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We study theoretically the Josephson effect between two two-band superconductors respecting time-reversal
symmetry, where we assume a spin-singlet s-wave pair potential in each conduction band. The superconducting
phase at the first band ϕ1 and that at the second band ϕ2 characterize a two-band superconducting state. We
consider a Josephson junction where an insulating barrier separates two such two-band superconductors. By
applying the tunnel Hamiltonian description, the Josephson current is calculated in terms of the anomalous
Green’s function on either side of the junction. We find that the Josephson current consists of three components
which depend on three types of phase differences across the junction: the phase difference at the first band δϕ1,
the phase difference at the second band δϕ2, and the difference at the center-of-mass phase (δϕ1 + δϕ2)/2. A
Cooper pair generated by the band hybridization carries the last current component. We discuss the relation
between the Josephson current calculated in theories and that observed in experiments.
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I. INTRODUCTION

The Josephson effect is a fundamental property of all
superconducting junctions consisting of more than one su-
perconductor [1]. The dissipationless electric current J flows
through the junction in the presence of difference in supercon-
ducting phases across the junction δϕ. The current-phase rela-
tionship (CPR) depends sensitively on electric and magnetic
properties of a material sandwiched by two superconductors
[2,3]. When the material is an insulator, it is well established
that CPR in a spin-singlet s-wave junction is sinusoidal (i.e.,
J = J0 sin δϕ) [4].

The expression of CPR is expected to be complicated
when the junction energy depends on more than two super-
conducting phases. For instance, a superconducting state is
characterized by two phases in a two-band superconductor
such as MgB2 [5,6] and iron pnictides [7,8]. Namely, the
phase of the pair potential in the first band ϕ1 and that of the
second band ϕ2 characterize a two-band superconductivity.
Theories [9–11] have suggested that either an s++ state of
ϕ1 = ϕ2 or an s+− state of ϕ1 = ϕ2 + π can be realized in
pnictides. When such a two-band superconductor couples to
a single-band s-wave superconductor through an insulator,
the junction energy depends on the phase of the single-band
superconductor ϕs, ϕ1, and ϕ2. Actually, theoretical studies
on such Josephson junctions have shown the complicated
energy diagrams as a function of these phases [12–16]. Es-
pecially, an s+− state frustrates the junction energy and stabi-
lizes a spontaneously time-reversal symmetry breaking state
near the junction interface [12,13]. More complicated CPR
would be expected in a Josephson junction consisting of two
pnictide superconductors [17] because four superconducting

phases enter the junction energy. At present, this is ann open
issue.

In this paper, we discuss the Josephson current between
two time-reversal-respecting two-band (two-orbital) super-
conductors. We assume a spin-singlet s-wave order parameter
in each conduction band and consider the band hybridization
as well as the band asymmetry. The coupling between the two
superconductors is described by the tunneling Hamiltonian,
which includes the band-diagonal hopping term. The Joseph-
son current is calculated by using the anomalous Green’s
function on either side of the junction. In addition to the
Josephson current in the two conduction bands J1 sin(δϕ1)
and J2 sin(δϕ2), the band hybridization generates the inter-
band pairing correlations which carry a Josephson current
of J12 sin[(δϕ1 + δϕ2)/2]. Here δϕλ is the phase difference
across the junction at the λth band for λ = 1 − 2. It was shown
in the presence of time-reversal symmetry that the phase
of the band hybridization θ locks the two superconducting
phases in a superconductor as 2θ = ϕ1 − ϕ2 [18]. Thus, θ

is a gauge parameter unique to a two-band superconductor.
The Josephson current turns out to depend on two relative
phases: δϕ1 and δθ . The former is tunable in experiments,
whereas the latter is not tunable. In this paper, we calculate the
Josephson current under two different situations: (i) δθ is an
intrinsic parameter of a junction, and (ii) two superconductors
minimize the junction energy by adjusting δθ spontaneously.
The results under case (i) recover those in the previous paper
[12], and the junction breaks time-reversal symmetry. As a
consequence, the Josephson current has a cos δϕ1 component
in some cases. On the other hand, the results under case (ii)
show that a Josephson junction always preserves time-reversal
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symmetry at δϕ1 = 0 and that the current-phase relationship is
sinusoidal. We also discuss a role of an odd-frequency Cooper
pair [19] in the Josephson effect of two-band superconductors
[18,20–22].

This paper is organized as follows. In Sec. II, we describe
a time-reversal superconducting state in a two-band supercon-
ductor in terms of a microscopic Hamiltonian. The solution
of the Gor’kov equation is also presented. In Sec. III, we
formulate the Josephson current by using a tunnel Hamil-
tonian between two superconductors. On the basis of the
analytical results, the dependence of the Josephson current
on temperature is shown by solving the gap equation numer-
ically. In Sec. V, we discuss the current-phase relationship
of the Josephson current. The conclusion is given in Sec. VI.
Throughout this paper, we use units of kB = c = h̄ = 1, where
kB is the Boltzmann constant and c is the speed of light.

