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Magnetic inhomogeneity in charge-ordered La1.885Sr0.115CuO4 studied by NMR
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We report the inverse Laplace transform analysis of the 139La nuclear spin-lattice relaxation rate 1/T1 (ILTT1

analysis) in charge-ordered La1.885Sr0.115CuO4 (Tcharge � 80 K, Tc � T neutron
spin = 30 K), and shed light on its

magnetic inhomogeneity. We deduce the probability density function P(1/T1) of the distributed 1/T1 (i.e., the
histogram of distributed 1/T1) by taking the inverse Laplace transform of the experimentally observed nuclear
magnetization recovery curve M(t ). We demonstrate that spin freezing sets in in some domains precisely below
the onset of charge order at Tcharge, but their volume fraction grows only gradually toward Tc. Nearly a half
of the sample volume exhibits properties expected for canonical high-Tc cuprates without charge order even
near Tc. Our findings explain why charge order does not suppress Tc of La1.885Sr0.115CuO4 as significantly as in
La1.875Ba0.125CuO4.
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I. INTRODUCTION

Recent advances in x-ray diffraction techniques led
to successful detection of charge-order Bragg peaks in
La2−xSrxCuO4 (x � 1/8) below Tcharge � 80 K [1–3]. The
confirmation finally settled the old controversy stemming
from our earlier reports that the unusual NMR anomalies iden-
tified at the charge order transition of La1.48Nd0.4Sr0.12CuO4

are shared with La1.88Sr0.12CuO4, La1.875Ba0.125CuO4, and
La1.68Eu0.2Sr0.12CuO4, and hence all of these La214-type
cuprates undergo a charge-order transition at a comparable
temperature [4–7]. In fact, the charge-order phenomenon
turns out to be more ubiquitous across different classes of
high-Tc cuprates [8–18], contrary to the belief held by many
researchers two decades ago that charge order was merely
an odd by-product of the structural transition into the low-
temperature tetragonal (LTT) phase of La1.48Nd0.4Sr0.12CuO4.

The fundamental difficulty encountered in the experimen-
tal investigation of charge order in the La214 family is that
the amplitude of the charge density modulation is extremely
small. For the NMR investigation, there is an additional
challenge: Charge order triggers glassy spin freezing within
charge-ordered domains of the La214 family [19] and begins
to locally enhance the NMR relaxation rates with a wide
distribution [4–6]. Since 63Cu NMR relaxation rates in high Tc

cuprates are generally enhanced by the Cu-Cu superexchange
interaction even without charge order, mild enhancement of
the low-frequency Cu spin fluctuations (and hence the NMR
relaxation rates) by a factor of �3 makes the 63Cu NMR signal
detection difficult, i.e., signal intensity wipe out [4–6,20,21].
In fact, our recent single-crystal 63Cu NMR measurements on
La1.885Sr0.115CuO4 [20] confirmed that canonically behaving
63Cu signals are gradually wiped out below Tcharge. The lost
spectral weight is gradually transferred to a broad, winglike

signal with extremely fast NMR relaxation rates. The latter
originates from charge-ordered domains with enhanced spin
correlations and can be detected down to �30 K only with
extremely fast separation time τ � 2 μs between the 90-
and 180-deg radio frequency pulses. We note that such an
experimental condition was not technically feasible in the
1990s.

In contrast, 139La NMR signals are observable in the en-
tire temperature range, because hyperfine couplings between
139La nuclear spins and Cu electron spins are weaker, and
hence the 139La NMR relaxation rates are much slower. The
downside of the 139La NMR study is that the spin-lattice
relaxation rate 1/T1 in the charge-ordered state has a broad
distribution due to the glassy nature of spin freezing below
Tcharge. The NMR community did not have an effective tool
to deal with such a distribution to make concrete statements
about 1/T1 results. As mentioned above, two different types of
63Cu NMR signals are observed for La1.885Sr0.115CuO4 with
different 1/T1 [20], indicating the presence of two different
types of domains, but the corresponding 139La NMR signals
are superposed [22]. Then how shall we discern their 1/T1?
We recently tried to circumvent the difficulty by assuming that
two distinct components exist in the 139La nuclear spin-lattice
relaxation recovery curve M(t ) [22]. The relative fractions of
the fast and slow 1/T1 contributions in M(t ) agree reasonably
well with the relative intensities of the two different 63Cu
NMR signals, but the double component fit is based on an
assumption.

