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We numerically simulated quantum turbulence in superfluid 4He to investigate the emission of vortex rings
from a localized vortex tangle. Turbulence is characterized by some universal statistical laws. Although there are
a lot of studies on statistical laws in bulk quantum turbulence, studies in inhomogeneous or localized turbulence
are scarce. We first investigate the statistical laws of localized quantum turbulence, referring to two statistical
laws deduced from the vibrating wire experiments in Yano et al., J. Low Temp. Phys. 196, 184 (2019). The first
law is the Poisson process for the detection of vortex rings; the vortex tangle emits vortex rings with frequencies
depending on their sizes. The second law is the power law between the frequency and the size of the emitted
vortex rings, showing the self-similarity of the tangle. To study these statistical laws numerically, we developed a
system similar to experiments. First, we generate a localized statistically steady vortex tangle by injecting vortex
rings from two opposite sides and causing collisions. We investigated the conditions that aid the formation of
the tangles and the anisotropy of the emission of vortex rings from the tangle. Second, from the data on emitted
rings, we reconstruct the two statistical laws. Results from our numerical investigations are consistent with the
known self-similarity of emitted vortex rings and localized tangles.
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I. INTRODUCTION

Quantum turbulence refers to turbulent states in quantum
condensed fluids. It is an important phenomenon in low-
temperature physics and in fields such as fluid mechanics and
nonequilibrium physics. Superfluid 4He is a typical system
wherein quantum turbulence is studied. A lot of researchers
have investigated superfluid 4He for over half a century [1–4].
Some statistical laws are often investigated to determine the
universal properties of turbulence. In classical turbulence,
an important statistical law is the Kolmogorov’s law that
indicates that the energy spectrum follows the −5/3 power
law of the wave number [5,6]. This shows self-similarity in
the wave-number space. In real space, the self-similarity can
be expected to be the Richardson cascade wherein large-sized
eddies can split into smaller sizes [5,6]. Eddies or vortices
can be responsible for the self-similarity and cascade of turbu-
lence. However, it is difficult to understand the self-similarity
and cascade of classical turbulence in the real space because
vortices are unstable and not well defined.

Quantum turbulence and quantized vortices exhibit advan-
tages over classical turbulence and vortices, respectively. In
superfluid 4He, vortices are stable topological defects and
their circulation is conserved by quantization. The quantum
circulation is given by κ = h/m, where h and m are Planck’s
constant and the mass of a 4He atom [7,8]. Because quan-
tum turbulence consists of well-defined elements, studies can

provide a shortcut to investigate turbulence. The self-
similarity of quantum turbulence in a wave-number space
such as Kolmogorov’s law was studied [9–17]. However,
studies on self-similarity in a real space are scarce; examples
of such a study are [13,18,19]. We focus on the statistical laws
in a real space assuming that quantum turbulence has some
self-similarity.

Liquid 4He changes to superfluid phase at temperatures
below Tλ = 2.17 K, and its hydrodynamics can be described
by the two-fluid model. This implies the superfluid 4He is a
mixture of a viscous normal fluid component and an inviscid
superfluid component [20,21]. The density and velocity of the
superfluid component are ρs and vs, respectively, and those of
the normal fluid component are ρn and vn, respectively. The
total density is ρ = ρs + ρn. The ratio ρs/ρ increases with de-
creasing temperature. Particularly, below approximately 1 K,
the ratio is ρs/ρ � 1. At finite temperatures, mutual friction
acts between the two components through quantized vortices.
Mutual friction can significantly shrink a vortex ring that
moves in the fluid.

