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Quasiparticle conductance in spin valve Josephson structures

Evan Moen* and Oriol T. Valls †

School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Received 25 November 2019; revised manuscript received 23 March 2020; accepted 13 May 2020;
published 29 May 2020)

We study the quasiparticle current in clean ferromagnetic Josephson structures of the form S1/F1/N/F2/S2,
where S, F , and N denote superconducting, ferromagnetic, or normal layers, respectively. Our focus is on
the structure of the conductance G as a function of bias V , emphasizing the subgap region. We use a fully
self-consistent numerical method, coupled to a transfer matrix procedure to extract G(V ). We choose material
parameters appropriate to experimentally realized Co Cu Nb structures. We find a resonance peak structure as a
function of the intermediate layer thickness and of the misalignment angle φ between F layers. To understand
this resonance structure, we develop an approximate analytic method. For experimentally relevant thicknesses,
the conductance has multiple subgap peaks, which oscillate in position between low and critical bias positions.
These oscillations occur in both φ and the layer thicknesses. We compare our results with those obtained for
the spin valve structures (F1/N/F2/S2) and discuss the implications of our results for the fabrication of spin
Josephson devices.
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I. INTRODUCTION

In the continuing search for improved and more efficient
computing and memory devices involving spin manipulation
[1,2], many new possibilities have opened up involving fer-
romagnetic (F ) superconducting (S) hybrid structures. These
devices allow for the manipulation of spin states while taking
advantage of the low power consumption in superconducting
devices. The fundamental phenomena are proximity effects
arising from Andreev [3] reflection together with, in hybrid
samples with a nontrivial magnetic structure, the conversion
of singlet Cooper pairs into odd-parity [4,5] triplets, whose
existence has been experimentally [6] demonstrated. Triplet
formation drastically changes the proximity effect since the
m = ±1 pairs are transmitted through the F electrodes over
a much larger length scale. Charge and spin transport are
coupled and can be reciprocally manipulated via spin transfer
torques (STT) or applied fields. In structures involving two
F layers, such as S1/F1/N/F2/S2 hybrids, the misalignement
angle φ between F layer magnetizations can be changed
experimentally [7]. Thus the triplet formation, and hence the
proximity effect, depends drastically on φ (such triplets are
precluded when φ = 0◦ or φ = π ) and the equilibrium and
transport phenomena involved can drastically depend on such
manipulations. Hence, hybrid structures involving either spin
valve S1/F1/N/F2 or Josephson S1/F1/N/F2/S2 configura-
tions continue to be the focus of intensive work [8–12].

There is growing interest in using Josephson junctions
in digital electronics, such as the rapid single flux quantum
(RSFQ) [13–15] device, where information is stored and

*Present address: Johns Hopkins University, Applied Physics Lab,
Laurel, Maryland 20723, USA; moenx359@umn.edu

†Also at Minnesota Supercomputer Institute, University of Min-
nesota, Minneapolis, Minnesota 55455, USA; otvalls@umn.edu

transmitted rapidly via the flux quanta. These devices could
be made to be more efficient if one were to trade its transistor
components for magnetic memory elements such as the spin
valve (F/N/F ) [16]. Most of the focus of recent work on
Josephson ferromagnetic junction devices has been on the
current-phase relationship [9,17–20]. The relative phase of
the superconductors, at zero current, is either 0◦ or π . For
the S/F/N Josephson structures, the equilibrium state can be
changed between the 0◦ and π state by varying the thickness
of the ferromagnetic layer [21] or the relative magnetization
angle [20]. In addition, the critical current is also oscillatory
with the layer thickness and exchange field strength [22,23].
However, there are other important aspects of the Josephson
structure that are independent of the phase. In this paper
and following up on previous work on the F/N/F/S valve
configuration [24–27], we focus on the quasiparticle current
in the Josephson structures.

The most prominent phenomenon in Josephson structures
is of course the Josephson current, the existence of super-
currents in the presence of a nonsuperconducting junction. In
ordinary Josephson junctions there are two Josephson effects:
the DC effect and the AC effect [28]. In the DC effect, an
applied DC current runs through the Josephson junction at
zero bias, up to a critical value, via the tunneling of the Cooper
pairs. The AC effect describes the AC current driven by an
applied bias with frequencies in the gigahertz (GHz) range
for an applied bias of order 10 μeV [29]. In general, the
Josephson current is not the only current that runs through a
Josephson junction, as there is also the contribution of normal
electron transport. In the two-fluid model, we can express the
net current in a Josephson structure using the resistively and
capacitively shunted Josephson (RCSJ) model [30] as

I = Ic sin (θ ) + Iqp + C
dV

dt
. (1)
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This equation describes a resistive and capacitive circuit el-
ement running in parallel with a pure Josephson junction of
tunneling Cooper pairs. This is a nonlinear equation and will
result in a hysteresis [31] in the current versus voltage (I-V )
curves if the time scale of the RC element τRC = RC is greater
than that of the Josephson junction τJ = �o/2π IcR, where R
is the normal resistance of the junction. The Iqp term is known
as the quasiparticle current and represents the contribution
due to normal electron transport. It can be characterized
via the conductance, G(V ) ≡ dIqp/dV . One can measure the
quasiparticle current by shunting the junction. This leaves
a hysteretic I-V characteristic at very low biases where the
“capture” current is small (and the minimum nonzero voltage
is small) in the DC Josephson effect for decreasing current. In
the case of a nontunnel junction, such as a clean or weak-link
junction, there may exist unique subgap conductance features.
A metallic weak link is an S/N/S structure in which the
Josephson junction is separated by a thin metal, sometimes
the same material as the superconductor. For example, a
point contact may be formed with one superconductor in
contact with a superconducting substrate. Another example
is the microbridge, where a thin bridge is etched between
two superconducting “banks” [31]. Although continuously
connected, the intermediate region in each case is considered
a normal metal constriction. This is because the constriction
is smaller than the coherence length (� � ξ ◦

0 ) which destroys
superconductivity within the region. These constrictions are
therefore studied in the dirty limit [32]. In the clean limit the-
ory, the transport properties are not affected by a constriction
or by impurity scattering [31].

Here we wish to study the quasiparticle current in the clean
limit for S1/F1/N/F2/S2 structures using a self-consistent
method which we present below. For such structures, the stan-
dard DC Josephson current has a more complicated form than
the simple sin(θ ) structure of Eq. (1). Assuming a fixed phase
difference θ , the structure of that term has been previously
[20] studied. Here, however, we are particularly interested in
the subgap structure of the quasiparticle current, as described
by the conductance G(V ).

In 1969, L. J. Barnes discovered multiple conductance
peaks within the subgap bias region, using superconduct-
ing Nb point contacts [33]. In these Josephson structures,
the subgap region is considered to be any bias below 2	

(or 	1 + 	2 in the case of two different superconductors).
Barnes found conductance peaks for values of the bias of
approximately eV = 2	/n where n is an integer. This subgap
structure (SGS) has since been verified in other experiments
on metallic weak-link junctions [34–36]. In 1982, Blonder,
Tinkham, and Klapwijk (BTK) determined [37] how Andreev
reflections change the conductance features of an N/S het-
erostructure where in the subgap region (eV < 	 in this case)
the conductance may be twice that of the normal conduc-
tance. For nonzero interfacial scattering, this leads to peaks
in the conductance at the critical bias (eV = 	). This peak
represents the increase in energy needed for an electron in
the normal metal to transport into the superconductor just
above the superconducting energy gap, where the density of
states is the highest. For biases less than the gap potential,
the right-moving electron will instead Andreev reflect as a
left-moving hole. In 1983, Octavio, Blonder, Tinkham, and