In this paper, we re-examine the 1/T1 process at the 139La
sites based on the inverse Laplace transform (ILT) analy-
sis of the experimentally observed T1 recovery curve M(t )
(dubbed ILTT1 analysis hereafter) [23–26]. The ILT allows
us to deduce the probability density distribution P(1/T1)
for distributed 1/T1 (i.e., the histogram of 1/T1 distribution)
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FIG. 1. 139La NMR recovery curves M(t ) at representative tem-
peratures, normalized by (M(t ) − M0 )/A + 1, where M0 and A are
parameters from the best fits (solid curves) to the stretched exponen-
tial form in Eq. (2). Also shown are best fits to the ILT (dashed black
lines) using Eq. (3). Notice that the broad distribution in P(1/T1)
below 20 K leads to poor stretched exponential fits, while the ILT
yields good fits.

without making any assumptions on the functional form of
M(t ). If 1/T1 is distributed around one value, P(1/T1) will
have one peak. But P(1/T1) will exhibit a double-peak struc-
ture if 1/T1 is distributed about two distinct values, as we
demonstrated elsewhere based on a simple example (see Fig.
1 of Ref. [25]). In what follows, we show that 1/T1 in charge-
ordered La1.885Sr0.115CuO4 indeed develops an asymmetric
distribution, indicative of the presence of two different types
of domains below Tcharge. We establish that charge order
does not uniformly affect the entire CuO2 planes, and the
volume fraction of the charge-ordered domains grows only
progressively toward Tc = 30 K.

II. EXPERIMENTAL

We grew the La1.885Sr0.115CuO4 single crystal at Tohoku
using the traveling solvent floating zone method [27]. We
annealed the crystal in flowing oxygen gas atmosphere at
900 ◦C for 72 h. The crystal used for the present study is
the same piece as in our previous studies [20,22] and has the
approximate dimensions of 3 × 3 × 1 mm. We determined
the superconducting critical temperature Tc = 30 K based on
the magnetization measured with a superconducting quantum
interference device (SQUID). La1.885Sr0.115CuO4 is known to
enter the spin-ordered phase below T neutron

spin � Tc at the fast
measurement time scale of elastic neutron scattering [27], and
the residual spin fluctuations become static at the slower mea-
surement timescale of muon Spin Resonance (μSR) below
T μSR

spin � 15 K [28,29].

We conducted all the 139La NMR measurements at Mc-
Master based on standard pulsed NMR techniques in an
external magnetic field of 9 T applied along the crystal c
axis. See Ref. [22] for representative NMR lineshapes for

the Iz = +1/2 to −1/2 central transition. Note that the NMR
linewidth is dominated by the second-order quadrupole inter-
action down to Tcharge, where a mild line broadening sets in
due to magnetic effects. For the c-axis field geometry, NMR
line shape is not affected by the simultaneous superconducting
and spin ordering at Tc � T neutron

spin � 30 K.

III. RESULTS AND DISCUSSIONS

In the case of nuclear spin I = 7/2 at 139La sites, the
nuclear spin-lattice relaxation process after the inversion
results in the recovery of the nuclear magnetization M(t )
following

M(t ) = M0 − A
4∑

k=1

pke−qkt/T1 , (1)

where M0 is the maximum spin echo intensity, and A rep-
resents the degree of inversion. The coefficients {pk} =
{1/84, 3/44, 75/364, 1225/1716} (where

∑4
k=1 pk = 1) and

{qk} = {1, 6, 15, 28} are theoretically calculated and fixed for
each of the four normal modes in the recovery of nuclear spin
I = 7/2 [30,31]. When 1/T1 has a distribution, it has become
a common practice in the literature to stretch each of the four
exponentials with a common stretched exponent β, as

M(t ) = M0 − A
4∑

k=1

pke−(qkt/T str
1 )β , (2)

where 1/T str
1 is the stretched fit result of 1/T1. In the case

of single exponential recovery function expected for NMR
measurements of I = 1/2 or nuclear quadrupole resonance
(NQR) measurements of I = 3/2, there are justifications for
stretching the exponential function [32–35]. But for the mul-
tiexponential recovery function for I = 7/2, using the same
β for all four normal modes in Eq. (2) should be considered
phenomenological. Nonetheless, as we will show below, our
ILTT1 analysis found that this common practice works fairly
well for the purpose of estimating the average value of 1/T1,
at least in the present and some other cases [25,26].