There are several methods to generate quantum turbulence
in a superfluid 4He [1–3], and experiments using oscillating
objects have been recently conducted [22–33]. A vibrating
wire is a typical oscillating object. Thin wires are vibrated by
a Lorentz force under a static magnetic field, which generates
turbulence around the wire. Yano et al. conducted a series
of experiments using vibrating wires [24,29,33,34]. From the
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Yano group two kinds of vibrating wires, namely, a generator
of turbulence and detector of vortices were discovered. A
generator wire has remnant vortices, whereas a detector wire
has no remnant vortices. Although the wire velocity increases
with the driving force, the two kinds of wires have different
behaviors. If the driving force exceeds some critical value,
the velocity of the generator wire decreases immediately and
a vortex tangle is generated around it. However, a detector
wire does not generate turbulence by itself because of the
success of removing remnant vortices around it. If a vortex
ring approaches a detector wire, it generates a vortex tangle
around it using the ring as a trigger, thereafter decreasing the
wire velocity. Accordingly, Yano et al. performed experiments
using a detector wire to detect the vortex rings emitted from a
vortex tangle made by a generator wire.

An important feature of the experiments is that it is possible
to manage the minimum size of detectable vortex rings by
altering the temperature. At 0 K, a vortex ring moves with
its self-induced velocity without shrinking. At finite tempera-
tures, a vortex ring shrinks in its flight and can disappear by
mutual friction. The flight distance l for a vortex ring with
an initial radius R0 disappears is given by l = R0/α, where
α is the mutual friction coefficient, which will be described
later. Therefore, the diameter 2R0 of a detectable vortex ring
satisfies 2R0 > 2αD, where D is the distance between the
detector and the generator wires.

Using this setup, Yano et al. recently observed some
self-similarity of vortices emitted from a vortex tangle. This
experiment discovered two important laws. First, the time of
flight of vortex rings from the vortex tangle to the detector
wire follows exponential distributions for any detectable min-
imum size. Particularly, the detection of vortex rings follows
a Poisson process. This means that vortex rings are detected
with frequencies depending on their sizes; hence, a vortex
tangle is in a statistically steady state. Second, the vortex tan-
gle has self-similarity. From the experiment, the relationship
between the detection frequency and the minimum size of
the detectable vortex rings that satisfies the power law was
determined. The vortex ring size should reflect the vortex line
spacings in the tangle. Therefore, the vortex tangle can have a
self-similar structure in a real space.

These results show the statistical laws of a localized vortex
tangle. Although there are a lot of studies on statistical laws
in bulk quantum turbulence, studies in inhomogeneous or
localized turbulence are scarce.

For experiments on quantum turbulence generated by os-
cillating objects, several numerical simulations have been
conducted. The purpose of previous simulations was to inves-
tigate the processes of growth and decay of a localized vortex
tangle or the anisotropy of the emission of vortex rings from
a tangle [34–37]. This study focuses on the statistical laws
and the self-similarity of vortex rings emitted from a localized
tangle, which differs from the previous works.

Using the vortex filament model, we numerically examine
the dynamics and statistics of vortices emitted from a local-
ized vortex tangle. Our goal is to examine the statistical prop-
erties of this system and to compare with the experimental
results. First, we obtain a localized statistically steady vortex
tangle as the source of emitted vortex rings. Second, we study
the statistics of the vortex rings emitted from the tangle. In

Sec. II, we introduce the vortex filament model and the system
treated in this study. Thereafter, we describe the formation of
vortex tangles in Sec. III. In Sec. IV, we discuss statistically
steady vortex tangles and introduce some theoretical concepts.
Furthermore, we present the statistical laws and compare the
exponents of the power laws with those of the experimental
results in Sec. V. Finally, Sec. VI presents the conclusions.

II. THE MODEL AND SYSTEM

A. Vortex filament model

Quantized vortices in superfluid 4He are stable topological
defects with quantized circulation and thin cores of order
1 Å. Therefore, we can use the vortex filament model wherein
vortices are treated as filaments. The superfluid velocity field
obtained owing to quantized vortices is given by the Biot-
Savart law [38]

vs,BS(r, t ) = κ

4π

∫
L

s′(ξ, t ) × [r − s(ξ, t )]

|r − s(ξ, t )|3 dξ, (1)

where s(ξ, t ) denotes the position of the vortex filaments
represented by the parameter ξ , and s′ = ∂s

∂ξ
. The integration is

performed over all vortex filaments L. At finite temperatures,
mutual friction affects the motion of vortices. If there are
neither boundaries nor applied superfluid flow, the equation
of motion becomes

ds
dt

= vs,BS + αs′ × (
vn − vs,BS

) − α′s′ × [
s′ × (

vn − vs,BS
)]

,

(2)
where α and α′ are the coefficients of friction depending on
the temperature. In particular, α, α′ = 0 at T = 0 K.