Klapwijk (OBTK) described the phenomenon known as mul-
tiple Andreev reflection (MAR) [38]. In a superconducting
junction that is biased between the two superconductors, an
electron leaving the left superconductor will gain in energy
before impinging on the right superconductor. If the energy
is lower than the gap, it will reflect as a hole which then
gains energy before impinging on the left superconductor.
This process repeats itself until the original electron has
gained enough energy to escape the gap, making multiple
reflections in the process. There is thus a peak in con-
ductance when the number of reflections n times the bias
applied eV is equal to the energy gap 2	. OBTK went
on to describe the subgap structure in S/N/S junctions via
the MAR, although what they find are peaks in the resis-
tance for nonzero temperatures and/or nonzero scattering at
the S/N interfaces. One important distinction is the plane
wave assumptions of the clean limit theory as opposed to
diffusive theory describing the weak links. In Ref. [38], plane
waves were used to describe the reflection coefficients at the
N/S interfaces, but no interference of the reflected waves from
each interface was included. In general, the plane waves may
interfere upon multiple reflections which would diminish the
subgap structure. However, as with any junction, there are
quantum resonance effects due to the finite thickness of the
layers separating the superconductors. There are also [39] spin
effects in the MAR spectrum. In addition, OBTK assume a
non-self-consistent pair potential, and we have shown [26,27]
that a self-consistent pair potential is necessary to accurately
describe transport [24–27]. Other theoretical work on MAR
in weak link metallic junctions [40,41] has been in the dirty
limit [42–44]. We study these reflections and the resulting
interference and resonance phenomenon in our ballistic, self-
consistent theory for the ferromagnetic Josephson structure.

In previous work [26,27], we have studied the quasi-
particle transport in superconducting spin valve structures
(F1/N/F2/S). In these structures, the singlet Cooper pair cor-
relations are short-ranged and oscillatory within the ferromag-
net [5,45]. The presence of a second ferromagnet allows for
the formation of induced same-spin triplet correlations of the
Cooper pairs which are long ranged within the ferromagnet
[46–52]. Due to this, and the oscillatory nature of the singlet
pair, we found that the subgap features of the system are
highly dependent on the magnetic misalignment angle φ and
the thickness of the F2 layer. In Ref. [26], we found that the
critical bias (CB), i.e., the bias value equal to the saturated
pair potential eV = 	, was spatially and angularly dependent.
In Ref. [27], we saw that the conductance features are spin-
split between contributions from incoming spin-up and spin-
down electrons where, in the subgap region, one spin-band
features a peak in conductance while the other spin-band has
a minimum. This lead to a peak conductance that is oscillatory
with V between zero and the critical bias. It was also shown
that these conductance features were highly dependent on the
interfacial scattering. In fact, nonzero scattering is paramount
to the formation of conductance peaks. These dependencies
also apply to the S1/F1/N/F2/S2 system, and we will study the
thickness and angular dependence in the results of this work.

In Sec. II, we review our methods, which are the same as
those used in Refs. [26,27], to study the S1/F1/N/F2/S2 spin
valve Josephson structure. In that section, we also review our
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FIG. 1. Sketch of the S1/F1/N/F2/S2 heterostructure. The z axis is taken along the magnetization of the outer magnetic layer F1, while that
in F2 it is rotated in the x-z plane by an angle φ. The y axis is normal to the layers. This sketch is not to scale.

analytic approximation of the system to determine the rela-
tionship of the electron-hole resonance in N/F/S and S/F/S
multilayers with interfacial scattering due to a normal metal
contact. In Sec. III, we present our results, starting with our
approximate analytic calculations on the simple N/F/S and
S/F/S models, before moving on to the fully self-consistent,
numerical calculations of the S1/F1/N/F2/S2 heterostructure.
In all our calculations, we determine the thickness depen-
dence of the F (or F2) layer in relation to the resonance
effects determined in Sec. II C. In addition, we determine the
angular dependence for our numerical calculation. We find
that the angular dependence is different from that found in
the F1/N/F2/S systems previously studied. We present our
results for two sets of interfacial scattering parameters: clean
interfaces and imperfect N/F interfaces. We also consider
nonzero scattering due to a normal metal contact. Finally, we
summarize our results in Sec. IV.

II. METHODS

A. Self-consistent calculation of the pair potential

The methods in this section are very close to those used in
the Refs. [20,24,26,27] (and references therein) for the calcu-
lation of the pair potential, and those used in Refs. [24,26,27]
for calculating the conductance. The primary difference is the
inclusion of the second superconducting layer. The geometry
we consider is depicted in Fig. 1. The layers are assumed to be
infinite in the transverse direction (x-z plane) and the quasipar-
ticle current is along the y axis. The eigenvalue equation for
the S1/F1/N/F2/S2 multilayer, in the quasi-one-dimensional
geometry considered here is⎛
⎜⎝

H0 − hz −hx 0 	

−hx H0 + hz 	 0
0 	∗ −(H0 − hz ) −hx

	∗ 0 −hx −(H0 + hz )

⎞
⎟⎠

⎛
⎜⎝

un↑
un↓
vn↑
vn↓

⎞
⎟⎠

= εn

⎛
⎜⎝

un↑
un↓
vn↑
vn↓

⎞
⎟⎠, (2)

where H0 = −(1/2m)(d2/dy2) + ε⊥ − EF (y) + U (y) is the
usual single particle Hamiltonian with interfacial scattering
U (y) = ∑

i Hiδ(y − yi ), where Hi is the barrier strength at the
ith interface located at yi. Also, ε⊥ is the transverse kinetic
energy, h is the exchange field within the ferromagnetic layers,

and 	 is the pair potential within the superconducting layers.
Each element in the matrix equation is implicitly a function
of the position (y) within the multilayer. The form of the
Hamiltonian is the same as was given in previous work
[20,24,26,27] and, because of the presence of two supercon-
ductors we, must keep in mind that [20] the pair potential
is not necessarily real: there may exist a phase difference
between the two S layers, and we have therefore introduced
the complex conjugate of the pair potential 	∗. With a single
superconductor, there is only one phase associated with the
s-wave symmetry and thus the pair potential can be taken to
be real. Using our self-consistent method, as described in the
above references, we initialize the pair potential within each
layer to a selected starting phase difference, 	1(y) = 	◦

0 and
	2(y) = 	0eiθ where 	1 is the value of 	(y) for y values
within the S1 layer, and similarly for 	2. We assume here that
the two superconducting layers are made of the same material.
We then solve the eigenvalue Eq. (2) and then evaluate the
self-consistent equation,

	(y) = g(y)

2

∑
n

′
[un↑(y)v∗

n↓(y) + un↓(y)v∗
n↑(y)] tanh

(
εn

2T

)
(3)

where g(y) is zero except in the S layers and the sum is over all
eigenstates with energies less than ωD from the Fermi level.
We iteratively solve for 	(y) by cycling through Eqs. (2)
and (3) The phase of the complex pair potential will also
iterate using this method. For the equilibrium calculation (zero
current), there are always two local stabilities in the phase: 0◦
and π . For an initial guess where the phase difference is not
equal to 0◦ or π , the final self-consistent phase will always
converge to the value which minimizes the free energy. This
value is dependent on the thickness [21] and relative magneti-
zation angle [20] of the ferromagnets. In non self-consistent
calculations (such as our approximate analytic calculations
below), the 0◦ and π phases are degenerate, and thus we
leave the phase to be zero. In our numerical, self-consistent
results presented, the overall phase corresponding to the plot
displayed is that which minimizes the free energy, i.e. the
equilibrium phase. The self-consistent method is necessary
to preserve the fundamental property of charge conservation
[53–56], as explained in Ref. [26].

Using this method, it is possible to allow for two different
superconductors (	0,1 
= 	0,2) where the coherence length is
different for each S layer. We focus our attention here to the
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case in which the two superconductors are made of the same
material. This does not mean that the pair potential 	(y) will
be symmetric or have the same magnitude in each S layer,
as the proximity effect does not impact both superconductors
equally as we vary the F layer thicknesses. The same asym-
metry occurs if one varies the thickness of the individual S
layers.