II. TWO-BAND SUPERCONDUCTOR

A. Hamiltonian

The mean-field Hamiltonian for a two-band (two-orbital)
superconductor is described by

H =
∫

dr�†(r) H �(r), (1)

�(r) = [ψ1,↑(r), ψ2,↑(r), ψ†
1,↓(r), ψ†

2,↓(r)]T, (2)

H =

⎡
⎢⎢⎣

ξ1(r) veiθ |
1|eiϕ1 0
ve−iθ ξ2(r) 0 |
2|eiϕ2

|
1|e−iϕ1 0 −ξ1(r) −ve−iθ

0 |
2|e−iϕ2 −veiθ −ξ2(r)

⎤
⎥⎥⎦, (3)

ξ1(r) = −∇2

2m
− γ − εF , ξ2(r) = −∇2

2m
+ γ − εF , (4)

where ψ
†
λ,σ (r)[ψλ,σ (r)] is the creation (annihilation) operator

of an electron with spin σ (=↑ or ↓) at the λ th conduction
band, veiθ denotes the hybridization between the two bands,
and T means the transpose of a matrix. Details of the deriva-
tion of Eq. (3) are given in Appendix A of Ref. [18], and an
outline of the derivation is explained briefly as follows. We
begin with two atomic orbitals belonging to the same parity
such as two d orbitals, two p orbitals, and a pair of s and d
orbitals. The λ th orbital function in an atom at Ri is described
as φλ(r − Ri ). In a metal, φλ(r − Ri ) and φλ(r − R j ) can
overlap each other when Ri and R j point two neighboring
atoms as

tλ =
∫

dr φ∗
λ (r − Ri )

(−∇2

2m

)
φλ(r − R j ). (5)

The kinetic energy of an electron at the λ th band given
by ξλ(r) is a result of such nearest-neighbor hopping, where
γ describes asymmetry in the two bands. In this paper, we
assume that two such conduction bands overlap at the Fermi
level. At an atom at Ri, two orbital functions hybridize each
other as ∫

dr φ∗
1 (r − Ri ) vc(r) φλ(r − Ri ) = v eiθ , (6)

where vc is the periodic potential due to the lattice structure
in real space. Since the function vc(r) is not spherically

symmetric in a metal, the hybridization of the two orbital
functions remains a finite value of v eiθ . Generally speaking,
the orbital function is a complex value. The phase of the
hybridization eiθ originates from the difference in phase of
the atomic orbital functions. The normal-state Hamiltonian of
such a metal is described as

HN =
∑

α

∫
dr[ψ†

1,α (r), ψ†
2,α (r)]HN

[
ψ1,α (r)
ψ2,α (r)

]
, (7)

HN =
[
ξ1(r) veiθ

ve−iθ ξ2(r)

]
, (8)

where α =↑,↓ indicates the spin of an electron. The phase
of hybridization does not play any role in the normal state
because the phase shift ψ2 → e−iθψ2 eliminates the phase
and the global phase shift of the operator does not change
the physics.

We assume a uniform spin-singlet s-wave pair potential for
each conduction band which is defined by


λ = gλ〈ψλ,↑(r)ψλ,↓(r)〉, (9)

where gλ > 0 represents the attractive interaction between
two electrons on the Fermi surface of the λ th band. In
this paper, we do not consider any spin-dependent potentials.
Therefore, the Hamiltonian In Eq. (3) is represented in 4 × 4
matrix form by extracting the spin ↑ sector from the particle
space and the spin ↓ sector from the hole space. Time-reversal
symmetry of such a Bogoliubov–de Gennes Hamiltonian H is
represented by

T H T −1 = H, T = ρ̂0 τ̂0 K, (10)

where K means the complex conjugation and ρ̂0 and τ̂0 are
the unit matrices in two-band space and particle-hole space,
respectively. It is clear that Eq. (3) does not satisfy Eq. (10)
because of three phase factors, eiϕ1 , eiϕ2 , and eiθ . The two
superconducting phases in the Hamiltonian can be factorized
by the global phase shift of operators as

H =UH ′U ∗, (11)

U =diag[eiϕ1/2, eiϕ2/2, e−iϕ1/2, e−iϕ2/2]. (12)

When all the elements of H ′ are real numbers, H preserves
time-reversal symmetry. Actually, it is possible to show the
relation

TU H T −1
U = H, TU = U 2 K, (13)

where TU is a gauge-dependent time-reversal operator. Under
the global phase shift in Eq. (12), however, the phase of the
hybridization is transformed as