The vortex lines are discretized into a number of points
held at a minimum space resolution 	ξ = 0.8 μm. The
integration in time is performed using the fourth-order Runge-
Kutta scheme, wherein the time resolution is 	t = 10 μs. We
use the traditional method to artificially reconnect two vortices
that approach each other within 	ξ [39]. We delete the vortex
rings whose lengths are shorter than 6	ξ .

Such reconnection of quantized vortices can be related to
the dissipation mechanism of quantum turbulence at very low
temperatures with negligible mutual friction. The numerical
simulation of the Gross-Pitaevskii model shows that recon-
nections emit phonons of short wavelengths comparable to
the coherence lengths and causes the dissipation [40]. How-
ever, the vortex filament model cannot describe the phonon
emission. The change of vortex length at each artificial re-
connection is negligible compared to the vortex dynamics in
the large scales. This study focuses on the statistical laws at
large scales wherein the details of each reconnection are not
relevant.

B. The system

The motivation of this study is to reproduce the statistical
laws observed by the experiment and reveal the self-similarity
of the system. To achieve this, we first obtain a localized
stationary vortex tangle as the source and thereafter observe
the emission of vortex rings from the tangle.

The method of generating a localized vortex tangle is a key
problem in our simulation. We are predominantly interested in
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FIG. 1. The coordinate system of this system. We set the x axis
as the injection direction of vortex rings. Vortex rings are injected
from two parallel 100 μm×100 μm square vortex sources at a fixed
frequency.

the emission of vortex rings from a localized vortex tangle. We
use a method that differs from those in previous simulations
[34–37] to generate a dense localized vortex tangle that can
emit many vortex rings. As shown in Fig. 1, we prepare two
parallel 100 μm×100 μm square vortex sources that inject
vortex rings of some size at a fixed frequency from random
positions in each square. The distance between the two paral-
lel sources is 240 μm. The parameters of this simulation are
the injection frequency f and the diameter 2R0 of the injected
vortex rings. Now, let f be of order 1 kHz corresponding to
the frequency of the vibrating wire and 2R0 be of order 10 μm
corresponding to the amplitude of the vibration [33].

To be later described in detail, we maintain injecting vor-
tices from the two sources and generating a localized vortex
tangle. These tangles expand orthogonally to the direction of

FIG. 2. Development of the vortex tangle in f = 1000 Hz and
2R0 = 30 μm at time (a) t = 0.02 s, (b) t = 0.06 s, (c) t = 0.16 s,
and (d) t = 0.40 s, respectively. The black rectangular box refers to
the box in Fig. 1. Although the vortex tangles of (a) and (b) grow,
those of (c) and (d) are saturated inside the box.

FIG. 3. The time-averaged (t = 0.4-0.6 s) distribution of the
vortex line density (cm−2) of the vortex tangle in an r(μm)-θ (rad)
plane in the logarithmic scale. The condition is f = 1000 Hz and
2R0 = 30 μm. Because the vortex tangle is symmetric around the
azimuthal angle φ, the distribution is obtained by integrating over φ.

the injection, as shown in Fig. 2. These tangles are regarded
as source vortex tangles formed from a vibrating object.

Furthermore, we simulate the detection of vortices by
the detector. One detector was used in the experiment. The
experiment was repeated several times to use the observations
to obtain the statistical law [33]. However, our simulation
allocates many detectors around the tangle. The vortex tangle
and the emitted vortex rings should be symmetric about the
azimuthal angle φ. The vortex rings are emitted orthogonally
to the direction of injection, as described in the next section.
We collect the data on the vortex rings emitted from a vortex
tangle at a fixed distance of 400 μm from the origin and
eliminate it from the vortices we follow.