B. Quasiparticle conductance

In the previous subsection, we reviewed the determination
of the equilibrium properties of the S/F/N/F/S system, in
particular the spatial dependence of the pair potential. Now
we explain our methods for calculating the conductance.
Basically, we use here the same BTK [37] method to calculate
the conductance as in previous work [26,27]. Hence, we will
not repeat any of the details here. In the BTK method, one
calculates the conductance from the reflection amplitudes of
the spin-dependent ordinary (bσ ) and Andreev (aσ ) reflection
amplitudes within the left-most layer. In order to simplify
our calculations, we introduce a thin normal metal contact,
denoted by “X ,” located to the left of the S1 layer (see
Fig. 1). This makes the ferromagnetic Josephson structure
effectively X/S1/F1/N/F2/S2. This contact layer is taken to be
thin enough to not affect the calculation of the pair potential
through the proximity effect. For this reason, it is not neces-
sary to include it in the equilibrium calculation above. This
contact layer does, however, make a possibly large impact on
the quasiparticle conductance in particular when it introduces
another interfacial barrier. We further explain our reasoning
for introducing this X contact below.

We determine the reflection amplitudes by writing the
incoming wave functions using these amplitudes and applying
the boundary conditions at the end layers and the continuity
conditions at the interfaces. If a spin-up incoming electron in
the left-most layer is traveling in the normal metal contact X ,
the incoming wave function is

�X,↑ ≡

⎛
⎜⎜⎝

eik+
N y + b↑,↑e−ik+

N y

b↓,↑e−ik+
N y

a↑,↑eik−
N y

a↓↑eik−
N y

⎞
⎟⎟⎠ (4)

and for a spin-down incoming electron,

�X,↓ ≡

⎛
⎜⎜⎝

b↑,↑e−ik+
N y

eik+
N y + b↓,↑e−ik+

N y

a↑,↑eik−
N y

a↓↑eik−
N y

⎞
⎟⎟⎠ (5)

where the second spin index of the reflection ampli-
tudes denotes the spin of the incoming particle and k±

N =
[EF ± ε − k2

⊥]1/2 is the normal metal wave number. The
continuity condition of the wave functions at each interface
can be represented by a matrix equation Mi,rxi = Mi+1,�xi+1

where Mi,r and Mi,� are the wave function coefficients of the
ith layer evaluated at the right and left interface respectively,
and x is the vector of the reflection/transmission amplitudes.
At the X layer, this equation becomes MX xX + cσ = MS1,�xS1,
where cσ is the vector of the incoming spin σ electron coeffi-
cients. The wave functions are described in Ref. [26] for the

ferromagnetic (F ) and superconducting (S) layers. The addi-
tion of a second superconducting layer is straightforward as
one uses the same self-consistent approach as for one S layer
(see Ref. [26]).

The conductance is then calculated via the BTK method, in
the low T limit, using (see, e.g., Eq. (10) of Ref. [27]):

G(ε) =
∑

σ

Pσ Gσ (ε)

=
∑

σ

Pσ

(
1 + k−

↑1

k+
σ1

|a↑,σ |2 + k−
↓1

k+
σ1

|a↓,σ |2

− k+
↑1

k+
σ1

|b↑,σ |2 − k+
↓1

k+
σ1

|b↓,σ |2
)

, (6)

where the index 1 refers to the leftmost layer. G is given in the
customary natural units of conductance (e2/h). The factors Pσ

take into account any possible different density of incoming
spin up and spin down states. The energy dependence of G(ε)
arises from the applied bias voltage V . We measure this bias in
terms of the dimensionless quantity E ≡ eV/	◦

0 where 	◦
0 is

the value of the order parameter in bulk S material. In general
one has for the wave vectors:

k±
σ1 = [(1 − ησ h1) ± ε − k2

⊥]1/2, (7)

where ησ ≡ 1(−1) for up (down) spins, and k⊥ is the wave
vector corresponding to energy ε⊥ and h1 the internal field of
the leftmost layer. All wave vectors are in units of kFS and
all energies in terms of EFS . The presence of the normal metal
contact X means that we can describe the left-most layer using
incoming electrons and holes, as opposed to the electron-like
and hole-like quasiparticles of the superconductor (see, e.g.,
Ref. [37]). Hence k±

σ1 are actually spin independent, and Pσ =
1/2. Although a description using incoming electron/hole-
like quasiparticle amplitudes has been used in studies on the
phase relationship in Josephson structures [57], this approach
is not well suited for determining the transport properties
within the subgap region as these amplitudes can not describe
excitations with a subgap energy—only energies above the
gap. To probe the subgap energies means describing incoming
Cooper pairs instead of the excitation amplitudes. With the
X layer we are able to describe the quasiparticle states for
the subgap in terms of the incoming electron/hole excitation
amplitudes. In addition, in the BTK method [see Eq. (6)], G is
described via the reflected electron and Andreev reflected hole
amplitudes. To describe the system using the electronlike and
holelike quasiparticle reflection coefficients would require an
entirely new formalism. Adding a normal metal contact is also
justified on the basis that experimental systems have contacts
from which measurements are made. In addition, we can study
the effects of the interfacial scattering due to imperfect contact
interfaces. The introduction of a scattering interface allows for
multiple Andreev reflections in both single superconductor
heterostructures and the Josephson structures, the results of
which are conductance peaks in the subgap region sometimes
known as the subgap structure (SGS).
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FIG. 2. Conductance (G) vs bias (E ) in the N ′/N/S structure
for varying DN . λn = π2

2 n�◦
0 are the resonance values at which a

new peak forms at the critical bias, moving the previous peaks into
the subgap region. We assume a single barrier at N ′/N interface
HB = 0.5. Analytic approximation.

C. Analytic approximation

We use also in this paper an analytic approximation. Its
purpose is to provide some physical intuition and a quan-
titative description of the finer details in the full numerical
S1/F1/N/F2/S2 results. To do this, we start with a simple
N/F/S model (see Figs. 2 and 3) and go on to a ferromagnetic
Josephson structure S1/F/S2 with normal metal contact X
(see Figs. 4 and 5). To make our calculation analytic, we need
to make many approximations: we assume a one-dimensional
(as opposed to quasi-one-dimensional) system with infinite
layer thicknesses at the left and right ends. Therefore the only
thickness dependencies come from the intermediate layers
F and S1. We must assume also a non-self-consistent pair
potential where 	1 = 	2 = 	◦

0 is a constant for both the
single S and Josephson structures. The calculation of the
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FIG. 3. Conductance (G) vs bias (E ) in the N/F/S structure for
varying DF . λ1 = (π 2/2)�0 ≈ 568 is the first harmonic resonance
and π/h ≈ 22. The figure is plotted for one full oscillation of the
thickness dependence. We assume a single barrier at N/F interface
HB = 0.5. Analytic approximation.
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FIG. 4. Conductance (G) vs bias (E ) in the S1/N/S2 structure
for DS1 = 180◦ varying DN . See Eq. (11) for thicknesses λn and
the relevant discussion. The “odd” peaks (see text) are shifted by
a constant in their resonance values. We assume a single barrier at
the X/S1 contact HB = 0.5. Analytic approximation.

conductance is then a simpler version of that in the numer-
ical calculation. The reflection amplitudes can be solved for
using xN =M−1

N MF,�M−1
F,rMSxSM−1

N cN,σ in the N/F/S case
and xX =M−1

X MS1,�M−1
S1,rMF,�M−1

F,rMS2xS2M−1
X cX,σ in the

S/F/S case with normal contact X . The matrices M are ob-
tained just as the M matrices below Eq. (5) from the continuity
conditions, of which now there is only at each interface. This
can be extended to the case of an intermediate normal metal N
instead of a ferromagnet simply by taking the exchange field
h to be zero.

