
f̃ (q, ω) becomes frequency independent, and the quadratic

temperature dependence of ηD and ρD comes entirely from
the phase space

∫
ω

R(q, ω) of the interlayer scattering with
momentum transfer q.

At temperature T � Tc, the energy transfer ω is now
cut off by the boundary of the particle-hole continuum vFq,
which is of the order of the crossover temperature Tc. As a
result, the factor sinh(ω/2T ) in the denominator of R(q, ω)
(Eq. (54)) can be approximated by ω/2T since ω ∼ Tc � T .
Substituting R(q, ω) back into Eq. (52), it is now easy to see
the linear temperature dependence of the drag viscosity and
drag resistivity in this regime.

V. CONCLUSION

In this paper, we show the close resemblance between the
drag resistivity of double-layer 2DEGs and the drag viscosity
of clean metals in 2D and 3D. These two phenomena both
originate from frictional drag force induced by Coulomb inter-
actions. Using Kubo’s formula, we extract the drag resistivity
and drag viscosity from the correlation functions of drag force
and that of momentum flow induced by the drag force, i.e.,
interacting part of the stress tensor, respectively. Similar to the
drag resistivity, the drag viscosity exhibits a quadratic-in-T
scaling behavior at low temperatures which crosses over to
a linear behavior at higher temperatures (which are still low
enough such that the plasmon contribution can be ignored).
It is therefore relatively small compared with the “Drude”-
type viscosity that results from the correlation function of the
noninteracting stress tensor and has a temperature dependence
of 1/T 2 [31–33].

Even though drag viscosity is relatively small for clean
metals, it might be significant for electronic systems with a
different Fermi-surface geometry, energy dispersion, or type
of interaction, especially for those with strong Coulomb drag
signal. Another system, where the drag viscosity may have a
more pronounced effect, is graphene close to charge neutrality
in the hydrodynamic regime [21–23]. It has been found by
Müller et al. [5] that the “Drude”-type viscosity has a temper-
ature dependence of T 2 at charge neutrality, in contrast to the
usual Fermi-liquid result of η ∝ 1/T 2 [31–33]. In addition,
due to the lack of screening, the interactions become strong
at the charge neutrality, resulting in a strong drag force. As
a consequence of particle-hole symmetry, the leading-order
contribution to the drag resistivity of a double-layer intrin-
sic graphene vanishes [63,64]. However, it has been shown
both experimentally and theoretically that application of a
magnetic field generates a giant magnetodrag for graphene at
charge neutrality [65–67]. Given the similarity between the
drag resistivity and drag viscosity, it is reasonable to expect
the drag viscosity might be significant for graphene at charge
neutrality in the presence of a magnetic field. Another type of
system where the drag viscosity may dominate are quantum
critical systems [68]. The soft fluctuations near the critical
point there induce long-range forces, unscreened at criticality,
which may give rise to a noticeable viscous drag effect.

In particular, the drag viscosity may also play a role in
developing a better understanding of linear-in-T resistivity
of the strange metal phase of cuprates [69]. In Ref. [70],
Davison et al. present a mechanism to explain the linear-
in-T resistivity by connecting it with the electron viscosity.
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In particular, they consider a strongly interacting quantum
critical system which is weakly coupled to impurities and
can be described hydrodynamically, and assume the theory is
applicable to actual electronic systems such as cuprates. For
this hydrodynamics liquid, the resistivity is governed by the
momentum dissipation characterized by viscosity. They found
a viscous contribution to resistivity proportional to viscosity
ρ(T ) ∝ η(T ), see also Refs. [1,71] where the same result has
been derived. Assuming the lower bound for the ratio of shear
viscosity to entropy density [30] is reached, they conclude that
the viscous contribution is proportional to the electron entropy
ρ(T ) ∝ s(T ) and therefore shows a linear-in-T temperature
dependence for strange metals with entropy s ∝ T [72]. For a
critical quantum liquid, the drag viscosity might be dominant
and therefore relevant to the linear-in-T resistivity.

