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Effects of anisotropic correlations in fermionic zero-energy bound states of topological phases

M. A. R. Griffith,* E. Mamani, L. Nunes, and H. Caldas
Universidade Federal de São João del-Rei, Rua, 22290-180 São João del-Rei, MG, Brazil

(Received 23 October 2019; accepted 30 April 2020; published 15 May 2020)

Topological phases of matter have been used as a fertile realm of intensive discussions about fermionic
fractionalization. In this work, we study the effects of anisotropic superconducting correlations in the fermionic
fractionalization on the topological phases. We consider a hybrid version of the SSH and Kitaev models with
an anisotropic superconducting order parameter to investigate the unusual states with zero energy that emerges
in a finite chain. To obtain these zero-energy solutions, we built a chain with a well-defined domain wall at the
middle of the chain. Our solutions indicate an interesting dynamic between the zero-energy state around the
domain wall and the superconducting correlation parameters. Finally, we find that the presence of an isolated
Majorana at the ends of the chain is strongly dependent on the existence of the solitonic excitation in the middle
of the chain.
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I. INTRODUCTION

In condensed matter physics, Majorana zero-energy bound
states are quasiparticle excitations that arise when a single
electronic mode fractionalize into two halves [1]. The Kitaev
chain has been used to study the properties of nonlocal
Majorana zero-energy bound states that reside at edges of the
chain [1–11].

The Kitaev model, which describes an one-dimensional
(1D) spinless p-wave superconductor chain, belongs to the
BDI topological class [11]. In this class, the nontrivial topo-
logical phase depends on time-reversal, particle-hole, and
chiral symmetries [12,13]. The special particle-hole sym-
metry ensures that the Majorana zero-energy bound states
behave like a superposition of particle and hole and have
no well-defined charge [1,11]. However, besides the particle-
hole symmetry, the number of pairs of zero-energy bound
states at the edges is crucial to obtain one isolated Majorana
zero-energy bound state. Any chain with an even number of
zero-energy bound states per edge does not have an isolated
Majorana at the edges. To obtain an isolated Majorana zero-
energy bound state is necessary an odd number of zero energy
at the ends of the chain [11].

In the last years, several models have been proposed
to support isolated Majorana zero-energy bound states
[8,9,14–17]. An interesting situation happens when the su-
perconducting chain is subjected to dimerization. Recently, R.
Wakatsuki [16], proposed a tight-binding model for the inves-
tigation of this dimerized Kitaev model, which has been inves-
tigated by several authors as, for example, in Refs. [18–21].

The SSH-like ground state displays an even number of
zero-energy states, while the Kitaev-like ground states present
an odd number. In the Kitaev-like ground states, the model can
support an isolated Majorana zero-energy bound states at the
ends of the chain [16].

Therefore the dimerized Kitaev chain allows to study
topological phase transitions from ground states with an even
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number of zero-energy states to the ground state with an odd
number of zero-energy states. Considering a domain wall at
the middle of the chain, the authors of Ref. [16] studied the
evolution of the solitonic mode across the topological phase
transition from SSH-like ground state to Kitaev-like ground
state. The solitonic mode suffers a split across the quantum
phase transition between the SSH-like and Kitaev-like phases.
The splitting of the solitonic mode gives rise to one Majorana
zero-energy bound state at each end of the chain. We point out
that the results from Ref. [16] depend on a specific constraint
between the hopping terms and superconducting correlation
(i.e., a constraint between the hopping and superconducting
parameters such that they are interdependent).

Motivated by the recent experimental observation of spec-
troscopic signatures of Majorana zero-energy modes in semi-
conducting nanowires placed on the surface of superconduct-
ing substrate [22,23], in this work, we explore the phase
diagram of the Kitaev model with alternating hoppings and
superconducting correlations.

Referring specifically to the dimerized Kitaev chain, we
could cite the following proposals as possible experimental
achievements. In Ref. [24], the authors suggested that a
nanowire with strong spin-orbit interaction could be deposited
on a s-wave superconducting substrate. The effects of mis-
alignment between the atoms of nanowire and the substrate
lattice can promote the desirable hopping dimerization in
the nanowire. After reaching the dimerization, one can turn
on a magnetic field along the axial axes of the nanowire
and adjust the chemical potential to obtain a quasiparticle
spectrum of a spin-triplet superconductor in the nanowire, as
happens in the case of the usual p-wave Kitaev model [1].
We believe that this method is very promising and realistic
because the interaction between the nanowire and substrate,
which induces the dimerization, can indeed be realized by a
type of proximity effect [4].

The second possibility comes from a recent experimental
realization in artificial lattice vacancies [25]. The authors were
able to obtain topological states in engineered atomic lattices.
They showed that it is possible to build a dimerized chain
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through vacancies on the chlorine monolayer on a Cu(100)
surface. The essential physics of this topological systems can
be captured by tight-binding models. Besides, this type of
lattice provides an excellent platform to study the domain
wall and the states that arise around it. Therefore our analyses
could be used to investigate topological states in vacancy
latices in the presence of correlated electronic modes.

Finally, the dimerized Kitaev chain could, in principle, be
done in an “artificial” one-dimensional lattice, comprised of
an array of trapped ultra cold atoms with effective hoppings,
as has been realized recently in a bosonic version of the Su-
Schrieffer-Heeger (SSH) model [26].

As we have anticipated, our results do not depend on
constraints between the hopping terms and superconduct-
ing parameters, as employed in Ref. [16]. The effects of
the anisotropic correlations have been clarified. We provide
the correct phase transition between the hybrid model and the
pure SSH model. We studied the effects of the anisotropic
hopping terms and anisotropic superconducting correlations
over the zero energy bound state around the domain wall at the
middle of the hybrid chain. To this purpose, we create a gen-
eral kink (i.e., in hopping and superconducting correlations)
at the middle of the chain.

