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Logical devices based on electrical currents are ubiquitous in modern society. However, digital logic does have
some drawbacks, such as a relatively high power consumption. It is, therefore, of great interest to seek alternative
means to build logical circuits that can either work as stand-alone devices or in conjunction with more traditional
electronic circuits. One direction that holds great promise is the use of heat currents for logical components.
In the present paper, we discuss a recent abstract proposal for a quantum thermal transistor and provide a
concrete design of such a device using superconducting circuits. Using a circuit quantum electrodynamics
Jaynes-Cummings model, we propose a three-terminal device that allows heat transfer from source to drain,
depending on the temperature of a bath coupled at the gate modulator and show that it provides similar properties
to a conventional semiconductor transistor.
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I. INTRODUCTION

An inevitable requirement for logical computational de-
vices is the ability to control signals. The most well-known
case is that of classical electronic integrated circuits that are
based on (semiconductor) transistors, a component capable of
transmitting or blocking the flow of current based on whether
a gate voltage is in the on or off states. Although electronics
has great advantages, other means of signal transport are under
study to extend the versatility and applications of future tech-
nologies. A promising path for developing alternative logical
devices is to use controlled heat currents (phonon transport) to
developed thermal components [1–4]. Some prominent results
of this pursuit are thermal diodes [5–10], thermal transistors
[11,12], and related designs [13–17]. In particular, quantum
spin systems coupled to thermal baths have shown promise
for the realization of these components [18–21].

A way to realize two-level (spin) systems is to use so-called
artificial atoms based on superconducting circuits [22–25]. In
the present paper, we present a quantum thermal transistor
design that is based on superconducting circuits. Our proposal
is inspired by the recent work of Guo et al. [12] in which an
abstract model of such a transistor is proposed and discussed.
A key ingredient in the model of Ref. [12] is the presence
of both two- and three-level systems coupled to heat baths.
Since superconducting circuits realize nonlinear oscillators
with several levels, it is possible to realize couplings between
qubits and qutrits in such systems [26–29]. Here, we propose
a concrete realization of a superconducting circuit that can
perform the tasks of a thermal transistor. This requires modi-
fications to the original abstract proposal of Ref. [12] that we
will discuss below. The transistor is realized as a thermal tran-
sistor where the exchanged signal between the two transistor
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terminals will be in the form of heat. Specifically, the heat
will be exchanged between two thermal baths, a source and a
drain, through a three-level system (qutrit) and modulated by
a third terminal. The third terminal is implemented as a qubit
whose population is dictated by a third modulating thermal
bath. By controlling the temperature of the modulating bath,
one may effectively switch on and off the heat current between
the source and the drain terminals. The effect of amplification
of the heat signal is also investigated. Specifically, the degree
to which heat signals may be amplified through the transistor
turns out to critically depend on the anharmonicity of the
superconducting artificial atoms. Thus, with current state-of-
the-art transmons as used in this article, the relatively low
anharmonicities weaken the degree of amplification as will
be demonstrated. The analysis of the thermal transistor will
be as follows. The first step is to understand the dynamics
of the coupled qubit/qutrit superconducting circuit (dubbed
the main circuit). This will be performed using elementary
circuit analysis. From this point, we will investigate the cou-
pling between the main circuit and the three thermal baths
described perturbatively using the theory of open quantum
systems within the Lindblad formalism. This allows for the
calculations of the heat currents between the source and the
drain terminals using quantum thermodynamics. Throughout
the article, we will use natural units such that h̄ = c = k = 1,
where h̄ is Planck’s constant, c is the speed of light in vacuum,
and k is Boltzmann’s constant, respectively.

II. CONCEPTUAL MODEL AND CIRCUIT HAMILTONIAN

The circuit implementation of the thermal transistor is
depicted in Fig. 2 along with a conceptual model of the
circuit in Fig. 1. In Fig. 1, the three thermal oscillators at
temperatures TS, TD, and TM model the thermal baths of
the source, drain, and modulator terminals. The colors in-
dicate resonant frequencies for both the oscillators and the
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FIG. 1. Conceptual model of the thermal transistor. The super-
conducting circuit diagram is presented in Fig. 2.

transmons. The conceptual idea of the transistor is as follows.
The exchanged signal between the two terminals (source
and drain reservoir/oscillator) is in the form of heat current.
This exchange signal will be modulated by a gate terminal
(modulator reservoir/oscillator). The source reservoir may
interact with the qutrit and excite its first state. The qubit
population is dictated by the temperature of the modulating
bath and interacts with the qutrit through a resonator. Given
a first level excitation of the qutrit, the qubit may further
excite the qutrit to its second level, allowing for interaction
between the qutrit and the drain reservoir. Thus, one may
effectively control the heat flow between the source and the
drain terminals by modulating the temperature of TM . The key
interaction in the above mechanism is the interaction between
the qubit and the qutrit. In the following, we demonstrate how
such an interaction may be engineered in a superconducting
circuit architecture.

The thermal transistor circuit may be divided into two
subcircuits, the main circuit and the thermal baths, see Fig. 2.

