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Interplay between superconductivity and spin-dependent fields in nanowire-based systems
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The interplay between superconductivity, spin-orbit coupling, and Zeeman or exchange field, is studied
theoretically in two different setups: a single wire in which all these fields coexist, and a double wire system
in which superconducting pairing and the spin-dependent fields are spatially separated. We first explore a
magnetoelectric effect, namely the appearance of anomalous charge supercurrents. We determine the conditions
under which such currents are allowed by symmetry and express them in terms of the SU(2) electric and magnetic
fields. In leading order in the strength of the fields we find that in the single wire setup such currents may appear
only when the Zeeman field has both, a longitudinal and transverse component with respect to the spin-orbit
field. In contrast, in the two wire setup a parallel component to the SOC can generate the anomalous current,
which is allowed by symmetry. We confirm these findings by calculating explicitly the current in both setups
together with the self-consistent superconducting order parameter. The latter shows in the ground state a spatial
modulation of the phase that leads to currents that compensate the anomalous current, such that in both cases
the ground state corresponds to a total zero-current state. However, in the two wire setup this zero-current state

consists of two finite currents flowing in each of the wires in opposite direction.

DOI: 10.1103/PhysRevB.101.184512

I. INTRODUCTION

Superconductivity in low dimensional systems with spin-
orbit coupling (SOC) and a Zeeman field has been intensively
studied in the context of Majorana zero-energy modes [1-6].
On the other hand, the interplay between superconductivity
and spin-dependent fields is known to lead to striking phe-
nomena as long-range triplet correlations [7,8], critical field
enhancement [9,10], and magnetoelectric effects stemming
from the coupling between charge and spin degrees of free-
dom [11-17].

Magnetoelectric effects in the superconducting state are
reminiscent of the widely studied spin Hall effect (SHE)
and Edelstein effect in normal conductors [18-21]. The SHE
consists in the generation of a transverse spin current in
response to a longitudinal charge current, while a spin density
is induced by a charge current in the Edelstein effect. In par-
ticular, the Edelstein effect has been theoretically discussed in
two-dimensional (2D) systems with Rashba SO interaction,
and due to possible applications in spintronics, it has been
investigated over the past years [22-26]. The inverse Edel-
stein effect, also known as spin-galvanic effect, describes the
generation of an electric current via a spin density [24,27,28].

These effects also occur in the superconducting state
[11,14,27-31]. For temperatures close to the superconducting
critical temperature, the magnetoelectric effect can be studied
at the level of the Ginzburg-Landau theory. Specifically the
coupling between spin and charge degrees of freedom is
described by an additional term Fp, the so-called Lifshitz
invariant [32,33]. For the particular case of a 2D system with a
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Rashba SOC, this term has the form F; ~ ()7 - (71 X %_(p),
where e(«) is a function of the Rashba SOC parameter «, h is
the exchange or Zeeman field, ¢ is the phase of the supercon-
ducting order parameter, and 7 is a unit vector perpendicular
to the plane. The above expression for the Lifshitz invariant
can be generalized for arbitrary linear-in-momentum SOC and
dimension [29,34].
In general, the Lifshitz invariant can be written as

>

F,~T Vo, (1)

where T is a polar vector which is odd under time reversal,
and SU(2) gauge invariant. This vector T can be expressed in
terms of the so-called SU(2) magnetic and electric fields. For
example, in the case of a homogeneous 2D system the current
induced via magnetoelectric effect is, in lowest order in the
SOC and Zeeman fields, proportional to the vector product
between the electric and magnetic SU(2) fields [29]. In a
one-dimensional system, the SU(2) magnetic field is zero and
therefore the situation has to be somehow different. Indeed
it was shown in Refs. [12,15] that the spin-galvanic effect
in a 1D wire with Rashba SOC only appears if the Zeeman
field has finite components, both parallel and orthogonal to the
SOC. This result suggests that there has to be a contribution to
the Lifshitz invariant which only contains terms proportional
to the SU(2) electric field.

