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Drastic enhancement of the thermal Hall angle in a d-wave superconductor
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A drastic enhancement of the thermal Hall angle in d-wave superconductors was observed experimentally
in a cuprate superconductor and in CeCoIn5 at low temperatures and very weak magnetic field [Phys. Rev.
Lett. 86, 890 (2001); Phys. Rev. B 72, 214515 (2005)]. However, to the best of our knowledge, its microscopic
calculation has not been performed yet. To study this microscopically, we derive the thermal Hall coefficient in
extreme type-II superconductors with an isolated pinned vortex based on the augmented quasiclassical equations
of superconductivity with the Lorentz force. Using it, we can confirm that the quasiparticle relaxation time and
the thermal Hall angle are enhanced in d-wave superconductors without impurities of the resonant scattering
because quasiparticles around the gap nodes which become dominant near zero temperature are restricted to the
momentum in a specific orientation. This enhancement of the thermal Hall angle may also be observed in other
nodal superconductors with large magnetic-penetration depth.

DOI: 10.1103/PhysRevB.101.184518

I. INTRODUCTION

It was observed experimentally that the thermal conductiv-
ity and the thermal Hall angle are greatly enhanced in the su-
perconducting states of cuprates [1–8] and CeCoIn5 [9]. These
materials are regarded as d-wave superconductors, and their
thermal Hall conductivity is also consistent with the scaling
relation for a d-wave pairing based on the Bogoliubov–de
Gennes equation [10]. Hirschfeld et al. also calculated the
longitudinal thermal conductivity in a d-wave superconductor,
including the effect of antiferromagnetic spin fluctuations
within the random phase approximation (RPA), and studied
the large peak structure of the longitudinal thermal conduc-
tivity in YBa2Cu3O7−δ (YBCO) [11]. The enhancement of
the thermal Hall angle has been explained to originate from
the enhancement of the quasiparticle mean free path [7,9].
However, to the best of our knowledge, its microscopic cal-
culation has not been carried out yet. Therefore, the origin of
the enhancement of the quasiparticle mean free path needs to
be clarified using a fully microscopic treatment. The purpose
of this present paper is to develop a theoretical formalism for
investigating the thermal Hall conductivity microscopically
within the quasiclassical theory and to study this drastic
enhancement of the thermal Hall angle in the superconducting
states of YBCO and CeCoIn5.

Numerous theoretical studies have been carried out, such as
on the longitudinal component of the thermal conductivities
in both conventional (s-wave) [12–14] and unconventional
superconductors [11,13–22] and the spontaneous thermal Hall
conductivity due to the intrinsic [23–27] and extrinsic [28–31]
mechanisms in chiral superconductors. On the other hand,
several studies have been carried out on the thermal Hall
conductivity in d-wave superconductors, in terms of the cross
section of quasiparticle scattering from a single vortex [32],
due to the Berry phase acquired by a quasiparticle in the

vortex lattice state [33–36], based on the Kubo formula ap-
proach and taking into account the Doppler shift effect [37].
The thermal Hall conductivity due to the Lorentz force in
type-II superconductors is not fully understood, this may be
because the Lorentz force is missing from the quasiclassical
Eilenberger equations [38], which is a powerful tool for inves-
tigating inhomogeneous and nonequilibrium superconductors
microscopically [39]. More precisely, the component of the
magnetic Lorentz force balanced with the Hall electric field
and/or force induced by a transverse temperature gradient may
be missing from the standard Eilenberger equations, since
there is the component of the magnetic Lorentz force bal-
anced with the hydrodynamic force in the Ginzburg-Landau
equations [40].

Here we derive the thermal Hall coefficient in extreme
type-II superconductors with an isolated pinned vortex, based
on the augmented quasiclassical equations of superconduc-
tivity with the Lorentz force in the Keldysh formalism [41]
by incorporating a next-to-leading-order contribution in the
expansion of the Gor’kov equations [42,43] in terms of the
quasiclassical parameter δ ≡ 1/kFξ0(0), where kF and ξ0(0)
denote the Fermi wave number and the coherence length
at zero temperature, respectively. The calculations of linear
responses based on the augmented equations obtained from
this derivation [41] have not been performed yet, as far as
we know, except for the flux-flow Hall effect [44]. In ex-
treme type-II superconductors with an isolated pinned vortex,
the thermal conductivity is dominated by the contribution
from quasiparticles outside the core. Thus, we consider the
contribution of the Doppler shifted quasiparticles due to the
circulating supercurrent around the core (i.e., the Volovik
effect) [17,45,46] and neglect that of the Andreev-reflected
quasiparticles in the core [47,48]. The newly derived ex-
pression for the thermal conductivity is an extension of the
expression proposed by Graf et al. [13] and can also describe
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the thermal Hall effect in both fully gapped and nodal super-
conductors. Based on this formalism, we calculate the thermal
conductivity and the thermal Hall angle in d-wave super-
conductors and address the enhancement of limH→0 tan θH/H
at low temperatures in YBCO and CeCoIn5 measured by
Zhang et al. in Ref. [7] and by Kasahara et al. in Ref. [9],
where tan θH and H denote the thermal Hall angle and the
external magnetic field, respectively. It is also imperative to
consider impurity scattering close to the unitarity limit to
explain the experimental results on the longitudinal thermal
conductivity in heavy-fermion superconductors and Zn-doped
YBCO [11,15,16,49]. Thus, we also study the impurity effect
on the thermal Hall conductivity and the thermal Hall angle in
a d-wave superconductor, using the impurity self-energy by
t-matrix approximation [11,13,15,16,20,50].