In summary, this paper has introduced a mechanism for
electronic viscosity, based on a drag effect originating from
long-range forces. The drag viscosity shows a crossover from

a quadratic T dependence in the T → 0 limit to a linear-in-
T behavior, which may result in a linear-in-T conductivity
[1,70,71]. This contribution is shown to be small for regular
Fermi liquids with an isotropic Fermi surface. However, we
show a nearly one-to-one correspondence between the drag
viscosity coefficient and the Coulomb drag resistance, thereby
providing guidance in search for systems where the intrinsic
drag effect may dominate and give rise to a pronounced linear-
in-T behavior of transport coefficients.
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APPENDIX A: DIAGRAMMATIC DERIVATION OF THE STRESS TENSOR AND DRAG
FORCE CORRELATION FUNCTIONS

In this Appendix, we provide an alternative diagrammatic approach to calculate the retarded correlation function G (R)
F̃

of the
stress tensor Txy and drag force F L/R

x , which are represented by F̃ [Eq. (29)] with different forms of vertex f (q) [Eq. (30)].
The correlation function G (R)

F̃
, depicted in Fig. 3, is given by the noninteracting correlation function of the bare force F̃ and

dressed force F̃ (d ),

iG (R)
F̃

(�) = 〈
F̃ (d )

cl (�)F̃q(−�)
〉
0 = 〈

F̃cl(�)F̃ (d )
q (−�)

〉
0. (A1)

Here the dressed force F̃ (d ) is defined diagrammatically in Fig. 2. Through a straightforward calculation, we find that the classical
components of the dressed F̃ (d ) take the form

F̃ (d )
cl (�)= 1

2
√

2

∫
k,k′,ε,ε′,q,ω

f (q)V −1
Li′ (q)V −1

R j′ (q)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0 1]

[
D(A)

i′i (q, ω+ �) 0

D(K )
i′i (q, ω+ �) D(R)

i′i (q, ω+ �)

][
ψ̄ i

σ ′ (k′, ε′)MF (ε′)MF (ε′+ ω+ �)ψ i
σ ′ (k′+ q, ε′+ ω+ �)

ψ̄ i
σ ′ (k′, ε′)MF (ε′)τ̂ 1MF (ε′+ ω+ �)ψ i

σ ′ (k′+ q, ε′+ ω+ �)

]

×uT

[
D(A)

j′ j (−q,−ω) 0

D(K )
j′ j (−q,−ω) D(R)

j′ j (−q,−ω)

][
ψ̄

j
σ (k+ q, ε+ ω)MF (ε+ ω)MF (ε)ψ j

σ (k, ε)
ψ̄

j
σ (k+ q, ε+ ω)MF (ε+ ω)τ̂ 1MF (ε)ψ j

σ (k, ε)

]

+ [
1 0

][D(A)
i′i (q, ω+ �) 0

D(K )
i′i (q, ω+ �) D(R)

i′i (q, ω+ �)

][
ψ̄ i

σ ′ (k′, ε′)MF (ε′)MF (ε′+ ω+ �)ψ i
σ ′ (k′+ q, ε′+ ω+ �)

ψ̄ i
σ ′ (k′, ε′)MF (ε′)τ̂ 1MF (ε′+ ω)ψ i

σ ′ (k′+ q, ε′+ ω+ �)

]

×vT

[
D(A)

j′ j (−q,−ω) 0

D(K )
j′ j (−q,−ω) D(R)

j′ j (−q,−ω)

][
ψ̄

j
σ (k+ q, ε+ ω)MF (ε+ ω)MF (ε)ψ j

σ (k, ε)

ψ̄
j
σ (k+ q, ε + ω)MF (ε + ω)τ̂ 1MF (ε)ψ j

σ (k, ε)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(A2)

where uT = [0 1] and vT = [1 0]. The quantum component of F̃ (d )
q can also be obtained from Eq. (A2) by interchanging u

and v.
Insertion of Eqs. (A2) and (33) into Eq. (A1) yields the retarded correlation function of F̃ ,

iG (R)
F̃

(�) = −1

2

∫
ω,q

∑
i=L,R

f (q) f (−ζiq){[uTWLi(q, ω + �)u][uTWRī(−q,−ω)v] + [vTWLi(q, ω + �)v][vTWRī(−q,−ω)u]

+ [uTWLi(q, ω + �)v][uTWRī(−q,−ω)u] + [vTWLi(q, ω + �)u][vTWRī(−q,−ω)v]}, (A3)

where W is defined as

W (q, ω) ≡ V −1(q)τ 1
L D(q, ω)(q, ω). (A4)

τ 1
L is the Pauli matrix acting on the layer space.
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Using the causality structures of dressed propagator D(q, ω) [Eq. (41)] and self-energy (q, ω) [Eq. (35)] of the bosonic
field φ, we find Eq. (A3) can be further simplified to Eq. (47) which is derived in Sec. III C through a different approach that
involves a source field.