In the present work we investigate the charge current orig-
inating from the interplay between superconductivity, SOC,
and a Zeeman field in different systems of wires. Specifically,
we determine the Lifshitz invariant in terms of the SU(2)
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fields, and focus on the charge current to the leading order
in the SOC and Zeeman field. We use this general method to
study two different setups: a single wire with superconducting
correlations, and a system where the superconducting and
magnetic correlations and fields are spatially separated into
two different wires which are coupled via a hopping term.
In leading order in the fields, the single wire system displays
a spontaneous current only if both transverse and longitudi-
nal components (with respect to the spin-orbit field) of the
Zeeman field are finite. On the other hand, in the two wire
system, the parallel component is sufficient to generate a
current. This result can be explained by the existence of an
effective SU(2) magnetic field.

This article is organized as follows: in Sec. II we in-
vestigate the appearance of the charge current within the
SU(2)-covariant formalism, by constructing a general Lifshitz
invariant F1, in lowest order in the SU(2) electric and magnetic
fields. In Sec. III we study the single wire system in the
framework of Green’s function formalism and compute the
current explicitly in the limit of weak spin-orbit coupling and
Zeeman field. By allowing a superconducting order param-
eter with an inhomogeneous phase we demonstrate that the
ground state of the system corresponds to a zero-current state
due to the cancellation of the spin-galvanic current by the
one generated by the inhomogeneous superconducting phase.
Section IV is devoted to the double wire system. We derive the
self-consistency equation and the expression of the current,
and show that the zero-current state carried in the ground state
corresponds to two opposite currents flowing in each of the
wires. We finally present our conclusions in Sec. V.

II. THE SPIN-GALVANIC EFFECT IN
SUPERCONDUCTING WIRES FROM A SU(2)-COVARIANT
PERSPECTIVE

In this section we first provide a brief review of the SU(2)-
covariant formalism for 2D systems with Rashba SOC and
an exchange field. We then apply this formalism to different
systems of wires to understand the magnetoelectric effects
from a symmetry consideration.

A. Short review of the SU(2) formalism

To understand the magnetoelectric effect from a general
perspective, we briefly introduce the SU(2)-covariant formal-
ism [35,36] to describe systems with linear-in-momentum
SOC and a quadratic electronic band. The starting point is the
general Hamiltonian describing a system with superconduct-
ing correlations:

H = /d?(qﬁ how+V wi w]’ V), )

where the spinor W = (Y4, ¥, )" contains the annihilation
operators ¥4 | (7) for spin up and down electrons at position 7
and V = V (7) is the superconducting potential. In the normal
part of the Hamiltonian fzo, the linear-in-momentum SOC and
Zeeman field enter as a SU(2) gauge potential [35,36]

A (pi — Ai)z

hozz——u+«40, 3
m

where w is the chemical potential. Namely Ay = %Ag o®1is
the SU(2) scalar potential which describes either a Zeeman
magnetic field in a normal metal or an intrinsic exchange field
in a ferromagnetic metal, whereas the vector potential A; =
%.Ai“ o“ represents spin-orbit interaction, where o are the
Pauli matrices. Lower (upper) indices i = x, y, z label space
(spin) variables and sum over repeated indices is implied.

In analogy to usual electrodynamics, the Hamiltonian
Eq. (3) is written in terms of a SU(2) four-potential A,
where p labels space (4 = x, y, z) via spin-orbit interaction
and time (u = 0) via the Zeeman field. This Hamiltonian
is invariant under the gauge transformations ¥ — {/ W and
Ay = UA U —i(3,U)U™Y, where U is a SU(2) rotation
matrix [35]. Following the analogy to electrodynamics one
defines the SU(2) field strength tensor F,, as

Fuw =0, A, — A, —i[A,, Al “)

The SU(2) electric and magnetic fields are then defined as
Ef = Fg, and Bf = €;; F};, respectively, €;j being the Levi-
Civita symbol.

We consider now a superconductor at temperature close
to its critical temperature 7.. Equilibrium properties can be
described within the Ginzburg-Landau theory. As mentioned
in the Introduction magnetoelectric effect is related to a Lif-
shitz invariant in the free energy with the form of Eq. (1). The
anomalous current induced in a system is then proportional to
the polar vector T The latter can be constructed using SU(2)
gauge symmetry arguments only. In Ref. [29], the Lifshitz in-
variant in the lowest order in the exchange field was identified,
and the anomalous current was found to be proportional to the
following cross product of the SU(2) electric and magnetic
fields:

Ji ~ Fo Fro = E® x BY. 5)