The paper is organized as follows, in Sec. II, we defined the
model and its important discrete symmetries. In Sec. III, we
introduce the topological invariants related to each symmetry
and the phase diagrams of the system. In Sec. IV, we simulate
a kink at the middle of the chain to obtain the zero-energy
states around the domain wall. We investigated the effects of
the anisotropic superconducting correlation over the solitonic
model. Finally, we summarize our results in the conclusion
section.

II. ANISOTROPIC MODEL

The SSH model, (1), subjected to anisotropic supercon-
ducting correlations, can be defined as

HHyb =
∑

i

(t1c†
BicAi + t2c†

Ai+1cBi + H.c.)

−
∑

i

(�1 c†
Bic

†
Ai − �1c†

Ai, c†
Bi + H.c.)

−
∑

i

(�2 c†
Ai+1c†

Bi − �2c†
Bic

†
Ai+1 + H.c.)

−μ
∑
i,α

c†
αicαi, (1)

where μ is the chemical potential, t1 and t2 are hopping
terms and �1 and �2 are the superconductors anisotropic
correlations order parameters, see Fig. 1. Here, cα,i is an
operator that creates a fermion at the site i in the sublattice α

with α = A, B. The model described by Eq. (1) belong to the
BDI topological class in the Altland-Zirnbauer classification
of topological superconductors/insulators [12,13]. The model
possesses time-reversal, particle-hole, and chiral symmetries
or sublattice symmetry [16].

FIG. 1. The hybrid model with nearest neighbors t1 and t2 hop-
ping and superconducting parameters �1 and �2. Each unit cell i
contains a pair of sublattice A and B, the red and blue spheres,
respectively. The hopping terms and superconducting parameters
works for different sublattices, t1 and �1 within the unit cell while t2

and �2 out of the unit cell.

The Hamiltonian in Eq. (1) can be rewritten in k space in
terms of the Dirac matrices as

HHyb =
∑

k

ψ
†
k Hkψk, (2)

where ψ† = (c†
A,k, c†

B,k, cA,−k, cB,−k ) and

Hk = −μσ3 ⊗ σ0 + aσ3 ⊗ σ1 + bσ3 ⊗ σ2

− cσ2 ⊗ σ2 − dσ2 ⊗ σ1 (3)

with a = t1 + t2 cos(ka), b= t2 sin(ka), c = �1 + �2 cos(ka),
and d = �2 sin(ka). When �1 = �2 = μ = 0 the system
becomes the SSH model that belongs to the same topological
class as the Kitaev model, as is well known [11,16]. The SSH
model does not display Majorana zero-energy bound states at
the ends of the chain [11].

In nontrivial topological phase (|t2| > |t1|), the SSH model
exhibits one pair of zero-energy states. These zero-energy
states are spread over several sites near the edge of the
chain. These two zero-energy edge states are localized around
the first and the last site, respectively. The degree of the
localization of these states depends on the distance from
the critical point t2 = t1, or more precisely, its localization
depends on the penetration depth ξ and the critical exponent ν.
For example, for SSH model ξ = (t2 − t1)−ν , where t2 = t1 is
the critical point and ν = 1 is the critical correlation exponent
of the SSH model. Indeed, for the case of the simple SSH,
these zero-energy state can be written as �(n) ∝ e−n/ξ [27].
Note that away from the critical point, these zero-energy states
are majority localized around the first and last sites of the
chain.

The zero-energy states of the SSH model are composed by
superposition of particles and exhibit a well-defined charge.
Therefore a conventional fermionic excitation mode emerges
[11].

In the SSH model, the chiral symmetry results from an
equivalence between the sublattices A and B. We notice
that the chiral symmetry protects the nontrivial topological
region and the zero-energy edge states [11]. Now, when
t1 = t2 and �1 = �2, the Hamiltonian, Eq. (1), becomes the
Kitaev model, which possesses particle-hole symmetry, given
(	 = σ1K), time reversal symmetry (
 = K) and also chiral
symmetry (� = 	
) [16]. Nevertheless, although the Kitaev
model and the SSH model belongs to the same topological
classification (i.e., BDI), it is important to notice that the
origin of the particle-hole symmetry is physically distinct
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for each model [11,16]. As pointed out in Ref. [11], for the
SSH model, the particle-hole symmetry was induced by time-
reversal and chiral symmetries, while for the Kitaev model,
the particle-hole symmetry is essentially a characteristic of the
superconducting phase.

III. PHASE DIAGRAM ON THE PARAMETER SPACE

A. One half limit, μ = 0

Since the model in Eq. (1) has been classified into the BDI
topological class, the Z topological invariant that should be
calculated to characterize the trivial and nontrivial phases is
the well known winding number [28]

Wi = 1

4π i

∫ 2π

0
dkTr

(
CiH−1

k ∂kHk
)
, (4)

where Ci=1,2 are the symmetry operators and Hk is given by
Eq. (3). The operators Ci=1,2 are two matrices that anticom-
mute with the Hamiltonian ({Ci, Hk} = 0), and defines two
distinct topological indexes Wi=1,2.

In the case of μ = 0, the Hamiltonian (3) anticommutes
with two matrices: C1 = σ0 ⊗ σ3 and C2 = σ0 ⊗ σ1. Here, the
matrix C1 is the chiral operator or sublattice symmetry and C2

is the particle-hole symmetry operator. Thus W1 (or the chiral
index N1 in Ref. [16]) is related to the sublattice symmetry and
W2 (or the chiral index of Majorana fermion N2 in Ref. [16])
refers to the particle-hole symmetry.

The invariant W1 is related to Zak’s phase γn, such that
γn = W1π . Here, n identifies the index of the occupied band.
The interpretation of the Zak phase and the winding number
are physically different. Due to the bulk-boundary correspon-
dence, the winding number W1 can be interpreted as the num-
ber of zero-energy states. The winding number is a quantized
number. However, the Zak phase is Berry’s phase picked up by
the eigenfunction of Hamiltonian Hk when k is forced to vary
by a external perturbation through the entire Brillouin zone.
The Zak phase is quantized only when the system possesses
inversion symmetry or chiral symmetry [29,30].

