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Long Josephson junctions with exciton-polariton condensates
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We demonstrate the possibility to build stable Josephson π -junction stripes with exciton-polariton conden-
sates. The stability of the π junction between arbitrary long polariton stripes is achieved at low pumping by
balancing the snaking instability with counterpropagating flows towards the junction. Not dissimilar from a dark
soliton, the instability becomes relevant at high pumping leading to formation of vortex dipoles. The resulting
structures can be stabilized to produce static lattices of Josephson vortices in straight and ring geometries.
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I. INTRODUCTION

Observation [1–3] of Bose-Einstein condensates (BECs)
of exciton-polaritons (polaritons) in semiconductor microcav-
ities [4], including formation of macroscopic quantum coher-
ence at room temperature [5–7], offer a new platform for real-
izing quantum technological applications. Driven-dissipative
polariton superfluids, however, are essentially different from
their equilibrium counterparts such as liquid helium or ultra-
cold atoms. Apart from the composite character of polaritons
as mixed states of excitons and photons, and their finite
lifetime in a microcavity, a crucial difference is in the presence
of condensate currents even in steady states. These currents
usually originate from nonuniform pumping that is necessary
to excite the polariton BEC, but they can appear sponta-
neously as well [8]. When the pump-dissipation balance is
nonlocal, the flows of particles appear from regions of positive
to negative balance [9]. The polariton supercurrents can lead,
for instance, to the generation of quantized vortices (loop
currents) due to inhomogeneities of the samples [10].

The steady-state currents depend sensitively on the par-
ticular geometry of the polariton pumping scheme, which in
turn can lock the resulting stationary configuration of vortex
lattices [11]. Even low-intensity flows are able to drag a
single vortex out of the system [9,12], and more complicated
arrangements have to be designed to achieve the dynamical
stability of these defects [13]. The design of the excitation
scheme is also of key importance in recently proposed polari-
ton simulators and graphs [14,15]. Underpinning the locking
of relative phases, the basic element of polariton simulators
and networks is the Josephson junction of two condensates
[16,17]. The Josephson junctions are frequently formed with
a phase difference of π between the condensates [18–20].
In this case, the order parameter has a node in between
the small-sized condensates, while the dark soliton, or one-
dimensional (1D) curve of zero density, should be imprinted
for large-sized condensates forming a long Josephson junction
(LJJ). LJJs are significant in their ability to host Josephson
vortices [21] and qubit operations [22], and LJJs in polariton

BECs offer exciting prospects for realizing the ac Josephson
effect [23] at room temperature without the need for cryogenic
refrigeration.

In spite of the vast technological importance, the emer-
gence and stability of LJJs with polariton condensates is
not comprehensively understood. In an incoherently pumped
homogeneous polariton BEC, a stationary dark soliton (LJJ)
is always unstable to any small perturbation, which leads to
acceleration and blending of the dark soliton with the back-
ground [24]. In a 1D waveguide geometry, experimental real-
ization of dark solitons in polariton fluids has been achieved
recently [25]. More recently, Josephson vortices have been ex-
perimentally observed to emerge from a phase twist imposed
at the boundary of a polariton condensate [26]. An imprinted
π phase difference between two separated resonant laser spots
was observed to produce at low pumping power a robust LJJ
in the phase. Further increase of the nonresonant-pump power
(and, equivalently, of the polariton density) was observed to
lead to the decay of the domain wall into stable vortex dipoles,
in a similar way as Josephson vortices (or fluxons) emerge
in LJJs between superconductors in the presence of external
magnetic fields [27].

In this work, we demonstrate how it is possible to form
arbitrarily long stable Josephson junctions (dark solitons)
and the vortex chains on demand, by exploiting the out-of-
equilibrium nature of polariton condensates and the sponta-
neous steady-state currents. We show that, contrary to their
equilibrium counterparts, and contrary to the homogeneous
polariton condensate, there is a parameter regime where the
dark soliton between two stripe condensates is stable. The
snaking instability is suppressed by the counterpropagating
flows towards the soliton line. The vortex instability remains
important nonetheless, and it can be initiated at certain range
of parameters and excitation conditions, leading to formation
of stable 1D lattices of vortex-antivortex dipoles. We under-
line that we consider a nonresonantly driven LJJ. Compared to
resonant driving [28,29], in this system the phase profile and
corresponding superfluid currents are formed spontaneously,
and they are, in general, nontrivial. The resonantly driven
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complex geometries are also extremely difficult to realize
experimentally because of instabilities and the necessity of
fine-tuning of the excitation laser. The nonresonantly driven
polariton condensates are therefore a more promising plat-
form for computation and simulation goals.