The inverse Laplace transform (ILT) [35] consists of fitting
the measured recovery curve M(t ) to a sum of exponentials
with decay rate 1/T1 j and the probability density P(1/T1 j ) �
0 [24,25]. More specifically, in the present case of I = 7/2,
the ILT consists of inverting the following multiexponential
equation of four normal modes for P(1/T1 j ):

M(t ) =
m∑

j=1

4∑
k=1

[1 − 2pke−qkt/T1 j ]P(1/T1 j ), (3)

where the summation
∑

j P(1/T1 j ) = M0 is the saturated
value of the magnetization at very long delay times t � T1.
For mathematical clarity, we assumed that inversion is perfect
in Eq. (3).

Given the broad distribution in P(1/T1 j ) at low tempera-
tures in the present case, we selected m = 150 bins equally
spaced on a logarithmic scale ranging from 10−2 s−1 �
1/T1 j � 105 s−1. The large upper bound used for 1/T1 j also
allow us to account for imperfect inversion [25]. The probabil-
ity density is normalized to

∑
j P(1/T1 j )�P = 1, where �P =
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log10(1/T1 j+1) − log10(1/T1 j) = 0.04698 is the logarithmic
bin spacing. With this normalization, P(1/T1 j ) represents
the probability density for the relaxation rate to have the
particular value 1/T1 j . Inverting for P(1/T1 j ) in Eq. (3) is
an ill-conditioned problem, and therefore requires Tikhonov
regularization (i.e., a smoothing factor α) [36–38] or other
techniques [39,40] for a solution.

We provide a brief explanation of the ILT technique in the
Appendix, and we also discuss the concept of resolution and
uncertainties in P(1/T1). We refer readers to Supplemental
Materials [41] of Ref. [25] for additional mathematical back-
ground, the optimization procedures of the ILT, and how we
treat the case of imperfect inversion in Eq. (3).

In Fig. 1, we present a few examples of the M(t ) measured
for the Iz = +1/2 ↔ −1/2 central transition based on an in-
version recovery technique, with the aforementioned stretched
fit with Eq. (2) and the ILT fit in Eq. (3). We used the
pulse separation time τ = 30 μs between the 90- and 180-deg
radio-frequency pulses, and spin echo recycling time up to
trecycle � 10 s to ensure that we do not overlook the longest
components of the distributed 1/T1 in P(1/T1). The typical
90-deg (180-deg) pulse width is 2.5 μs (5 μs). We averaged
the spin echo signals iteratively up to 120 times, with the
overall acquisition time of M(t ) up to ≈ 12 h. We note that the
relaxation rate 1/T str

1 determined from the stretched exponen-
tial fit hardly changes even if one uses trecycle that is somewhat
too short, but P(1/T1) would lose longer components. In
addition, the “resolution” of the ILT curve P(1/T1) depends on
the signal-to-noise ratio (SNR) of M(t ), as discussed briefly
in the Appendix and in detail in the Supplementary Materials
of Ref. [25]. Accordingly, the noise level in the M(t ) curve
should be kept as small as possible (ideally, �0.1%).

In Fig. 2, we summarize the P(1/T1) curves at representa-
tive temperatures. The filled bullet superposed on each curve
marks P(1/T lm

1 ) at the log-mean value of the relaxation rate,
1/T lm

1 . 1/T lm
1 is the center of gravity of 1/T1 distribution on a

logarithmic scale, and represents the spatially averaged value
of 1/T1 in the entire sample. For example, the red P(1/T1)
curve deduced at 45 K indicates that 1/T1 is distributed
between �0.09 s−1 and �1.6 s−1; the most likely value is
1/T1 � 0.29 s−1 as determined by the location of the peak
marked by the red upward arrow; the average value 1/T lm

1 �
0.37 s−1 (red filled bullet) is not at the peak, because P(1/T1)
is asymmetrical.