To illustrate the result of expression Eq. (5), let us consider
a two-dimensional system in the x-y plane with homoge-
neous and time-independent Zeeman and Rashba spin-orbit
fields. Specifically, the SOC is described by the Hamiltonian
Hso = a(py0* — pyo”) leading to a two component vector
potential: A} = 2ma = —A”. In this case, the electric field
has two components Fo, = ma(Afo® — Af0*)/2 and Fo, =
mao(Ayo® — A 6)/2, whereas the magnetic field is given by
Foy = m?a?o? = —JFy. This leads to an in-plane current:

oy ~ £mP o AT, ©6)

when the Zeeman field is applied in y or x direction, respec-
tively, in agreement with the Edelstein result, Ref. [32].

The situation is rather different in a one-dimensional (1D)
system, for which the SU(2) magnetic field B¢ is zero and
therefore, contribution from Eq. (5) vanishes. It is however
known that in wires with a 1D SOC such current can be
finite [12,15], namely, when at least two components of the
magnetic field, one longitudinal and one transverse to the
spin-orbit field, are finite. This result can also be understood
from the above SU(2) arguments if we seek for an invariant of
higher order in the exchange field: clearly in a pure 1D system
only the electric field is finite and the next leading order
contribution to the current can be constructed as a product of
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FIG. 1. (a) The first setup is made of an infinite superconducting wire with SOC and a Zeeman field with two components, one longitudinal
and one transverse to the spin-orbit field. (b) In the second system, superconducting and magnetic correlations and fields are spatially separated
into two different wires, coupled via a hopping term. We consider the case where the spin-orbit and Zeeman fields are parallel.

derivatives of the electric field [37]:

Ji ~ (ViFor)* (VoFoi)’, (7
where V, denotes the covariant derivatives defined as ?M =
9, —i[A,, -1

In the next two subsections we discuss two different situa-
tions in which either one of the contributions Eqs. (5)—(7) con-
tributes to the anomalous current. Before that it is important to
emphasize that in systems in which superconductivity and the
spin-dependent fields spatially coexist, one should compute
the superconducting order parameter self-consistently allow-
ing for a spatially dependent phase. Generally, the ground
state corresponds to a zero-current state [38] and therefore the
anomalous current obtained above has to be compensated by
the current induced by the phase gradient of the condensate
wave function. In subsequent sections we discuss this in
detail.

B. Single superconducting wire

As mentioned above, in a system with a pure 1D SOC
only the SU(2) electric field is finite and hence the anomalous
current (in lowest order in the exchange field) is given by
Eq. (7). Specifically the electric field for a 1D system with
time-independent fields is given by

]:Ox = _axAO - i[AO, Ax] (8)

The second term is the field induced for example by homoge-
neous exchange field and SOC. The first term is finite for an
inhomogeneous exchange field induced for example by a spin
texture.

We first consider a homogeneous situation, for which the
exchange field has an arbitrary direction and the SOC is,
without loss of generality, Hy, = o po?, such that the vector
potential has only one finite component A2 = —2m «. In this
case For = —ima Aj[o“, 0°]/2 and hence the anomalous
current obtained from Eq. (7) reads

Ji ~ = o [(AG) o (A5) )45 ©)
This result coincides with the one obtained in Refs. [12,15] in
leading order in the exchange field.

A gauge equivalent situation to the previous one is a system
without SOC but with an inhomogeneous exchange field that
varies in x direction [8]. In such a case the electric field is
finite due to the first term in Eq. (8). As a specific example we

consider an exchange field with the following spatial depen-
dence: h = (hg cos (Qx), hysin (Q x), h;). The corresponding
SU(2) scalar potential has then three components: A5 =
2hg cos (Qx), Ay =2hg sin(Qx), and Aj =2h,, and ac-
cording to Eq. (8), Fox =2 Q ho [sin (Q x)c* — cos (Q x)o”].
From Eq. (7) we obtain

jx ~ Q@ hy . (10

Expressions (9) and (10) coincide after identifying the follow-
ing equivalences: ma < Q and h2 = (Aﬁ;)2 + (A'(V))z.