The conductance is then calculated via the BTK method
and Eq. (6). The analytic solution involves inverting multi-
ple 8×8 matrices (which can be done simply using MATH-
EMATICA). However, the full solution is lengthy, excessively
inscrutable and can not be simplified easily. Despite having
an analytic solution, the form of the conductance is still
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FIG. 5. Conductance (G) vs bias (E ) in the S1/F/S2 structure
for DS1 = 180◦ and varying DF . We plot the conductance for one
full oscillation of the thickness periodicity 2π/h ≈ 43. We assume a
single barrier at the X/S1 contact HB = 0.5. Analytic approximation.
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complicated due to the sheer number of plane wave combina-
tions of theM coefficients that are present in each reflection
amplitude. Therefore we do an analysis similar to that in
Ref. [27] for the N/F/S system by considering some of the
possible relevant plane wave combinations to extract periodic
behavior. In that work, we found that the reflection amplitudes
have a periodicity of 2π/h (in dimensionless units) on the
thickness of the F layer. This lead to a periodicity of the
conductance peak position of π/h, with the subgap peak
conductance oscillating between the zero bias and critical bias
for increasing thickness of the F layer. However, there is
another plane wave combination we should consider which
describes the SGS for h = 0◦.

Below, and in the rest of the paper, we denote dimension-
less lengths by capital letters, e.g., DS ≡ kFSdS . Consider first
an N ′/N/S system (for example, a normal metal contact N ′
coupled to an N/S bilayer). If there is an interfacial scattering
barrier at the N ′/N interface, it is possible for the Andreev
reflected holes from the N/S interface to interfere with the
reflections at the N ′/N interface. We may look for reso-
nance effects in the N ′/N/S system by examining the plane
wave combination eik+

N DN e−ik−
N DN at the critical bias ε = 	◦

0.
The wave number in the normal metal is then

k±
N = [1 ± 	0]1/2 ≈ 1 ± 	0/2. (8)

The combination is in resonance when ei	0DN = e2π in, where
n is the integer of the harmonic resonance. Thus the resonance
in the amplitudes is expected to occur for

DN = 2π

	0
n = π2n�0, (9)

where the normalized pair potential 	◦
0 is related to [29,58]

the (dimensionless) coherence length �◦
0 by 	0 = 2/(π�0).

The conductance is proportional to the absolute square of
the amplitudes, thus the periodicity in the conductance peak
resonance occurring at the critical bias should be

λn = π2

2
n�0. (10)

In Sec. III A, we will discuss (see Fig. 2) the calculated
conductance for varying thicknesses DN = λn. We will see
that the λn periodicity describes the formation of new peaks
at the critical bias, shifting the previous n numbered peak into
the subgap. This resonance is the result of multiple Andreev
reflections, where an electron/hole is Andreev reflected off the
S layer and is again reflected at the N ′/N interface. The integer
n is the harmonic of this resonance effect. For h 
= 0◦, there is
an additional oscillatory behavior due to the spin-split effect
described in Ref. [27], which we discuss in Sec. III A as well
(see Fig. 3).

In the Josephson structure S/N/S, the additional S layer
leads to another layer thickness dependence on the conduc-
tance. Andreev reflected electrons and holes from the N/S2

interface may be Andreev reflected again at the S1/N inter-
face. If we again consider a normal metal contact X with
interfacial scattering at the X/S1 contact, the quasiparticles
which transmit through the S1 layer may also reflect at the
X/S1 contact. The net result is a complex resonance effect that
can be divided into two parts: resonance from reflections at the
X/S1 interface and from reflections at the S1/N boundary. We

do not have a simple argument for the exact resonance behav-
ior and use a phenomenological approach. We first assume a
resonance effect similar to Eq. (10). Then, we introduce a term
Q to take into account the actual computed dependence of the
resonance on DS . We find two harmonic resonance effects on
DN , labeled as the even and odd harmonics:

λn,even

�0
= π2

2
n, n = 0, 2, 4, . . . ,

λn,odd

�0
= π2

2
n − Q

(
DS1

�0

)
, n = 1, 3, 5, . . . , (11)

where we find that Q(DS1/�0) ≈ 1.2 ln (DS1/�0) + 1.94 ap-
proximates the resonance values. The even terms are due to
reflections at the S1/N interface and have the same form as
Eq. (10) while the odd terms are due to reflections at the X/S1

contact interface. The odd resonance values are reduced by a
term Q which depends only on the ratio DS1/�

◦
0.

Note however that we do not study here the limit where
DS1/�

◦
0 is very large. In that limit, the phenomenological for-

mula Eq. (11) makes no sense, leading to negative resonance
periodicities. In reality, the calculation does not lead to a peak
in the subgap conductance in the subgap region, but to a nearly
discontinuous behavior instead. This large DS1/�

◦
0 limit is not

very experimentally relevant [7] and perhaps it can be hoped
the methods of Ref. [38] apply. In our case, a new peak forms
at the critical bias for DN = λn, shifting lower order harmonic
peaks to lower bias, into the subgap as DN increases. These
peaks are equally separated between We study these peaks for
multiple harmonics in the h = 0◦ case and the h 
= 0◦ case in
Sec. III B, see the discussion below associated with Figs. 4
and 5.

Physically speaking, these resonance peaks are similar in
nature to the spin-split oscillations found in the supercon-
ductor spin valves systems studied in Ref. [27]. The wave
functions of the electrons/holes refelcting off the F/S are
combinations of plane waves with periodicities dependent
on their spin-up or spin-down alignment. Andreev reflection
is maximal when the opposite spin electron/hole pairs are
in phase at the interface and minimal when they are out
of phase. Similarly, the peak resonances is also related to
this phenomenon in a more simple way: it arises from the
interference of the reflections with itself, which is why they
occur when there are two scattering interfaces (one being
a superconductor). In the S/N/S system, the plane wave
electrons/holes undergo MAR, but are still oscillatory with
thickness due to the self-interference.

In this paper, will not consider the higher harmonics
(n � 1) when using our numerical method. This is for two
reasons: first, the peak positions are much more difficult
to predict as the saturated pair potential [or the “effective”
coherence length � = 2/(π	)] is not constant as one varies
layer thicknesses due to the proximity effect. Second, the n =
1 harmonic occurs for very large intermediate thicknesses:
about five times the coherence length of the superconductor.
The ballistic nanostructures we wish to study (those built by
experimentalists) typically have a total intermediate thickness
less than or on the same order as the coherence length. By
introducing ferromagnets we can probe the higher harmonic
peaks at lower intermediate thicknesses due to the oscillatory
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behavior of the peaks. We present analytic results in Sec. III B
and numerical ones in Sec. III C for the S1/F1/N/F2/S2 ferro-
magnetic Josephson structure.

III. RESULTS

In this section, we present our results on the conduc-
tance in the ferromagnetic Josephson structures (S/F/S and
S/F/N/F/S). As in previous work [26,27], we focus on the
forward conductance. Preliminarily to our numerical results,
we will consider a simplified model of the N/F/S structure,
which can be treated analytically, and work our way up to
the S/F/S structure. Although this model is quantitatively
inaccurate, it does help highlight the qualitative features of
the subgap conductance in a more intuitive manner. This
qualitative understanding is very useful when describing the
fully self-consistent numerical results of the S1/F1/N/F2/S2

structure. We include a normal metal contact X as discussed
in Sec. II B, in all our results on Josephson structures. In
our numerical results, we determine their dependence on the
thickness of the F2 layer as well as on φ, the misalignment an-
gle of the F layer magnetizations. The thickness dependence
will be described in relation to the analytic results.

Our results are parameterized by the layer thicknesses and
the coherence length of the superconductor. As mentioned
above, length scales are all normalized to kFS , the Fermi wave
vector of the superconductor. All energies are understood
to be normalized to EFS except the dimensionless bias E ,
which is is normalized to the bulk pair potential 	◦

0. The
conductance is in units of 2πe/h̄. The interfacial scattering
barriers HB are normalized by vF . In each figure below, we
take the scattering at the left-side contact interfaces (X/S,
N/F , and N ′/N) to the intermediate value, HB = 0.5. This
barrier enhances many of the subgap conductance features by
making the peaks sharper and we believe it better represents
a realistic experimental situation. In the numerical results,
we also consider ideal contact interfaces for comparison. In
the analytic results we assume no interfacial scattering at the
N/S and F/S interface, for simplicity, but in the numerical
calculations we consider both zero and nonzero interfacial
scattering at the intermediate F/N interfaces. We take the
normalized ferromagnetic exchange field to be h = 0.145, and
the dimensionless coherence length to be �0 = 115 for each
ferromagnetic and superconducting layer respectively. These
values have been found to be suitable to describe experimental
samples using cobalt and niobium [7].