We also summarize P(1/T1) as a color contour map in
Fig. 3. The additional relaxation processes caused by the slow
fluctuations of the electric field gradient (EFG) enhance 1/T1

near the structural phase transition from the high-temperature
tetragonal (HTT) to the low-temperature orthorhombic (LTO)
structure at THTT−LTO � 255 K, accompanied by the broader
distribution and a split off peak at 1/T1 � 102 s−1. We
found analogous results near the structural phase transitions
of La1.875Ba0.125CuO4 [25]. Otherwise, the distribution of
P(1/T1) is narrow from 295 K down to Tcharge, and the log-
mean value 1/T lm

1 decreases smoothly.
In Fig. 4(a), we summarize the temperature dependence of

1/T lm
1 (blue filled bullets) and compare with 1/T str

1 estimated
from the conventional stretched fit of M(t ) (red diamonds)
[22]. 1/T str

1 agrees with the log-mean value 1/T lm
1 , and hence

the former is a good approximation of the latter. Also summa-
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FIG. 2. Representative results of the probability density P(1/T1)
deduced with ILT by numerically inverting experimentally observed
M(t ). For clarity, the origin is shifted vertically above 4.2 K. Filled
bullets mark P(1/T lm

1 ) at the log-mean value of 1/T lm
1 , which is the

center of gravity of the P(1/T1) curve on a log scale. A small split-off
peak marked as EFG at 255 K arises from the slow fluctuations
of the EFG at the high-temperature tetragonal to low-temperature
orthorhombic structural phase transition [25]. Upward arrows show
the peak (45 K) and shoulder (30 K and 20 K) overlooked by the
conventional analysis based on stretched exponential fit. Dashed
vertical line is the cut off at 1/T1 = 0.55 s−1 for the canonical
superconducting domains; see the main text for details.

rized in Fig. 4(b) is the stretched exponent β obtained from
the stretched fit of M(t ) in Eq. (2) [22]. β shows anticorre-
lation with the log-standard deviation σe calculated for the
distribution, P(1/T1). That is, when β decreases from 1 due to
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FIG. 3. Contour map of P(1/T1) (probability density) generated
from ILT, using 64 contours. Color bar scale is shown at the top of
the figure.

the distribution of 1/T1, σe grows. This makes sense, because
deviation from β = 1 signals the extent of distribution in
1/T1, whereas σe is the direct measure of the width of the
distribution in 1/T1. These findings in Fig. 4 establish that the
ILT results of 1/T lm

1 and σe can provide us with the equivalent
information as 1/T str

1 and β obtained from the conventional
stretched fit analysis. However, all other information about
P(1/T1) is lost when using the stretched fit with Eq. (2).

A major thrust of the ILTT1 analysis is that we can go
one more major step beyond elucidating the average behavior
and examine exactly how 1/T1 distributes about the average
value 1/T lm

1 . Let us now closely examine how charge order
affects the distribution of the local magnetic environment.
First, note that P(1/T1) has a single narrow peak with minimal
distributions between 295 K and Tcharge except near THTT−LTO.
This is consistent with the fact that the conventional stretched
fit returns β � 1 in this temperature range, implying that there
is little distribution in 1/T1. The finite width of P(1/T1) above
Tcharge is set primarily by the resolution of the ILT [25]. Also
note that 1/T lm

1 is located at the peak of P(1/T1) down to
Tcharge, because the distribution of P(1/T1) is symmetrical on
a logarithmic scale, except near THTT−LTO.

The situation completely changes below Tcharge � 80 K,
as clearly shown by the closeup view of P(1/T1) in Fig. 5.
P(1/T1) begins to broaden asymmetrically by extending a tail
toward larger values of 1/T1 due to glassy spin freezing. At
50 and 45 K, the main peak of P(1/T1) is still shifting toward
the smaller values of 1/T1, and the residue of the peak is rec-
ognizable as a shoulder at 1/T1 � 0.25 s−1 down to � 20 K.
These ILT results indicate that 1/T1 at a considerable fraction
of 139La sites is still decreasing below Tcharge, although the
sample averaged 1/T lm

1 (filled bullets) is pulled toward the
larger value of 1/T1 due to the growing tail toward larger 1/T1.