C. Double wire system

We now consider a two wire setup, as the one sketched in
Fig. 1(b). One of the wires is a superconductor with no spin-
dependent fields, whereas the second wire is in the normal
state with a finite SOC and exchange or Zeeman field. Both
wires are tunnel coupled. The tunneling is described by a
hopping parameter t which is assumed to be spin independent.
This coupling, on the one hand, induces superconducting
correlations in the normal wire, and on the other hand, an ef-
fective spin-dependent field is induced in the superconducting
wire.

In a pure 1D system, when all interactions take place
in one and the same wire, if the SOC and exchange field
vectors are parallel, all SU(2) fields are zero and hence no
magnetoelectric effects can take place. In the two wire system
the situation is rather different, because strictly speaking the
system is not pure 1D (indeed there is an additional internal
degree of freedom which is the wire index) and the coupling
between the wires prevents such a pure gauge situation.

Namely, the fields depend not only on the spatial coordi-
nate along the wires, but also on the one perpendicular to
them denoted as z in Fig. 1(b). Then the system behaves as
a 2D system. If we assume that SOC and exchange field are
parallel, with the only nonzero components of the potentials
being A% and A§, then according to Eq. (4) the SU(2) fields
are finite and determined by JFj, = —d,.Aj for the electric
field and F%, = 9. A% for the magnetic field. Therefore, from
the above symmetry arguments, specifically from Eq. (5), one
expects a finite anomalous current, linear in both, the SOC and
the exchange field, even if they are parallel.

The above analysis only explains whether the anomalous
currents are allowed by symmetry or not. In the next sections
we compute explicitly the currents and also the ground state
of the setups of Fig. 1.
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III. SUPERCONDUCTING WIRE WITH ZEEMAN
AND SPIN-ORBIT INTERACTIONS

In this section we focus on a single superconducting wire in
the presence of Rashba SOC and a Zeeman field. Similar setup
has been studied in Refs. [12,15,39]. We first consider that
superconductivity is proximity induced in the wire, and thus
that the superconducting order parameter is constant. In this
case, the charge current corresponds to the anomalous current.
We compute this current explicitly and compare the result
from the one obtained by the above symmetry arguments.
Then we explore the possibility of a wire with intrinsic super-
conductivity, and allow for a superconducting order parameter
with an inhomogeneous phase. We show explicitly that, within
our approximation, in the ground state, the anomalous current
is exactly compensated by the current induced by the order
parameter phase gradient. Although it is well known that
quantum fluctuations would kill superconductivity in such
low-dimensional systems, it has been reported in quasi-1D
materials like some organic superconductors [40]. Such com-
pounds consist of weakly coupled 1D chains. If the hopping
parameter ¢ describing interchain coupling is much smaller
that 7, then the system can be described by a strictly 1D
chain. It has been established that the mean-field treatment is
justified if r > Tf/,u [41]. So, for Tcz/u <t < T, the critical
fluctuations of the superconducting order parameter are effec-
tively suppressed and the system can be treated as a purely
superconducting 1D wire. But even in more conventional
systems involving superconducting thin wire, not necessary
strictly 1D, our results provide a qualitative description of
possible magnetoelectric effects.

A. Anomalous current

We assume that the Zeeman field has two components:
one normal and one parallel to the SOC field [Fig. 1(a)]. The
Hamiltonian describing an infinite wire along the x direction
reads

H =/dp\D*</%N+l%Bcs)w, (11)

where W= (4 (p), Vi(p), —¥|(=p), wi(=p)) s the
spinor containing the annihilation and creation operators in
Nambu spin basis. The Hamiltonian operator /iy describes the
system in the normal state. We assume that the Zeeman field
is in the x-z plane, h= (hy, 0, h;), and that the wire lies on a
substrate parallel to this plane, such that the SOC is along the
z direction:

n=@E+apo)t.+h-G. (12)

Here & = % — w is the quasiparticle energy, u is the chemi-
cal potential, o is the spin-orbit coupling constant, and o -,
7.y, are the Pauli matrices acting, respectively, in spin and
Nambu space. The BCS Hamiltonian operator hgcs is ex-
pressed as

s = —Ao T, (13)

where Ay is the superconducting order parameter, first as-
sumed to be a constant.