In the following, we will analyze the main circuit dynamics
and demonstrate its equivalence to the desired dynamics of
the abstract thermal transistor Hamiltonian as presented in
Ref. [12]. The main circuit will be composed of two trans-
mons coupled through a resonator through which they may
interact through photonic exchange [24,30]. In their lumped
element representations, the transmons are modeled as an-
harmonic circuits with Josephson junctions and the resonator
as an LC circuit [30]. Following the conventional procedure
of quantum electromagnetic circuit analysis [31], we define
the generalized flux coordinate φ(t ) = ∫ t

−∞ V (t ′)dt ′ [32]. One
may find that φ1, φ2, and φ3 sufficiently describe the main
circuit dynamics as illustrated in Fig. 2. Each flux describes
the degree of freedom for the lower transmon, the resonator,
and the upper transmon, respectively. Using the detailed cir-
cuit analysis presented in Appendix A, we obtain a quantized
step operator Hamiltonian of the main circuit,

H = α1
(
a†

1a1 + 1
2

) − β1(a1 + a†
1)4 + α3

(
a†

3a3 + 1
2

)
−β3(a3 + a†

3)4 + ωr
(
b†

rbr + 1
2

)

FIG. 2. Total circuit diagram (left) and a detailed version of the
main circuit with parameter descriptions (right). As can be seen, the
circuit encapsulated in red is the source terminal, the blue circuit is
the drain terminal, and the green circuit is the modulating terminal.
Heat is exchanged between the source and the drain terminal depend-
ing on the main circuit dynamics.

− g1(a†
1b†

r + a1br − a†
1br − a1b†

r )

− g3(a†
3b†

r + a3br − a†
3br − a3b†

r ). (1)

with α1 = √
8EC1EJ1, β1 = EC1

12 , α3 = √
8EC3EJ3, β3 =

EC3
12 , ωr = 4

√
EC2EL2, g1 = C−1

12 ( 8EJ1EL2
EC1EC2

)
1/4

, and g3 =
C−1

23 ( 8EJ3EL2
EC2EC3

)
1/4

with circuit parameters described in Fig. 2.
Operators ai, i ∈ {1, 3} parametrize the lower and upper
transmons, respectively, and br parametrizes the resonator.

A. Truncation of the Hamiltonian

In order to obtain the desired dynamics, we must truncate
the system to the desired degrees of freedom. Specifically, the
lower transmon will act as a qubit, and the upper transmon
will act as a qutrit. By truncating Eq. (1) to these levels,
we obtain the Jaynes-Cummings Hamiltonian. Define ω1 as
the qubit excitation energy, ω2 as the first excitation energy
of the qutrit, and ω3 as the second excitation energy. Since
the second excitation level of the qutrit must be dictated by
the population of the modulating qubit, we require these two
energies to be resonant. For the constraint in question to be
fulfilled, we require the resonant condition ω1 + ω2 = ω3.

Truncation of the transmon circuit Hilbert spaces to two
(qubit) and three (qutrit) dimensions yields a qubit excitation
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energy of

ω1 = α1 − 12β1. (2)

For the qutrit, one obtains

ω2 = 6β3 +
√

(α3 − 18β3)2 + 72β2
3 (first excited state),

ω3 = 2
√

(α3 − 18β3)2 + 72β2
3 (second excited state).

(3)

These energy-level definitions are depicted in Fig. 1. Elimi-
nating counter-rotating terms in Eq. (1) yields

H = ω1(|1〉1 〈1|1 ⊗ 1) +
3∑

i=2

ωi(1 ⊗ |i − 1〉2 〈i − 1|2)

+ωrb†
rbr + g1(a†

1br + H.c.) + g3(a†
3br + H.c.). (4)

The truncated Hilbert space is a tensor product between
the qubit and the qutrit spaces, i.e., H = Hqubit ⊗ Hqutrit ,
yielding a total dimension of six. The eigenstates are likewise
tensor product states such that |i j〉 = |i〉1 ⊗ | j〉2 denotes the
combined state of the qubit/qutrit system [33]. From now on,
the identity operators in Eq. (4) are omitted for simplicity.
Finally, we write the interaction term step operators in the
representation of the transmon eigenkets, from which one
obtains

H = ω1 |1〉1 〈1|1 +
3∑

i=2

ωi |i − 1〉2 〈i − 1|2 + ωrb†
rbr

+ g(1)
01 (br |1〉1 〈0|1 + H.c.) + g(2)

01 (br |1〉2 〈0|2 + H.c.)

+ g(2)
12 (br |2〉2 〈1|2 + H.c.), (5)

where g(i)
m,m+1 = gi

√
m + 1 denotes nearest-neighbor coupling

constants for the qubit (i = 1) and the qutrit (i = 2).

B. Dispersive Jaynes-Cummings Hamiltonian

In order to obtain a direct state-swapping interaction, one
may utilize the dispersive Jaynes-Cummings regime in which
the transmon frequencies are sufficiently detuned from the
resonator such that g

ω−ωr
	 1 where the denominator is the

relevant transmon energy-resonator detuning and g is the cor-
responding nearest-neighbor coupling constant. As a result,
the interaction becomes a virtual exchange of photons through
the resonator [34].

The dispersive Hamiltonian is obtained by unitarily trans-
forming the resonant Hamiltonian and expanding to second
order using the Baker-Campbell-Hausdorff expansion such
that [35]

Hdispersive = ω1 |1〉1 〈1|1 + ω2 |1〉2 〈1|2 + ω3 |2〉2 〈2|2 + ω′
rb†

rbr

+ g(1)
01 g(2)

01 (�1 + �2)

2�1�2
(|01〉 〈10| + H.c.)