Besides, as demonstrated by R. Wakatsuki et al. [16], W1

is equal to the number of zero energy states per end of the
chain and |W2| is equal to the number of Majorana zero-energy
bound states. When �1 = �2 = μ = 0, the chiral operator
C1 = σ0 ⊗ σ3 becomes σ3. This reduction, C1 = σ3 is neces-
sary to obtain a quantum phase transition from the hybrid
chain to the SSH limit.

We calculated W1 = 
(|�2 + t2| − |�1 − t1|) + 
(|�2 −
t2| − |�1 + t1|) for μ = 0 (see Appendix A) and the phase
diagram results are shown in Fig. 2. All parameters are
expressed in units of t1 in the plot. The results for W2, can
be seen in Fig. 3. The analytical expressions for the winding
numbers when μ = 0 are given in Appendix A. As we can
see, in Figs. 2, and 3, these phase diagrams are presented as
function of the parameter �1/t1 and �2/t1 for fixed values
of t2/t1.

Figure 2(a) shows the phase diagram of the pure SSH
model without the superconducting correlation terms. In this
case, a topological nontrivial phase arises when |t2| > |t1|
since W1 = 1 (red region), and a trivial topological phase
arises when |t1| > |t2| (W1 = 0) (blue region).
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FIG. 2. Topological phase diagrams with respect to W1 with μ =
0. The numbers in (a)–(d) denotes W1. (a) Topological phase diagram
of the pure SSH model with �1 = �2 = 0. The trivial topological
region is indicated by blue color (W1 = 0), while the red region is the
nontrivial topological phase with W1 = 1. In (b)–(d), we considered
the effects of the correlations �i for fixed values of the ratio t2/t1.
Topological phase diagram with (b) t2/t1 = 0.2, (c) 1, and (d) 1.6.
A new topological phase with W1 = 2 (white regions) arises in the
superconducting hybrid system.

We then proceed our analysis introducing the supercon-
ducting correlations �1 and �2 to the SSH model. Starting
from the three different ground states: t2/t1 < 1 (topological
trivial), t1/t2 = 1 (phase transition line), and t2/t1 > 1 (topo-
logical nontrivial phase) in the absence of superconducting
correlations (�1 = �2 = 0), we variate the superconducting
correlations for each case and the results are presented in
Figs. 2(b)–2(d). The ratio t2/t1 has been held fixed in each
panel.

Figure 2(b) shows the case t2/t1 < 1 and we observe
that the superconducting correlations induce three different
topological regions: blue (W = 0), red (W = 1), and an extra
white region (W = 2). Moreover, Fig. 2(c) shows the results
along the transition line, t1/t2 = 1, in the presence of the
parameters �1/t1 and �2/t1 �= 0, and we get the same three
different topological phases as previously obtained, indicated
by the same color scheme as in Fig. 2(b), however, notice
that now, there is a black point located at the origin of the
phase diagram. This point represent a gapless point of the SSH
model, �1/t1 = �2/t1 = 0, which is consistent with the phase
diagram in Fig. 2(a) at point t1 = t2 = 1.

Finally, the phase diagram shown in Fig. 2(d) emerges from
a topological phase of the SSH model, when t2/t1 = 1.6.

The results are analogous to those previously obtained,
except that, differently from the result obtained in Ref. [16],
we have correctly determined the topological phase transition
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(b) t2/t1=0.2(a) 1/t1=0, 2/t1=2

t2/t1

En

-2
-1 10

-1
0
1
2

-2 2

-2
-1 10

-1

0
1
2

-2 2
-2

-1 10

-1
0
1
2

-2 2

0

0 0 0

0

0

0

0

0

0

0
0

1

1

1 1

-1

-1

-1 -1

2

t1

1

t1

2

t1

1

t1

2

t1

1

t1

(c) t2/t1=1.0 (d) t2/t1=1.6

0

1

0

0

FIG. 3. Energy spectrum in real space and topological phase
diagrams with respect to W2 with μ = 0. The green, red, and blue
regions correspond to W2 = −1, 1, and 0, respectively. The numbers
in (b)–(d) denotes W2. (a) Energy spectrum as a function of t2/t1 for
the particular point �1/t1 = 0 and �2/t1 = 2 of the phase diagrams
(b)–(d). Here, the black solid lines are the energy of the bulk states
while the blue and green lines are the energy of the edges states. The
circle (yellow), square (orange), and triangle (orange) in the energy
spectrum (a) indicates the value of the ratio t2/t1. (b) Topological
phase diagram with t2/t1 = 0.2. where the circle indicates the point
(0,2). (c) Topological phase diagram with t2/t1 = 1, where the square
indicates the point (0,2). (d) Topological phase diagram with t2/t1 =
1.6, where the triangle indicates the point (0,2).

at �1 = �2 = 0, see the red dot at the origin of the phase
diagram.

Indeed, the model should fall into the topological phase
of the SSH model, W1 = 1, when t2/t1 > 1 in the absence
of superconducting correlations (see the red dot at the origin
of the diagram in Fig. 2(d). Figure 3(a) shows the energy
spectrum in real space for N = 50 as a function of t2/t1 for
fixed values �1/t1 = 0 and �2/t1 = 2.

The zero-energy states located at the ends of the chain
are highlighted by green and blue solid lines, and correspond
to the orange square and triangle, indicated by the point
�1 = 0 and �2 = 2 of the phase diagram in Figs. 3(c) and
3(d). On the other hand, the bulk energy states have been
highlighted by black solid lines, corresponding to the yellow
circle in the energy spectrum of Fig. 3(a), are related to the
point �1 = 0 and �2 = 2 of the phase diagrams (b) and (c)
of Fig. 3.