This paper is organized as follows. In Sec. II, we present
the augmented quasiclassical equations of superconductivity
with the Lorentz force in the Keldysh formalism. In Sec. III,
we derive the thermal Hall coefficient in extreme type-II
superconductors with an isolated pinned vortex based on the
augmented quasiclassical equations of superconductivity with
the Lorentz force and the linear response theory. In Sec. IV,
we present numerical results for the thermal Hall effect in
d-wave superconductors. In Sec. V, we provide concluding
remarks.

II. AUGMENTED QUASICLASSICAL EQUATIONS

We consider type-II superconductors with pinned vortices
and neglect the pair-potential-gradient force [51–53] and the
pressure difference arising from the slope in the density of
states (DOS) [54], which only contribute to the vortex-core
charging in this case, since the charge in a pinned vortex
does not contribute to thermal conductivity. For simplicity,
we also restrict ourselves to the spin-singlet pairing without
spin paramagnetism. Then the quasiclassical equations of
superconductivity with the Lorentz force are given in the
Keldysh formalism by [41]

[ετ̌3 − �̌ − σ̌ , ǧ]◦ + ih̄vF · ∂ǧ

+ ih̄

2

[
evF · E

∂

∂ε
+ e(vF × B) · ∂

∂ pF

]
{τ̌3, ǧ} = 0̌, (1)

where e < 0 is the electron charge, E is the electric field,
B is the magnetic field, ε is the excitation energy, vF is the
Fermi velocity, and pF is the Fermi momentum. The Green’s
functions ǧ, the pair potential �̌, and the Born-type impurity
self-energy σ̌ can be written as

ǧ =
[

ĝR ĝK

0̂ ĝA

]
, �̌ =

[
�̂ 0̂
0̂ �̂

]
,

σ̌ = − ih̄

2τ
〈ǧ〉F =

[
σ̂ R σ̂ K

0̂ σ̂ A

]
, (2)

where τ is the relaxation time and 〈· · · 〉F denotes the Fermi
surface average with 〈1〉F = 1. This Born-type impurity self-
energy will later be rewritten to the impurity self-energy by
the t-matrix approximation [13,20,50]. The 2 × 2 retarded
and Keldysh Green’s functions and the 2 × 2 pair potential

can be written as

ĝR,A =
[

gR,A −i f R,A

i f̄ R,A −ḡR,A

]
, ĝK =

[
gK −i f K

−i f̄ K ḡK

]
,

�̂ =
[

0 −�φ

�∗φ∗ 0

]
, (3)

where the barred function in the Keldysh formalism is defined
generally by X̄ (ε, pF, r, t ) ≡ X ∗(−ε,−pF, r, t ), � = �(r, t )
denotes the amplitude of the energy gap, and φ = φ(pF) is the
basis function on the Fermi surface normalized as 〈|φ|2〉F = 1.
Matrix τ̌3 is given by

τ̌3 =
[
τ̂3 0̂
0̂ τ̂3

]
, τ̂3 =

[
1 0
0 −1

]
. (4)

The Green’s functions satisfy the following symmetry rela-
tions:

ĝA = −τ̂3ĝR†τ̂3, ĝK = τ̂3ĝK†τ̂3. (5)

We choose the gauge E = −∂A/∂t and B = ∇ × A with
� = 0, where A and � denote the vector and scalar potentials.
Notations [a, b]◦ and {a, b} are then given by [a, b]◦ ≡ a ◦ b −
b ◦ a and {a, b} ≡ ab + ba with

a ◦ b

≡ exp

[
ih̄

2

(
∂

∂ε

∂

∂t ′ − ∂

∂t

∂

∂ε′

)]
a(ε, t )b(ε′, t ′)

∣∣∣∣
ε′=ε,t ′=t

.

(6)

The gauge invariant derivative ∂ is defined by

∂ ≡
⎧⎨
⎩

∇ on gR,A,K, ḡR,A,K

∇ − i 2eA
h̄ on f R,A,K,�

∇ + i 2eA
h̄ on f̄ R,A,K, �̄

. (7)

The equation of the gap amplitude for the weak-coupling
limit is given by

� = g0

4i

∫ εc

−εc

〈 f Kφ∗〉Fdε, (8)

where εc and g0 denote the cutoff energy and the coupling con-
stant, respectively, defined by g0 ≡ −N (0)V (eff )

l with V (eff )
l

and N (0) denoting the constant effective potential and the
normal-state DOS per spin and unit volume at the Fermi level.
Using the Green’s function, we can also express the heat flux
density jQ as

jQ = −N (0)

2

∫ ∞

−∞
ε〈vFgK〉Fdε. (9)

Now we use the following relations:

ih̄vF · ∂ǧ = ih̄vF · ∇ǧ + [evF · Aτ̌3, ǧ], (10a)

[evF · Aτ̌3, ǧ] + ih̄

2
evF · E

∂

∂ε
{τ̌3, ǧ}

= [evF · Aτ̌3, ǧ]◦, (10b)
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to rewrite Eq. (1) as

[(ε + evF · A)τ̌3 − �̌ − σ̌ , ǧ]◦ + ih̄vF · ∇ǧ

+ ih̄

2
e(vF × B) · ∂

∂ pF
{τ̌3, ǧ} = 0̌. (11)

Introducing matrix ȟ as [39]

ȟ = �̌ + σ̌ − evF · Aτ̌3 =
[

ĥR ĥK

0̂ ĥA

]
, (12)

we obtain the equations for ĝR,A,K as

[ετ̂3 − ĥR,A, ĝR,A]◦ + ih̄vF · ∇ĝR,A

+ ih̄

2
e(vF × B) · ∂

∂ pF
{τ̂3, ĝR,A} = 0̂, (13a)

[ετ̂3, ĝK]◦ − ĥR ◦ ĝK − ĥK ◦ ĝA + ĝR ◦ ĥK + ĝK ◦ ĥA

+ ih̄vF · ∇ĝK + ih̄

2
e(vF × B) · ∂

∂ pF
{τ̂3, ĝK} = 0̂. (13b)

