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Permutation cycles of hardcore Bose-Hubbard models on square and kagome lattices
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In this paper, we study the statistics of permutation cycles of ground-state hardcore lattice bosons described
by various two-dimensional Bose-Hubbard-type models on both square and kagome lattices. We find that it
is possible to differentiate quantum phases by the statistics of permutations cycles. Indeed, features in the
permutation cycles statistics can be used to uniquely identify certain insulating phases and are consistent with
local resonances of occupation numbers in the ground-state expansion of the phase. We also confirm that suitable
quantities derived from the probability distribution of the length of permutation cycles can be used to detect
superfluid to insulator phase transitions.
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I. INTRODUCTION

In 1953 Feynman proposed to use permutation cycles to
study statistical properties of superfluid 4He [1]. This idea
is based on the path-integral representation of the partition
function [2] and, while the original application was in con-
tinuous systems, its validity extends to lattice systems as well.
Several works looked at properties of permutation cycles to
study superfluidity in continuous systems such as Bose gases
[3] and dipolar bosons [4,5], 4He [6–9], parahydrogen [10],
and lattice systems described by Bose-Hubbard-type models
[11,12]. Moreover, new Monte Carlo algorithms which use
sampling of particle permutations have been developed for
continuous [7–9] and lattice systems [12,13].

To date, the main application of permutation cycles has
been the study and detection of superfluidity or lack thereof
(see, e.g., Refs. [4,9,11]). In this work, we use this well-
established tool and focus our attention on properties of
permutation cycles in insulating phases of lattice bosons. We
consider several Bose-Hubbard models for hardcore bosons
on both square and kagome lattices capable of stabilizing
superfluid and a variety of insulating phases. Our main result
is that the statistical distribution of the length of permutation
cycles in imaginary time can be used to differentiate among
different insulating phases. We also confirm that the superfluid
to insulator phase transition can be probed by considering
suitable quantities related to the statistical distribution of
permutation cycles.

This manuscript is organized as follows: In Sec. II, we
introduce models and methods used in this work and review
the concepts of permutation cycles, and in Sec. III, we present
quantum Monte Carlo results and show that the statistics of
permutation cycles of worldlines configurations can be used
to differentiate among checkerboard (CB) solid, stripe (STR)
solid, Z2 topologically ordered phases at 1/3 and 1/2 filling,
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valence bond solids (VBS) at 1/3 and 2/3 filling [14], and
superfluid (SF) phase. In Sec. III B, we confirm that suitable
quantities derived from the probability distribution of the
length of permutation cycles can be used to detect superfluid
to insulator phase transitions. We conclude in Sec. IV.

II. MODEL AND METHODS

We consider the two-dimensional hardcore Bose-Hubbard
model:

Ĥ = −t
∑
〈i j〉

a†
i a j + H0, (1)

where H0 is the diagonal part of the Hamiltonian in the
Fock basis of spatial modes, 〈i j〉 refers to sum over nearest-
neighboring sites, and t is the hopping amplitude. In this work,
we consider square and kagome lattices and the following H0.
On the square lattice: (i) H0 = V

∑
〈i j〉 nin j at filling factor

1/2, which can stabilize a CB and a SF phase [15] and
(ii) H0 = V

∑
i j

nin j

r3
i j

, which, among others, stabilizes an STR

phase at filling factor 1/3 [16] (here ri j is the distance between
site i and j and we set a cut-off at ri j = 4 lattice spacings).
On the kagome lattice: (iii) H0 = V

∑
� nin j , where the sum

over � refers to the sum between sites on the same hexagon
of the kagome lattice, which, at filling factor 1/2 and 1/3 can
stabilize a SF and a Z2 topologically ordered phase [17,18];
and (iv) H0 = V

∑
〈i j〉 nin j , which at filling 1/3 and 2/3 can

stabilize a VBS [14]. Within this work, for all models, we
consider periodic boundary conditions in space.