III. PROPERTIES OF THE LOCALIZED VORTEX TANGLE

Comparing to the experiments [33], the success of our
simulation depends on obtaining statistically steady local-
ized vortex tangles by the method described in the previous
section. In this section, we describe the development of the
vortex tangle and show that a statistically steady vortex tangle
can be generated. Thereafter, we describe the statistics of
the observations of the vortex rings emitted from the vortex
tangle.

A. Development of vortex tangle

Figure 2 shows a typical development of a vortex tangle. If
vortex sources begin to inject vortex rings, they form a small
nucleus of a vortex tangle around the origin if they frequently
collide (see Supplemental Material [41]). Thereafter, the nu-
cleus absorbs subsequent vortex rings and develops a vortex
tangle. Although this explanation is satisfactory, the statistical
steadiness or unsteadiness of the resulting localized vortex
tangle is nontrivial.

Figure 3 shows the vortex line density distribution after the
tangle develops significantly and is statistically steady. The
density decreases with increasing distance from the origin.
The density is concentrated around θ = π

2 because of the
symmetry of the system.
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FIG. 4. The vortex line length in the cylindrical volume in 2R0 =
30 μm and f = 1000 Hz. The cylindrical volume has its height
160 μm and its radius 250 μm. This cylinder covers the vortex tan-
gle. The black box in the left figure is the same as that in Fig. 2. The
figure on the right shows the development of the vortex line length.
The vortex tangle becomes statistically steady after approximately
t = 0.1 s.

Thereafter, we directly investigate the properties of the
tangle. The vortex distribution in Fig. 3 includes emitted
vortex rings and a localized tangle. From Fig. 3, we know that
the tangle expands orthogonally to the x axis and can estimate
the approximate size of the tangle. We assume a cylindrical
volume with height 160 μm and radius 250 μm that covers
the vortex tangle and reflects its symmetry. The centroid of the
volume is placed at the origin, and the bottom is orthogonal
to the x axis. Figure 4 shows the development of the total
vortex line length in the cylindrical volume. The vortex line
length increases with time and is statistically steady after
approximately t = 0.1 s.

To characterize the steady states, we investigate the distri-
bution L(s) of the vortex line density in the hollow cylindrical
volumes with height, inner radius, and outer radius as 160 μm,
s − ds, and s, respectively. The centroid of the volume is
placed at the origin, and the bottom is orthogonal to the x
axis. Figure 5(a) shows the time-averaged distribution L(s).
Because the distribution does not change significantly after
approximately t = 0.2 s, the tangle is observed to be statisti-
cally steady about the vortex distribution and its total length.

From the distribution of the vortices, we estimate the size
of the tangle, although there is some arbitrariness for defining
the size of the tangle. We define the tangle size sc such that
the density L(s) decreases to 105 cm−2 in the volume.

FIG. 5. (a) The time-averaged vortex line density distribution
in f = 1000 Hz and 2R0 = 30 μm. The colors represent the dis-
tribution averaged over the different time intervals. (b) The time
development of sc in f = 1000 Hz. The colors represent the different
injected vortex ring sizes 2R0. The density is averaged for the time
interval between t − 0.1 s and t + 0.1 s.

FIG. 6. The mean vortex line density in the cylindrical volume.
The horizontal axis is the frequency f .

Figure 5(b) shows the time development of sc for 2R0 =
30, 45, and 60 μm and f = 1000 Hz. The tangle size
converges to a finite value in each condition. The size of tangle
in the statistically steady state increases with 2R0.

The subsequent steadiness or unsteadiness of a developed
vortex tangle is nontrivial. Injected vortex rings are shuffled
to form a localized vortex tangle. The vortex tangle emits
vortex rings that operate as the dissipation for the tangle. The
statistically steady state is sustained by the equilibrium of
the vortex ring injection, the deletion of small rings, and the
vortex ring emission from the tangle. We do not know if such
statistical steady states are consistently obtained for arbitrary
values of 2R0 and f . This can be investigated in future
studies.

B. The vortex line length of vortex tangle

If the injection frequency f and the size 2R0 of the injected
vortex rings are reduced, a statistically steady vortex tangle
may not be generated because vortex rings do not frequently
collide, and generate no nucleus of a tangle.