APPENDIX B: ZERO-TEMPERATURE POLARIZATION OPERATOR

The noninteracting polarization operator (R)(q, ω) at zero temperature was calculated by Lindhard [54] and Stern [53],
respectively, for a Fermi liquid in 2D and 3D. In this Appendix, we give the explicit expressions which are needed for our
calculations of drag viscosity and drag resistivity.

In terms of the dimensionless parameters u ≡ ω/vFq and z = q/2kF, the real and imaginary parts of the polarization operator
(u, z) for u > 0 in 3D are given by, respectively,

Re (R)(u, z) = −ν0

{
1

2
+ 1

8z
[1 − (z − u)2] ln

∣∣∣∣ z − u + 1

z − u − 1

∣∣∣∣+ 1

8z
[1 − (z + u)2] ln

∣∣∣∣ z + u + 1

z + u − 1

∣∣∣∣
}
, (B1)

Im (R)(u, z) = −πν0

{
1

2
u�(|1 − z| − u) + 1

8z
[1 − (z − u)2]�(1 + z − u)�(u − |1 − z|)

}
. (B2)

In 2D, the polarization operator (R)(u > 0, z) acquires the form

Re (R)(u, z) = − ν0

{
1 − sgn (z + u)

2z

√
(z + u)2 − 1�[|z + u| − 1] − sgn (z − u)

2z

√
(z − u)2 − 1�[|z − u| − 1]

}
, (B3)

Im (R)(u, z) = ν0
1

2z

{√
1 − (z + u)2�[1 − |z + u|] −

√
1 − (z − u)2�[1 − |z − u|]

}
. (B4)

For u < 0, the explicit expressions for the polarization operator can be deduced from the equations above using Im (u, x) =
− Im (−u, x) and Re (u, x) = Re (−u, x).

[1] A. V. Andreev, S. A. Kivelson, and B. Spivak, Phys. Rev. Lett.
106, 256804 (2011).

[2] B. N. Narozhny, I. V. Gornyi, A. D. Mirlin, and J. Schmalian,
Ann. Phys. (Berlin, Ger.) 529, 1700043 (2017).

[3] A. Lucas, J. Crossno, K. C. Fong, P. Kim, and S. Sachdev, Phys.
Rev. B 93, 075426 (2016).

[4] A. Lucas and K. C. Fong, J. Phys.: Condens. Matter 30, 053001
(2018).

[5] M. Müller, J. Schmalian, and L. Fritz, Phys. Rev. Lett. 103,
025301 (2009).

[6] I. Torre, A. Tomadin, A. K. Geim, and M. Polini, Phys. Rev. B
92, 165433 (2015).

[7] L. Levitov and G. Falkovich, Nat. Phys. 12, 672 (2016).
[8] A. Principi, G. Vignale, M. Carrega, and M. Polini, Phys. Rev.

B 93, 125410 (2016).
[9] U. Briskot, M. Schütt, I. V. Gornyi, M. Titov, B. N. Narozhny,

and A. D. Mirlin, Phys. Rev. B 92, 115426 (2015).
[10] M. Sherafati, A. Principi, and G. Vignale, Phys. Rev. B 94,

125427 (2016).
[11] T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, and J. E.

Moore, Phys. Rev. Lett. 118, 226601 (2017).
[12] F. M. D. Pellegrino, I. Torre, A. K. Geim, and M. Polini, Phys.

Rev. B 94, 155414 (2016).
[13] H. Guo, E. Ilseven, G. Falkovich, and L. S. Levitov, Proc. Natl.

Acad. Sci. USA 114, 3068 (2017).
[14] A. Levchenko, H.-Y. Xie, and A. V. Andreev, Phys. Rev. B 95,

121301(R) (2017).
[15] P. S. Alekseev, Phys. Rev. Lett. 117, 166601 (2016).
[16] A. Lucas and S. Das Sarma, Phys. Rev. B 97, 245128 (2018).
[17] C. Q. Cook and A. Lucas, Phys. Rev. B 99, 235148 (2019).