The zero-energy edge states solutions are shown in
Fig. 3(a) and indicated by the red dotted and green solid
lines.

The circle indicates the topological nontrivial ground state
(topological indexes W1 = 2 and W2 = 0) with four zero-

energy states at the ends of the chain, see Fig. 3(a). The
orange square and triangle shows the topological nontrivial
region (topological indexes W1 = 1 and W2 = −1) with two
zero-energy states at the ends of the chain, Fig. 3(a).

We see that, in the interval 0 < t2/t1 < 1.0 of the Fig. 3(a)
W1 = 2. Therefore, using the bulk boundary correspondence
theorem [31], one realizes that W1 = (4)/(2) = 2 is the num-
ber of zero-energy states per end of the chain. Indeed, the
white regions in Figs. 2(b)–2(d) indicate two zero energy
states per ends of the chain.

Moreover, we see that for 1.0 � t2/t1 � 1.8, there are only
two zero-energy states in Fig. 3(a) (see the two collapsed
green lines in this interval). Again, using the bulk boundary
correspondence theorem, we conclude that W1 = 1 is the
number of zero-energy states per end of the chain [i.e., W1 =
(2)/(2) = 1 states/end].

It is know that, given the particle-hole symmetry, a pair
of Majorana zero-energy bound state emerge at the ends of
the chain when each end of the chain has only one zero-
energy state. For instance, on the interval 1.0 < t2/t1 < 1.8,
and for �1/t1 = 0 and �2/t1 = 2 there is only one Majorana
zero-energy bound state per end of the chain, see solid green
lines in Fig. 3(a). Indeed, the point (�1/t1 = 0 and �2/t1 =
2) from Figs. 3(c) and 3(d) is located within the green region
with W2 = −1, see orange square and triangle in Figs. 3(a),
3(c), and 3(d).

Actually, the green and red regions in Fig. 3 support one
isolated Majorana zero-energy bound state at the edges, while
blue regions do not exhibit an isolated Majorana zero-energy
bound state. The boundaries of the phase diagrams Figs. 2 and
3 indicate the phase transitions between topological phases
with different number of zero-energy edge states, such that
green and red regions exhibit ground states with Majorana
zero-energy bound states at the edges of the chain.

In order to investigate the topological phase transition from
the hybrid phase to a pure SSH ground state, we introduced
the following parametrization; t1 = −t (1 + η1), t2 = −t (1 −
η1), �1 = �(1 + η2) and �2 = �(1 − η2). The case, η1 = η2

was studied in Ref. [16].
We notice that in Ref. [16], the authors studied only the

case α = 1, i.e., η2 = η1. We remark that the choice η1 = η2

creates a specific constraint between the hopping and super-
conducting parameters. Replacing the above parametrization
in the Hamiltonian (1), we obtain a new phase diagram, as
seen in Fig. 4. Moreover, Fig. 4 provides a clear visualization
of the topological quantum phase transition from the super-
conducting hybrid model to SSH model. The dotted line at
� = 0 represents the topological insulating phase of the SSH
model with W SSH = 1, see Figs. 4(a) and 4(b).

In order to compare with previous results, in Fig. 4(a)
we fixed η1 = η2. The phase diagram when η1 �= η2 can be
visualized in Fig. 4(b). In this case, we fixed α = 1.5, η2 =
αη1 and 0 � η1 � 1. We can see three different topological
phases, red W1 = 1, blue W1 = 0, white W1 = 2 and a red
traced line with W SSH

1 = 1 for �/t = 0 and η1 < 0. Here
W SSH

1 is the winding number for the insulating phase of the
SSH model. This result has not been obtained in Fig. 2(a) of
Ref. [16], where for �/t = 0 and η < 0, they found N1 = 2
in their whole SSH-like area.
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FIG. 4. Topological phase diagrams with respect to W1 in-plane
�/t − η1 with μ = 0. Parametrization t1 = −t (1 + η1), t2 = −t (1 −
η1), �1 = �(1 + η2), and �2 = �(1 − η2) [16]. The numbers in
the figures denotes W1. Red regions exhibit phase with W1 = 1,
blue regions exhibit a phase with W1 = 0 and white regions posses
W1 = 2. (a) Case η2 = η1. (b) Case η2 = 1.5η1. All points that belong
to the traced line at �/t = 0 and η1 < 0 are into a topologically
nontrivial phase of the pure SSH model, since at these points, the
winding number W SSH = 1. The topological traced line for η1 < 0
separates two topological regions with the same topological invariant
W1 = 2 (white region).

B. μ �= 0

For |μ| > 0, the sublattice symmetry is explicitly broken
and only the particle-hole symmetry(	2 = σ1 ⊗ σ0K) induce
the topological index. We computed the number of zero-
energy states and W2 [see Eq. (A10) in Appendix A] as a
function of �1, �2, and μ/t1. These results are summarized
in Fig. 5.

Figure 5 shows the effects of the chemical potential μ/t1
over the number of zero-energy solutions per end of the chain.
In Fig. 5(a), we calculated the energy spectrum for a chain
with 60 sites as a function of t2/t1 for μ/t1 = 0.9, �1/t1 = 0,
and �2/t1 = 0.4.

The zero-energy states located at the ends of the chain are
highlighted by green solid lines, and correspond to the orange
triangle, indicated by the point �1 = 0, �2 = 2 of the phase
diagram in Fig. 5(d). On the other hand, the bulk energy states
have been highlighted by black solid lines, corresponding
to the yellow circle and square in the energy spectrum of
Fig. 5(a), are related to the point �1 = 0 and �2 = 2 of the
phase diagrams (b) and (c).