To compute the anomalous charge current we use the
Green’s function formalism [42]. Close to the normal-
superconducting phase transition, Ay < 7', one can expand
the Green’s function G in series of Ag. In second order in Ay,
G reads

G ~ Gy + Gy hgcs Gy + Gy hges Gy higes Gy, (14)

where Gy is the Green’s function in the normal state obtained
from the Dyson equation (i w, — le)GN =1, where w, =
7w T(2n + 1) are the Matsubara frequencies at temperature 7,
n being an integer. In Nambu space, Gy reads

G- O
GN = ( 0 G+)v (15)

where the matrix G; (A = %) is defined in the spin basis:

B iwn+kf+ﬁ-8—kapaz
(g +AEP — (h.— hap)? — R

x (16)

The charge current is proportional to the expectation value
of the velocity operator 9 = 2™ such that in terms of the

ap
Green’s function G, the charge current reads

el [
m == Z/m ﬁ[%TrG—i—aTr(GaZ)], (17)

Wy

where T, is the critical temperature. The second term in
Eq. (17) stems from the so-called anomalous velocity due to
the SOC.

We are interested in determining the current in the leading
order of the spin-dependent fields. Therefore, in what follows
we assume that both the Zeeman field and SOC are small such
that h,, h, < T. and « pr < T, (where pg is the Fermi mo-
mentum) and expand the expressions for the Green’s functions
G from Egs. (14)—(16) in series of h,, h;, and o p. We then
substitute this expansion into the current expression, Eq. (17).
The integral over momentum has to be done with certain care.
First, only terms even in p contribute to the integral that can be
written for only positive values of p. In turn, this integral can
be transformed into an integral over the quasiparticle energy:

+o0 +oo
/ dp=2 N(&)ds, (18)

S -

where N(§) = /#ﬂ” is the density of states at energy £&.

We assume that the chemical potential is the largest energy
involved in the problem: p > T;, Ey,, where Ej, = ma?/2,
and set the lower integration limit to —oo. Because in the
expansion of the Green’s function G one keeps terms up to
order o® p* where p* = 2m(& + 1), in the expansion of N (&),
Eq. (18), one needs to keep also terms up to order (£/u)?. The
integral in Eq. (18) can then be written as

+o00 2 400 %- 3 %-2
dp - — I —>—+ — )d§, (19)
—00 VF J_x 2 M 8 M
where vp = /Z;Tm' After this transformation the £ integration
of Eq. (17) can be performed straightforwardly leading to

Jan =28eT. Aim* vpa® h* h, Ty, (20)
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where I’y = Zw”>0 o This result implies the presence of a
finite charge current Xalong the wire, in agreement with our
symmetry arguments in Sec. I B based on the SU(2)-covariant
formalism. Indeed, in leading order in SOC and Zeeman field,
the anomalous current is proportional to &® h2 ..

B. Charge current for an inhomogeneous superconductor

Now we allow for an inhomogeneous superconducting
state with an order parameter A(x) = Age'?*. We assume
that g vg « T, i.e., when the system is near the emergence
of the modulated phase. In this case the total current can be
written as

j = jan + jq’ (21)

where j,, is the anomalous current, obtained for ¢ = 0, and
jg=—2eT. A vpqTs;. (22)

The value of g can be derived by maximizing the self-
consistency relation describing the superconductor with re-
spect to g [39]:

I;
g=14m* > n’h, W (23)

After substitution of this value into Eq. (22) one finds that j,
cancels exactly the anomalous current j,,. This confirms that
the true ground state of an infinite superconducting wire is a
zero-current state [38].

In the case of a finite wire, clearly no charge current can
flow. This means that the anomalous current Eq (20) has to
be compensated by a phase gradient described by Eq. (23). In
other words such a wire with the properties above will exhibit
different phase values at both ends and therefore can be a
realization of a phase battery [43,44].

IV. THE TWO WIRE SYSTEM

Here we consider a different setup in which superconduc-
tivity and spin-dependent fields are spatially separated in two
different wires, see Fig. 1(b). The coupling of the wires is de-
scribed via a spin-independent hopping term with amplitude
t. We assume as before an inhomogeneous order parameter
in the superconducting wire and from the self-consistency
relation we calculate the phase gradient in the inhomogeneous
case superconductivity. Separately we compute the anomalous
charge current and show that it is exactly compensated by
the contribution coming from the modulation of the super-
conducting order parameter. In contrast to the one wire case,

J

lw” + )\blg(g + 8m) -
Gy =

22 4 k(h, — hap+ SL) L 4 dt

FIG. 2. The magnetoelectric effect leads to two currents flowing
in the same direction in each of the wires, j and j$ . In the ground
state however the superconducting order parameter has a finite phase
gradient g, which induces a current jj in the opposite direction. The
total current in S, j¥ = j3, + j5, then cancels the current jy in the
normal wire (zero-current state).

the total zero-current state corresponds to two counterflowing
finite currents in each wire (see Fig. 2).