III. THERMAL HALL CONDUCTIVITY

We consider the linear response X̂ = X̂ le + δX̂ to the ther-
mal gradient ∇T , where X̂ le is the solution in local equi-
librium and δX̂ is a term of the first order in ∇T [13,20].
We also neglect the electric field E, since the quasiparticle
current and supercurrent counterflow in order to keep the
charge current zero [55,56], except the circulating super-
current of a vortex, and the charge in a pinned vortex due
to the Lorentz force [57] does not contribute to thermal
conductivity. Assuming extreme type-II superconductors as
λ0 
 ξ0(0) with an isolated pinned vortex, we furthermore
use the Doppler shift method for the quasiclassical equations
[47], where λ0 denotes magnetic penetration depth defined
by λ0 ≡ [μ0N (0)e2〈v2

F〉F]−1/2, the coherence length ξ0(0) is
defined by ξ0(0) ≡ h̄〈vF〉F/�0(0), �0(0) denotes the gap
amplitude in clean superconductors at zero temperature and
zero magnetic field, and μ0 is the vacuum permeability. Then
we can neglect the spatial derivatives of the phase-transformed
Green’s functions, the vector potential terms. Hereafter, we
remove the superscript “le” from these equations.

A. Local equilibrium

Equations for the retarded and advanced Green’s functions
ĝR,A in local equilibrium are written as

[ετ̂3 − �̂ − σ̂ R,A, ĝR,A] + ih̄vF · ∇ĝR,A

+ ih̄

2
e(vF × B) · ∂

∂ pF
{τ̂3, ĝR,A} = 0̂, (14)

where notation [a, b] is defined by [a, b] ≡ ab − ba. We
first expand formally in the quasiclassical parameter δ ≡
h̄/〈pF〉Fξ0(0) as gR,A = gR,A

0 + gR,A
1 + · · · , f R,A = f R,A

0 +
f R,A
1 + · · · , and � = �0 + �1 + · · · [58]. We next take the

direction of the magnetic field as B = Bẑ and transform
f R,A
0 and �0 as f R,A

0 = f̃ R,A
0 e−iϕ and �0 = �̃0e−iϕ with

the azimuth angle ϕ in the cylindrical coordinate system

(ρ cos ϕ, ρ sin ϕ, z). Neglecting the spatial dependence of �̃0

and the imaginary part in gR,A
0 and f̃ R,A

0 , then we obtain

gR,A
0 = −iεR,A

√
�R,A2 − εR,A2

= ḡR,A
0 , (15a)

f̃ R,A
0 = �R,A

√
�R,A2 − εR,A2

= ¯̃f R,A
0 . (15b)

εR,A and �R,A are defined by

εR ≡ ε̃ + iη + ih̄

2τ

〈
gR

0

〉
F, (16a)

εA ≡ ε̃ − iη + ih̄

2τ

〈
gA

0

〉
F, (16b)

�R,A ≡ |�̃0|φ + h̄

2τ

〈
f̃ R,A
0

〉
F, (16c)

where η denotes an infinitesimal positive constant and ε̃ is
defined by

ε̃ ≡ ε − mvF · vs, (17)

with m denoting the electron mass and vs denoting the super-
fluid velocity defined by

vs ≡ − h̄

2m
∇ϕ. (18)

Solving the equations for gR,A
1 and f R,A

1 in the almost same
manner as Ref. [58], we also obtain

vF · ∇gR,A
1 = −e(vF × B) · ∂gR,A

0

∂ pF
, (19a)

gR,A
1 = −ḡR,A

1 , (19b)

f R,A
1 = 0. (19c)

B. First-order response

Equations for the retarded and advanced Green’s functions
δĝR,A in the first-order response are written as

[ετ̂3 − ĥR,A, δĝR,A]◦ − [δĥR,A, ĝR,A]◦ + ih̄vF · ∇δĝR,A

+ ih̄

2
e(vF × B) · ∂

∂ pF
{τ̂3, δĝR,A}

+ ih̄

2
e(vF × δB) · ∂

∂ pF
{τ̂3, ĝR,A} = 0̂, (20)

and equations for the Keldysh Green’s functions δĝK in the
first-order response are given by

[ετ̂3, δĝK]◦ + ih̄vF · ∇ĝK + ih̄vF · ∇δĝK

− ĥR ◦ δĝK − δĥR ◦ ĝK − ĥK ◦ δĝA − δĥK ◦ ĝA

+ δĝR ◦ ĥK + ĝR ◦ δĥK + δĝK ◦ ĥA + ĝK ◦ δĥA

+ ih̄

2
e(vF × B) · ∂

∂ pF
{τ̂3, δĝK}

+ ih̄

2
e(vF × δB) · ∂

∂ pF
{τ̂3, ĝK} = 0̂. (21)

Note that operator ∇ to ĝK and δĝK only affects temperature
in the distribution functions and the Green’s functions except
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the distribution functions, respectively [20]. Let us introduce
δĝa as [13,39]

δĝK = δĝR ◦ tanh
ε

2kBT
− tanh

ε

2kBT
◦ δĝA + δĝa, (22)

with

δĝa =
[

δga −iδ f a

−iδ f̄ a δḡa

]
. (23)

The Green’s functions δgR,A are used to calculate the su-
percurrent, and δga is related to the quasiparticle current.
Thus, we derive equation for δga to obtain the heat current.
Substituting Eq. (22) into Eq. (21), and using ĝK = (ĝR −
ĝA) tanh ε/2kBT and Eq. (20), the equation for δĝa can be
expressed as