Figure 5(b) shows the phase diagram in plane �1 − �2 for
μ/t = 0.9 and t2/t1 = 0.2. Again, the regions with W2 = 0 are
colored with blue color, while the regions with W2 = −1 and 1
are colored with green and red colors, respectively. The yellow
circle indicates the topological trivial ground states (W2 = 0)
for μ = 0.9, t2/t1 = 0.2, �1 = 0, and �2 = 2. Figure 5(c)
shows the phase diagram when t2/t1 = 1, where the yellow
square indicates the topological trivial ground state (W2 = 0)
for μ = 0.9, t2/t1 = 0.2, �1 = 0, and �2 = 2. Figure 5(d)
shows the phase diagram for t2/t1 = 1.6. The orange triangle
indicates the topological nontrivial ground state (W2 = 0) for
μ = 0.9, t2/t1 = 1.6, �1 = 0, and �2 = 2. We can see clearly
that the topological regions with W2 �= 0 increasing when the
ratio t2/t1 increases [i.e., the size of the red and green regions
from the Fig. 5(b) (t2/t1 = 0.2), 5(c) (t2/t1 = 1.0), and 5(d)
(t2/t1 = 1.6) increases as the ratio (t2/t1) increase].
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FIG. 5. Energy spectrum of the finite chain as a function of t2/t1

and topological phase diagrams with respect to W2 with μ = 0.9. The
numbers in (b)–(d) denotes W2. (a) Energy spectrum as a function
t2/t1 with �1/t1 = 0, �2/t1 = 2.0, and μ = 0.9. Here, the black
solid lines are the energy of the bulk states while the green lines are
the energy of the edges states. In this case, we can see zero-energy
Majorana bound states only for 1.2 < t2 < 2.0 (solid green lines
at E = 0). The circle, square, and triangle in the energy spectrum
(a) indicates the point �1 = 0 and �2 = 2 of the phase diagrams
(b)–(d). Topological phase diagram with (b) t2/t1 = 0.2, (c) 1.0, and
(d) 1.6. The point (0,2) of the phase diagrams in (b)–(d) are indicated
by circle (yellow), square (yellow) and triangle (orange). Here, green
color corresponds to W2 = −1, red to W2 = 1, and blue to W2 = 0.

One can compare the phase diagram for μ = 0 (Fig. 3) with
the phase diagram for μ = 0.9 (Fig. 5). The points represented
by circle, square and triangles can be used to exemplify the
effects of μ. When we considered t2/t1 = 0.2 and μ = 0.9,
one can see that the circle stays in the trivial phase [blue
region in Fig. 5(b)] and we noted yet a great expansion of
the blue region. Now, considering t2/t1 = 1 and increasing μ

from zero to 0.9, we observed that the blue region increases
too and the square now is in the trivial phase, see Figs. 3(c) and
5(c). In summary, the chemical potential tenders to increasing
the blue region and therefore is prejudicial to the nontrivial
topological phase.

IV. SIMULATION OF THE ZERO-ENERGY STATES
AROUND THE DOMAIN WALL AND EDGES

OF THE HYBRID CHAIN

In this section, we consider a kink at the middle of the
hybrid chain [32]. In Fig. 6(a), we considered a kink only in
the hopping terms, see green dotted circle. In Fig. 6(b), we
considered a kink only in the superconducting correlations,
while in Fig. 6(c), we considered a kink in both, hopping and
superconducting pairing parameters.
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FIG. 6. The hybrid chain in the presence of a kink at the middle
of the chain. In (a), we considered a kink only in hopping terms, see
green dotted circle at the middle of the chain. In (b), we considered
a kink only in the superconducting correlations, while in (c), we
considered a kink in both, hopping and superconductor correlation
parameters.

The Hamiltonian of the hybrid chain in the presence of the
kink is given by

H = ψ†hψ, (5)

where

ψ† = (c†
A1, . . . , c†

AN ; c†
B1, . . . , c†

BN ; cA1, . . . , cAN ; cB1, . . . , cBN )

and

h =

⎛
⎜⎜⎝

0 T 0 �

T † 0 −�† 0
0 −� 0 −T

�† 0 −T † 0

⎞
⎟⎟⎠. (6)

The matrices T and � depends on the kink, see Appendix B.
For instance, for a kink only in the hopping term, the matrices
T and � are given by

Ti, j =
{
δi, jt1 + δi−1, jt2, i, j � N/2

δi, jt2 + δi−1, jt1, i, j > N/2
(7)

and

�i, j = δi, j�1 + δi−1, j�2. (8)

Otherwise, when we considered a kink in hopping and
superconducting pairing terms, the matrix T remains equal to
(7), while the matrix � should be replaced by

�i, j =
{
δi, j�1 + δi−1, j�2, i, j � N/2

δi, j�2 + δi−1, j�1, i, j > N/2
. (9)

We simulated the situations depicted in Figs. 6(a)–6(c). In
all simulations, we calculated the probability density of the
zero-energy states as a function of the site position and the
parameter �2/�1. The results of these simulations are shown
in Figs. 7–12.

FIG. 7. Probability density of the zero-energy states as a function
of the ratio �2/�1 and the site position. (a) |ψ1|2, (b) |ψ2|2, (c) |ψ3|2,
and (d) |ψ4|2.

Physically, when the space symmetry is broken, for in-
stance, at the kink, zero-energy bound states can emerge
around it [16]. The emergence of zero-energy solutions
around the middle of the chain occurs due to the domain
wall, which separates two sectors of the chain with different
topological index. As we mentioned above, in this section,
we studied two types of the kink at the middle of the chain.
The first case takes into account one kink only in the hopping
terms. The second case, considers the kink in both, hopping
and superconducting pairing terns. We neglected the case with
kink only in superconducting order parameters [Fig. 6(b)]
because we observed that this situation does not induce zero-
energy bound states around the middle of the chain.