[18] S. S. Apostolov, A. Levchenko, and A. V. Andreev, Phys. Rev.
B 89, 121104(R) (2014).

[19] S. S. Apostolov, D. A. Pesin, and A. Levchenko, Phys. Rev. B
100, 115401 (2019).

[20] Y. Liao and V. Galitski, Phys. Rev. B 100, 060501(R) (2019).
[21] R. K. Kumar, D. A. Bandurin, F. M. D. Pellegrino, Y. Cao, A.

Principi, H. Guo, G. Auton, M. B. Shalom, L. A. Ponomarenko,
G. Falkovich et al., Nat. Phys. 13, 1182 (2017).

[22] D. A. Bandurin, I. Torre, R. K. Kumar, M. B. Shalom, A.
Tomadin, A. Principi, G. Auton, E. Khestanova, K. Novoselov,
I. Grigorieva, L. A. Ponomarenko, A. K. Geim, and M. Polini,
Science 351, 1055 (2016).

[23] J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas,
S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe et al., Science
351, 1058 (2016).

[24] J. Gooth, A. C. Niemann, T. Meng, A. G. Grushin, K.
Landsteiner, B. Gotsmann, F. Menges, M. Schmidt, C. Shekhar,
V. Süß et al., Nature (London) 547, 324 (2017).

[25] J. Gooth, F. Menges, C. Shekhar, V. Süss, N. Kumar, Y.
Sun, U. Drechsler, R. Zierold, C. Felser, and B. Gotsmann,
arXiv:1706.05925.

[26] P. J. Moll, P. Kushwaha, N. Nandi, B. Schmidt, and A. P.
Mackenzie, Science 351, 1061 (2016).

[27] C. Fu, T. Scaffidi, J. Waissman, Y. Sun, R. Saha, S. J.
Watzman, A. K. Srivastava, G. Li, W. Schnelle, P. Werner,
M. E. Kamminga, S. Sachdev, S. S. P. Parkin, S. A. Hartnoll,
C. Felser, and J. Gooth, arXiv:1802.09468.

[28] G. Gusev, A. Levin, E. Levinson, and A. Bakarov, AIP Adv. 8,
025318 (2018).

[29] T. Schäfer and D. Teaney, Rep. Prog. Phys. 72, 126001 (2009).