A. N′/N/S and N/F/S analytic results

We start our discussion with the analytic results (see
Sec. II C) for N/F/S and N ′/N/S structures. In Fig. 2, we plot
the conductance of an N ′/N/S multilayer for N layer thick-
nesses such that DN = λn and a single barrier HB = 0.5 at the
N ′/N interface. This interfacial scattering is representative of
an imperfect metallic contact interface, but it is still far from
the tunneling limit. The left- and right-most layers (N ′ and
S) are infinite in thickness in the analytic approximation. The
thicknesses λn are the resonance values found in Eq. (10) and
represent the interference of the Andreev reflected electrons
and holes with those reflected at the N ′/N interface. The case

DN = 0◦ is equivalent to the N/S system studied by BTK. As
seen there, the effect of the barrier decreases the conductance
in the subgap region (and at the high bias limit) without
decreasing the conductance at the critical bias (CB) eV = 	0.
This leads to a sharp peak in the conductance. As the thickness
DN increases, the critical bias peak shifts into the subgap
region and a new peak is formed at the CB when DN reaches
a resonance value. Increasing DN further, other peaks form,
shifting the previous peaks further towards zero bias, for each
resonance value. We see that the peaks are evenly spaced for
each thickness plotted. Also, we see an additional oscillatory
behavior in the conductance just above the critical bias. This
oscillatory pattern decays at the same rate as in the N/S case
(DN = 0◦) towards the normal conductance. The frequency
of the oscillations is proportional to the harmonic n of the N
layer thickness resonance. The thicknesses of the intermediate
layer depicted in Fig. 2 are quite large, about five times the
coherence length of the superconductor for λ1 and ten times
for λ2. This makes the results less relevant to the experimental
nanoscale heterostructures that we have in mind, where the in-
termediate layer thicknesses are on the order of the coherence
length or less. However, this analytic calculation provides an
excellent illustration of the subgap peak structure. We will
see that this structure plays a prominent role in ferromagnetic
Josephson structures S/F/S.

In Ref. [27], we discussed the spin-split conductance for
the superconducting spin valve (F/N/F/S). There we also
used a similar analytic approximation for the N/F/S model,
although only for small thicknesses DF . We found that the
peak conductance oscillates between the critical bias and near
zero bias with increasing thickness. This is due to the spin-
split conductance: the conductance features differ for incom-
ing spin up and spin down electrons. From our analysis we
found the wavelength of the oscillations to be π/h. For more
a more detailed analysis of these spin-split oscillations, see
Figs. 4 and 5 of Ref. [27]. For these small thicknesses, there is
only one resonance peak, attributable to the n = 0◦ harmonic.
In Fig. 3, we plot the conductance for the N/F/S system,
but for DF values close to the λ1 resonance thickness. The
periodicity of the spin-split conductance peak is significantly
smaller (π/h ≈ 22) than the resonance thickness (λ1 ≈ 568
as mentioned above). We plot in Fig. 3 one full period of the
spin split oscillation. We see that the conductance oscillates
between two different two-peak states: one with the peaks
located at the CB and at lower bias, near the middle of
the subgap, and one with the peaks located from near zero
bias and right to the middle of the subgap. As the thickness
increases, the set of two peaks oscillates between low biases
and the critical bias, as is the case [27] for small F thick-
nesses. Between these states, each peak splits into two, which
corresponds to the subgap peaks found in the small DF case,
and features a cusp peak near the CB. These subgap peaks
are a split of the two resonance peaks for the first (n = 1)
harmonic. Because this oscillatory behavior effectively shifts
all resonance peaks further into the subgap, it is possible to
have multiple subgap peaks for thicknesses less than the first
harmonic resonance thickness as the higher order resonance
peak will shift from the CB into the subgap region. However,
the thickness must still be much larger than the coherence
length to see this effect in N/F/S systems.
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B. S/N/S and S/F/S analytic results

We now turn our attention to analytic results for S1/N/S2

and S1/F/S2 Josephson structures. In Fig. 4, we plot the
conductance for the S1/N/S2 structure with DS1 = 180◦ and
resonance values of the N layer thickness [Eq. (11)]. The
interfacial scattering at the X/S1 contact is HB = 0.5. As
discussed in Sec. II C, the Josephson structure has two sets
of resonance values on DN : the “even” and “odd” resonances.
The even resonances are the same as for the N ′/N/S case,
but the odd resonances have an extra term Q(DS1/�0) [see
Eq. (11)] that decreases the resonance thickness for the odd
n harmonics (from λ1 ≈ 568 to 282). This split in resonances
is due to the difference in the reflections at the S1/N and the
X/S1 interfaces. The exact form of the additional term was not
determined, but from analyzing results such as those shown in
Fig. 4 we were able to estimate the value of Q as in Eq. (11).
We plot a range of thicknesses which include the first two odd
resonances (n = 1, 3) as well as the n = 2 even resonance. As
DN increases, we see the same shift of the critical bias peaks
into the subgap region. However, due to the dual resonance
structures, these peaks are not evenly spaced. Furthermore, the
oscillations above the gap are not in phase and the frequency
is not directly proportional to the harmonic n for the odd
resonances.

In Fig. 5, we plot the conductance for the S1/F/S2 structure
in our analytic approximation. We have previously established
[27] that the conductance peak is oscillatory between low
biases and the CB as one varies the DF thickness in N/F/S
structures. In the previous section, we have shown that this
periodicity extends to all resonance peaks. We now do the
same analysis for the ferromagnetic Josephson structure. We
see an oscillatory behavior due to the spin-split conductance
that is similar to that in the N/F/S case, except that the total
periodicity is now 2π/h ≈ 43. In more complex structures
one expects this periodicity to interfere with other period-
icities present, leading to more complicated behavior. The
periodic behavior will not be the same in three dimensional
structures, including the quasi one-dimensional cases numer-
ically studied below. We have set the minimum thickness
to be DF = 85 which is less than the first n = 1 resonance
value (λ1,odd ≈ 282). This is for two reasons. First, this value
is the minimum total thickness of the intermediate layers
(between S1 and S2) in our numerical calculations on the
S1/F1/N/F2/S2 ferromagnetic Josephson structure. Second,
we wish to show how the oscillations of the resonance peaks
can shift a higher order harmonic peak into the subgap region,
allowing for multiple subgap peaks. Indeed, in Fig. 5, we see
a single conductance peak at DF = 85. As DF increases, it
splits into two subgap peaks (with one being very near the
CB). Then, the two peaks reform at DF = 85 + π/h into a
single subgap peak. Increasing DF further, this peak splits into
two subgap peaks with one being at very low biases. This is
quite different from what was found in the N/F/S structure.
Not only is the overall periodicity of the behavior doubled,
but here there may exist multiple, distinct subgap peaks
instead of a single peak and a cusp at the critical bias. This
occurs for realistic thicknesses of the intermediate layers, at
least in our analytic approximation. In the next section, we
analyze the fully self-consistent S1/F1/N/F2/S2 structure.

C. Self-consistent, numerical results for the S1/F1/N/F2/S2

conductance: F2 layer thickness dependence

Through our approximate analytic study, we have found
that there are two sources of resonance in the S/F/S Joseph-
son structure that give rise to conductance peaks in the
subgap region. Furthermore, these peaks are oscillatory with
increasing thickness of the F layer. We now discuss the
numerical results of the ferromagnetic Josephson structure
S1/F1/N/F2/S2. We include a thin normal metal contact X
which allows us to simplify our methods as explained in
Sec. II B, the structure being then X/1/F1/N/F2/S2. We will
use the analytic results of the previous subsections to guide us
in the analysis, while keeping in mind that there are important
differences: among them is that the numerical results are for
three dimensional systems with a more complicated structure.
Even more important, in the numerical calculations, the pair
potential within each superconductor is a function of position
within the multilayer, as determined by our self-consistent
method. Furthermore, in the numerical calculation all layers
are finite in width. We keep all layer thicknesses constant
except the F2 layer: DS1 = DS2 = 180◦, DF1 = 30◦, and DN =
40◦. The normal metal contact thickness is set to DX = 5. We
take again h = 0.145 and �0 = 115, for the reasons, related to
experiment [7], mentioned above. We will consider both zero
and nonzero interfacial scattering at the X/S1 contact, and we
compare the dependence of the conductance on the F/N and
F/S interfacial scattering.