In the following, we present results based on path-integral
quantum Monte Carlo simulations of the above models in
the limit of zero temperature kBT = 1/β. We have used the
worm algorithm [19]. Within the path-integral formulation of
the density matrix, the partition function of the system can be
expressed as

Zβ = Tr e−βH =
∑

α

〈α|e−βH |α〉 =
∫

Dχ ωχ, (2)
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FIG. 1. Example of a configuration representing the trajectories of 6 particles in space and imaginary time. (a) The configuration is plotted
in 3D, from state |α〉 at τ = 0, to the same state |α〉 at τ = β. (b) The same configuration is folded along the time direction according to
periodic boundary conditions. (c) The relationship between exchanges of particles and length of permutation cycles is sketched. Particles are
indistinguishable, different colors are meant to help identifying cycles and the associated worldlines in the configuration.

where |α〉 are Fock states in the site occupation number
representation, Dχ is the measure of path-integral, and ωχ

is the weight of a configuration χ defined as the collection
of particle trajectories (worldlines) in space and imaginary-
time (please refer to Ref. [12] for a complete review on
path-integral quantum Monte Carlo, and Appendix A for the
expression of ωχ ). In Fig. 1(a), we report a simple sketch of
a configuration of 6 particles in a 6 × 6 square lattice. Due to
periodic boundary conditions in time imposed by the trace (2),
each Monte Carlo configuration can be folded on itself along
the time direction so that one or more worldlines always form
closed loops, i.e., permutation cycles. By following worldlines
in time, a permutation cycle is completed once the starting
point is reached again [see Fig. 1(b)]. Permutation cycles are
related to exchanges of identical particles [1,12]. We sketch
these concepts in Fig. 1. The folding of the Monte Carlo
configuration sketched in Fig. 1(a) is shown in Fig. 1(b),
resulting in the formation of permutation cycles. In Fig. 1(c),
we highlight how the exchange of particles is related to the
length of permutation cycles. Colors are only meant to help
identify permutation cycles and corresponding worldlines in
the configuration. The length of a permutation cycle is always
an integer multiple of β equal to the number of world-
lines participating in it. For example, a 1β-long permutation
cycle (orange), corresponds to a worldline glued to itself,
while, a 2β-long permutation cycle (blue), 3β-long permu-
tation cycle (green) or longer, correspond to the situation
where two, three, or more worldlines are glued to each other
[see Fig. 1(c)].

Here we investigate the statistics of permutation cycles in
the ground-state phases of the models described above. More
precisely, we define the quantity:

�pχ = (n1, n2, . . . , nN ), (3)

where nl is the number of permutation cycles of length λ = lβ
appearing in a Monte Carlo configuration and N is the total

number of particles. We then compute the quantity

pλ := 〈( �pχ )λ〉 ∝
∫

Dχ

ωχ

Zβ

( �pχ )λ, (4)

where ( �pχ )λ is the component λ of quantity (3). pλ carries the
meaning of probability distribution of finding a permutation
cycle of length λ.

It is known in the literature that the moments of the tempo-
ral winding-number distribution can be used to measure mag-
netic susceptibility and compressibility [13,20,21]. Indeed,
from distribution pλ, we can define suitable probes capable
of detecting the superfluid to insulating phase transition: (i)
the standard deviation of the distribution pλ:

σλ =
√∑

λ

pλ(λ − 〈λ〉)2, (5)

where 〈λ〉 = ∑
λ pλλ represents the average of permutation

cycles’ length; (ii) the characteristic length λ0 of the exponen-
tial fit of the tail of the distribution pλ:

pλ ∝ e−λ/λ0 . (6)

Note that expression (5) is related to, though different than,
the usual definition of compressibility in terms of temporal
winding numbers (see, e.g., Refs. [13,20,21]).

III. NUMERICAL RESULTS

We perform Monte Carlo simulations in the insulating and
superfluid phases and measure �pχ for a number of configura-
tions of the order of 104 to 105. From these measurements, we
extract distribution pλ. As one can see in Figs. 2 and 3, pλ can
be used to differentiate ground states of phases stabilized in
the different models considered.

In Fig. 2, we report the distribution pλ of three quantum
phases stabilized on the square lattice: SF phase (blue), CB
solid (orange), and STR solid (green). In the SF phases,
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FIG. 2. Distribution pλ for phases stabilized on a square lattice:
superfluid (blue circles), checkerboard (orange squares), and stripe
solid (green diamonds). Data displayed are the result of Monte Carlo
simulations on a L = 10 square lattice at β/t = 18 for superfluid
(V/t = 0.5), checkerboard solid (V/t = 20), and stripe solid (V/t =
20). When not visible, errorbars are within symbol size.

independently on V/t , permutation cycles of all lengths (lim-
ited by the total number of particles–the longest cycle is
Nβ long) have a finite probability of appearing. This is not
surprising as we expect configurations in the SF phase to be
characterized by long permutation cycles [4,11]. Notice that
this holds for both SF phases, on square and kagome lattices
(see leftmost panels of Fig. 5 for comparison between the
two). It is worth of notice, that, due to the upper bound on
the length of permutation cycles imposed by the total number
of particles (which diverges in the thermodynamic limit), pλ

in the SF is dependent on the system-size. We have observed
that, in the SF phase, the tail of the distribution pλ becomes
flatter as the system-size increases (see Appendix B for a
discussion on the finite-size effects of the permutation cycle
distribution in the SF phase). This finite-size effect is not
observed in the insulating phases, for which the probability
for longer permutation cycles to appear in configurations is
negligible. Qualitatively, we observe no difference between
the CB and STR solids. Both distributions clearly decay ex-
ponentially (in the cycle length) to zero and have no features.