195106-13

https://doi.org/10.1103/PhysRevLett.106.256804
https://doi.org/10.1103/PhysRevLett.106.256804
https://doi.org/10.1103/PhysRevLett.106.256804
https://doi.org/10.1103/PhysRevLett.106.256804
https://doi.org/10.1002/andp.201700043
https://doi.org/10.1002/andp.201700043
https://doi.org/10.1002/andp.201700043
https://doi.org/10.1002/andp.201700043
https://doi.org/10.1103/PhysRevB.93.075426
https://doi.org/10.1103/PhysRevB.93.075426
https://doi.org/10.1103/PhysRevB.93.075426
https://doi.org/10.1103/PhysRevB.93.075426
https://doi.org/10.1088/1361-648X/aaa274
https://doi.org/10.1088/1361-648X/aaa274
https://doi.org/10.1088/1361-648X/aaa274
https://doi.org/10.1088/1361-648X/aaa274
https://doi.org/10.1103/PhysRevLett.103.025301
https://doi.org/10.1103/PhysRevLett.103.025301
https://doi.org/10.1103/PhysRevLett.103.025301
https://doi.org/10.1103/PhysRevLett.103.025301
https://doi.org/10.1103/PhysRevB.92.165433
https://doi.org/10.1103/PhysRevB.92.165433
https://doi.org/10.1103/PhysRevB.92.165433
https://doi.org/10.1103/PhysRevB.92.165433
https://doi.org/10.1038/nphys3667
https://doi.org/10.1038/nphys3667
https://doi.org/10.1038/nphys3667
https://doi.org/10.1038/nphys3667
https://doi.org/10.1103/PhysRevB.93.125410
https://doi.org/10.1103/PhysRevB.93.125410
https://doi.org/10.1103/PhysRevB.93.125410
https://doi.org/10.1103/PhysRevB.93.125410
https://doi.org/10.1103/PhysRevB.92.115426
https://doi.org/10.1103/PhysRevB.92.115426
https://doi.org/10.1103/PhysRevB.92.115426
https://doi.org/10.1103/PhysRevB.92.115426
https://doi.org/10.1103/PhysRevB.94.125427
https://doi.org/10.1103/PhysRevB.94.125427
https://doi.org/10.1103/PhysRevB.94.125427
https://doi.org/10.1103/PhysRevB.94.125427
https://doi.org/10.1103/PhysRevLett.118.226601
https://doi.org/10.1103/PhysRevLett.118.226601
https://doi.org/10.1103/PhysRevLett.118.226601
https://doi.org/10.1103/PhysRevLett.118.226601
https://doi.org/10.1103/PhysRevB.94.155414
https://doi.org/10.1103/PhysRevB.94.155414
https://doi.org/10.1103/PhysRevB.94.155414
https://doi.org/10.1103/PhysRevB.94.155414
https://doi.org/10.1073/pnas.1612181114
https://doi.org/10.1073/pnas.1612181114
https://doi.org/10.1073/pnas.1612181114
https://doi.org/10.1073/pnas.1612181114
https://doi.org/10.1103/PhysRevB.95.121301
https://doi.org/10.1103/PhysRevB.95.121301
https://doi.org/10.1103/PhysRevB.95.121301
https://doi.org/10.1103/PhysRevB.95.121301
https://doi.org/10.1103/PhysRevLett.117.166601
https://doi.org/10.1103/PhysRevLett.117.166601
https://doi.org/10.1103/PhysRevLett.117.166601
https://doi.org/10.1103/PhysRevLett.117.166601
https://doi.org/10.1103/PhysRevB.97.245128
https://doi.org/10.1103/PhysRevB.97.245128
https://doi.org/10.1103/PhysRevB.97.245128
https://doi.org/10.1103/PhysRevB.97.245128
https://doi.org/10.1103/PhysRevB.99.235148
https://doi.org/10.1103/PhysRevB.99.235148
https://doi.org/10.1103/PhysRevB.99.235148
https://doi.org/10.1103/PhysRevB.99.235148
https://doi.org/10.1103/PhysRevB.89.121104
https://doi.org/10.1103/PhysRevB.89.121104
https://doi.org/10.1103/PhysRevB.89.121104
https://doi.org/10.1103/PhysRevB.89.121104
https://doi.org/10.1103/PhysRevB.100.115401
https://doi.org/10.1103/PhysRevB.100.115401
https://doi.org/10.1103/PhysRevB.100.115401
https://doi.org/10.1103/PhysRevB.100.115401
https://doi.org/10.1103/PhysRevB.100.060501
https://doi.org/10.1103/PhysRevB.100.060501
https://doi.org/10.1103/PhysRevB.100.060501
https://doi.org/10.1103/PhysRevB.100.060501
https://doi.org/10.1038/nphys4240
https://doi.org/10.1038/nphys4240
https://doi.org/10.1038/nphys4240
https://doi.org/10.1038/nphys4240
https://doi.org/10.1126/science.aad0201
https://doi.org/10.1126/science.aad0201
https://doi.org/10.1126/science.aad0201
https://doi.org/10.1126/science.aad0201
https://doi.org/10.1126/science.aad0343
https://doi.org/10.1126/science.aad0343
https://doi.org/10.1126/science.aad0343
https://doi.org/10.1126/science.aad0343
https://doi.org/10.1038/nature23005
https://doi.org/10.1038/nature23005
https://doi.org/10.1038/nature23005
https://doi.org/10.1038/nature23005
http://arxiv.org/abs/arXiv:1706.05925
https://doi.org/10.1126/science.aac8385
https://doi.org/10.1126/science.aac8385
https://doi.org/10.1126/science.aac8385
https://doi.org/10.1126/science.aac8385
http://arxiv.org/abs/arXiv:1802.09468
https://doi.org/10.1063/1.5020763
https://doi.org/10.1063/1.5020763
https://doi.org/10.1063/1.5020763
https://doi.org/10.1063/1.5020763
https://doi.org/10.1088/0034-4885/72/12/126001
https://doi.org/10.1088/0034-4885/72/12/126001
https://doi.org/10.1088/0034-4885/72/12/126001
https://doi.org/10.1088/0034-4885/72/12/126001


YUNXIANG LIAO AND VICTOR GALITSKI PHYSICAL REVIEW B 101, 195106 (2020)

[30] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.
94, 111601 (2005).