II. MODEL

To incorporate the dynamical balance of pumping and loss,
we use a coupled mean-field description for the macroscopic
wave function of the BEC ψ (r, t ) and density of the reservoir
polaritons nR(r, t ),

ih̄
∂ψ

∂t
=

{
− h̄2

2m
∇2 + g|ψ |2 +

(
gR + i

h̄r

2

)
nR − i

h̄γ

2

}
ψ,

(1a)

∂nR

∂t
= P − (γR + r|ψ |2)nR, (1b)

where the rate of amplification, rnR, of the condensate from
reservoir-induced stimulated scattering is linear in the reser-
voir density. Here m is the effective mass of polaritons at
the bottom of the lower branch, g > 0 represents polariton-
polariton interactions, gR represents interactions between the
reservoir polaritons and condensate polaritons, γ defines the
loss rate of polaritons from microcavity, P is the pump-
ing rate of polaritons into the reservoir, and γR is the loss
rate of reservoir polaritons. For comparison with experi-
mental parameters, we set h̄γ = 1 meV as the energy unit
and γ −1 = 0.66 ps and lγ = √

h̄/mγ = 0.77 μm as time
and length scales. In these units, we use g = 4π × 0.0054,
gR = 0.085, r = 0.17, and h̄γR = 10 in all our numerical
calculations.

We consider condensate excitation in a ring geometry,
which has attracted much interest recently [30–34], and
assume that the pumping consists of two static concen-
tric rings with a Gaussian profile, a spacing of d and
width σ : P(|r|) = P0[G−(|r|) + G+(|r|)], where G±(|r|) =
exp{− (|r|±d/2)2

2σ 2 }. This excitation produces two polariton con-
densates with the azimuthal Josephson junction. In conser-
vative systems [27], this setting supports Josephson-vortex
solutions that produce localized loop currents centered at the
junction. While the same profiles can exist in the polariton
BEC as well, we focus here on the symmetry conserving
azimuthally uniform condensates with an imprinted long dark
soliton between them [Figs. 1(a) and 1(b)].

To get more insight into the stability of the long dark
solitons, we consider the limit of large radii, which is
equivalent to the case of two parallel pumping stripes
in the y direction: P(x) = P0[G−(x) + G+(x)]. Under such
pumping, Eq. (1) can be written as Josephson-type equa-
tions for the two parts of the system. Specifically,
coordinate-separable solutions for Eq. (1) can be approx-

imated by ψ (x, y; t ) = φ+(y, t )G
α−iβ

2+ (x) + φ−(y, t )G
α−iβ

2− (x)
and nR(x, y; t ) = n+(y, t )G+(x) + n−(y, t )G−(x), where we
model the condensate width and flow towards x = 0 through
the real constants α and β. Substitution to system (1)

FIG. 1. (a) Ring-shaped long Josephson junction with imprinted
stable dark soliton, and (b) formation of stable vortex-dipole train.
Both configurations are generated by two concentric Gaussian pumps
of radial width σ = 7.7 μm, separated by a radial distance d =
18.5 μm, and situated equidistantly from a middle circle of radius
23.1 μm. The pumping intensities are (a) h̄P0 = 58 meV/μm2 and
(b) h̄P0 = 59 meV/μm2. The lifetime of states in panels (a) and
(b) exceeds 1 ns, and the vortex chain in panel (b) is stable with
the vortices locked in place.

gives

ih̄
∂φ±
∂t

=
(


 − h̄2∂2
y

2m
+ g̃|φ±|2 + 
R n±

)
φ± − Jφ∓, (2a)

∂n±
∂t

= P0 − (γR + r̃|φ±|2)n±, (2b)

where the coefficients 
, 
R, J ∈ C and g̃, r̃, ∈ R can be ex-
plicitly given [35]. We note that the Josephson coupling is, in
general, complex, where a positive imaginary part of J stems
from the overlap of the ring wave functions. Distinct from
the Josephson coupling characterized by the real part of J
[36,37], it describes the dissipative coupling of the two rings.
The presence of dissipative coupling favors the formation of π

phase difference between the rings at low pumping, thus im-
printing the dark soliton between them [38]. Our results, from
the numerical solution of the two-dimensional (2D) Eqs. (1),
show stable dark-soliton stripes at low pumping [Fig. 1(a)],
and stable vortex dipoles at higher pumping [Fig. 1(b)], for
times of experimental relevance up to 1 ns.