+ g(1)
01 g(2)

12 (�1 + �3)

2�1�3
(|11〉 〈02| + H.c.)

+ g(2)
01 g(2)

12 (�2 − �3)

�2�3
(b†

rb†
r |0〉2 〈2|2 + H.c.), (6)

where �1 = ω1 − ωr, �2 = ω2 − ωr , and �3 = ω3 − ω2 −
ωr . The latter term in the Hamiltonian may be suppressed
compared to the direct state-swapping term. Details of the
suppression along with a presentation of the unitary trans-
formation are presented in Appendix D. The interaction term
does no longer directly contain resonator degrees of freedom,
and hence, the interaction serves to directly state swap the
transmons. The shifted resonator frequency ω′

r is not dis-
cussed further since the resonator only acts as a mediator for
the interaction and is omitted. Clearly, the coupling is strongly
dependent on the relative detuning between the two trans-
mons, being largest when the transmons are in resonance, i.e.,
�1 = �3. With ω1 + ω2 = ω3, the first interaction |01〉 →
|10〉 will be suppressed by conservation of energy. The final
Hamiltonian of the main circuit (MC) in the dispersive regime
reads

HMC = ω1 |1〉1 〈1|1 + ω2 |1〉2 〈1|2 + ω3 |2〉2 〈2|2
+ g(|11〉 〈02| + H.c.), (7)

with g = g(1)
01 g(2)

12
�

where � = ω1 − ωr .
We now review the validity of the applied approximations.

One must take into account that the transmon-resonator detun-
ing cannot exceed a value which disallows the rotating-wave
approximation of Eq. (4) but must also be large enough to
justify the expansion of the Hamiltonian to second order in
Eq. (6). In principle, we may get a more concrete handle on
potential experimental parameters by further analysis of the
concrete layout of the circuit design and, hence, testing for
which regimes our approximations will hold. However, noting
that such an interaction has been experimentally realized [36],
we leave this for future studies. Note that the interaction
term in the Hamiltonian allows the qubit to excite the upper
level of the qutrit, provided the qutrit is excited to its first
level. Thus, we may control the population of the second
excited state of the qutrit by modulating the qubit population.
This modulation will be realized by adjusting a thermal bath
temperature. Thus, the dynamics of Eq. (7) are equivalent to
the desired dynamics in Ref. [12]. Now that we understand
the dynamics of the main circuit, we will discuss the thermal
baths.

III. COUPLING OF THE MAIN CIRCUIT
TO THE THERMAL BATHS

The coupling of the main circuit to the thermal baths
will be described perturbatively within the theory of open
quantum systems with the nature of the interaction modeled
as electromagnetic noise from the baths. To understand the
coupling to the thermal baths, we now consider a conceptual
model of the thermal baths in order to motivate the actual form
of the Lindblad equation, specifically the collapse operators
for the thermal transistor.

A. Resistor model of the thermal baths

Each thermal bath will be modeled as an LC circuit
coupled to a noisy resistor using the formalism presented
in Ref. [37]. The noisy resistor is modeled as a noiseless
resistor coupled to a fluctuating voltage source as illustrated
in Fig. 2. The system will generate a continuous spectrum of
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electromagnetic noise due to the thermal agitation of Cooper
pairs. The bath is described by a Hamiltonian of bosonic
modes HB = ∑

k ωk (b†
kbk + 1

2 ), whose population is dictated
by temperature. Since the noise must pass the LC circuit
(which acts as a bandpass filter), the voltage noise is restricted
around the LC circuit resonant frequency �. Thus, only noise
signals whose frequencies are in the vicinity of � will be
transmitted through the LC circuit and participate in the main
circuit interaction. From the formal treatment of the resistor
model in Ref. [37], one may derive the spectral density of the
thermal bath circuit,

S(ω) = 1

1 + Q2
(

ω
�

− �
ω

)2

2Rω

1 − e−ω/T
, (8)

where T is the temperature of the bath, Q is the LC circuit
quality factor, and R is the resistance of the circuit resistor, a
parameter fitted in experiments and effectively serves to scale
the spectral densities [38]. The spectrum restricts the noise
frequencies around � with its Lorentzian shape, depending on
the Q factor. This allows for suppressing unwanted transitions
in the coupling with the main circuit.

B. Lindblad equation of the thermal transistor

In the following, we will introduce the main circuit-bath
interaction terms phenomenologically. We assume that the
system-bath coupling constant will be adequately small such
that the main circuit eigenstates remain unperturbed, justify-
ing the use of the Born approximation, ensuring the avoidance
of correlations between the main circuit and the baths. We
denote the capacitive coupling strength between the baths and
the main circuit α and assume that it is equally strong for all
baths. By tuning the bath bandpass filters, governed by Eq. (8),
we restrict the interactions such that the source serves to
excite/deexcite the lower state in the qutrit, the modulator to
excite/deexcite the qubit, and the drain to excite/deexcite the
upper state in the qutrit to its ground state, see Fig. 1. Thus, the
resonant frequencies of the thermal baths will be, respectively,
�S = ω2, �M = ω1, and �D = ω3. This is illustrated in the
interaction term,

HMCB =
∑

k

α(b†
Sk |0〉2 〈1|2 + H.c.)

+
∑

k

α(b†
Mk |0〉1 〈1|1 + H.c.)