Our results focus on the quasiparticle current, and do not
reflect the zero bias current due to the Josephson effect.
Therefore, in interpreting our results, it should be noted that
the ultra-low bias conductance may be inaccessible in experi-
ment, even with a hysteresis current from a shunted Josephson
circuit, due to the Josephson current.

In this section, we determine the dependence of the con-
ductance features on DF2. The range of DF2 values we con-
sider here is relatively restricted including only an experimen-
tally relevant region where one oscillation occurs. A more
extensive analysis is done in Ref. [27]. The magnetization of
the ferromagnetic layers are assumed to be parallel (φ = 0◦).
In Sec. III D we will consider the dependence of G on the
misalignment angle φ at fixed DF2. We consider several sets
of interfacial scattering strengths. The interfacial scattering
strengths HB,i are indexed from the far left X/S1 to the right
F2/S2 starting from zero (0 � i � 4) thus the X/S1 barrier
strength is HB,0, the F/N interfacial barrier strengths are HB,2

and HB,3, and the F/S barrier strengths are HB,1 and HB,4.
The barrier strengths are either zero or 0.5. This intermediate
value is a realistic one in experimental [7] situations. We do
not consider the situation with all transparent interfaces, i.e.
HB,i = 0◦, as this leads to minimal subgap structure and it
would be quite unrealistic experimentally. Nor do we consider
here the case where all interfaces have interfacial barriers:
this is because it becomes exceedingly prolix to scrutinize the
different barrier effects at play. Instead, we assume in each
case that the overall interfacial effects are dominated by one
set of material interfaces over the other.

In Fig. 6, we study the conductance dependence for a
transparent X/S1 interface (HB,0 = 0◦). It has two subfig-
ures: (a) with F/N interfacial scattering, HB,2 = HB,3 = 0.5,
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(a)

(b)

FIG. 6. Numerical results for the conductance (G) vs bias (E )
in the S1/F1/N/F2/S2 structure for varying DF2 and φ = 0◦ with
transparent X/S1 interface and other interfacial scattering values as
indicated. (a) Barrier at the F/N interfaces HB,0 = HB,1 = HB,4 = 0◦,
HB,2 = HB,3 = 0.5. (b) Barrier at the F/S interfaces HB,0 = HB,2 =
HB,3 = 0◦, HB,1 = HB,4 = 0.5.

and (b) with F/S interfacial scattering, HB,1 = HB,4 = 0.5.
Conversely, in Fig. 7, we consider the effect of interfacial
scattering at the X/S1 contact interface, HB,0 = 0.5, in three
subfigures (a) no additional barriers, (b) F/N interfacial scat-
tering, and (c) F/S interfacial scattering. Therefore these
two figures combined illustrate also the influence of the X
electrode, which should arise chiefly from the influence of
the additional barrier. In both of these figures we plot the
dimensionless conductance for φ = 0◦ and varying DF2. In
Fig. 6(a), we see in the subgap region a single peak structure,
where the peak of the conductance moves from low bias to
the critical bias over the range of DF2 shown. This single
peak structure is similar to that studied in Ref. [27] in which
a subgap peak was shown to oscillate in bias position with
the ferromagnetic layer thickness in F/N/F/S spin valve
structures which also had interfacial scattering at the F/N
interfaces. The periodicity of the oscillations was shown to
be π/h. When the peak is located between zero bias and

(a)

(b)

(c)

FIG. 7. Numerical results for the conductance (G) vs bias (E )
in the S1/F1/N/F2/S2 structure for varying DF2 and φ = 0◦. The
interfacial scattering at X/S contact HB,0 = 0.5 and the others are as
indicated in each panel. (a) Single barrier at the X/S1 contact HB,1 =
HB,2 = HB,3 = HB,4 = 0◦, HB,0 = 0.5. (b) Barrier at the X/S1

and F/N interfaces HB,1 = HB,4 = 0◦, HB,0 = HB,2 = HB,3 = 0.5.

(c) Barrier at the X/S1 and F/S interfaces HB,2 = HB,3 = 0◦, HB,0 =
HB,1 = HB,4 = 0.5.

the critical bias, there is a cusp feature in the critical bias
conductance. In Fig. 6(b), where we plot the conductance for
nonzero F/S scattering, we see a very different phenomenon:
there is now a subgap minimum as opposed to a subgap
peak. There is a marked peak at the critical bias. The subgap
minimum is also dependent on DF2. We see that the subgap
minimum goes from being near the critical bias at DF2 = 15 to
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being near zero bias at DF2 = 26. This thickness dependence
is different from the oscillatory peak structure in Fig. 6(a); the
periodicity of the minima is not π/h. This minimum, or dip
structure is not unprecedented. In Ref. [38], a subgap peak
structure is found in the resistance when considering nonzero
interfacial scattering at the S/N interfaces in S/N/S Josephson
junctions. This translates to dips in the conductance.

In Fig. 7, we plot the conductance with a nonzero barrier
at the X/S1 interface HB,0 = 0.5. Besides the comparison
with Fig. 6 as discussed above, these results should, more
importantly, be compared with the analytic results presented
in Sec. III B. Specifically, we see that despite the stark dif-
ferences between the assumptions in the analytic and the
numerical calculations, as pointed out at the beginning of
this subsection, these numerical results are still qualitatively
similar to the analytic ones. When DF2 changes in the range
discussed above, from DF2 = 15 to DF2 = 26, the behavior
of G with bias changes from a single peak near the CB
to a two-peak structure, one peak at low bias and one just
below the critical bias. As DF2 increases from 15, we see the
single peak shift into the subgap region until a second peak
forms at the CB, at around DF2 = 21. The thickness difference
between DF2 = 15 and DF2 = 26 is about π/2h, which is one
quarter of the total main oscillatory pattern. Looking at Fig. 5
where we vary DF with an X/S1 interface for comparison, we
see the same behavior going from a single peak to two distinct
peaks when DF is increased by π/2h. We conclude that this
means that the presence of the additional X/S1 interfacial
scattering layer doubles the periodicity. This behavior is due
to the reflections at the X/S1 interface which form a second
resonance effect as described in Sec. III B.

Turning now to the analysis of the barrier effects, by
comparing Figs. 7(a) and 7(b), we see the effect that the
F/N barriers have on the conductance. We observe that the
phase of the oscillatory spin-split behavior shifts slightly
and the conductance decreases. The subgap peak structure
is not enhanced by the barriers, but instead the conductance
is decreased at all peak values. The largest change occurs
when we shift focus to the F/S barriers in Fig. 7(c) where
the subgap structure becomes much more complicated: there
is no subgap peak, except at DF2 = 15 and DF2 = 21, but
there is a noticeable inflection point in the subgap at the other
thicknesses. We ascribe this to the combined effect of the peak
structure we see in Fig. 7(a) and the dip, or minima structure
we see in Fig. 6(b). The presence of the F/S barriers gives rise
to dips while the X/S1 barrier provides a peak resonance in
the MAR. These two effects do not share the same periodicity
with the thickness: interference phenomena complicate the
overall effect, as discussed above. From this we conclude
that the F/S barriers have the most impact on the subgap
structure. The X/S1 barrier is also important as it leads to
a resonance effect in the MAR which can lead to a second
conductance peak or a complex inflection structure within the
subgap, depending on what other barriers are in play.