For the superconducting wire we assume a spatially os-
cillating order parameter A(x) = Age'?*. The second wire
is in the normal state and exhibits Rashba SOC and a local
exchange field. We assume that these fields are parallel to each
other.

The Hamiltonian of the system has the same form as
Eqg. (11) enlarged over the wire index space such that

2
=6+ )t 22 i,
8m 2m

+
+ hz)az i ) 772’ (24)

o
+ (epn+ St

where ¢ is the hopping energy and 7, ,,, are the Pauli matrices
in the wire index space. To simplify we assume that the chem-
ical potential is the same in both wires. The BCS Hamiltonian
lecs is expressed as

Mo — Nz

7
As in Sec. III, we assume that the temperature is closed to the
critical temperature 7, such that Ag < T and can be treated
perturbatively. At second order in A the Green’s function
describing the double wire system is obtained from Eq. (14),
where Gy can be written in Nambu-spin basis as

hpcs = —Ao T, (25)

G__ 0 0 0
o G . 0 0

Gv=1| o 0 G, o | @0
0 0 0 Gt

where G, are 2 x 2 matrices in the wire space, and A = £1
(k = %£1) corresponds to the Nambu (spin) indices. Specifi-
cally, the coefficients G;, read

[ion+1(E + &

2m

The total Green’s function is then obtained by substituting
Egs. (26) and (27) into Eq. (14).

We now use the self-consistency relation written in terms
of the Green’s function G to derive the expression of the wave-

2) — dnllion+aE + &) -

. 27)
Lt k(h, —rap+ )] -2

(

vector g near the emergence of the modulated phase:

I)/IT /*"" no — 1
Ao —T T, R 28
Z 27 " 2 (28)

AV
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where y is the effective attractive electron-electron BCS cou-
pling constant. Close to the critical temperature, Eq. (28) can
be written in a more convenient form, eliminating y [45,46]:

T
In <—>
Teo
UF e G no — 1Nz T
—QTZ{ U Tr(A—Orx 5 dp—w—,
w, >0 n
(29)

where T is the critical temperature of the isolated supercon-
ducting wire, i.e., forr = 0.

We assume that the Zeeman and spin-orbit interactions,
as well as tunneling are small such that ¢, h,, o pr K< T¢,
and again that the chemical potential is the largest energy
involved: u > T., Ey. We then expand the Green’s function
G in Eq. (14) in series of h,, o p, and ¢, after replacing
Eqgs. (26) and (27). Moreover, since the wave-vector ¢ is small
near the emergence of the modulation phase, we also expand
G over q.

Only terms even in momentum survive the momentum
integration in Eq. (29). As in the previous section we can
then change the integration variable to &, see Eq. (18). To
keep consistently all terms with same power of the small

J

5525zl

400
N eT dp 1o + 1:
= N oy g
J 2 ;/ 27r|:m r( 2 >+

—00

Using Eq. (18) to compute the integrals over p one obtains the
following expressions for the currents:

5
i = —eTcA%mahztz Ts, (35)
Jo=—2eT.AjqueTs, (36)
1
N = —eTcA%Uozhztz Ts, (37)
F
»=0. (38)

By replacing g by its expression from Eq. (31), one can easily
check that the total current, Eq. (32), is zero. However, the
current in each wire is finite with jS = —jN, as illustrated
in Fig. 2. This is a remarkable result that shows that even
though the ground state corresponds to a zero-current state,
finite currents may flow in each of the wires.

The anomalous current predicted in Sec. II C is obtained by
imposing g = 0. It is finite and linear in o and A;:

. . . 3
]an:]§n+‘]§1:—2—UFEEA%OthZ2F5.

(39)

This result is in agreement with the symmetry arguments
discussed in Sec. II C.