+
∑

k

α(b†
Dk |0〉2 〈2|2 + H.c.), (9)

where k is the bath summation index. bμk, b†
μk represent

the bath creation/annihilation operators with μ ∈ {S, M, D},
letting S, M, and D (source, modulator, and drain) refer to
each thermal bath, according to Fig. 2. Note that, in the
weak-coupling limit, α 	 g. Since TS > TD with TD being
the drain temperature and TS being the source temperature,
we expect the heat to only flow in the direction from the
source to the drain. It is crucial that the upper level of the
qutrit is only excited due to the interaction with the qubit,
i.e., through the interaction in Eq. (7) since, otherwise, un-
wanted heat currents would pass. Hence, interactions, such

as
∑

k α(b†
Dk |0〉2 〈1|2 + H.c.) and

∑
k α(b†

Sk |0〉2 〈2|2 + H.c.)
must be suppressed. Let HMC = ∑6

i=1 Ei |Ei〉 〈Ei| denote the
diagonal main circuit Hamiltonian with energies E = {ω1 +
ω3, ω3 − g, ω1, ω3 + g, ω2, 0} and eigenstates |Ei〉. Following
the procedure in Ref. [12], define the main circuit eigenoper-
ators as

Aμl (ωμl ) =
∑

Ei−Ej=ωμl

�(Ej )Dμ�(Ei ) (10)

for a fixed ωμl with l ∈ {1–3} denoting the three eigenoper-
ators for each bath μ. �(Ei ) denotes a projection operator
onto the eigenspace belonging to eigenvalue Ei. Dμ denotes
main circuit operators in the interaction terms of Eq. (9), and
μ denotes the bath responsible for the transition. These eigen-
operators serve to transition between energy eigenstates of the
main circuit Hamiltonian. There exist nine eigenoperators for
the main circuit which encapsulate the interactions of Eq. (9),
three for each bath, given in Appendix C. Noting that the
� operators do not act in the Hilbert space of the baths, the
diagonal representation reads [12]

HMCB =
∑
μ,l,k

α[b†
μkAμl (ωμl ) + H.c.],

μ ∈ {S, M, D}, l ∈ {1–3}. (11)

It would be reasonable to use the eigenoperators of HMC as
collapse operators in the Lindblad formalism due to their op-
eration on energy eigenkets. We must, therefore, calculate the
corresponding transition frequency for each collapse operator.
This frequency will be the sum of all transition frequencies for
all the transitions the collapse operator may be responsible for.
Each transition rate between two states |Ei〉 and |Ej〉 will be
calculated using Fermi’s golden rule, given by

	i j = 2π |〈Ej |αAμl (ωμl )|Ei〉|2S(ωμl ), (12)

where Aμl (ωμl ) is the collapse operator responsible for the
transition between the two energy eigenkets. All transition
rates are given in Appendix C.

Using the collapse operators of Appendix C, the Lindblad
equation reads with ρ ≡ trB(ρtotal ),

∂ρ

∂t
= 1

i
[HMC, ρ] +

∑
μl

(	μl (ωμl )[2Aμl (ωμl )ρA†
μl (ωμl )

−{A†
μl (ωμl )Aμl (ωμl ), ρ}]

+	μl (−ωμl )[2A†
μl (ωμl )ρAμl (ωμl )

−{Aμl (ωμl )A
†
μl (ωμl ), ρ}]). (13)

Since the spectral densities depend on temperature, it is
possible to control the dynamics of the main circuit through
temperature modulation of the thermal baths. Equipped with
the Lindblad equation, we now move on to calculate the heat
currents exchanged between the baths and the main circuit.

IV. HEAT CURRENTS AND TRANSISTOR MECHANISMS

The heat current will be defined as

Jμ ≡ 〈L∗
μ(HMC)〉, (14)
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as motivated from the quantum thermodynamical Heisenberg
equation of motion. Using Eq. (14), we may now proceed to
calculate the heat currents exchanged among the source and
the qutrit, the drain and the qutrit, and the modulator and the
qubit which all depend on the density-matrix elements. Since
the Lindblad equation is unidirectional, it takes any state to
the invariant steady state, satisfying ∂ρ

∂t = 0. Hence, we use
the steady-state density-matrix elements to compute the heat
currents since these are invariants of the Lindblad equation of
motion [39].

In the steady state, all off-diagonal elements of the density
matrix vanish since the off-diagonal coherences will decay
exponentially to zero [12]. This motivates the introduction of
the vectorization of the density matrix, analogous to what is
performed in Ref. [12] such that it is represented as |ρ〉 =
[ρ11, . . . , ρ66]T . The Lindblad equation may then be perceived
as an operator equation where ∂|ρ〉

∂t = L |ρ〉 with L being
the Lindblad superoperator. The objective is then to solve
the eigenvalue equation L |ρ〉 = 0 by diagonalization of L.
The matrix representation of the eigenvalue problem is given
by Eq. (E1) with the first term commutator in Eq. (13) being
zero in the steady state. In principle, the matrix in Eq. (E1)
could be diagonalized analytically. However, with the spectral
densities used in this article, the characteristic polynomial
becomes considerably tedious and complicated, and hence,
the process of diagonalization was performed numerically.
Specifically, the module NUMPY in PYTHON was used [40].