We calculate the dynamics with varying f and 2R0 to
study the conditions for the generation of a statistically steady
vortex tangle. Figure 6 shows that the statistically steady
vortex line density in the cylinder increases with f and 2R0.

The appearance (or no appearance) of a nucleus of a
vortex tangle determines its growth. If no nucleus is formed,
no vortex tangle occurs. Investigating the conditions for the
formation of a nucleus aids the determination of the char-
acteristic vortex lengths. If injected vortex rings collide and
interact, the vortex length increases. We consider the vortex
length when counterpropagating rings pass through and no
nucleus is formed. This consideration yields the characteristic
vortex length used to normalize the vortex line length in the
cylinder. The characteristic length can be determined from
the geometry of Fig. 1. If counterpropagating vortex rings
never collide, we can obtain the time 4π lR0/[κ ln(R0/rc)]
that is taken for an injected ring to pass through the cylindrical
volume because of the self-induced velocity of the vortex ring
v ∼ κ/4πR0 ln(R0/rc). Here, l is the height of the cylindrical
volume. Because the length of an injected vortex ring is 2πR0,
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FIG. 7. The vortex line length normalized by Ln of Eq. (3). Here
2R0 and l are the size of injected vortex rings and the height of the
cylindrical volume, respectively.

the total vortex line length Ln required is

Ln = 2 f
4π lR0

κ ln(R0/rc)
2πR0

= 16π2l f R2
0

κ ln(R0/rc)
. (3)

The vortex line length normalized by Ln is shown in Fig. 7.
This quantity is the amplification factor of the vortex line
length. If the normalized length exceeds unity, the mere group
of ballistic vortex rings develops to a vortex tangle. Increasing
the injected vortex ring size and the frequency of the injection
increases the length that converges to approximately 3.5 in-
dependently of 2R0. This means that the vortex line length is
proportional to f R2

0.

C. Emission of vortex rings from a vortex tangle

Although the distribution of the emitted vortex rings is
isotropic about φ, that in the direction θ is anisotropic. The
probability density function (PDF) in the case of the direction
θ of the vortex rings emitted from the vortex tangle is shown
in Fig. 8. The data of the vortex rings are collected by the
detectors placed 400 μm from the origin. The emission of the
vortex rings is concentrated around θ = π

2 .

IV. STATISTICALLY STEADY TANGLE

A statistically steady vortex tangle should emit vortex rings
of each size with the corresponding frequency. Particularly,
the emission frequency of some size is governed by a func-
tion f (R) that depends only on the vortex ring size R. This
statistically steady concept is essential in this study. From
our simulation, f (R) is a power of R, that is, the emission
of the vortex rings from a tangle has some self-similarity. We
introduce some theoretical concepts of this self-similarity in
this section.

A. Poisson process

To investigate the statistics of emitted vortex rings, the
experiment is conducted assuming a Poisson process [33].

FIG. 8. The probability density function, PDF(θ ), of the direc-
tion of the emitted vortex rings about θ . The PDF is obtained from the
number of vortex rings received by the detectors within 2π sin θ dθ .

The Poisson process is a stochastic process based on an
exponential distribution. First, we describe the derivation of
the process considering the conditions of the experiment.
We make the following assumptions. A detector catches n
vortex rings in the time interval [0, T ] that is partitioned into
smaller intervals 	t . Thus, the probability that a vortex ring
is detected in 	t is 	t n

T . This is based on the assumption that
	t is significantly small such that the number of vortex rings
received in 	t is 0 or 1. The probability that a vortex ring is
not detected in [0, t] and is detected in [t, t + 	t] is

(
1 − 	t

n

T

)t/	t

	t
n

T
. (4)

If P(t ) is the probability that a vortex ring is detected in [0, t],
we have

P(t + 	t ) − P(t ) =
(

1 − 	t
n

T

)t/	t

	t
n

T
. (5)

The PDF F (t ) is defined by the probability F (t )dt that a
vortex ring is detected in [t, t + 	t]. Hence, F (t ) is given by