Distribution pλ for five quantum phases stabilized on the
kagome lattice are plotted in Fig. 3: superfluid (purple), Z2

topologically ordered insulator at filling n = 1/2 (orange) and
n = 1/3 (green), valence bond solid at filling n = 1/3 (blue),
and n = 2/3 (violet). As expected, all the insulating phases
exhibit negligible probability for longer permutation cycles
to appear in the configuration. We note that distribution pλ

for insulating phases on the kagome lattice is characterized
by a secondary peak whose position is different for different
ground states: λ/β = 5 for Z2 at n = 1/2, λ/β = 4 for Z2

at n = 1/3, and λ/β = 3 for VBS at n = 1/3. These features
are consistent with local resonances of occupation numbers
in the ground-state expansion of these phases [14,17]. We
observe no secondary peak for VBS at n = 2/3; however, due

1 10
/
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10-1

100

p

SF
Z2 n=1/2
Z2 n=1/3
VBS n=1/3
VBS n=2/3

FIG. 3. Distribution pλ for phases stabilized on a kagome lattice:
superfluid (purple circles), Z2 topologically ordered insulator at
filling n = 1/2 (orange squares), and n = 1/3 (green diamonds),
valence bond solid at filling n = 1/3 (blue triangles), and n = 2/3
(violet stars). Data displayed are the result of Monte Carlo sim-
ulations on a L = 6 unit cells of kagome lattice at β/t = 18 for
superfluid (V/t = 0.5), valence bond solid, and Z2 phases (V/t =
15). When not visible, errorbars are within symbol size.

to hole-particle symmetry between n = 1/3 and n = 2/3, we
expect hole permutation cycle distribution to feature the peak
at filling n = 2/3.

A. Heuristic explanation of the peaks

The interplay among interaction, hopping amplitude, and
filling factor seems to play a prominent role in determining the
probability of permutation cycles. By considering a first-order
perturbation theory approach within a truncated Hilbert space
of lowest and first excited states in interaction energy, we
provide a heuristic explanation of the peaks in pλ distribution.
We will address separately each of the phases for which a peak
appears.

1. VBS

In the VBS at n = 1/3, local resonances of three bosons
[14] inside a hexagon of the kagome lattice are protected
by a solid backbone structure of holes around the hexagon
itself [see Fig. 4(a), where each circle represents the resonant
process of the three bosons in the hexagon]. In this case,
it is easy to see that, within first-order perturbation theory,
a sequence of hopping events of the three bosons within
the hexagon [see arrows in Fig. 4(a)] are responsible for a
cyclic permutation of the three particles. The solid backbone
structure of holes makes exchanges of two particles (PC at
λ/β = 2) and four particles (PC at λ/β = 4) less energetically
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FIG. 4. (a) Valence bond solid, dashed purple circles represent the backbone solid of holes, while the larger blue circles the resonances
of three bosons. A typical hopping process leading to a permutation cycle of λ/β = 3 is shown by the blue arrows. (b) A typical minimal
interaction energy configuration of Z2 at 1/3 filling. Green arrows represent the zero-energy move within the effective model, while the orange
arrows indicate the simplest hopping sequence for a two-particle exchange. (c) A hopping sequence contributing to the loop at λ/β = 4 in the
Z2 at n = 1/3.

favorable, i.e., they are higher-order processes, than the three-
body resonances just described.