A. Heat currents and amplification

By the heat current definition Eq. (14), the source current
is with αμl ≡ 	μl (ωμl ) and βμl ≡ 	μl (−ωμl ),

JS = 〈L∗
S (HMC)〉

= (E3 − E2)(αS1ρ22 − βS1ρ33)

+ 2(E6 − E5)(αS2ρ55 − βS2ρ66)

+ (E3 − E4)(αS3ρ44 − βS3ρ33). (15)

The heat currents of the modulator and drain are given
in Appendix F. As mentioned in the Introduction of the
article, amplification is a key ingredient to a transistor. The
amplification factor is defined as

αS,D = ∂JS,D

∂JM
(16)

conforming to the convention in Refs. [12,41,42]. For a given
change in the modulating heat current, one would obtain
amplification effects if α > 1. It is crucial to note the de-
pendence of the energy-level differences in the qubit/qutrit
on the amplification. Since the heat currents depend linearly
on the energy differences of the qubit/qutrit, the degree of
amplification depends naturally on the anharmonicity. This is
numerically demonstrated in the following.

B. Numerical simulation

Typical first excitation energies of state-of-the-art trans-
mons are on the order of ω01/2π ∼ 5 GHz. A rough scale
of transmon second excitation energy would be ω12/2π ∼
4.8 GHz with an anharmonicity of 200 MHz [30]. Therefore,

TABLE I. Constant simulation parameters for the heat current
calculations.

Parameter Symbol Numerical value

Qubit/qutrit coupling constant g 0.01ω1

Thermal bath coupling constant α 0.01g
Thermal bath Q factor Q 100
Source temperature TS 2�

Drain temperature TD 0.2�

we use relative parameters ω1 = (ω3 − ω2), ω2 = 5.0�, and
ω3 = (10 − λ)�, where λ is the anharmonicity. � defines
the energy scale of the system (in the gigahertz regime for
transmons). The internal coupling constant is chosen to be
g = 0.01ω1, and a small bath coupling constant α = 0.01g is
chosen such that α 	 g to satisfy the weak-coupling limit of
the Lindblad equation. All thermal baths are assumed to have
quality factors Q = 100, which is a relatively high quality
factor compared to what has been used in similar configura-
tions [43]. The source and drain baths have temperatures TS =
2� and TD = 0.2�, respectively. Following the discussion in
Sec. IV A, we will demonstrate the effect of anharmonicity
on the amplification. All constant simulation parameters are
summarized in Table I.

Since Ei ∝ � and αμl ∝ �3, we divide the numerical heat
currents by �4 to obtain unitless quantities [44]. The heat
current is, furthermore, divided by the bath resistance R,
which is equal for all baths, serving only to scale the spectral
density and, in an experimental setting, is a fitting parameter.
First, we present the heat currents for a given anharmonicity,
namely, λ = 4.0. These are depicted in Fig. 3. As can be seen,
heat flows from the source into the drain reservoir for a given
modulating heat current. Physically, when TM/� increases,
the thermal population of photons in the modulator at the

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
TM/Ω

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

J
μ
/(

Ω
4
R

)

×10−7
Numerical heat currents as function of modulating temperature

Source (JS)
Modulator (JM )
Drain (JD)

FIG. 3. Numerical heat currents of the transistor circuit. When
increasing the temperature of the modulator, qubit population rises
and excites the qutrit, allowing for heat exchange between the source
and the drain. Heat currents and temperature are scaled according to
the energy scale � and the resistance of the baths R to obtain unit-
less entities. Simulation temperatures are TD/� = 0.2 and TS/� =
2. The anharmonicity is λ = 4.0, and, in this high-anharmonicity
regime, we observe the effect of amplification.
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−1.0

−0.5

0.0

0.5

×10−7

λ = 4.0 λ = 3.0

0.0 0.5 1.0 1.5 2.0

−2

0

2
×10−7

λ = 2.0

0.0 0.5 1.0 1.5 2.0

λ = 1.0

Heat currents for different anharmonicities

TM/Ω

J
μ
/(

Ω
4
R

)

FIG. 4. Heat currents as functions of different values of anhar-
monicity. The rate of change in the modulator heat current increases
as a function of decreasing anharmonicity. In the limit of realistic
values, i.e., λ < 1, the amplification effect nearly vanishes.

qubit energy is increased, and hence, the qubit population
rises. As a result, the qutrit is excited at a higher rate, and
hence, heat flows between the source and drain terminals of
the transistor since this flow requires the qutrit to occupy
its highest-energy level, restricted by the qubit population.
The sum of all three heat currents equals 0 as it must by
conservation of energy, which may be verified analytically
and is reflected in the numerical results. For an anharmonicity
of λ = 4.0, the amplification effect seems evident from the
simulation. The rates of change in source/drain heat currents
are considerably larger as compared to the modulating heat
current change for given temperature changes.

Second, we present heat currents for four different anhar-
monicities as depicted in Fig. 4, namely, λ = 1.0, 2.0, 3.0, 4.0
to illustrate the effect of anharmonicity on amplification.

As can be seen, decreasing the anharmonicity, i.e., toward
more realistic transmon values, increases the modulating heat
current. Physically, this effect may be understood as follows.
The transferred heat current is blocked due to the constraint
that the modulating qubit must excite the second level of
the qutrit. The more identical the qutrit levels become, the
more likely the modulating qubit will excite the levels of the
qutrit, and hence, the heat current from the modulating bath
becomes stronger. Using Eq. (16), we illustrate, in Fig. 5,
the amplification factors for each anharmonicity as a function
of the modulating temperature. The amplification factors are
normalized relative to the amplification factor of the lowest
anharmonicity, and only the amplification factors of the source
reservoir are calculated (one could equivalently calculate
those for the drain reservoir).