F (t ) = lim
	t→0

P(t + 	t ) − P(t )

	t
= 1

t1
exp

(
− t

t1

)
, (6)

where t1 ≡ T
n is the mean detection interval. Finally, integrat-

ing F (t ) yields

P(t ) =
∫ t

0
F (t ′)dt ′ = − exp

(
− t

t1

)
+ 1 (7)

and

1 − P(t ) = exp

(
− t

t1

)
. (8)

This indicates a Poisson process. If this relation is confirmed,
the interval t1 will be constant indicating that the vortex tangle
is statistically steady and emits vortex rings continuously and
steadily. Yano et al. observed this relation that indicates that
the generator wire generates a statistically steady vortex tangle
[33]. This is a motivation for our investigation to obtain a
statistically steady vortex tangle in the present simulation.
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B. The self-similarity

Suppose that the vortex tangle has self-similarity in real
space. We find the power law between the emission frequency
and vortex ring size. The power law was deduced from
experiments in [33]. This self-similarity is understood from
the following discussions. We define the number n(x, t )dx
of vortex rings with diameter in [x, x + dx] emitted from a
tangle in [0, t]. The number N2R>2RC (t ) of vortex rings with
diameters larger than 2RC emitted in [0, t] is N2R>2RC (t ) =∫ ∞

2RC
n(x, t )dx. Because the vibrating wire experiments ob-

serve only vortex rings larger than some minimum size, we
also consider the number of vortex rings larger than some
minimum size.

When the vortex tangle is statistically steady, the number
of emitted rings n(x, t )dx is shown by g(x)tdx and the vortex
tangle emits vortex rings with various sizes. The g(x)dx is the
emission frequency of vortex rings with sizes in [x, x + dx].
Therefore, the frequency f2R>2RC of the emission of rings
larger than 2RC is given by

f2R>2RC =
∫ ∞

2RC

g(x)dx. (9)

The distribution of vortices in the tangle should be determined
by that of the emitted vortex rings. Several literatures have
reported that the size distribution of vortex rings in a tangle
shows that the number of vortex rings decreases with ring
sizes by some power law [13,18]. Assuming the emission
of the vortex rings is self-similar, the frequency g(x) can be
written as g(x) = x−α such that

f2R>2RC =
∫ ∞

2RC

x−αdx ∝ (2RC )−α+1. (10)

Thus, the power law comes from the self-similarity of the size
distribution of the vortex rings in the tangle.

V. STATISTICAL LAWS

We describe the statistical laws of the vortex rings emitted
from a vortex tangle. The first law is the Poisson process of the
detection of the vortex rings emitted from a tangle. The second
is the power law between the frequency of the emission and
the vortex ring size.

The statistically steady vortex tangle emits vortex rings,
as mentioned in Sec. IV. In this section, we numeri-
cally investigate the probability that detectors receive vor-
tex rings with diameters larger than some minimum di-
ameter 2R. Experiments are performed using one detec-
tor. The experiment is repeated to determine the statistics.
However, our simulation involved one simulation with 2000
detectors.

A. Poisson process

We position detectors at a fixed distance of 400 μm from
the origin and orthogonal to the x axis as shown in Fig. 9.
In this study, the number of detectors Ndet is 2000. The
simulation indicates the number N (t ) of detectors that receive
at least one vortex ring in [0, t] [42]. The probability P(t ) is

FIG. 9. The schematic figure of the arrangement of the detectors
around the vortex tangle. The detectors are arranged symmetrically
with the width 270 μm.

given by

P(t ) = N (t )/Ndet. (11)

This relation is a key idea that relates our simulation to the
experiment.

Figure 10 shows the results of the simulation with f =
1000 Hz and 2R0 = 30 μm. They satisfy Eq. (8); hence, our
simulation reproduces the Poisson process observed experi-
mentally. These slopes indicate the detection frequencies t−1

1 .
To directly investigate the property of a vortex tangle, we

examine the emission frequency. Figure 11 shows the number
Nemi(t ) of vortex rings that have a diameter larger than 2R and
are emitted in [0, t]. We can confirm the linear relationship
Nemi(t ) = t/t1 with the emission frequency t−1

1 . This figure
shows that the frequency becomes constant indicating that the
vortex tangle becomes statistically steady.