2. Z2 at n = 1/3

A sequence of hopping events within first-order pertur-
bation theory capable of exchanging two particles can be
constructed inside a triangle of the kagome lattice as sketched
in orange in Fig. 4(b). Compositions of this two-particle
processes can lead to exchanges of three or more particles
(i.e., longer PC). From a path-integral representation point
of view, the weight of such simple exchanges (this weight
contributes to the calculation of the weight of a path-integral
quantum Monte Carlo configuration which contains these
moves) scales as (see Appendix A):

ωχ ∝ (t e−V dτ )l , (7)

where l = 4(m − 1) is the number of first-excited states, at
energy 	E = +V above the minimum interaction energy
configuration, visited during the exchange, and m the number
of particles exchanged. For example, one has l = 4 for the
simplest exchange between two particles, l = 8 for three,
and so on. Other possible low-energy moves are the ones
described by the effective-model [22] on the “bow ties” of
the kagome lattice [see green arrows in Fig. 4(b)]. Within the

original model each bow-tie move visits a first excited state of
the interaction energy before returning to a configuration of
particles corresponding to a minimum of inetraction energy.
At filling n = 1/3, a well-determined sequence of this move
allows a cyclic permutation of four particles around a hexagon
of the kagome lattice [see Fig. 4(c)]. This move involves
l = 6 excited states (on the other hand, using this type of
moves, m = 2, 3, 5, 6 particle exchanges require to visit a
much larger number l of excited states). It is therefore clear
that the probability for m = 4 is smaller than for m = 2 but
larger than for m = 3 and m = 5. This leads to a peak in the
permutation cycle distribution at λ/β = 4.

3. Z2 at n = 1/2

In this case, it is easy to see that exchanges of two particles
within a triangle are the less costly, hence the most probable,
as they only involve l = 2 first-order higher-energy states in
interaction energy. It is also easy to see that PC of length
λ/β = 3, 4, 5 . . . can be generated by subsequently exchange
pair of particles with a monotonic (with the PC length) in-
crease of visited excited states. On the other hand, we have
observed that five-particle exchanges can also be achieved by
applying a sequence of bow-tie moves (as described by the
effective model). These exchanges are always accompanied
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FIG. 5. Distribution pλ (blue curves) and exponential fit (orange lines) for different values of V/t . Upper panel: pλ across the superfluid
to checkerboard transition [(V/t )c = 2] for system size L = 10, β = 18, and N = 50 particles. Lower panel: pλ across the superfluid to Z2

topologically ordered insulator transition [(V/t )c = 7.0665] for a system of L = 6 unit cells, β/t = 18, and N = 54 particles.

by two- and/or three-particle exchanges. This is not the case
for four- and six-particle exchnages which instead require a
much larger number of bow-tie moves, hence a much larger
number of higher interaction energy states visited. We can
therefore speculate that this may contribute to the peak at
λ/β = 5, i.e., more possibilities to realize the five-particle
exchanges are available compared to four-and six-particle
exchanges. Keeping track of all possibilities with n = 1/2 is
not simple task as the number of particles in the system is
larger than at filling n = 1/3. This is beyond the scope of this
work.

B. Studying superfluid to insulator phase transitions

Here we show that the standard deviation σλ of the
probability distribution pλ and the characteristic length λ0,
as defined in Sec. II, capture the insulating to SF phase
transition.

1. Superfluid to checkerboard phase transition

We perform simulations of the extended Bose-Hubbard
model in the square lattice with H0 = V

∑
〈i j〉 nin j for a

range of V/t , at fixed filling factor 1/2, β/t = 18 (36), and
system sizes L = 10 (20). In the upper row of Fig. 5, we
plot distribution pλ for various values of V/t . The SF-CB
transition occurs at (V/t )c = 2 [15]. We observe that, on
entering the CB phase, the tail of the distribution decays
exponentially to zero, while in the SF phase, the distri-
bution remains finite approaching λ = Nβ. By fitting the
exponential tail (orange lines) we extract the characteristic
length. In Fig. 6 we plot normalized λ0 (main plot) and
σλ (inset) as a function of V/t . Both σλ and λ0 are finite
in the SF phase and decay to zero in the CB phase. The

transition point is clearly marked by a significant drop in both
quantities.

2. Superfluid to Z2 topologically ordered insulator
phase transition

We perform simulations of the extended Bose-Hubbard
model with H0 = V

∑
� nin j , where the sum over � refers to

the sum between sites on the same hexagon of the kagome lat-
tice. We study the model for a range of V/t , at fixed filling fac-
tor 1/2, β/t = 18 (36), and system sizes L = 6 (12) unit cells.
In the lower row of Fig. 5, we plot distribution pλ for various
values of V/t . The SF to Z2 topologically ordered insulator
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FIG. 6. Normalized characteristic length λ0 (main panel) and
standard deviation σλ (inset) across the superfluid to checkerboard
phase transition [(V/t )c = 2] for L = 10 (blue circles) and L = 20
(orange diamonds) at inverse temperature β/t = 18 and β/t = 36,
respectively.
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FIG. 7. Normalized characteristic length λ0 (main panel) and
standard deviation σλ (inset) across the superfluid to Z2 topologically
ordered insulator transition [(V/t )c = 7.0665] for L = 6 unit cells
(blue circles) and L = 12 unit cells (orange diamonds) at inverse
temperature β/t = 18 and β/t = 36, respectively.