The amplification factor for the highest anharmonicity is
observed to be around four times that of the more realistic
anharmonicity. Thus, the effect of amplification is greatly
reduced due to anharmonicity.

C. Switch mechanism

Other than the effect of amplification, we describe the
switch mechanism of the transistor. As mentioned in the

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
TM/Ω

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

α
λ
/α

(λ
=

1)

Normalized amplification factors as function of temperature

λ = 4.0 λ = 3.0 λ = 2.0 λ = 1.0

FIG. 5. Normalized amplification factors as functions of mod-
ulating temperature. Relative to the reference factor of λ = 1.0,
the amplification increases by up to a factor of 4 with greater
anharmonicities.

Introduction of the article, a transistor must exhibit the ability
to control the flow of signal between its terminals. In the case
of the thermal transistor, the signal is the heat current between
the source and the drain terminals. In order to obtain a switch
mechanism, two distinguishable on/off states must be defined.
Thus, two modulating temperatures must be chosen for which
the difference in heat currents is substantial enough to regard
the transistor in an off state (vanishing heat current) at the
lowest temperature and in an on state at the upper temperature.
As an example, we consider the configuration in Fig. 3. We
define TM/� = 0.25 as an off state of the transistor since
the exchanged heat currents are practically vanishing, and
TM/� = 0.50 as an on state. Thus, by modulating the temper-
ature between these states, one obtains a switch mechanism.
From these considerations, the switch mechanism is evident:
We have demonstrated that one may control the state of
the transistor by adjusting the temperature of the modulator,
realizing the ability to control heat current signals.

V. CONCLUSION, REFLECTIONS, AND OUTLOOKS

Starting from the abstract thermal transistor model of
Ref. [12], we provide a blueprint of an implementation in a
superconducting circuit using circuit quantum electrodynam-
ics. The main circuit, through which the heat flows from the
source to the drain, was designed by utilizing the dispersive
coupling regime of the Jaynes-Cummings model. By imple-
menting the thermal baths as RLC circuits, the heat flow from
the source to the drain is realized and shown to be adjustable
by a third modulating bath. Effectively, this provided a switch
mechanism between an off and an on state of the transistor,
depending on the temperature of the modulating terminal. For
experimental implementation, one would have to consider the
detailed manufacturing and design of the resonator, transmon
circuits, and thermal baths in order to achieve the couplings
and dynamics desired. A potential way to realize the baths
is to voltage bias a pair of superconductor-insulator-normal
metal-insulator-superconductor elements, which are normal-
insulator-superconductor junctions in a series configuration.
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These elements would allow for temperature control of ther-
mal baths and have been reported in a heat valve mechanism
much like the switch mechanism presented here, although
in a slightly different setting [1,43]. The amplification effect
was demonstrated to decrease as a function of decreasing
anharmonicity, although not affecting the switch mechanism.
Further improvements on this blueprint would be to consider
the implementation of flux qubits which exhibit much higher
anharmonicities [45]. Theoretically, further improvements on
the model could include a more thorough treatment of the
thermal baths. Having a more detailed description of the spec-
tral density and other physical properties of the thermal baths
allows for the use of the Redfield master equation which, in
turn, would yield a more in-depth microscopic understanding
of the circuit dynamics. Furthermore, the effect of external
electromagnetic field noise was not taken into account. In
practice, the circuit will be subject to noise from its surround-
ings, giving rise to unwanted excitations and decays of the
qubit or qutrit in the main circuit. External noise would obvi-
ously lead to unwanted heat currents to pass (or not to pass)
and, hence, decreasing the efficiency of the transistor mecha-
nism. However, state-of-the-art superconducting circuits now
have extended lifetimes so that proof-of-principle experiments
should be possible with a near-term device. Another aspect is
potential cross talk between the thermal baths and the related
dissipative effects which would be present when considering
the heat currents. These are topics for future investigations.
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APPENDIX A: MAIN CIRCUIT ANALYSIS
AND QUANTIZATION

With the flux nodes defined in Sec. II, we ease nota-
tion by introducing matrix/vector notation such that �φ ≡
[φ1, φ2, φ3]T . The Lagrangian reads

L = 1

2
�̇φT

⎡
⎢⎣C1 + C(1)

g −C(1)
g 0

−C(1)
g C2 + C(1)

g + C(2)
g −C(2)

g

0 −C(2)
g C3 + C(2)

g

⎤
⎥⎦

︸ ︷︷ ︸
C

�̇φ

− 1

2L2
φ2

2 + EJ1 cos

(
2π

�0
φ1

)
+ EJ3 cos

(
2π

�0
φ3

)
,

(A1)

where C is the capacitance matrix. The above circuit parame-
ters are depicted in Fig. 2. By writing out the capacitive terms
explicitly, one may verify the equivalence of what would be
obtained through the usual application of the Kirchhoff circuit
rules. A quick procedure on how to write down the capaci-
tance matrix easily is given in Ref. [46]. Using a Legendre
transformation, define the conjugate momentum as �p = ∂L

∂ �̇φ ,

and, by noting the invertibility of the capacitance matrix [46],
the Hamiltonian reads