III. LONG JOSEPHSON JUNCTIONS

The resulting system (2) describes a long Josephson
junction along the y direction characterized by the complex
coupling J . We begin by demonstrating that the vortices in
this system emerge from dynamical instabilities at the nodes
of transverse standing waves excited on the low-density
lines that configure the junction. To show this we focus
on the symmetric φ+ = φ− and antisymmetric φ+ = −φ−
solutions to Eq. (2) without transverse variation, that is
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φ+(y, t ) = √
n0 exp(−iμt ) and n± = nR0. We now consider

the corresponding generalized Bogoliubov equations [39]
for the linear excitations u±(y) = [u±(y), v±(y), w±(y)]
of these states, and write φ±(y; t ) → {√n0 +
u±(y) exp(−iωt ) + v∗

±(y) exp(iω∗t )}e−iμt and n±(y, t ) →
{nR0 + w±(y) exp(−iωt ) + w∗

±(y) exp(iω∗t )}. The excitation
spectrum can be readily solved by Fourier-basis expansion
u±(y) = uk,± exp(iky). The resulting dispersion presents
four energy branches parametrized by the Rabi frequency
ωJ = 2|Re[J]|/h̄, which is induced by the coupling J . For
the experimentally relevant regime γ /γR � 1, the stability
spectrum can be approximated by

ω = −i
η

2
±

√(
h̄k2

2m
± ωJ

)(
h̄k2

2m
+ 2g̃n0

h̄
± ωJ

)
− η2

4
,

(3)

where η = γ /(1 + γRnR/r̃n0), and the ± sign inside the
square root accounts for the symmetric (−) and antisymmet-
ric (+) states. As can be seen, analogously to conservative
systems, the contribution of −ωJ to the dispersion involves
dynamical instabilities responsible for the production of vor-
tices either for the antisymmetric state when Re[J] > 0, or for
the symmetric state when Re[J] < 0.

To examine the predictions of the simplified model (2),
in what follows we perform numerical simulations of the
full model (1), including both its real time evolution, and its
linear stability analysis by means of generalized Bogoliubov
equations. Implementing the double Gaussian-stripe pump we
choose d = 20 and σ = 6, and consider a range of pumping
intensities P0 ∈ [65, 90] above the threshold for the generation
of the polariton condensate. For homogeneous pumping the
threshold is Pth = γ γR/r ≈ 58.83. Figure 2 depicts the steady
states at low P0 = 67 [Figs. 2(a)] and intermediate P0 = 81
[Fig. 2(b)] pumping intensities. The antisymmetric states [top
panels in Figs. 2(a) and 2(b)] present a nodal line at x = 0 and
will be referred to as dark solitons. Both the symmetric states
(bottom panels) and generally the antisymmetric states show
off-center density dips associated with steep phase gradients.
These shoulders are situated symmetrically around x = 0 and
will be referred to as gray solitons due to the nonzero back-
ground polariton current at their locations. As can be seen, the
gray solitons develop deeper density depletions for increasing
pumping. For the considered ratio 2σ/d = 0.6, the analysis of
linear excitations (Fig. 3) shows that the antisymmetric states
are stable in the range P0 ∈ [65, 82], whereas the symmetric
states are unstable. This happens in spite of the fact that, for
given pumping, both configurations alternate in hosting the
maximum number of particles. As was shown in Ref. [20],
the most populated state (either symmetric or antisymmetric)
follows a periodic variation with the oscillation frequency
μ, hence with the pumping intensity P0, which is well ap-
proximated by the sign of cos(

√
2mμ/h̄ d − π/4), positive

when the symmetric state is the most populated and negative
otherwise. In the shaded region of Fig. 3, the most populated
state can be the symmetric one, while only the antisymmetric
state is stable.

Figure 3 collects our results for the linear stability spectrum
from the numerical solution of the Bogoliubov equations in a
periodic domain of length Ly along the transverse coordinate.

0
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FIG. 2. Antisymmetric (top) and symmetric (bottom) states in a
double Gaussian-stripe at low pumping P0 = 67, panels (a), and in-
termediate pumping P0 = 81, panels (b). In both cases, the antisym-
metric states are stable, whereas the symmetric states are unstable.

The imaginary part of the frequencies of linear excitations
around the stationary antisymmetric states is plotted against
the modulus of transverse wave number k, for two pumping
cases [Fig. 3(a)], and against the intensity of pumping, for
fixed domain length Ly = 80 lγ [Fig. 3(b)]. In the latter, the
different curves correspond to the maximum imaginary fre-
quency for given values of k ∈ [1, 9] × 2π/Ly; higher wave
numbers do not make any difference regarding stability. As
can be seen, stable dark solitons can be found in 2D polari-
ton fluids at low and intermediate pumping. The distinctive
feature of these solitons compared with their conservative
counterparts is that here there is no limitation for the length
Ly of the transverse dimension. In equilibrium BECs, dark
solitons are unstable against bending of the soliton stripes that
leads to the appearance of vortices. This so-called snaking
instability [40] is a long-wavelength phenomenon that can
be only prevented if the transverse size of the system is
less than a threshold length, typically a few healing lengths
ξ = h̄/