D. Self-consistent, numerical S1/F1/N/F1/S1 conductance:
angular dependence

Much of the interest in the spin-valve Josephson structure
arises from its putative capability to store information in the

(a)

(b)

FIG. 8. Conductance (G) vs bias (E ) in the S1/F1/N/F2/S2 struc-
ture for DF2 = 15 and varying φ. (a) Barrier at the F/N interfaces
HB,0 = HB,1 = HB,4 = 0◦, HB,2 = HB,3 = 0.5. (b) Barrier at the F/S
interfaces HB,0 = HB,2 = HB,3 = 0◦, HB,1 = HB,4 = 0.5.

relative orientation of the magnetization in the F layers. The
angular dependence of the conductance constitutes a valve ef-
fect in the system. In the superconducting spin valve structure
(F/N/F/S) studied in Ref. [27], we found a large valve effect
in the subgap conductance for certain thicknesses of the F2

layer. We aim here to determine the angular dependence of the
S1/F1/N/F2/S2 structure and the viability of the valve effect
found. To do this, we analyze G for two of the thicknesses
plotted in Sec. III C, DF2 = 15 and DF2 = 26. We choose
these two thickness values because they are separated by a
value of π/2h ≈ 11, one quarter of the full periodicity with
HB,0 = 0.5 and half the full periodicity for HB,0 = 0◦. We will
then compare the angular dependence of φ with the spatial
dependence found in Figs. 6 and 7. For each thickness, we will
study the HB,0 = 0◦ case (Figs. 8 and 10) and the HB,0 = 0.5
case (Figs. 9 and 11). Then, within each figure we compare the
effects that the other interfacial barriers have on the angular
dependence of the conductance.
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(a)

(b)

(c)

FIG. 9. Numerical results for the conductance (G) vs bias (E ) in
the S1/F1/N/F2/S2 structure for DF2 = 15 and varying φ. Interfacial
barriers as indicated. (a) Single barrier at the X/S1 contact HB,1 =
HB,2 = HB,3 = HB,4 = 0◦, HB,0 = 0.5. (b) Barrier at the X/S1

and F/N interfaces HB,1 = HB,4 = 0◦, HB,0 = HB,2 = HB,3 = 0.5
(c) Barrier at the X/S1 and F/S interfaces HB,2 = HB,3 = 0◦, HB,0 =
HB,1 = HB,4 = 0.5.

In Figs. 8 and 9, we plot the conductance for DF2 = 15
and display its φ dependence. The φ = 0◦ results are the
same as those in Figs. 6 and 7, respectively. In Fig. 8(a),
we plot the conductance for HB,2 = HB,3 = 0.5. We see a
peak in the conductance at low bias for φ = 0◦ which then
transitions to a subgap peak at φ = 180◦. This is reminiscent
of the thickness dependence, where the single low bias peak
at DF2 = 15 transitions into a subgap peak at DF2 = 26 in

(a)

(b)

FIG. 10. Conductance (G) vs bias (E ) in the S1/F1/N/F2/S2

structure for DF2 = 26 and varying φ with a transparent X/S in-
terface. (a) Barrier at the F/N interfaces HB,0 = HB,1 = HB,4 =
0◦, HB,2 = HB,3 = 0.5. (b) Barrier at the F/S interfaces HB,0 =
HB,2 = HB,3 = 0◦, HB,1 = HB,4 = 0.5.

Fig. 6(a). This parallel could be coincidental, as oscillations in
different quantities may occur for a variety of reasons in these
systems It extends to the HB,1 = HB,4 = 0.5 case in Fig. 8(b).
At φ = 0◦ there is only a small dip in the conductance near
the critical bias. At φ = 180◦ the low bias conductance drops
to a minimum value, similar to the DF2 = 26 case in Fig. 6(b).
However, in addition to the dip structure, there appears to be a
small inflection near E = 0.4 which was not seen for φ = 0◦
in the HB,0 = 0◦ case. This feature is more similar to those
found in Fig. 7(c).

In Fig. 9(a), we see a single-peaked conductance at φ = 0◦.
At φ = 90◦ the single peak splits into a subgap peak and a
CB peak. Then, at φ = 180◦, the conductance has two subgap
peaks, one at low bias and one just below the critical bias.
This angular dependence is also qualitatively the same as the
thickness dependence going from DF2 = 15 to DF2 = 26 as
in Fig. 7. For more realistic interfacial scattering at the F/N
interfaces, such as in Fig. 9(b), we see the same qualitative
features in the angular dependence. However, unlike in the
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(a)

(b)

(c)

FIG. 11. Numerical results for the conductance (G) vs. Bias
(E ) in the S1/F1/N/F2/S2 structure for DF2 = 26 and varying φ.
Interfacial scattering at X/S1 contact HB,0 = 0.5. (a) Single barrier at
the X/S1 contact HB,1 = HB,2 = HB,3 = HB,4 = 0◦, HB,0 = 0.5. (b)
Barrier at the X/S1 and F/N interfaces HB,1 = HB,4 = 0◦, HB,0 =
HB,2 = HB,3 = 0.5. (c) Barrier at the X/S1 and F/S interfaces HB,2 =
HB,3 = 0◦, HB,0 = HB,1 = HB,4 = 0.5.

superconducting spin valve case, the introduction of these
barriers does not enhance the valve effect. The peaks decrease
in value with increased F/N barrier. If we consider the F/S
barriers instead, such as in Fig. 9(c), we see a very different
angular dependence from that of the other two subfigures. It
maintains similarities with the DF2 dependence, where we
see a complex angular dependence with both a peak and
dip structure. However at φ = 180◦, the inflection point now

forms a small peak which is substantially lower than the
critical bias conductance, while maintaining a minimum near
zero bias.

In general, what we can conclude is that the angular depen-
dence between φ = 0◦ and φ = 180◦ is quantitatively similar
to the thickness dependence going from DF2 = 15 to DF2 =
26 for the parallel configuration. This is a striking result: in
the superconducting spin valve [27] the angular dependence
constitutes a uniformly increasing or decreasing conductance
peak going from a parallel to antiparallel configuration with
the position of the peak being dependent on DF2 only. In the
ferromagnetic Josephson structure, the angular dependence
does not affect the height of the peaks, but instead the position
of the peaks just as with the DF2 dependence. This allows for
an extremely large valve effect for almost any bias value, as
seen in Fig. 9(a) where we see a difference in conductance
on the order of the quantum of conductance between 0◦ and
180◦ at low biases, and 0◦ and 90◦ near the CB. Just as
with the thickness dependence, the F/S barriers have the
greatest impact on the angular dependence of the system.
The X/S1 barrier allows for a more complex subgap structure
with multiple peaks which oscillate and combine, which is
reflected in the angular dependence.

In Figs. 10 and 11, we show the angular dependence for
DF2 = 26. In the HB,0 = 0◦ case in Fig. 10 we see that the an-
gular dependence closely resembles the angular dependence
in Fig. 8 for supplementary angles: that is, the conductance for
φ = 0◦ and DF2 = 15 is similar to the conductance for φ =
180◦ and DF2 = 26 and vice versa. This corresponds to the
π/h periodicity, where the thickness difference between 15
and 26 represents half the period in the thickness dependence.
Between the parallel (φ = 0◦) and antiparallel (φ = 180◦)
configuration, the phase advances by π . Figures 11 and 9
differ only on the value of DF2 and their similarities and
differences deserve notice. The most obvious difference is
in the (c) panels, where there are barriers at both of the
S and F interfaces. In that case the behavior of G below
the CB is more reminiscent of the tunneling behavior at the
larger value of DF2 while the other cases are less affected
qualitatively. Given the persistent oscillatory behavior with
geometry of all quantities involved, one should not put too
much store on comparing just two thicknesses. One must also
recall that at the value of h studied, which is relatively small,
the proximity length for the singlet pairs is comparable to the
values of DF2 and DF1. Only at much larger value of these
thicknesses the difference between the proximity lengths for
singlet and odd triplet pairs would come into play and perhaps
produce a more marked difference between the behavior at
φ = 0◦ or φ = π and the other angles. At larger bias values
the difference between the φ = 0◦ and φ = π behaviors is
somewhat counterintuitive, as it is the opposite of that seen in
ordinary spin valves. This is due to the proximity effect of the
superconductor which allows for the “spin-split conductance,”
where the dominance of one spin-band conductance over
the other will periodically shift with the F layer thickness.
Figures 7–9 of Ref. [27] demonstrate this effect.