To quantify these observations, in Fig. 4(a) we plot the
top 10% value 1/T +10%

1 (gray +) and the bottom 10% value

FIG. 4. (a) Blue filled bullets: 1/T lm
1 , the log-mean value of the

distributed 1/T1 estimated from P(1/T1). Gray pluses (+): 1/T +10%
1 ,

the top 10% value of the distributed 1/T1. Gray crosses (×): 1/T −10%
1 ,

the bottom 10% value of the distributed 1/T1. Notice that 1/T +10%
1

begins to grow as soon as charge order sets in, but 1/T −10%
1 continues

to slow down toward the simultaneous onset of superconductivity
and magnetic order at Tc � T neutron

spin � 30 K. Also shown is 1/T str
1

(red diamonds), obtained from the single component stretched fit of
M(t ) [22]. 1/T str

1 turns out to be a good approximation of 1/T lm
1 ,

but fails to capture other important features in the distribution of
1/T1. (b) The standard deviation σe of P(1/T1), in comparison to the
stretched exponent β for the stretched fit. Notice the clear signature
of anticorrelation.

1/T −10%
1 (gray ×) of distributed 1/T1, as estimated from

P(1/T1). 1/T +10%
1 and 1/T −10%

1 keep track with the upper
and lower bounds of the distribution in the color contour
map in Fig. 3, as expected. But 1/T +10%

1 and 1/T −10%
1 show

qualitatively different behaviors below Tcharge. The faster parts
in the sample, represented by 1/T +10%

1 , begin to increase as
soon as charge order sets in. On the other hand, the slower
parts in the sample, represented by 1/T −10%

1 , continue to
slow down through Tcharge, as if nothing has happened, until
1/T −10%

1 finally begins to increase at � 30 K. Note that 1/T1

is peaked around 10 K, below which μSR experiments detect
static hyperfine fields [28].
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FIG. 5. The closeup view of P(1/T1) below Tcharge � 80 K. The
filled bullets mark P(1/T lm

1 ) at the average value 1/T lm
1 . Although

1/T lm
1 increases below 60 K, the most likely value of 1/T1 rep-

resented by the peak location (arrows) continues to slow down.
The corresponding shoulder is still recognizable at 1/T1 � 0.25 s−1

down to �20 K. The grey dashed vertical line represents the cutoff
value 1/T1 = 0.55 s−1. The integral of P(1/T1) in the shaded region
below the cutoff represents the volume fraction of the domains with
slow 1/T1 expected for canonical superconducting CuO2 planes,
summarized with filled blue bullets in Fig. 6.

The temperature dependence of 1/T −10%
1 observed above

Tc is very similar to the nondistributed 1/T1 observed above
Tc for the optimally superconducting phase La1.85Sr0.15CuO4

[42–44]. Combined with the continuing shift of the main peak
of P(1/T1) toward smaller values of 1/T1 in the shaded region
of Fig. 5, we conclude that a significant volume of the CuO2

planes continues to behave like the canonical high-Tc super-
conducting phase even below Tcharge. It is just that their volume
fraction becomes smaller starting from Tcharge, as evidenced by
the suppression of the main peak of P(1/T1). 1/T str

1 appears
to level off below Tcharge, merely because it represents the
average behavior of different domains with increasing 1/T1

and decreasing 1/T1. In the case of La1.875Ba0.125CuO4, 1/T str
1

[6,25,45] as well as 1/T lm
1 and 1/T +10%

1 [25] begin to grow at
Tcharge � 54 K, because charge-ordered CuO2 planes are more
homogeneous.

Our conclusion is consistent with the fact that the
charge-order correlation length is as short as ξ � 3 nm in
La1.885Sr0.115CuO4 [3]. In other words, the charge-ordered
phase is highly disordered, and the properties of CuO2 planes
are expected to vary with the short length scale ξ . Our
conclusion is also corroborated by our earlier 63Cu NMR
measurements conducted for the same piece of crystal [20].
A single, narrow 63Cu NMR peak observed above Tcharge is
gradually wiped out, and the lost spectral weight is trans-
ferred to a much wider, winglike signal that emerges below
Tcharge underneath the narrow peak. The winglike signals have
extremely fast NMR relaxation rates 1/T1 and 1/T2 and can
be detected only with extremely short NMR pulse separation