transition occurs at (V/t )c = 7.0665 [17]. We observe that, on
entering the Z2 topologically ordered insulator phase the tail
of the distribution decays exponentially to zero, and, for larger
interaction, nontrivial features in the form of a secondary
peak at λ = 5 appear in the distribution. In the SF phase,
on the other hand, the distribution remains finite approaching
λ = Nβ. Orange lines are fits to exponential tails from which
we extract the characteristic length λ0. Likewise in the CB-SF
transition, one can infer the transition point by plotting λ0

(main plot of Fig. 7) or σλ (inset of Fig. 7) as a function of
V/t . These plots are very similar to the ones in Fig. 6 and the
transition point is clearly marked by a significant drop in both
quantities.

IV. CONCLUSIONS

In this paper, we have studied the statistics of permuta-
tion cycles for quantum phases stabilized by several Bose-
Hubbard-type models on both square and kagome lattice.
We have shown that it is generally possible to differentiate
ground states in terms of the probability distribution of the
length of permutation cycles. Moreover, we have observed
a secondary peak in distributions of insulating phases stabi-
lized on the kagome lattice. These peaks are consistent with
local resonances of occupation numbers in the ground-state
expansion, and can be explained heuristically as a result
of the interplay between interaction, hopping and filling-
factor within a first-order perturbative approach. We have also
confirmed that suitable quantities characterizing distribution
pλ can be used to find the superfluid to insulating phase
transition.
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2) as a function of system size L. λ0 SF is computed by averaging the
values of λ0 within the superfluid phase [for V/t < (V/t )c].

APPENDIX A: WEIGHTS OF
PATH-INTEGRAL CONFIGURATIONS

According to the path-integral representation of the density
matrix [6,12,19,23], a configuration χ is defined as a specified
sequence of imaginary-time instants 0 < τ1 < · · · < τn < β

and corresponding Fock states {|α〉, |α1〉, . . . , |αn−1〉, |α〉}.
Within this picture, the weight ωχ of Eq. (2) are expressed
as

ωχ ∝ (−1)n〈α|H1(τ1)|α1〉 · · · 〈αn−1|H1(τn)|α〉, (A1)

FIG. 9. Permutation cycle distribution pλ at V/t = 1, half-filling
and β = 3L/2, for different system sizes, from top to bottom: L = 10
(blue), L = 20 (orange), L = 30 (green), and L = 40 (violet). Dotted
lines show the polynomial fits b1λ

b2 of pλ (b2 � −1). Dashed lines
represent the exponential fits λ1e−λ/λ0 of the tail of pλ.
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where H1(τ
) = −t
∑

i
 j

eE
τ
a†

i

a j
e

−E
+1τ
 and, more
specifically,

ωχ ∝ (−1)2n tn
n−1∏



√
ni
 + 1

√
n j
 e−E
+1dτ
 
+1 , (A2)

where E
+1 is the diagonal energy of state |α
+1〉, and dτ
 
+1

is imaginary-time distance between two consecutive states
|α
〉 and |α
+1〉 in the configuration. Note that for hardcore
bosons the terms

√
ni
 + 1

√
n j
 reduce to 1.

APPENDIX B: FINITE-SIZE EFFECTS OF pλ

IN THE SUPERFLUID PHASE

We note that in the entire superfluid region the character-
istic length λ0 for a given system size L stays constant as a

function of V/t . We also notice that, in the superfluid phase,
distribution pλ becomes flatter as the system-size increases.
This is consistent with an increasing value of λ0 as a function
of L, as shown in Fig. 8. In the inset of Fig. 8, we show the
divergence of λ0 with L. Another possible behavior describing
pλ is a power-law decay. In Fig. 9, we plot distribution pλ

along with the power-law fit b1xb2 (dashed line) and the
exponential fit λ1e−λ/λ0 (dotted line). As it can be noticed,
the power-law fit, featuring a characteristic exponent b2 �
−1, is capable of describing the pλ distribution in the SF
phase within our errorbars. Nonetheless, because within our
errorbar, the tail of the distribution can also be described by an
exponential decay, in analogy with what done in the insulating
phase, we use the exponential fit to extract the characteristic
length λ0. Such characteristic length can be used to pinpoint
the phase transition.
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