H = 1

2
�pT C−1 �p + 1

2L2
φ2

2 − EJ1 cos

(
2π

�0
φ1

)

− EJ3 cos

(
2π

�0
φ3

)
. (A2)

The kinetic term reads

T = 1

2

3∑
i=1

C−1
ii p2

i + C−1
12 p1 p2 + C−1

23 p2 p3 + C−1
13 p1 p3︸ ︷︷ ︸

≈0

,

(A3)

where C−1
i j denotes the inverse capacitance matrix elements

given by Eq. (B1). The spatial separation of the transmon
circuits in such a resonator architecture allows the direct
capacitive cross coupling between the transmons to be ne-
glected [47]. In principle, the cross-coupling term may be
included as studied in Ref. [48]. In the architecture studied
here, however, the cross coupling is assumed to be negligible.
The circuit Hamiltonian is conveniently expressed in terms
of effective quantities using the canonical transformations
C−1 → 8

(2e)2 C−1, ECi ≡ C−1
ii , and ELi ≡ 1

2Li
with e being the

elementary charge. Capacitive terms then reduce to 4ECi(
pi

2e )2,
where ECi will be the effective energy at the ith node in the cir-
cuit and pi/2e will denote the number of Cooper pairs stored
at the corresponding flux node [46]. Finally, the flux and its
conjugate momentum are converted to dimensionless entities
by letting 2π

�0
= 1 which leads to 2e = 1, letting the charge of

the Cooper pairs equal unity. Capacitance and inductance then
obtain units of inverse energy, yielding a Hamiltonian in units
of energy. Using these conventions, Eq. (A2) reads

H = 4EC1 p2
1 − EJ1 cos(φ1) + 4EC3 p2

3 − EJ3 cos(φ3)

+ 4EC2 p2
2 + EL2φ

2
2 + 8C−1

12 p1 p2 + 8C−1
23 p2 p3.

(A4)

When operated in the transmon regime with EC/EJ 	 1, a
perturbative expansion of the cosine terms in Eq. (A4) yields
[30]

H ≈

Transmon 1︷ ︸︸ ︷
4EC1 p2

1 + EJ1

2
φ2

1 − EJ1

24
φ4

1

+

Transmon 2︷ ︸︸ ︷
4EC3 p2

3 + EJ3

2
φ2

3 − EJ3

24
φ4

3 +
Resonator︷ ︸︸ ︷

4EC2 p2
2 + EL2φ

2
2

+
Couplings︷ ︸︸ ︷

8C−1
12 p1 p2 + 8C−1

23 p2 p3 (A5)

neglecting constant terms of the Josephson tunneling energy
EJi, i ∈ {1, 3}. The first two collected terms are perceived as
two harmonic oscillators with an anharmonic perturbation,
the third collected term is perceived as a harmonic oscillator,
and the last collected terms are perceived as mutual couplings
between the transmons and the resonator.

The main circuit is canonically quantized by introduc-
ing the operators pi → p̂i and φi → φ̂i with canonical
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commutation relation [φ̂i, p̂ j] = iδi j [49]. Furthermore, we
introduce step operators defined by [50]

âi = 1

2

(
ELi + EJi

2

ECi

)1/4

φ̂i + i

(
ECi

ELi + EJi
2

)1/4

p̂i, (A6)

â†
i = 1

2

(
ELi + EJi

2

ECi

)1/4

φ̂i − i

(
ECi

ELi + EJi
2

)1/4

p̂i. (A7)

From now on, we assume the operator nature of a and b are
implied such that we lose the hat notation. After some algebra,
the Hamiltonian Eq. (A5) reduces to Eq. (1).

APPENDIX B: INVERSE CAPACITANCE
MATRIX ELEMENTS

The inverse matrix elements are given by

C−1
11 = (

C2C3 + C2C
(2)
g + C3C

(1)
g + C3C

(2)
g + C4C

(2)
g

)
/λ,

C−1
12 = C(1)

g

(
C3 + C(2)

g

)
/λ,

C−1
13 = C(1)

g C(2)
g /λ,

C−1
22 = (

C1 + C(1)
g

)(
C3 + C(2)

g

)
/λ,

C−1
23 = C(2)

g

(
C1 + C(1)

g

)
/λ,

C−1
33 = (

C1C2 + C1C
(1)
g + C1C

(2)
g + C2C

(1)
g + C(1)

g C(2)
g

)
/λ,

(B1)

with λ = C1(C2C3 + C2C(2)
g + C3C(1)

g + C3C(2)
g + C(1)

g C(2)
g ) +

C2(C3C(1)
g + C(1)

g C(2)
g ) + C3C(1)

g C(2)
g . Since the inverse capaci-

tance matrix is symmetric, C−1
i j = C−1

ji , and hence, the above
equations encapsulate all matrix elements.