[ετ̂3, δĝa]◦ + ih̄vF · ∇δĝa

− ĥR ◦ δĝa + δĝa ◦ ĥA + ĝR ◦ δĥa − δĥa ◦ ĝA

+ ih̄(ĝR − ĝA)vF · ∇ tanh
ε

2kBT

+ ih̄

2
e(vF × B) · ∂

∂ pF
{τ̂3, δĝa} = 0̂. (24)

We also neglect the time derivative terms and the self-energy
correction terms as 〈δga〉F and 〈δ f a〉F [13]. Then the equations
for δga and δ f a are obtained from the (1,1) and (1, 2) compo-
nents in Eq. (24) as

h̄vF · ∇δga + h̄(gR − gA)vF · ∇ tanh
ε

2kBT

+ h̄e(vF × B) · ∂δga

∂ pF
− �φδ f̄ a − �∗φ∗δ f a

+ h̄

2τ
〈gR − gA〉Fδga − h̄

2τ
〈 f R〉Fδ f̄ a − h̄

2τ
〈 f̄ A〉Fδ f a

= 0, (25a)

−2iεδ f a + h̄vF · ∇δ f a + h̄( f R − f A)vF · ∇ tanh
ε

2kBT

+�φδḡa − �φδga + h̄

2τ
〈gR + ḡA〉Fδ f a

+ h̄

2τ
〈 f R〉Fδḡa − h̄

2τ
〈 f A〉Fδga = 0. (25b)

We first calculate the zeroth-order quantity δga
0 + δḡa

0 in δ,
since the heat current [Eq. (9)] can be rewritten as

jQ = −N (0)

4

∫ ∞

−∞
ε〈vF(δga + δḡa )〉Fdε. (26)

Transforming the zeroth-order quantity δ f a
0 in δ as δ f a

0 =
δ f̃ a

0 e−iϕ , and neglecting the spatial derivatives of δga
0, the

equation for the zeroth-order quantity δga
0 in δ is obtained

from Eq. (25a) as

h̄
(
gR

0 − gA
0

)
vF · ∇ tanh

ε

2kBT
+ h̄

2τ

〈
gR

0 − gA
0

〉
Fδga

0

−
(

|�̃0|φ + h̄

2τ

〈
f̃ R
0

〉
F

)
δ ¯̃f a

0 −
(

|�̃0|φ∗ + h̄

2τ

〈 ¯̃f A
0

〉
F

)
δ f̃ a

0

= 0, (27a)

and we obtain δ f̃ a
0 from the normalization condition [13,39]

as

δ f̃ a
0 = − f̃ R

0 δḡa
0 + f̃ A

0 δga
0

gR
0 − ḡA

0

. (27b)

We can obtain the equation for δḡa
0 from the barred

Eq. (27a) and δ ¯̃f a
0 from the barred Eq. (27b). We solve the

equations for δga
0, δḡa

0, δ f̃ a
0 , and δ ¯̃f a

0 choosing φ = φ∗ and
using Eqs. (5) and (15). Then we obtain δga + δḡa as

δga
0 + δḡa

0

= −4RegR2
0(〈

RegR
0

〉
F/τ

)
RegR

0 + (
2|�̃0|φ/h̄ + 〈

Re f̃ R
0

〉
F/τ

)
Re f̃ R

0

× vF · ∇ tanh
ε

2kBT
. (28)

We next calculate the first-order quantity δga
1 + δḡa

1 in
δ. Transforming the first-order quantity δ f a

1 in δ as δ f a
1 =

δ f̃ a
1 e−iϕ , neglecting the spatial derivatives of δga

1 and δ f̃ a
1 , and

using Eq. (19c), the equations for the first-order quantities δga
1

and δ f a
1 in δ are obtained from Eq. (25) as

h̄
(
gR

1 − gA
1

)
vF · ∇ tanh

ε

2kBT
+ h̄e(vF × B) · ∂δga

0

∂ pF

−
(

|�̃0|φ + h̄

2τ

〈
f̃ R
0

〉
F

)
δ ¯̃f a

1 −
(

|�̃0|φ∗ + h̄

2τ

〈 ¯̃f A
0

〉
F

)
δ f̃ a

1

+ h̄

2τ

〈
gR

0 − gA
0

〉
Fδga

1 + h̄

2τ

〈
gR

1 − gA
1

〉
Fδga

0 = 0, (29a)

−2iε̃δ f̃ a
1 + h̄

2τ

〈
gR

1 + ḡA
1

〉
Fδ f̃ a

0 + h̄

2τ

〈
gR

0 + ḡA
0

〉
Fδ f̃ a

1

+
(

|�̃0|φ + h̄

2τ

〈
f̃ R
0

〉
F

)
δḡa

1 −
(

|�̃0|φ + h̄

2τ

〈
f̃ A
0

〉
F

)
δga

1

= 0. (29b)

We solve the equations for δga
1, δḡa

1, δ f̃ a
1 , and δ ¯̃f a

1 choosing
φ = φ∗ and using Eqs. (5), (15), and (19b). Then we also
obtain δga

1 + δḡa
1 as

δga
1 + δḡa

1 = −e(vF × B)
(−2ε̃/h̄ + 〈

ImgR
0

〉
F/τ

)
(−2ε̃/h̄ + 〈

ImgR
0

〉
F/τ

)(〈
RegR

0

〉
F/τ

) + (
2|�̃0|φ/h̄ + 〈

Re f̃ R
0

〉
F/τ

)(〈
Im f̃ R

0

〉
F/τ

) · ∂
(
δga

0 + δḡa
0

)
∂ pF

. (30)

C. Coefficient of thermal conductivity

We finally calculate the thermal conductivity in extreme type-II superconductors with an isolated pinned vortex. The thermal
conductivity κ is given by taking the spatial average of the local thermal conductivity κ loc(r) defined by jQ = −κ loc∇T . We
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thereby obtain the coefficient of thermal conductivity as