Kink in the hopping. In the first case, we considered the
chain with kink only in the hopping terms and for t2/t1 =
1.5. In the last part of this section, we will generalize the

FIG. 8. Probability density of the zero-energy states. (a) Proba-
bility density of all zero-energy states together in the same picture
and (b) the number of the zero energy states as a function of the ratio
�2/�1.
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FIG. 9. Probability density of the four zero-energy states as a
function of the ratio �2/�1 and the site position. (a) |ψ1|2, (b) |ψ2|2,
(c) |ψ3|2, and d) |ψ4|2.

results introducing two dimerizations parameters η1 and η2,
as defined in Ref. [16].

The Hamiltonian of the system in the presence of the
kink only in the hopping term, and under open boundary
conditions, possesses zero-energy solutions, see Figs. 7 and 8.
The eigenvectors related to these zero-energy solutions can be
used to obtain the probability density |ψ j (i)|2 = u∗

i ui, where
ui is the ith component of the eigenvalue.

As we can see in Fig. 7, in the presence of the kink,
the chain with open boundary conditions can exhibit two or
four zero-energy solutions, named as ψ1, ψ2, ψ3, and ψ4. We
notice yet that the number and location of these zero-energy
solutions depend on the ratio �2/�1, see Fig. 8. For instance,
for 0 < �2/�1 < 0.6, the chain exhibits two zero-energy
states, one around the left edge and other around the right
edge, see the green regions in Figs. 7(a) and 7(b). These
solutions are majority distributed around the edges and the
middle of the chain, as we can see in Figs. 7(a)–7(d).

FIG. 10. Probability density of the zero-energy states of the chain
in presence of the kink. (a) Probability density of all zero-energy
states together in the same picture and (b) the number of the zero
energy states as a function od the ratio �2/�1.

FIG. 11. Probability density of the zero-energy states as a func-
tion of the ratio �2/�1 and the site position. Blue and Red color
denotes the subreds A nd B, respectively. (a) Chain with 200 sites
with kinks only in the hopping terms. (b) Chain with 200 sites and
kink in hopping and pairing terms. (c) Chain with one additional site
at the right edge of the chain and with kink only in the hopping terms.
(d) Chain with additional site at the right edge of the chain and with
kink in hopping and pairing terms.

Besides the number of zero-energy states, Fig. 7 shows the
localization of these four zero-energy solutions as a function
of the ratio �2/�1 and site position of the chain. Now, we
will discuss the localization of these zero-energy states as
a function of the ratio �2/�1. For 0 < �2/�1 < 0.6, the
solutions ψ1 and ψ2 are majority localized around the left and
right edge of the chain, respectively, see Figs. 7(a) and 7(b).
On the other hand, when 0.6 < �2/�1 < 1.5, the solutions
ψ1 and ψ2 appears around the left edge and around the
middle(kink) of the chain, see Figs. 7(a) and 7(b). Finally, for
�2/�1 > 1.5, ψ1 and ψ2 emerges only around the left and
right edges of the chain.

On the interval 0.6 < �2/�1 < 1.5, the zero-energy states
ψ3 and ψ4 are localized around the left edge and middle of
the chain, while for �2/�1 > 1.5, we can see both solutions
localized at the right edge, see Figs. 7(c) and 7(d).

We can observe the degree of degeneracy of the zero-
energy states in Fig. 8. Figure 8(b) shows the number of these
zero-energy states as a function of the ratio �2/�1 and site
position. Here, we considered t2/t1 = 1.5.

At this point, it is important to comment that these zero-
energy modes exhibits the following property, at the critical
points (e.g., �2/�1 = 0.6) the zero-energy solutions tend to
spread in the bulk. The value of �2/�1 = 0.6, where the
zero-energy modes penetrates in the bulk, corresponds (or
are very close) to the critical point of the system, in which
the gap energy goes to zero. This critical point separates
two distinct topological regions with different numbers of
zero-energy states, as we can see in Fig. 8(a). We point
out that, close to the critical point, the zero energy state
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FIG. 12. Number of zero-energy states as a function of the
parameter �2/�1. (a) Kink in hopping terms with N = 200. (b) Kink
in hopping terms with a additional site N = 201.

possesses a penetration depth that can be associated with the
correlation length ξ [27]. The correlation length ξ diverges at
the critical point, following the law ξ−ν ∝ (λ − λc)−ν , where
λ = �2/�1. Here, ν = 1 is the spatial correlation critical
exponent. This behavior, at the critical point, is independent
of the number of sites.

Following the discussion, the solutions ψ3 and ψ4 are
localized around the left edge and middle on the interval 0.6 <

�2/�1 < 1.5, and only at right edge for �2/�1 > 1.5, see
Figs. 7(c) and 7(d). Note that these solutions do not appear on
the interval 0.0 < �2/�1 < 0.6. This particular behavior, of
the zero-energy solutions ψ3 and ψ4, guarantees that only one
zero-energy solution appears around the left(ψ1) and right(ψ2)
edges of the chain.

Here, we observed another interesting characteristic of our
anisotropic model with open boundary conditions. On the
interval 0.6 < �2/�1 < 1.5, the zero-energy states do not
appear around the right edge, as we can see in Figs. 7(a)–7(d).
This behavior appears only in the chain subject to open bound-
ary conditions, as we will discuss in the section below. This
result occurs because on the interval 0.6 < �2/�1 < 1.5, the
second half of the chain (right side of the chain relatively to
kink) is in a trivial phase. We remark that, in the presence of a
kink, the systems behave like two chains that have been glued
together exactly at the kink. Therefore, when the second part
is in a trivial topological phase, we cant observe zero-energy
state around the right end of the chain.

Now, we will clarify the relationship between the num-
ber/localization of these zero-energy states and the emergence
of one isolated Majorana zero-energy bound state or two pairs
of zero-energy states.