FIG. 6. The volume fraction of the canonically superconducting
CuO2 planes with slow 1/T1, as estimated from the integral of
P(1/T1) in the shaded region of Fig. 5 below the cutoff (blue filled
bullets), and from the intensity of the normal 63Cu NMR signal
(blue open bullets [20]). Also plotted are the volume fraction of
the charge-ordered domains with enhanced 1/T1 estimated from the
integral of P(1/T1) above the cutoff (red filled triangles) and from
the intensity of the winglike 63Cu NMR signals (red open triangles
[20]).

time τ � 2 μs. Since NMR is a local probe, the existence of
these two different types of 63Cu NMR signals with drastically
different relaxation rates indicates that there are two types of
domains below Tcharge with different magnetic properties. The
139La nuclear spins with slow 1/T1 in the shaded region of
Fig. 5 and the narrow 63Cu NMR peak with slower relaxation
rates originate from the same type of domains that are hardly
affected by charge order. The tailed section above the cutoff
in Fig. 5 and the winglike 63Cu NMR signals belong to the
same domains, in which 1/T1 is locally enhanced due to spin
freezing triggered by charge order.

We can estimate the volume fraction of the domains af-
fected by charge order using the probability density P(1/T1),
because its integral represents the number of 139La nuclear
spins. We introduce a cutoff at 1/T1 = 0.55 s−1 at the upper
end of the distribution of P(1/T1) observed at 77 K; see the
dashed line in Figs. 2 and 5. At 77 K, 100% of the sam-
ple volume behaves similarly to canonically superconducting
CuO2 planes, and the entire P(1/T1) curve is located below the
cutoff. Below Tcharge, spin freezing sets in in charge-ordered
domains and 1/T1 increases at 139La sites in these domains.
As a consequence, a part of the P(1/T1) curve extends above
the cutoff. The integrated area under the P(1/T1) curve below
the cutoff represents the fraction of the canonically behaving
domains, whereas the integrated area above the cutoff is from
139La nuclear spins in charge-ordered domains. Needless to
say, the summation of the two volume fractions is 100%,
because the total integral

∑
j P(1/T1 j )�P = 1 is normalized

to 1.
In Fig. 6, we summarize the temperature dependence of

the volume fractions of charge ordered domains with en-
hanced Cu spin fluctuations (red filled triangles) and domains
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unaffected by charge order (blue filled bullets). The agreement
with our earlier estimation [20] based on the relative 63Cu
NMR intensities of the narrow peak and winglike signals
(open symbols) is satisfactory. More importantly, notice that
at Tc = 30 K a significant fraction of 139La nuclear spins
(�40%) still relax with 1/T1 slower than the cutoff. This
means that glassy freezing of Cu spins triggered by charge or-
der hardly affects �40% of the CuO2 planes when supercon-
ductivity sets in. This finding is in remarkable contrast with
the case of La1.875Ba0.125CuO4 with more strongly suppressed
Tc = 4 K [21,25]. In La1.875Ba0.125CuO4, the volume fraction
affected by charge order quickly grows once charge order sets
in at a much lower temperature Tcharge � 54 K, and nearly
100% of the CuO2 planes are covered by domains with highly
enhanced spin fluctuations at 30 K. These contrasting behav-
iors between La1.885Sr0.115CuO4 and La1.875Ba0.125CuO4 sug-
gest that superconductivity with the higher onset temperature
of Tc = 30 K survives in the former, probably because nearly
a half of the sample volume is unaffected by spin freezing at
Tc despite the higher onset of charge order.

IV. SUMMARY AND CONCLUSIONS

We have re-examined the 139La nuclear spin-lattice relax-
ation process in charge-ordered La1.885Sr0.115CuO4 based on
the ILTT1 analysis technique and deduced the histogram of
the domain-by-domain distribution of 1/T1 in the form of the
probability density P(1/T1). We emphasize that we deduced
P(1/T1) by numerically inverting the experimentally observed
recovery curve M(t ) without assuming the functional form
of M(t ), such as the stretched exponential [46] or double
components [47].

We demonstrated that the main peak of P(1/T1), associated
with the domains without enhanced spin fluctuations, persists
even below Tcharge. At the onset of superconductivity at Tc =
30 K, nearly a half of the sample volume remains unaffected
by charge order, in agreement with our earlier 63Cu NMR
results [20].

Our work reported here and elsewhere [25,26] illustrates
the powerful nature of the new ILTT1 analysis techniques
applied to disordered quantum materials. The ILT not only
probes the average behavior of distributed 1/T1 in the form
of 1/T lm

1 (� 1/T str
1 ), but also deduces the histogram of dis-

tributed 1/T1. The conventional stretched fit analysis of M(t )
discards the information about the latter.