κ = N (0)

2kBT 2

∫ ∞

−∞
dε

[〈
vFRegR2

0 vF(〈
RegR

0

〉
F/τ

)
RegR

0 + (
2|�̃0|φ/h̄ + 〈

Re f̃ R
0

〉
F/τ

)
Re f̃ R

0

〉

−
〈

vFe(vF × B)
(−2ε̃/h̄ + 〈

ImgR
0

〉
F/τ

)
( − 2ε̃/h̄ + 〈

ImgR
0

〉
F/τ

)(〈
RegR

0

〉
F/τ

) + (
2|�̃0|φ/h̄ + 〈

Re f̃ R
0

〉
F/τ

)(〈
Im f̃ R

0

〉
F/τ

)
· ∂

∂ pF

RegR2
0 vF(〈

RegR
0

〉
F/τ

)
RegR

0 + (
2|�̃0|φ/h̄ + 〈

Re f̃ R
0

〉
F/τ )Re f̃ R

0

〉]
ε2sech2 ε

2kBT
, (31)

where 〈· · · 〉 denotes the Fermi surface and spatial average. The first line in Eq. (31) for B = 0 (i.e., vs = 0) is the same as
the longitudinal thermal conductivity proposed in Ref. [13], and the second and third lines are the newly derived thermal
Hall conductivity. Neglecting the Doppler shift effect as vs = 0, the expression for the thermal conductivity in d-wave
superconductors can be rewritten as the following simpler form:

κ = N (0)

2kBT 2

∫ ∞

−∞
dε

[〈
vFRegR2

0 vF(〈
RegR

0

〉
F/τ

)
RegR

0 + (2�0φ/h̄)Re f R
0

〉
F

−
〈

vFe(vF × B)〈
RegR

0

〉
F/τ

· ∂

∂ pF

RegR2
0 vF(〈

RegR
0

〉
F/τ

)
RegR

0 + (2�0φ/h̄)Re f R
0

〉
F

]
ε2sech2 ε

2kBT
. (32)

We can use the impurity self-energy by the t-matrix ap-
proximation, changing τ in Eqs. (16) and (31) as [13,20,50]

〈
RegR

0

〉
F

τ
→ ReτR

0 + (〈
ImgR

0

〉
F/

〈
RegR

0

〉
F

)
ImτR

0∣∣τR
0

∣∣2

〈
RegR

0

〉
F,

(33a)〈
ImgR

0

〉
F

τ
→ ReτR

0 − (〈
RegR

0

〉
F/

〈
ImgR

0

〉
F

)
ImτR

0∣∣τR
0

∣∣2

〈
ImgR

0

〉
F,

(33b)〈
Re f̃ R

0

〉
F

τ
→ ReτR

0 + (〈
Im f̃ R

0

〉
F/

〈
Re f̃ R

0

〉
F

)
ImτR

0∣∣τR
0

∣∣2

〈
Re f̃ R

0

〉
F,

(33c)〈
Im f̃ R

0

〉
F

τ
→ ReτR

0 − (〈
Re f̃ R

0

〉
F/

〈
Im f̃ R

0

〉
F

)
ImτR

0∣∣τR
0

∣∣2

〈
Im f̃ R

0

〉
F.

(33d)

τR
0 is defined by

τR
0 ≡ τ0

[
cos2 δ0 + sin2 δ0

(〈
gR

0

〉2
F + 〈

f̃ R
0

〉2
F

)]
, (34)

where τ0 and δ0 are the relaxation time in the normal state and
the scattering phase shift given by

h̄

τ0
= 2πnaN (0)U imp2

1 + [πN (0)U imp]2
, tan δ0 = −πN (0)U imp (35)

with na and U imp denoting the density of impurities and the
impurity potential. Using gR

0 → 1 for the normal-state limit
� → 0, we obtain the expression for the thermal conductivity

in normal metal with a spherical Fermi surface as

κ (n)
xx = π2

3

(
kB

e

)2

σ (n)
xx T, (36a)

κ (n)
xy = τ0eB

m
κ (n)

xx , (36b)

where σ (n)
xx = τ0e2n/m denotes the dc conductivity in normal

state obtained from the Drude model, n = (2/3)mN (0)v2
F is

the electron density.

IV. NUMERICAL RESULTS

Here we present numerical results for the thermal Hall
conductivity in d-wave superconductors with a cylindrical
Fermi surface. Then 〈· · · 〉 is given by

〈· · · 〉 = 1

πR2

∫ R

0
dρρ

∫ 2π

0
dϕ

∫ 2π

0

dϕp

2π
· · · , (37)

where ϕp denotes the angle of the p vector in the
two-dimensional polar coordinate system as p =
(p cos ϕp, p sin ϕp), and R denotes the radius of the
vortex lattice unit cell area given by R ≈ ξ0(0)

√
Hc2/H for

R 
 ξ0(0) with Hc2 denoting the upper critical magnetic-field
[17]. We consider extreme type-II superconductors with an
isolated vortex, and assume that the magnetic field B is a very
small constant within r � R.

To discuss the Volovik and impurity effects qualitatively,
we first solve Eqs. (8) and (15) self-consistently to obtain
(gR

0 , f R
0 ,�0), and substituting the resulting solutions into

Eq. (31) or (32), we can obtain the thermal conductivity
and the thermal Hall angle. Hereafter, we choose the cutoff
energy in the gap equation [Eq. (8)] as εc = 40kBTc, and
fix the parameter to η = 0.00001�0(0), where Tc denotes
the superconducting transition temperature without impurities
and external fields. We also adopt a model d-wave pairing as
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FIG. 1. Temperature dependence of the longitudinal thermal
conductivity κxx normalized by the value at the transition temperature
without impurities and external fields Tc for the different vortex radii
R = 7ξ0(0), 10ξ0(0), . . . , ∞ at the relaxation time τ0 = 10h̄/�0(0)
and scattering phase shift sin2 δ0 = 0.