In order to clarify the nature of the zero-energy modes, we
plotted all zero-energy solutions together, as we can see in
Fig. 8(a). In Fig. 8(a), there are two zero-energy fermionic
states when �2/�1 < 0.5 (green regions). In this case, there
is one zero-energy state around the left and other zero energy-
state around the right side of the chain. The first state comes
from ψ1 and the other comes from ψ2. We call attention
to the fact that, for a finite dimerized Kitaev chain with N
sites, the zero-energy states ψ1 and ψ2 overlap and are no
longer eigenstates, but hybridize into two eigenstates �1 =
(ψ1 + iψ2)/2 and �2 = (ψ1 − iψ2)/2. The energy of �1 and
�2 oscillates around the zero as a function of the N . The

overlapping between the ψ1 and ψ2, which in fact will destroy
the nonlocal character of these states, goes to zero when (L =
N ) � ξ , where ξ is the penetration depth of these states [33].

Therefore, when L � ξ the solutions ψ1 and ψ2 are local-
ized around the left and right edges and can be interpreted
as a Majorana zero-energy bound state. The emergence of
a Majorana zero-energy bound state depends on the many-
body ground state degeneracy of these zero-energy modes.
Note that one cannot build a fermionic Fock space out of
an odd number of Majorana modes, because they are linear
combinations of particles and holes. Rather, we can define a
single fermionic operator out of both Majorana end modes at
the left and right edges of the chain. Therefore the Hilbert
space we can build out is hence inherently nonlocal [11].

In the regions where the values of ratio �2/�1 induces
four zero energy states, see blue, pink and yellow regions
in Figs. 7 and 8, there is a degeneracy of degree four. For
instance, for 0.5 < �2/�1 < 1.5, there are four zero-energy
states around the left edge and the middle of the chain, while
for �2/�1 > 1.5 these zero-energy states are localized only
around the right edge. Four zero-energy states combine to
form an unconventional fermion mode that in general can not
be used to build q-bits to store information to realize robust
quantum computation [11].

It is very interesting that by a fine-tuning of the supercon-
ducting order parameter, one can be able to transit between
three types of fermionic fractionalization on the chain: (1) one
zero-energy states around the left edge and other around the
right edge, (2) two zero-energy state around the left edge and
two zero-energy around middle, or (3) two zero-energy stats
around the left and more two around the right edge. This was
only possible because we did not consider constraints between
pairing and hopping terms, as taken by Ref. [16].

Kink in the hopping and pairing terms. When we allow a
kink in the hopping and superconducting pairing terms, see
Fig. 6(c), the chain passes to exhibit four zero-energy states,
as we can see in Fig. 10(b). On the interval 0 < �2/�1 < 0.5,
the chain possess two zero-energy states at the left edge, four
zero energy states at the middle and two zero-energy states
at the right edge, as we can see in Figs. 9(a)–9(d). Now, for
�2/�1 > 0.5, we found two zero-energy states around the left
edge of the chain and four around the middle of the chain, see
Figs. 9(a)–9(d). In this case, the right edge do not exhibits
zero-energy states. On interval 0 < �2/�1 < 2, we can not
identify only one pair of Majorana zero-energy bound states,
since in all cases, at least two zero-energy states occupy the
edges and the middle of the chain. The kink in pairing terms
increases the degeneracy for all values of �2/�1, therefore, in
this case, the chain exhibits at least two pair of Majorana zero-
energy bound states, see Figs. 9(a)–9(d). The general zero-
energy state is a linear combination of the solutions ψ1, ψ2,
ψ3, and ψ4. Again, for a �2/�1 > 0.5, there is no zero-energy
solution around the right edge of the chain.

Sublattice characteristics of the zero-energy states. The
zero-energy states in Figs. 7 and 9 are localized around the
left, right, or middle of the chain. However, in which sublattice
these states are localized? In Fig. 11, we show the probability
density of these zero-energy states, where the red region
denotes the states localized in the sublattice A, while the blue
color indicates the states localized around the sublattice B.
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One can see that, in the case of a kink only in the hopping
terms, the states around the left edge of the chain have been
colored by red color because these states are localized only
in the sublattice A. However, the zero-energy states around
the middle and right edge of the chain are colored by blue
color, since these states are localized only in sublattice B. On
the other hand, when we considered kink in pairing terms, see
Fig. 11(b), we notice that on the interval 0 < �2/�1 < 0.4,
the chain exhibits zero-energy in the sublattice B around the
sites 99, 101, and on the right edge of the chain.

Additional site at the right side of the chain. We show
the zero energy states of the chain in the presence of one
additional site (one additional sublattice A at the right side
of the chain), in Fig. 11. Now, the chain has 201 sites.
We connected this additional site trough the hopping t1 and
pairing �2. Comparing Figs. 11(a) and 11(b) (without the
additional site) and Figs. 11(c) and 11(d) (with the additional
site), one can see now in Figs. 11(c) and 11(d) two additional
zero-energy states around the right edge of the chain. The
additional site changes the number of zero energy-states from
four to six, as we can see in Fig. 12(b). It is interesting to
see that one additional site, at the right edge, changes the
character of the zero-energy states around this end of the
chain. Without the additional site, these states are located only
around the sublattice B, however, after adding one site in
the right edge, the zero-energy states around the right edge
changes to sublattice A. In this case, both edges passes to
exhibits zero-energy states in same sublattice A (red regions),
see Figs. 11(c) and 11(d). Note that the region 0 < �2/�1 <

0.6 possesses two zero energy states exactly equal to the chain
without the additional site, see Fig. 12(a). In this region, we
have a Majorana zero-energy state, exactly equal as we found
in previous results. The main difference between the chains
with 200 and 201 appears on the interval 0.6 < �2/�1 < 1.5.
In this interval, for a chain with 201 sites, we can find six
zero-energy states, where two of these additional states are
localized around the right edge, see Figs. 11 and 12(b). These
states do not exist for the chain with 200 sites.

Role of boundary conditions. All calculations above have
been done using open boundary conditions. We point out
that, when we considered the periodic boundary conditions,
we observed two additional zero-energy states in the energy
spectrum. It occurs because the periodic boundary conditions
are implemented by connecting the last and first sites of the
chain trough the hopping and pairing terms. When we try to
connect the edges of the chain, a second kink is generated. For
objectivity, we do not show these results.