APPENDIX C: COLLAPSE OPERATORS
OF THE LINDBLAD EQUATION

The collapse operators of the Lindblad equation read [12]

AS1 = 1√
2

|E3〉 〈E2| , ωS1 = E2 − g,

AS2 = |E6〉 〈E5| , ωS2 = E2,

AS3 = 1√
2

|E3〉 〈E4| , ωS3 = E2 + g,

AM1 = |E6〉 〈E3| , ωM1 = E1,

AM2 = 1√
2

(|E5〉 〈E2| + |E4〉 〈E1|), ωM2 = E1 − g,

AM3 = 1√
2

(|E5〉 〈E4| − |E2〉 〈E1|), ωM3 = E1 + g,

AD1 = 1√
2

|E6〉 〈E2| , ωD1 = E3 − g,

AD2 = − 1√
2

|E6〉 〈E4| , ωD2 = E3 + g,

AD3 = |E3〉 〈E1| , ωD3 = E3. (C1)

The transition rates of the Lindblad collapse operators are
calculated using Fermi’s golden rule and are given by

	S1 = 	23 = πα2S(ωS1), 	S2 = 	56 = 2πα2S(ωS2),

	S3 = 	43 = πα2S(ωS3), 	M1 = 	36 = 2πα2S(ωM1),

	M2 = 	25 + 	14 = 2πα2S(ωM2),

	M3 = 	45 + 	12 = 2πα2S(ωM3),

	D1 = 	26 = πα2S(ωD1), 	D2 = 	46 = πα2S(ωD2),

	D3 = 	13 = 2πα2S(ωD3). (C2)

APPENDIX D: SUPPRESSION OF THE INTERACTION
TERM IN THE BAKER-CAMPBELL- HAUSDORFF

EXPANSION OF THE MAIN CIRCUIT HAMILTONIAN

The unitary transformation used to eliminate resonant
terms of Eq. (5) reads

U = exp
[
λ

(1)
0 (b†

r |0〉1 〈1|1 − H.c.) + λ
(2)
0 (b†

r |0〉2 〈1|2 − H.c.)

+ λ
(2)
1 (b†

r |1〉2 〈2|2 − H.c.)
]
, (D1)

where λ
(k)
i = g(k)

i,i+1

ω
(k)
i,i+1−ωr

	 1 in the dispersive regime. Expan-

sion to second order in λ
(k)
i using the Baker-Campbell-

Hausdorff expansion yields Eq. (6). Since the latter term is
unwanted in the transistor mechanism, the inequality,

g(1)
01 g(2)

12 (�1 + �3)

2�1�3
� g(2)

01 g(2)
12 (�2 − �3)

�2�3

(D2)

must be satisfied. The detuning of the resonator frequency
relative to the first excitation energy of the qutrit may be
expressed as ω2 = βωr , where β parametrizes the detun-
ing. Using the resonant conditions where �1 = �3 and the
qubit/qutrit energy parametrizations of Sec. IV B, namely,
ω3 = (10 − λ)� and ω2 = 5�, one obtains the inequality,

g1

g3
� λ/5

1 − β
. (D3)

Thus, for a given detuning parameter β, the suppression of
the unwanted transition depends on the anharmonicity. For a
given detuning, the coupling,

g(1)
01 g(2)

12 (�1 + �3)

2�1�3
(|11〉 〈02| + H.c.) (D4)

is invariant under relative changes in g1 and g2 since g(1)
01 ∝

g1 and g(2)
12 ∝ g3. As an example, consider ωr/2π = 3.5 and

ω2/2π = 5.0 GHz which yields β = 5/7. One obtains

g1

g3
� 7

10
λ. (D5)

Thus, by utilizing the flexible scaling of the coupling capac-
itances, one may adjust g1 and g3 to satisfy Eq. (D5) which
suppresses the unwanted transition.
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APPENDIX E: STEADY-STATE LINDBLAD
MATRIX EQUATION

The steady-state Lindblad equation reads L |ρ〉 = 0, and
the corresponding matrix representation of this equation reads⎡
⎢⎢⎢⎢⎢⎣

γ1 βM3 2βD3 βM2 0 0
αM3 γ2 βS1 0 βM2 βD1

2αD3 αS1 γ3 αS3 0 2βM1

αM2 0 βS3 γ4 βM3 βD2

0 αM2 0 αM3 γ5 2βS2

0 αD1 2αM1 αD2 2αS2 γ6

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ρ11

ρ22

ρ33

ρ44

ρ55

ρ66

⎤
⎥⎥⎥⎥⎥⎦ = 0,

(E1)

with

γ1 = −αM2 − αM3 − 2αD3,

γ2 = −αS1 − αM2 − βM3 − αD1,

γ3 = −βS1 − βS3 − 2αM1 − 2βD3,

γ4 = −αS3 − βM2 − αM3 − αD2,

γ5 = −2αS2 − βM2 − βM3,

γ6 = −2βS2 − 2βM1 − βD1 − βD2,

and αμl = 	μl (ωμl ) and βμl = 	μl (−ωμl ) for μ ∈ {S, M, D}
and l ∈ {1–3}.

APPENDIX F: HEAT CURRENTS OF THE MODULATOR
AND DRAIN BATHS

Using Eq. (14), we calculate the heat currents of the
modulator and drain, analogous to what was performed in the
main text for the source. We obtain

JM = 2(E6 − E3)(αM1ρ33 − βM1ρ66)

+ (E4 − E1)(αM2ρ44 − βM2ρ11)

+ (E5 − E2)(αM2ρ22 − βM2ρ55)

+ (E2 − E1)(αM3ρ11 − βM3ρ22)

+ (E5 − E4)(αM3ρ44 − βM3ρ55), (F1)

and

JD = (E6 − E2)(αD1ρ22 − βD1ρ66)

+ (E6 − E4)(αD2ρ44 − βD2ρ66)

+ 2(E3 − E1)(αD3ρ11 − βD3ρ33). (F2)
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