FIG. 10. The time development of 1 − P(t ) in f = 1000 Hz and
2R0 = 30 μm. Here, 2R refers to the minimum size of detectable
vortex rings.
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FIG. 11. The number N (t ) of the vortex rings emitted in [0, t].
The frequency of emission converges at a finite number in each
minimum size. Here, 2R refers to the minimum size of detectable
vortex rings.

B. The power law

The power law between t−1
1 and 2R indicates the self-

similarity of the vortex rings emitted from the localized
vortex tangle. From Fig. 12, the emission frequency t−1

1
satisfies the power law of 2R for three different values of
2R0. For f = 1000 Hz and 2R0 = 30 μm, the power law
t−1
1 = (2R)−1.03±0.01 is obtained by the least-squares method.

Therefore, we can obtain results similar to the experiments.
Here, we determine the slope in the range up to 60 μm. They
show power laws; however, they deviate for 2R > 10 μm. We
propose two reasons for the deviation. The first may come
from the rare events catching such large vortices. Second,
there may be a difference between the emission mechanism
of vortex rings smaller and larger than the size of the tangle.
The large rings can be emitted only from the surface of the
tangle, whereas the small ones can be emitted from the surface
or inside the tangle. This result shows that the distribution
of vortex rings emitted from the localized vortex tangle has
self-similarity, which may reflect the self-similarity of the
vortex size distribution of a vortex tangle.

FIG. 12. The relationship between t−1
1 and 2R in the log-log scale.

Finally, we compare the power exponent obtained from
this study with that obtained from the experiments. In the
experiments, the exponent depends on the turbulence gener-
ation power. Yano et al. observed that the exponents increased
to −2.5, −1.6, and −1.5 as the power increased to 40, 150,
and 1000 pW, respectively. Whereas, our simulation shows
power exponents −0.86 ∼ −1.03, which differ from the ex-
perimental results because the vortices become significantly
too dense to be calculated numerically.

The difference in the exponents between the simulation
and the experiments may be connected with the emission
power. The energy ε of the vortex filaments per unit length is
ε = ρsκ

2

4π
ln( Rcv

rc
) ∼ 1.25×10−12 J/m. Thus, the energy injected

per unit time is 2πR0 f ε ∼ 10−1 pW. The order of injected
energy in this study is significantly lower than that in the
experiments. However, it is numerically difficult to increase
the power to make it comparable with the experiments.

VI. CONCLUSION

We numerically investigate the emission of vortex rings
from a statistically steady localized vortex tangle that was
formed by colliding vortex rings. Our study begins the study
of statistical laws of localized quantum turbulence. We de-
veloped a system similar to the experiments and investigated
the two statistical laws. We succeeded in obtaining the laws,
although the exponents in the power laws were different from
the experimental results.

In this study, although we performed simulations at
T = 0 K, the experiments were performed at finite tempera-
tures. An advantage of performing the simulation at 0 K is that
the vortex rings do not shrink spontaneously; hence, the sizes
of the vortex rings emitted from the tangles can be easily fixed.
However, at finite temperatures, the mutual friction shrinks the
vortex rings whose sizes cannot be easily determined.

Therefore, it is ideal to perform the simulation at finite tem-
peratures. There are predominantly two methods to achieve
this. The first method is traditional, namely, following the
vortex dynamics under the prescribed normal fluid velocity
[38]. This can be easily calculated, and we will consider this
in subsequent research. The second is to consider the fully
coupling dynamics between a normal fluid component and
a superfluid component [43–46]. This is better than the first
method. However, it is difficult to calculate the fully coupled
dynamics if used for the present problem.

Our subsequent research will investigate the self-similar
structures of vortex tangles, such as a fractal dimension [47],
and associate them with the statistical laws of the emitted
vortex rings addressed in this paper. We will adjust the
method used to inject vortex rings and investigate its effects
on the statistical laws. For example, we can inject trains of
vortex rings with expected turbulence generated by moving
ions [48,49].
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