φ = √
2 cos 2ϕp, and the direction of applied thermal gradient

is the same as the measurement in Ref. [7].

A. Volovik effect

We first discuss the Doppler shift effect on the thermal
conductivity and the thermal Hall angle in d-wave super-
conductors. It is shown that the Doppler shift effect can be
neglected at very weak magnetic fields. In this subsection, we
fix the parameters as sin2 δ0 = 0 (the Born-type impurity) and
τ0 = 10h̄/�0(0).

Figure 1 plots the longitudinal thermal conductivity κxx

normalized by the value at the transition temperature without
impurities and external fields Tc, for different vortex radii
R = 7ξ0(0), 10ξ0(0), . . . ,∞ as a function of temperature.
The thermal conductivity for R → ∞ are the same as that for
vs = 0. We observe that the normalized longitudinal thermal
conductivity decreases as temperature decreases from T = Tc,
and T -linear behavior for d-wave superconductors at low
temperatures. These behaviors at low temperatures are well-
known results [13,49].

Figure 2 plots the thermal Hall conductivity κxy normal-
ized by the value at the transition temperature without im-
purities and external fields Tc, for the different vortex radii
R = 7ξ0(0), 10ξ0(0), . . . ,∞ as a function of temperature. We
observe that the normalized thermal Hall conductivity varies
more as a function of the vortex radius compared with the
longitudinal component. The normalized thermal Hall con-
ductivity has a finite value even near T = 0, and decreases
significantly around T = 0.05Tc as the vortex radius decreases
from R → ∞. We here note that the thermal Hall conductivity
(without the normalization) is proportional to the magnetic
field in the temperature range where the normalized thermal
Hall conductivity does not change as a function of the vortex
radius, since the thermal Hall conductivity at T = Tc used to
normalize is also proportional to the magnetic field as seen in
Eq. (36b). It means that the Doppler shift effect is very small
in the temperature range where the normalized thermal Hall
conductivity does not almost change.

FIG. 2. Temperature dependence of the thermal Hall conductiv-
ity κxy normalized by the value at the transition temperature without
impurities and external fields Tc for the different vortex radii R =
7ξ0(0), 10ξ0(0), . . . ,∞ at the relaxation time τ0 = 10h̄/�0(0) and
scattering phase shift sin2 δ0 = 0.

Figure 3 plots the thermal Hall angle tan θH ≡ κxy/κxx

normalized by the value at the transition temperature without
impurities and external fields Tc, for the different vortex radii
R = 7ξ0(0), 10ξ0(0), . . . ,∞ as a function of temperature.
We observe that the normalized thermal Hall angle greatly
enhanced in d-wave superconductors.

We confirmed that the normalized thermal conductivity and
the normalized thermal Hall angle approach that for vs = 0
as the vortex radius R increases, and the normalized thermal
conductivity and the normalized thermal Hall angle for vs = 0
are almost equal to that at R = 1000ξ0(0) within T � 0.01Tc.

B. Impurity effect

We finally discuss the impurity effect on the thermal
conductivity and the thermal Hall angle normalized by
the value at the transition temperature without impuri-
ties and external fields Tc in d-wave superconductors for

FIG. 3. Temperature dependence of the thermal Hall angle tan θH

normalized by the value at the transition temperature without im-
purities and external fields Tc for the different vortex radii R =
7ξ0(0), 10ξ0(0), . . . ,∞ at the relaxation time τ0 = 10h̄/�0(0) and
scattering phase shift sin2 δ0 = 0.
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FIG. 4. Temperature dependence of the longitudinal thermal
conductivity κxx normalized by the value at the transition temperature
without impurities and external fields Tc for the different scatter-
ing phase shifts sin2 δ0 = 0, 0.2, . . . , 1 at the relaxation time τ0 =
10h̄/�0(0).

vs = 0, since the experimental results on the longitudinal
thermal conductivity in heavy-fermion superconductors and
Zn-doped YBCO were explained by taking into account im-
purity scattering close to the unitarity limit [11,15,16,49],
and tan θH/H and κxy/H in the zero magnetic-field limit
H → 0 were estimated experimentally by the initial slope
in the H dependence of κxy in Refs. [7,9]. The thermal Hall
conductivity and the thermal Hall angle at T = Tc used to
normalize are proportional to the “internal” magnetic field B
[see Eq. (36b)], and the internal magnetic field B in extreme
type-II superconductors also approaches zero as the external
magnetic field H approaches zero. Thus, the normalized ther-
mal Hall conductivity and the normalized thermal Hall angle
in extreme type-II superconductors for vs = 0 are the same
as evaluating limH→0 tan θH/H and limH→0κxy/H . Here we
discuss the contribution from the scattering of quasiparticles
on vortices [32]. The thermal Hall conductivity due to the

FIG. 5. Temperature dependence of the longitudinal thermal
conductivity divided by temperature κxx/T normalized by the value
at the transition temperature without impurities and external fields Tc

for the different scattering phase shifts sin2 δ0 = 0, 0.2, . . . , 1 at the
relaxation time τ0 = 10h̄/�0(0).

FIG. 6. Temperature dependence of the thermal Hall conduc-
tivity κxy normalized by the value at the transition temperature
without impurities and external fields Tc for the different scattering
phase shifts sin2 δ0 = 0, 0.2, . . . , 1 at the normal relaxation time
τ0 = 10h̄/�0(0).

vortex scattering at weak magnetic fields is given by κvortex
xy ∼

T
√

H . Since κvortex
xy /H diverges for H → 0 regardless of tem-

perature, and the longitudinal thermal conductivity is given
by κxx ∼ T , tan θH/H , and κxy/H for H → 0 are dominated
by the Lorentz force and the impurities. Therefore, we can
study the impurity effect on thermally excited quasiparticles
outside the core in extreme type-II superconductors, estimat-
ing limH→0 tan θH/H and limH→0κxy/H experimentally.