ACKNOWLEDGMENTS

We thank S. K. Takahashi and J. Wang for their assistance
in NMR data acquisition and analysis. T.I. is financially sup-
ported by NSERC. P.M.S. is supported by The Rice University
Consortium for Processes in Porous Media. The work at
Tohoku was supported by Grant-in-Aid for Scientific Re-
search (A) (Grant No. 16H02125), Japan.

APPENDIX

In this Appendix, we give a brief overview of the ILT
analysis, and we refer readers to Supplemental Materials of
Ref. [25] for additional mathematical background and the

FIG. 7. Temperature dependence of the optimal regularization
parameter αopt.

optimization procedures of the ILT, which are based on tech-
niques outlined in Ref. [36].

The goal of the ILT is to find the solution to the column
vector P, i.e., P(1/T1 j ), of length m which minimizes the cost
function [38]:

P = arg min
P�0

||M − K P||2 + α||P||2 (A1)

by using non-negative least squares, where ||..|| is the vector
norm. M, i.e., M(ti ), is the column vector of the data of length
n. K is the kernel matrix of size n × m given by

K =
{

Ki j =
4∑

k=1

[1 − 2pke−qkti/T1 j ]

}
, (A2)

The first term in Eq. (A1) is the residual between data and
fit, and the second term is the Tikhonov regularization factor.
α is the scalar regularization parameter (i.e., a smoothing
factor) chosen to be large enough to make the solution stable
in the presence of noise. The solution P(α) in Eq. (A1)
implicitly depends on α. Choosing α = 0 leads to a unique
solution P(α = 0); however the solution is “spiky,” where
the position and amplitude of the spikes depend on the
particular noise realization; this undesirable case is called
“under-regularized.” In the opposite extreme, choosing a large
α � 10 oversmooths the solution P(α � 10); this undesirable
case is so called “over-regularized.”

The optimal regularization parameter αopt is determined
using the Bulter-Reeds-Dawson (BRD) condition [38], to-
gether with the “heel” condition [37]. The BRD condition
corresponds to when the residual between data and fit obtains
the statistical noise floor. The heel condition corresponds to
when systematic errors in the experimental data dominate
the residual between data and fit. Systematic errors occur
due to hardware limitations which are only apparent at high
signal-to-noise ratio (SNR), or the kernel K may not be exact
due to the presence of quadrupole relaxation. The results are
plotted in Fig. 7, which indicate that αopt increases somewhat
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FIG. 8. Temperature dependence the signal-to-noise ratio (SNR).

at lower temperatures. This is a result of the heel condition
being met more often than the BRD condition.

As shown in Fig. 8, the SNR increases from SNR � 50 to
SNR � 200 with decreasing temperature. The Supplemental

Materials of Ref. [25] show an example of a forward model as
a function of SNR using synthetic noise. The forward model
indicates that at SNR = 50, the peaks are distinguishable
provided they are a half-decade apart in 1/T1. As such, a
half-decade in 1/T1 may loosely be considered as the ILT
“resolution” at SNR = 50, although this is only semiquantita-
tive. The resolution can in principle improve with increasing
SNR. The temperature dependence of the SNR in Fig. 8
indicates that a resolution of less than a half-decade in 1/T1

is possible �100 K, provided the BRD condition for αopt is
met rather than the heel condition. If the heel condition is
met, then increasing the SNR does not necessarily improve
the resolution.

Regarding uncertainties in the optimal solution P, we note
that there are no uncertainties or “error bars” associated with
each bin j of the P(1/T1 j ) distribution. Instead, uncertainties
in the moments of P such as 1/T lm

1 (log mean) or σe (log
standard deviation) can be quantified. Furthermore, uncertain-
ties in the total area of P [i.e.,

∑m
j=1 P(1/T1 j ) = M0] and the

partial area of P below [i.e.,
∑m,cut

j=1 P(1/T1 j )] or above [i.e.,∑m
j=m,cut P(1/T1 j )] a certain a cutoff (1/T1)cut can also be

quantified. Details of how to quantify these uncertainties can
be found in Refs. [40,48], which are beyond the scope of this
report.
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