V. CONCLUSION

In this work, we studied the fermionic fractionalization that
emerges in the anisotropic superconducting Su-Schieriffer-
Heeger (SSH) model. The hybrid SSH model exhibits two
distinct discrete symmetries for zero chemical potential and
therefore, in this case, these two symmetries (chiral and
particle-hole) allow to calculate two distinct topological in-
variants W1 and W2, where the first can be associated to the
number of the zero-edge states per end of the chain and the
last tell us if a Majorana zero-energy bound state reside or not
at the end of the chain. These results have been confirmed by

the calculation of the number of the zero-energy edge states
at each case of the phase diagrams obtained trough these two
topological invariants. We also studied the effects of a finite
chemical potential over phase diagrams and the existence of
fermionic fractionalization, like Majorana zero-energy bound
states. Differently from a previous works [16], the phase
diagrams of our hybrid model was correctly reduced to the
limit of a pure SSH ground state. We found that a topo-
logical phase transition from a topological nontrivial phase
of the hybrid chain to a nontrivial SSH topological phase
can be induced for the limit �1 → 0, �2 → 0, μ → 0, and
t2/t1 > 1.

In the final part of this work, we simulated the behavior
of the zero-energy states around the edges and the domain
wall. After creating a domain wall through a kink, we have
diagonalized the Hamiltonian in the real space for 200 sites.
We obtained the zero energy solutions around the edges and
the kink. We observed that the superconducting correlations
dictate the existence of these zero energy states around the
domain wall, such that, for some specific values of these
correlations, the zero energy states disappear from the middle
and become majority localized around the ends of the chain.
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APPENDIX A: ANALYTICAL DERIVATION
OF THE WINDING NUMBERS

In this section, we provide the analytical expressions for
the winding numbers. By definition, they are calculated from
Eq. (A4), where Hk is given by Eq. (2) and it is explicitly
expressed here in its matricial form,

H(k) =

⎛
⎜⎜⎝

−μ z 0 w

z∗ −μ −w∗ 0
0 −w μ −z

w∗ 0 −z∗ μ

⎞
⎟⎟⎠, (A1)

with the parameters z and w given in terms of the hoppings
strengths and the superconducting gaps,

z(k) = t1 + t2e−ika, (A2)

w(k) = −�1 + �2e−ika. (A3)

Notice that presently we take a �= 1 for the sake of clarity.
For the particular case of μ = 0, the winding number can

be expressed as

W = W1 + W2

=
∑
i=1,2

Tr
∫ 2πa

0

dk

4π i
CiH−1

k ∂kHk

= −
∑
i=1,2

∫ 2πa

0

dk

2π i
∂k ln det zi, (A4)
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where

z1 = A1 + B1e−ika, (A5)

z2 = A2 + B2e−ika. (A6)

with A1 = t1 − �1, B1 = t2 + �2, A2 = −t1 − �1, and B1 =
�2 − t2.

Now, the integrals in Eq. (A4) can be easily calculated
making use of

∫ π
a

−π
a

dk
Bie−ika

Ai + Bie−ika
= 2π

a
, if |Bi/Ai| > 1 . (A7)

Pluging this result in Eq. (A4), we get

W = 
(|�2 + t2| − |t1 − �1|)
+
(|�2 − t2| − | − t1 − �1|), (A8)

where 
(x) denotes the Heaviside step function.
Moreover, making use of the mappings t1 = −t (1 + η1)

and t2 = −t (1 − η1), where t denotes their mean value and
η1 is the absolute difference between t1 and t2 divided by
t , and also that �1 = −�(1 + η2) and �2 = −�(1 − η2),
in a similar fashion, one can show that the winding number
reduces to

W = 
(� − tη1) + 
(−� − tη1). (A9)

In this particular case, notice that the results does not depend
on the difference between �1 and �2. Moreover, for the even
more strict case when η1 = η2, this result is identical to the
one obtained by Ref. [16] and the phase diagram analysis
presented in this paper constitutes a generalization of their
previous investigation.

For the case μ �= 0, the topological number is given by
Ref. [16],

W = −
∫ π

a

π
a

dk

2π i
∂k ln Z (k), (A10)

where

Z (k) = μ2 + (z(k) − w(k))(z(k)∗ + w(k)∗). (A11)

APPENDIX B: MATRICES T AND �

The matrices T and � represent the hopping and super-
conducting connections between different sublattices in the
real space. These matrices are N × N matrices, where N = 2n
is the number of sites and n is the number of unit cells. For
a chain with N = 8 sites, the matrices T and � possess the
following form:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 0 0 0 0 0 0 0
t2 t1 0 0 0 0 0 0
0 t2 t1 0 0 0 0 0
0 0 t2 t1 0 0 0 0
0 0 0 t1 t2 0 0 0
0 0 0 0 t1 t2 0 0
0 0 0 0 0 t1 t2 0
0 0 0 0 0 0 t1 t2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B1)

and

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1 0 0 0 0 0 0 0
�2 �1 0 0 0 0 0 0
0 �2 �1 0 0 0 0 0
0 0 �2 �1 0 0 0 0
0 0 0 �2 �1 0 0 0
0 0 0 0 �2 �1 0 0
0 0 0 0 0 �2 �1 0
0 0 0 0 0 0 �2 �1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B2)

if the kink is present only in hopping terms. On the other hand,
for a kink in superconducting terms, the matrix � should be
replaced by

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1 0 0 0 0 0 0 0
�2 �1 0 0 0 0 0 0
0 �2 �1 0 0 0 0 0
0 0 �2 �1 0 0 0 0
0 0 0 �1 �2 0 0 0
0 0 0 0 �1 �2 0 0
0 0 0 0 0 �1 �2 0
0 0 0 0 0 0 �1 �2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B3)
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