Figures 4, 5, 6, and 7 plot the longitudinal thermal con-
ductivity κxx and κxx/T , the thermal Hall conductivity κxy,
and the thermal Hall angle tan θH normalized by the value
at the transition temperature without impurities and external
fields Tc, for the different scattering phase shifts sin2 δ0 =
0, 0.2, . . . , 1 at the normal relaxation time τ0 = 10h̄/�0(0)
as a function of temperature. We reproduce the longitudi-
nal thermal conductivity κxx proposed by Graf et al. [13],
and show that the behavior of the normalized thermal Hall

FIG. 7. Temperature dependence of the thermal Hall angle tan θH

normalized by the value at the transition temperature without im-
purities and external fields Tc for the different scattering phase
shifts sin2 δ0 = 0, 0.2, . . . , 1 at the normal relaxation time τ0 =
10h̄/�0(0).
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FIG. 8. Temperature dependence of the thermal Hall angle tan θH

by the value at the transition temperature without impurities and
external fields Tc for the different normal relaxation times τ0 =
1.5h̄/�0(0), 2h̄/�0(0), . . ., 100 h̄/�0(0) in the Born limit as
sin2 δ0 = 0.

conductivity is similar to that of the normalized longitudinal
thermal conductivity. We also observe that the enhancement of
the normalized thermal Hall angle near zero temperature de-
creases as sin2 δ0 increases from sin2 δ0 = 0, and does not oc-
cur at sin2 δ0 = 1. Figures 8 and 9 plot the thermal Hall angle
normalized by the value at the transition temperature without
impurities and external fields Tc, for the different normal re-
laxation times τ0 = 1.5h̄/�0(0), 2h̄/�0(0), . . . , 100h̄/�0(0)
in the Born and unitarity limit as sin2 δ0 = 0 and 1, respec-
tively, as a function of temperature. It is shown that the
normalized thermal Hall angle is greatly enhanced in the Born
limit as sin2 δ0 = 0 near zero temperature but is suppressed
in the unitarity limit as sin2 δ0 = 1 near zero temperature
even at the large normal relaxation time τ0 = 100h̄/�0(0).
We can explain the normal relaxation time and temperature
dependence of the normalized thermal Hall angle in the
Born and unitarity limit as follows, using the corresponding
quasiparticle DOS in Figs. 10 and 11.

FIG. 9. Temperature dependence of the thermal Hall angle tan θH

by the value at the transition temperature without impurities and
external fields Tc for the different normal relaxation times τ0 =
1.5h̄/�0(0), 2h̄/�0(0), . . ., 100 h̄/�0(0) in the unitarity limit as
sin2 δ0 = 1.

FIG. 10. Quasiparticle DOS Ns(ε) normalized by the normal
DOS at the Fermi surface N (0) for the different normal relaxation
times τ0 = 1.5h̄/�0(0), 2h̄/�0(0), . . ., 100 h̄/�0(0) in the Born
limit as sin2 δ0 = 0 at T = 0.01Tc.

We first consider the Born-type impurity as sin2 δ0 = 0.
Then the quasiparticle relaxation time τQP can be written
from Eq. (32) as τQP = τ0/〈RegR

0 〉F near zero temperature,
since quasiparticles around the gap nodes at φ = 0 become
dominant. Furthermore, in the d-wave pairing case, since the
quasiparticle DOS has a finite small value near ε = 0, the
impurity scattering for quasiparticles near ε = 0 is very small.
We can also explain that the quasiparticle impurity scattering
is very small near zero temperature, since quasiparticles
around the gap nodes are restricted to the momentum in a
specific orientation. In the Born limit, the normalized thermal
Hall angle near zero temperature can be roughly written as

tan θH (T )

tan θH (Tc)
∼

∫
dε

1〈
RegR

0

〉
F

sech2 ε

2kBT
, (38)

where the ε integration signifies an integration over −∞ �
ε � ∞, except 〈RegR

0 〉F = 0. Thus, the normalized ther-
mal Hall angle is more enhanced in the Born limit at the
large normal-relaxation-time near zero temperature, since the
quasiparticle DOS near ε = 0 becomes small as the normal re-
laxation time increases, as seen in Fig. 10. On the other hand,

FIG. 11. Quasiparticle DOS Ns(ε) normalized by the normal
DOS at the Fermi surface N (0) for the different normal relaxation
times τ0 = 1.5h̄/�0(0), 2h̄/�0(0), . . ., 100 h̄/�0(0) in the unitarity
limit as sin2 δ0 = 1 at T = 0.01Tc.
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when taking the unitarity limit as sin2 δ0 = 1, the quasiparticle
relaxation time τQP near zero temperature can be given by
τQP = τ0〈RegR

0 〉F, and the restriction on the direction of the
quasiparticle momentum is relaxed due to the strong scatter-
ing effect. In the unitarity limit, the normalized thermal Hall
angle near zero temperature can be also roughly written as

tan θH (T )

tan θH (Tc)
∼

∫
dε

〈
RegR

0

〉
Fsech2 ε

2kBT
. (39)

Thus, the normalized thermal Hall angle in the the unitarity
limit is more suppressed at the large normal relaxation time
near zero temperature inversely to the Born-type impurity,
since the quasiparticle DOS near ε = 0 is smaller as τ0

increases, as seen Fig. 11. However, since the thermal
conductivity in d-wave superconductors with scattering close
to the unitarity limit is also almost zero at low temperature, it
may be difficult to observe the suppression of the Hall angle
experimentally.