[31] I. Pomeranchuk, Zh. Eksp. Teor. Fiz. 20, 919 (1950) [J. Exp.
Theor. Phys. USSR 20, 919 (1950)].

[32] A. A. Abrikosov and I. M. Khalatnikov, Rep. Prog. Phys. 22,
329 (1959).

[33] A. A. Abrikosov and I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 32,
1083 (1957) [Sov. Phys. JETP 5, 887 (1957)].

[34] K. N. Zinoveva, Zh. Eksp. Teor. Fiz. 34, 609 (1958) [Sov.Phys-
JETP. 7, 421 (1958)].

[35] Y. Nishida and D. T. Son, Phys. Rev. D 76, 086004 (2007).
[36] J. M. Link, D. E. Sheehy, B. N. Narozhny, and J. Schmalian,

Phys. Rev. B 98, 195103 (2018).
[37] M. Pogrebinskii, Fiz. Tekh. Poluprovodn. 11, 637 (1977).
[38] P. J. Price, Physica B + C (Amsterdam) 117-118, 750 (1983).
[39] P. J. Price, in The Physics of Submicron Semiconductor Devices,

edited by H. Grubin, D. K. Ferry, and C. Jacobon (Plenum
Press, New York, 1988).

[40] T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer,
and K. W. West, Phys. Rev. Lett. 66, 1216 (1991).

[41] L. Zheng and A. H. MacDonald, Phys. Rev. B 48, 8203 (1993).
[42] K. Flensberg and B. Y.-K. Hu, Phys. Rev. Lett. 73, 3572 (1994).
[43] A. Kamenev and Y. Oreg, Phys. Rev. B 52, 7516 (1995).
[44] P. Solomon and B. Laikhtman, Superlattices Microstruct. 10, 89

(1991).
[45] A.-P. Jauho and H. Smith, Phys. Rev. B 47, 4420 (1993).
[46] W. Chen, A. V. Andreev, and A. Levchenko, Phys. Rev. B 91,

245405 (2015).
[47] K. Flensberg and B. Y.-K. Hu, Phys. Rev. B 52, 14796 (1995).
[48] N. P. R. Hill, J. T. Nicholls, E. H. Linfield, M. Pepper, D. A.

Ritchie, G. A. C. Jones, B. Y.-K. Hu, and K. Flensberg, Phys.
Rev. Lett. 78, 2204 (1997).

[49] S. M. Badalyan, C. S. Kim, and G. Vignale, Phys. Rev. Lett.
100, 016603 (2008).

[50] S. M. Badalyan, C. S. Kim, G. Vignale, and G. Senatore, Phys.
Rev. B 75, 125321 (2007).

[51] B. N. Narozhny and A. Levchenko, Rev. Mod. Phys. 88, 025003
(2016).

[52] A. G. Rojo, J. Phys.: Condens. Matter 11, R31 (1999).
[53] F. Stern, Phys. Rev. Lett. 18, 546 (1967).
[54] J. Lindhard, Dan. Vid. Selsk Mat.-Fys. Medd. 28, 8 (1954).
[55] L. P. Kadanoff and P. C. Martin, Ann. Phys. (NY) 24, 419

(1963).
[56] B. Bradlyn, M. Goldstein, and N. Read, Phys. Rev. B 86,

245309 (2012).
[57] D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and

Correlation Functions (Perseus Books, New York, 1995).
[58] D. N. Zubarev and P. Shepherd, Nonequilibrium Statistical

Thermodynamics (Consultants Bureau, New York, 1974).
[59] P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
[60] J. Tao, G. Vignale, and J.-X. Zhu, Computation 5, 28 (2017).
[61] V. A. Zyuzin, P. Sharma, and D. L. Maslov, Phys. Rev. B 98,

115139 (2018).
[62] S. Conti and G. Vignale, Phys. Rev. B 60, 7966 (1999).
[63] W.-K. Tse, B. Y.-K. Hu, and S. Das Sarma, Phys. Rev. B 76,

081401(R) (2007).
[64] B. N. Narozhny, Phys. Rev. B 76, 153409 (2007).
[65] J. C. W. Song and L. S. Levitov, Phys. Rev. Lett. 111, 126601

(2013).
[66] M. Titov, R. V. Gorbachev, B. N. Narozhny, T. Tudorovskiy,

M. Schütt, P. M. Ostrovsky, I. V. Gornyi, A. D. Mirlin,
M. I. Katsnelson, K. S. Novoselov, A. K. Geim, and L. A.
Ponomarenko, Phys. Rev. Lett. 111, 166601 (2013).