For practical purposes it is convenient to write the last ex-
pression in terms of dimensionless parameters. After restoring

parameter & /u one has to expand N (&) up to first order. Then
the self-consistency equation reduces to

2
1 = 2nT, h.t? 2.
“(TCQ) i Z|:2w 8w q+4w3q]

w, >0
(30)

The equilibrium value of g is obtained by maximizing Eq. (30)
with respect to g, which is the equivalent of minimizing the
Ginzburg-Landau free energy. We obtain

3 , s

g=——5ah1*=.

31
4U12; F'; ( )

Contrary to the single wire system [39], the x component of
the field is not needed to generate the inhomogeneous phase.
Indeed the two wire system behaves as quasi 2D, as discussed
in Sec. II C, and therefore one expects to get a magnetoelectric

effect also in the case of parallel SOC and exchange field.
The total charge current in the two-wire system is given by
the sum of the current flowing in the superconducting wire,
J® = jau + J3» and in the normal wire, jN = j§ + j}':
j=r 40N (32)

In terms of the Green’s function G, these components read

No — Nz q Mo — Nz
—Tr| G , 33
2 >+2mr< =7 )] (33)
(6o ) Lot Go, 1) | 34)
2m 2 2
[
h and kg we obtain
. hz Ay 20l t 2
R 2 , 40
T V¢o<kBTc> vF <kBTc) (40

where ¢y = w/i/e and y is a numerical prefactor of the order
of 0.015.

V. CONCLUSION

We have shown that the interplay between superconduc-
tivity, spin-orbit interaction, and Zeeman field in 1D sys-
tems allows for the existence of spontaneous charge currents.
We have first investigated these currents within the SU(2)-
covariant formulation, and determined the leading order con-
tributions to the anomalous currents in the SOC and Zeeman
field, in terms of the magnetic and electric SU(2) fields. In
the case of a single wire we confirmed that a finite anoma-
lous current can only appear when the Zeeman field has a
component parallel and one orthogonal to the SOC [12,15].
In the case of a two wire system, where the superconducting
and spin-dependent correlations are spatially separated, there
is a finite SU(2) magnetic field and we predict that a Zeeman
field parallel to the spin-orbit field is sufficient to induce an
anomalous current.

We confirmed these results by computing explicitly the
anomalous currents in the framework of Green’s function
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formalism for both setups. Moreover, allowing an inhomo-
geneous superconducting order parameter, we found that the
ground state corresponds, in fact, to a total zero current
state where the anomalous contribution is compensated by
the contribution from the modulated superconducting order
parameter (characterized by a finite wave vector). In the two
wire system, however, the zero-current state consists of two
opposite currents flowing in each of the wires.
Experimentally, ballistic double wire setups have been
realized in hybrid semiconducting systems [47-50]. Such
systems could be proposed as a good platform to realize the
two wire system described in Sec. IV. One could imagine
to induce superconductivity in one of the wires by prox-
imity effect from an adjacent superconductor. The study of
such a setup can be an interesting extension of our work.
In that case, superconducting correlations are imposed by
the bulk superconductor and therefore no self-consistency
relation is needed. We still expect a zero-current ground
state with opposite currents flowing in each wire. The exact
distribution of the currents in such system depends on the
exact geometry. The existence of the magnetoelectric effect
is independent of the microscopic details of the systems and
can be explained by symmetry arguments only (see Sec. II).
In this regard we expect that magnetoelectric effects can be
observed in two metallic wires, for example a conventional
superconductor as Al, and a heavy metal with SOC, as Pt.
If the wires are tunnel coupled to each other one expects

opposite supercurrents flowing in each wire, as described in
Sec. IV. In order to estimate the magnitude of these currents in
a small metallic wire we multiply the contribution of a single
conducting channel, Eq. (40), by the number of transverse
modes ~SkZ, where S is the cross section of the wire. If we
assume Ag/T. =1, a/vp =0.1, t/T. = 0.5, h, = 0.1 meV,
kr =2 x 10 m~!, and S = 30-300 nm?, we estimate cur-
rents of the order of 36-360 nA. This value can be signifi-
cantly enhanced by going beyond our approximation of large
temperatures and choosing materials with large spin-orbit
coupling. If the wire is embedded in a superconducting loop
the anomalous current will manifest as a sizable phase shift
in the phase-current relation as reported recently in several
experiments [44,51-53].
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