In our results, the normalized thermal Hall angle near zero
temperature was up to about 100 times larger than that at
the transition temperature. From the figures in Refs. [7] and
[9] estimating roughly the ratio of the thermal Hall angle at
zero temperature to that at the transition temperature, that in
Ref. [7] is about 100, and that in Ref. [9] is about 15. Here
we note that these thermal-Hall-angle ratios were estimated
in the limit of zero magnetic field. The thermal-Hall-angle
ratio in Ref. [7] is approximately consistent with our result
for the large normal relaxation time in the Born limit, and
that in Ref. [9] is almost the same as the result for τ0 =
100h̄/�0(0) and sin2 δ0 = 0.8, τ0 = 10h̄/�0(0) and sin2 δ0 =
0.6, or . . ., or τ0 = 2h̄/�0(0) and sin2 δ0 = 0. Thus, we find
from calculations of the thermal Hall angle that YBCO in
Ref. [7] is very clean, and materials in Ref. [9] is relatively
dirty within this our present theory.

V. CONCLUDING REMARKS

We derived the thermal conductivity in extreme type-II
superconductors with an isolated pinned vortex based on
the augmented quasiclassical equations of superconductivity
with the Lorentz force. Using it, we calculated the thermal
conductivity and the thermal Hall angle in d-wave supercon-
ductors, and addressed the enhancement of limH→0 tan θH/H
at low temperatures in YBCO and CeCoIn5 measured by
Zhang et al. [7] and by Kasahara et al. [9]. They estimated
limH→0 tan θH/H using the initial slope in the H dependence
of κxy measured experimentally. We also should point out that
since the superfluid velocity vs is proportional to 1/ρ, the
Doppler shift effect has the potential to contribute to the spa-
tial average of the thermal conductivity and the thermal Hall
angle. Thus, we calculated the magnetic-field dependence of
tan θH and κxy due to the Doppler shift effect, and confirmed
that the Doppler shift effect can be neglected in the limit
H → 0.

The thermal Hall conductivity due to the vortex scattering
at weak magnetic fields proposed by Durst et al. in Ref. [32] is
given by κvortex

xy = C0T
√

H , where C0 is a constant introduced
in Ref. [32], and it has been used successfully to explain the
experimental results on the magnetic field dependence of the
thermal conductivity in YBa2Cu3O6.99 in the weak magnetic-
field region. However, they did not address the enhancement

of limH→0 tan θH/H at low temperatures even in Refs. [59,60],
which are their more recent papers, and we cannot explain
this enhancement using their theories. Unlike our theory, since
their theory takes into account only the contribution of quasi-
particles around the gap nodes, it is impossible to investigate
the wide temperature dependence from the transition temper-
ature to zero temperature. Moreover, κvortex

xy is proportional to√
H , and κvortex

xy /H diverges for H → 0, i.e., the quasiparticle
relaxation time due to the vortex scattering diverges for H →
0 regardless of temperature, since the longitudinal thermal
conductivity becomes κxx ∼ T for H → 0. On the other
hand, the thermal Hall conductivity due to the Lorentz force
κLorentz

xy is proportional to H [see Eq. (31)], and κLorentz
xy /H has

a finite value for H → 0. Therefore, limH→0 tan θH/H and
limH→0 κxy/H are dominated by the Lorentz force and the
impurities. We observed that the thermal Hall angle is greatly
enhanced in d-wave superconductors without impurities of the
resonant scattering at low temperatures and very weak mag-
netic field. This great enhancement of the thermal Hall angle
has been observed experimentally in YBCO [7] and CeCoIn5

[9], and may also be observed experimentally in other nodal
superconductors with large magnetic-penetration depth.

On the other hand, our absolute values of the thermal
conductivity are different from the experimental values. To
discuss the experimental values more quantitatively, we may
need to consider inelastic scattering as considered in the
calculation of the longitudinal component, such as scattering
by the antiferromagnetic spin fluctuations within the RPA
[11] or the fluctuation exchange approximation [21] in
YBCO. The relaxation times for inelastic scattering in the
superconducting phase of UPt3 and CeCoIn5 are also given in
Refs. [61–63]. Here we emphasize that the great enhancement
of the electrical and longitudinal thermal conductivity in
the superconducting state of YBCO is dominated by the
contribution from inelastic scattering [11], but thermal Hall
angle is greatly enhanced in nodal superconductors even
without inelastic scattering.

We also discuss the contribution from quasiparticles in the
vortex core. For clean superconductors in the vortex lattice
state under larger magnetic field, we should consider the
contribution of quasiparticles in the vortex core. The thermal
Hall angle in the vortex lattice state may decrease due to
the increase in quasiparticle scattering in the vortex core as
the external magnetic field increases [9], but we also need to
calculate it microscopically and quantitatively to clarify the
suppression of the thermal Hall angle due to external magnetic
field. We may confirm this by solving the augmented quasi-
classical equations directly in the vortex lattice system [14,64]
(see Ref. [54] for the pair-potential-gradient force and the
pressure difference arising from the slope in the DOS). This
method can include not only the contribution of quasiparticles
outside the core but also that of the Andreev-reflected quasi-
particles [47,48] in the thermal conductivity. We may also
calculate the thermal Hall conductivity in high magnetic fields
more easily, using the Brandt-Pesch-Tewordt approximation
for the augmented quasiclassical equations [65]. Moreover,
we may also need to confirm the contributions from skew
scattering due to a vortex [32,60] and the Berry phase acquired
by a quasiparticle on traversing around a vortex [33–36,59] in
the calculations under larger magnetic field.
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Our approach for the study of thermal Hall conductivity
in type-II superconductors can be applied to the microscopic
study of quasiparticle transport in a variety of superconductors
under magnetic field.
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