We see a similar pattern in the angular dependence in the
HB,0 = 0.5 cases as well. The conductance for φ = 0◦ is the
same as in Fig. 7 where at DF2 = 26 we see two peaks: one
at low bias and one within the subgap region. For φ = 90◦,
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we see the two peaks shift to the right, with the higher E
peak moving into the critical bias. Finally, at φ = 180◦, the
conductance has merged into a single peak just below the
critical bias. This is the same behavior as seen in Fig. 5,
except that the periodicity in the thickness is 2π/h. Indeed, the
angle φ advances the phase of the overall oscillatory spin-split
behavior by π/2 when going from a parallel to an antiparallel
configuration. In the F/N/F/S case, only for certain ranges
of thicknesses would the valve effect be noticeable (when the
peak was in the middle of the subgap region). We see now that
in the S/F/N/F/S structure, the peaks change in position with
φ. This means the valve effect is apparent for any thickness, as
any minimum found at φ = 0◦ will become a maximum when
the magnetization is rotated by a certain angle φ. We also
note that the X/S1 barrier doubles the effective periodicity in
the conductance subgap features, but the angular dependence
between parallel and antiparallel advances the phase of the
thickness by the equivalent π/h wavelength in both cases.

In Sec. IV, we summarize our results and how they may
apply to real devices and experiments.

IV. CONCLUSION

In this paper, we have analyzed the quasiparticle conduc-
tance S1/F1/N/F2/S2 ferromagnetic Josephson structure using
a numerical approach. Our analysis is in the ballistic limit,
and it includes interfacial scattering characterized by delta-
function barrier parameters. We have included a normal metal
contact X , with interfacial imperfections, which simplifies the
calculation of the conductance via the BTK method. In the
calculation of the pair amplitude, we use a self-consistent
method that allows both superconductors to have an inde-
pendent phase. We found that the total phase difference in
equilibrium is either 0◦ or π .

To better understand the numerical results, we have used an
analytic approximation for both the N ′/N/S and S/N/S sys-
tems. In this approximation, we assumed a one-dimensional
multilayer with a constant pair potential 	◦

0. We also assume
an imperfect normal metal contact (with interfacial scattering)
for the S/N/S system as well as interfacial scattering at the
N ′/N interface for the N ′/N/S system. We found that for
large thicknesses DN the conductance forms new peaks at the
critical bias which we call the resonance peaks. In the N ′/N/S
case, the peaks form at equally spaced intervals λn which
we call the resonance thicknesses, with harmonic number n.
For higher ordered harmonics (n � 1) there exists multiple
peaks which are also evenly spaced between the zero bias
and critical bias conductance. We determined in Sec. II C
that these resonances are due to the interference of Andreev
reflected particles at the N/S interface with those reflected
at the N ′/N interface with nonzero scattering barriers. At
higher harmonics (n � 1) the conductance is oscillatory just
above the critical bias and slowly decays at the same rate
for all harmonics. The frequencies of these oscillations are
approximately proportional to the harmonic number n. In the
S/N/S case, we found two resonance behaviors: “even” and
“odd.” The even harmonic resonances are the same as those in
the N ′/N/S case for even values of n, but the odd harmonics
have an additional term that depends on the ratio of DS1/�

◦
0

[see Eq. (11)]. This term reduces the resonant thickness of the

odd conductance peaks. The oscillatory conductance above
the gap is also shifted by this S1 thickness dependence in the
odd harmonic thicknesses.

We then applied our analytic approximation to the ferro-
magnetic N/F/S and S/F/S systems. In Ref. [27], we studied
the spin-split conductance of the N/F/S system, where the
conductance peak oscillates between the critical bias and
near zero bias for varying thicknesses of the F layer over a
wavelength of π/h. We did so for only small thicknesses of
DF , just above the n = 0◦ harmonic. In this paper, we studied
the same effects on the n = 1 harmonic, where there are two
conductance peaks. Both peaks oscillate in position together
between the subgap region and the zero bias conductance for
the low bias peak, and the critical bias and subgap region for
the higher bias peak. Between those two thickness values,
each peak splits, resulting in multiple subgap peaks in the
conductance. This also applies to the S/F/S case. In our
analysis of the Josephson structure, we saw that for even
relatively small values of the F layer thickness (less than
the coherence length of the superconductor), the conductance
displays multiple subgap peaks. This is because the spin-split
oscillations can pull the higher order harmonic peaks into the
subgap region since the first harmonic thickness (n = 1) is
reduced by the presence of the S1 layer.

Armed with this qualitative understanding of the F layer
thickness dependence of our S/F/S analytic calculation, we
were then ready to consider the results for the fully self-
consistent S1/F1/N/F2/S2 ferromagnetic Josephson structure.
We studied the F2 thickness dependence in the parallel config-
uration of the F layer magnetizations (φ = 0◦) for the case of
clean F/N interfaces and imperfect F/N interfaces. In some
cases, we assume a nonzero scattering barrier due to a normal
metal contact X , which we found to enhance the conductance
peaks by decreasing the average subgap conductance. In our
numerical calculations we found the same qualitative features
of the subgap conductance as found in the analytic S/F/S
system. We carefully considered the barrier dependence of the
conductance. We find that the inclusion of an X/S1 scattering
barrier HB,0 allows for multiple subgap peaks. For example, by
closely observing spin-split oscillation with DF2 in Fig. 7(a),
we could see how a single subgap peak at DF2 = 15 becomes
two subgap peaks at DF2 = 26, with one peak being near the
critical bias and one being at low bias. This is in contrast to
the HB,0 
= 0◦ case or the F1/N/F2/S superconducting spin
valve where, for similar thicknesses of the F1/N/F2 layers, we
only saw a single subgap conductance peak. We found that
the inclusion of F/N interfacial scattering does not greatly
affect the conductance peak structure, but the F/S barriers
have a major impact on the subgap structure by forming
dips in the subgap conductance. These dips do not have the
same periodicity as the peak structure, which can lead to
complex features in the subgap such as points of inflection.
The oscillations observed in the analytic results can to some
extent be physically interpreted with the help of the analytic
discussion and results. This helpful interpretation is limited
by the fact that the actual self-consistently discussed three-
dimensional system is different in many respects from the
one-dimensional system which we have analytically studied.

We concluded this work with a study on the angular
dependence of the ferromagnetic Josephson structure. We
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calculated the conductance for multiple angles φ of the rel-
ative orientation of the ferromagnetic layer magnetizations
(see Fig. 1) in the S1/F1/N/F2/S configuration. The angular
dependence is similar to that on DF2. By rotating φ between
the parallel and antiparallel configuration, the phase of the
spin-split conductance oscillations advances by π/2 in the
HB,0 
= 0◦ case and by π in the HB,0 = 0◦ case. This is, in both
cases, equivalent to increasing the thickness by π/h. This is
in stark contrast to the F1/N/F2/S structure, where the angular
dependence was found only in the subgap peak height and not
in the position of the peaks within the subgap. This allows
for a very large valve effect, on the order of the quantum of
conductance per channel, which may prove useful in future
spintronic devices.

Although we have learned about many new exciting
features unique to the ferromagnetic Josephson structures,
there are still many unanswered questions. For instance,
we were unable to analytically determine the odd reso-
nance thicknesses and had to settle for a phenomenological

approximation. In addition, we have not determined how the
S1/F1/N/F2/S2 angular dependence is related to the spin-split
conductance oscillations. Many more questions that could be
asked, such as the S and N layer thickness dependencies
and even the study of the 	1 
= 	2 Josephson structure. We
also assumed one imperfect contact, and have not studied the
effect of two imperfect contacts. We believe that this paper,
however, leaves a good foundation and highlights some of
the more unique aspects worthy of future study. We hope
that this work will be useful for future experiments into
ferromagnetic Josephson structures and their application in
spintronic devices.
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