[67] R. Gorbachev, A. Geim, M. Katsnelson, K. Novoselov, T.
Tudorovskiy, I. Grigorieva, A. H. MacDonald, S. Morozov,
K. Watanabe, T. Taniguchi et al., Nat. Phys. 8, 896 (2012).

[68] A. Eberlein, A. A. Patel, and S. Sachdev, Phys. Rev. B 95,
075127 (2017).

[69] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams,
and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).

[70] R. A. Davison, K. Schalm, and J. Zaanen, Phys. Rev. B 89,
245116 (2014).

[71] B. Spivak and S. A. Kivelson, Ann. Phys. (NY) 321, 2071
(2006).

[72] J. W. Loram, K. A. Mirza, J. R. Cooper, and W. Y. Liang, Phys.
Rev. Lett. 71, 1740 (1993).

195106-14

https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1088/0034-4885/22/1/310
https://doi.org/10.1088/0034-4885/22/1/310
https://doi.org/10.1088/0034-4885/22/1/310
https://doi.org/10.1088/0034-4885/22/1/310
https://doi.org/10.1103/PhysRevD.76.086004
https://doi.org/10.1103/PhysRevD.76.086004
https://doi.org/10.1103/PhysRevD.76.086004
https://doi.org/10.1103/PhysRevD.76.086004
https://doi.org/10.1103/PhysRevB.98.195103
https://doi.org/10.1103/PhysRevB.98.195103
https://doi.org/10.1103/PhysRevB.98.195103
https://doi.org/10.1103/PhysRevB.98.195103
https://doi.org/10.1016/0378-4363(83)90642-3
https://doi.org/10.1016/0378-4363(83)90642-3
https://doi.org/10.1016/0378-4363(83)90642-3
https://doi.org/10.1016/0378-4363(83)90642-3
https://doi.org/10.1103/PhysRevLett.66.1216
https://doi.org/10.1103/PhysRevLett.66.1216
https://doi.org/10.1103/PhysRevLett.66.1216
https://doi.org/10.1103/PhysRevLett.66.1216
https://doi.org/10.1103/PhysRevB.48.8203
https://doi.org/10.1103/PhysRevB.48.8203
https://doi.org/10.1103/PhysRevB.48.8203
https://doi.org/10.1103/PhysRevB.48.8203
https://doi.org/10.1103/PhysRevLett.73.3572
https://doi.org/10.1103/PhysRevLett.73.3572
https://doi.org/10.1103/PhysRevLett.73.3572
https://doi.org/10.1103/PhysRevLett.73.3572
https://doi.org/10.1103/PhysRevB.52.7516
https://doi.org/10.1103/PhysRevB.52.7516
https://doi.org/10.1103/PhysRevB.52.7516
https://doi.org/10.1103/PhysRevB.52.7516
https://doi.org/10.1016/0749-6036(91)90154-J
https://doi.org/10.1016/0749-6036(91)90154-J
https://doi.org/10.1016/0749-6036(91)90154-J
https://doi.org/10.1016/0749-6036(91)90154-J
https://doi.org/10.1103/PhysRevB.47.4420
https://doi.org/10.1103/PhysRevB.47.4420
https://doi.org/10.1103/PhysRevB.47.4420
https://doi.org/10.1103/PhysRevB.47.4420
https://doi.org/10.1103/PhysRevB.91.245405
https://doi.org/10.1103/PhysRevB.91.245405
https://doi.org/10.1103/PhysRevB.91.245405
https://doi.org/10.1103/PhysRevB.91.245405
https://doi.org/10.1103/PhysRevB.52.14796
https://doi.org/10.1103/PhysRevB.52.14796
https://doi.org/10.1103/PhysRevB.52.14796
https://doi.org/10.1103/PhysRevB.52.14796
https://doi.org/10.1103/PhysRevLett.78.2204
https://doi.org/10.1103/PhysRevLett.78.2204
https://doi.org/10.1103/PhysRevLett.78.2204
https://doi.org/10.1103/PhysRevLett.78.2204
https://doi.org/10.1103/PhysRevLett.100.016603
https://doi.org/10.1103/PhysRevLett.100.016603
https://doi.org/10.1103/PhysRevLett.100.016603