√
mgn, where n is the condensate density and g the

interaction strength [41]. As a consequence, only relatively
small 2D systems are capable of supporting stable solitons in
equilibrium condensates. On the contrary, the stability of the
2D solitons presented here is not sensitive to the transverse
length of the system, and an arbitrarily long Josephson π

junction can be stable. The mechanism of the stability is
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FIG. 3. Imaginary part of the linear excitation frequencies
around stationary antisymmetric states in a double Gaussian-stripe
pump, for (a) fixed pumping intensities and (b) fixed transverse do-
main length Ly = 80 lγ . In the latter case, different curves correspond
to different values of the transverse wave number k (in units of
2π/Ly), as labeled on the right margin. Left panel of (a) corresponds
to Fig. 2(b). The shaded regions indicate dynamical stability of the
antisymmetric state.

dynamical and resides on the existence of incoming currents
towards the soliton notch, as we elaborate below.

The snaking instability can produce the decay of solitons
in polariton fluids, and hence the appearance of vortices, if
the pumping is high enough (nonshaded range in Fig. 3).
However, the character of the instability is different from
that of equilibrium systems. As depicted in the top right
panel of Fig. 3(a), for P0 = 85, the unstable modes present
both a maximum and a minimum wave number, whereas
there is no such minimum in equilibrium BECs. The max-
imum unstable wave number kmax allows for preventing the
snaking instability by choosing a short enough system with
Ly < k−1

max. The minimum unstable wave number, on the
other hand, constraints the type of bifurcated vortex states
and so the minimum number of vortices emerging from the
solitons.

Our numerical results show that the unstable modes are
exponentially localized along the axial x direction, around
the lowest density lines of the solitons, and excite standing
waves along the transverse direction that depend on the system
geometry. During the soliton decay, the vortices can be seen
to emerge from the nodal points of the unstable standing
waves, producing Nv = 2kLy vortices (Nv/2 vortex dipoles).
In fact, the emerging stable configurations comprise of vortex
dipoles aligned along the original solitons. Figure 1 shows a
neat example of eight vortex dipoles uniformly distributed on
the initial position of a single ring dark soliton (without off-
center solitons in this case for 2σ/d = 0.77). Analogously,
Fig. 4(b) depicts the resulting configuration from the decay
of a straight antisymmetric state at P0 = 85 (corresponding to
the top right panel of Fig. 3) after seeding a perturbation with

FIG. 4. Vortex-dipole and solitonic lump configurations (b)–
(d) obtained from the decay of unstable antisymmetric stationary
states (a). Steady condensate densities (top panels) and phases (bot-
tom panels) are shown. States (b) and (c) emerge from (a) at P0 = 85,
while state (d) is achieved at P0 = 90. In all cases, the pump is a
double-stripe Gaussian with 2σ/d = 0.6.

k = 6 × 2π/Ly. The perturbation corresponds to preparing
an initial state that is a superposition of a stationary trans-
lationally invariant state and an unstable mode of a given
wave number, the latter entering with a small amplitude. The
vortex-dipole cores cannot be clearly discerned in this case,
and the emerged low-density waves are better described as
solitonic lumps, or also as the Jones-Robert solitons [42].
In both cases, either vortex dipoles or solitonic lumps, the
inward currents towards the junction permit the static ar-
rangement of these otherwise moving nonlinear waves, which
fly away from the junction in conservative BECs (see, e.g.,
Ref. [43]).

Multistability is another consequence of the combination
of inward currents and multiple unstable channels. The ap-
pearance of unstable purely imaginary modes as a function of
increased pumping (Fig. 3) is associated with the bifurcation
of a new family of stationary vortex states inheriting the nodal
configuration of the unstable mode. Although concerning
bifurcations the scenario is analogous to its conservative coun-
terpart [44], a crucial difference is the existence of multiple
stable configurations between the new vortex states; a situa-
tion that manifests more clearly at strong pumping with more
instability channels. For instance, Fig. 4(c) shows another
stable pattern of lumps from the decay of the antisymmetric
state at P0 = 85, in this occasion as a result of feeding a
perturbation with k = 7 × 2π/Ly. At higher pumping, more
complex configurations arise combining lumps and vortex
dipoles, as can be seen in Fig. 4(d) for P0 = 90.

IV. CONCLUSIONS

We have shown how arbitrarily long, stable Josephson
junctions (dark solitons) can be generated on demand in
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exciton-polariton semiconductor microcavities. Decay of the
junction into a stable locked array of vortex dipoles can also
take place at higher pumping intensity. Out of equilibrium,
the dynamics and stability of the Josephson junction and
the associated Josephson vortices are thus under complete
control. A prominent outlook of our results concerns the
dynamics of a linear LJJ array [45], and the implementation
of stable weak links in ring geometry.
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