https://doi.org/10.1103/PhysRevLett.100.016603
https://doi.org/10.1103/PhysRevB.75.125321
https://doi.org/10.1103/PhysRevB.75.125321
https://doi.org/10.1103/PhysRevB.75.125321
https://doi.org/10.1103/PhysRevB.75.125321
https://doi.org/10.1103/RevModPhys.88.025003
https://doi.org/10.1103/RevModPhys.88.025003
https://doi.org/10.1103/RevModPhys.88.025003
https://doi.org/10.1103/RevModPhys.88.025003
https://doi.org/10.1088/0953-8984/11/5/004
https://doi.org/10.1088/0953-8984/11/5/004
https://doi.org/10.1088/0953-8984/11/5/004
https://doi.org/10.1088/0953-8984/11/5/004
https://doi.org/10.1103/PhysRevLett.18.546
https://doi.org/10.1103/PhysRevLett.18.546
https://doi.org/10.1103/PhysRevLett.18.546
https://doi.org/10.1103/PhysRevLett.18.546
https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/10.1103/PhysRevB.86.245309
https://doi.org/10.1103/PhysRevB.86.245309
https://doi.org/10.1103/PhysRevB.86.245309
https://doi.org/10.1103/PhysRevB.86.245309
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.3390/computation5020028
https://doi.org/10.3390/computation5020028
https://doi.org/10.3390/computation5020028
https://doi.org/10.3390/computation5020028
https://doi.org/10.1103/PhysRevB.98.115139
https://doi.org/10.1103/PhysRevB.98.115139
https://doi.org/10.1103/PhysRevB.98.115139
https://doi.org/10.1103/PhysRevB.98.115139
https://doi.org/10.1103/PhysRevB.60.7966
https://doi.org/10.1103/PhysRevB.60.7966
https://doi.org/10.1103/PhysRevB.60.7966
https://doi.org/10.1103/PhysRevB.60.7966
https://doi.org/10.1103/PhysRevB.76.081401
https://doi.org/10.1103/PhysRevB.76.081401
https://doi.org/10.1103/PhysRevB.76.081401
https://doi.org/10.1103/PhysRevB.76.081401
https://doi.org/10.1103/PhysRevB.76.153409
https://doi.org/10.1103/PhysRevB.76.153409
https://doi.org/10.1103/PhysRevB.76.153409
https://doi.org/10.1103/PhysRevB.76.153409
https://doi.org/10.1103/PhysRevLett.111.126601
https://doi.org/10.1103/PhysRevLett.111.126601
https://doi.org/10.1103/PhysRevLett.111.126601
https://doi.org/10.1103/PhysRevLett.111.126601
https://doi.org/10.1103/PhysRevLett.111.166601
https://doi.org/10.1103/PhysRevLett.111.166601
https://doi.org/10.1103/PhysRevLett.111.166601
https://doi.org/10.1103/PhysRevLett.111.166601
https://doi.org/10.1038/nphys2441
https://doi.org/10.1038/nphys2441
https://doi.org/10.1038/nphys2441
https://doi.org/10.1038/nphys2441
https://doi.org/10.1103/PhysRevB.95.075127
https://doi.org/10.1103/PhysRevB.95.075127
https://doi.org/10.1103/PhysRevB.95.075127
https://doi.org/10.1103/PhysRevB.95.075127
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevB.89.245116
https://doi.org/10.1103/PhysRevB.89.245116
https://doi.org/10.1103/PhysRevB.89.245116
https://doi.org/10.1103/PhysRevB.89.245116
https://doi.org/10.1016/j.aop.2005.12.002
https://doi.org/10.1016/j.aop.2005.12.002
https://doi.org/10.1016/j.aop.2005.12.002
https://doi.org/10.1016/j.aop.2005.12.002
https://doi.org/10.1103/PhysRevLett.71.1740
https://doi.org/10.1103/PhysRevLett.71.1740
https://doi.org/10.1103/PhysRevLett.71.1740
https://doi.org/10.1103/PhysRevLett.71.1740