θ → θ − ϕ1

2
+ ϕ2

2
. (14)

Therefore, we conclude that Eq. (3) preserves time-reversal
symmetry only when

2θ − ϕ1 + ϕ2 = 2πn (15)

is satisfied [18]. The phases of the two pair potentials and
that of the hybridization are linked to one another when the
superconductor preserves time-reversal symmetry.
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Even in the absence of hybridization, the standard mean-
field theory in the two-band system contains interaction terms
between 
1 and 
2 [23] as

g∗
12〈ψ1,↑(r)ψ1,↓(r)〉ψ†

2,↓(r)ψ†
2,↑(r)

+ g12〈ψ2,↑(r)ψ2,↓(r)〉ψ†
1,↓(r)ψ†

1,↑(r) + H.c., (16)

where the phase of the interaction potential g12 = |g12|e2iθ

relates ϕ1 and ϕ2 [18]. The pair interaction term affects the
Josephson current only through the amplitude of the pair
potentials as


1 → 
1 + g12

g2

2, 
2 → 
2 + g∗

12

g1

1. (17)

We do not consider these interaction terms because they do
not change the main conclusions in this paper.

B. Gor’kov equation

The Gor’kov equation in the Matsubara representation
reads

[iωn − H (k)]

[
Ĝ F̂
F̂ −Ĝ

]
(k,iωn )

= 1̌, (18)

where ωn = (2n + 1)πT is the fermionic Matsubara fre-
quency, with T being temperature. The particle-hole symme-
try implies the relations

Ĝ(k, iωn) =Ĝ∗(−k, iωn), (19)

F̂ (k, iωn) =F̂∗(−k, iωn), (20)

where ˆ· · · denotes a 2 × 2 matrix in two-band space. The
anomalous Green’s function is represented as

F̂ (k, ωn) = 1

Z

[
f1 fe − i fo

fe + i fo f2

]
, (21)

Z = Z1 Z2 + 2 v2
(
ω2

n − ξ1 ξ2 + |
1| |
2|
) + v4, (22)

Zλ = ξ 2
λ + |
λ|2 + ω2

n, (23)

f1(k, ωn) = − [Z2|
1| + v2|
2|ei2nπ ] eiϕ1 , (24)

f2(k, ωn) = − [Z1|
2| + v2|
1|e−i2nπ ] eiϕ2 , (25)

fe(k, ωn) = v [ξ1|
2| + ξ2|
1|] ei(ϕ1+ϕ2 )/2 einπ , (26)

fo(k, ωn) = ωn v [|
1| − |
2|] ei(ϕ1+ϕ2 )/2 einπ , (27)

where nπ is derived from the right-hand side of Eq. (15).
The dispersion relations in the two bands are described by
ξ1 = ξk − γ and ξ2 = ξk + γ , with ξk = k2/2m − εF . The
diagonal components f1 and f2 describing the intraorbital
pairing correlations are linked to the pair potentials 
1 and

2, respectively. The off-diagonal pairing components fe

and fo are induced by the hybridization and describe the
interorbital pairing correlations. In particular, fo represents a
spin-singlet s-wave Cooper pair which is antisymmetric under
permutation of the two orbitals. As a consequence, fo is an
odd function of ωn. The correlation function changes sign
when two electrons exchange their (imaginary) times. We will

discuss the contribution of these components to the Josephson
current in Sec. III. When the two orbitals are identical to
each other, the relation |
1| = |
2| would be expected by
setting g1 = g2 and γ = 0. In such a symmetric case, the
odd-frequency pairing correlation fo vanishes. In this paper,
we introduce the band asymmetry parameter γ to realize
|
1| 
= |
2| and to make fo finite. The asymmetry between
the two bands can be considered also through the difference
in the corresponding masses. In Eqs. (24)–(27), the effects
of different band masses are described by the dispersion
relations ξ1(2)(k) = k2/(2m1(2)) − εF − (+)γ . Therefore, the
band asymmetry due to different masses changes the pairing
correlations only quantitatively.

Here we also supply the expression of the normal Green’s
function:

Ĝ(k, ωn) = 1

Z

[
g1 g12

g21 g2

]
, (28)

g1(k, ωn) = − [(iωn + ξ1)Z2 + (iωn − ξ2)v2], (29)

g2(k, ωn) = − [(iωn + ξ2)Z1 + (iωn − ξ1)v2], (30)

g12(k, ωn) =A v eiθ , (31)

g21(k, ωn) =A v e−iθ , (32)

A =(iω + ξ1)(iω + ξ2) − v2 − |
1||
2|. (33)

The gap equations are represented as


λ = − gλT
∑
ωn

1

Vvol

∑
k

fλ(k, ωn) (34)

and result in


1 =T
∑
ωn

1

Vvol

∑
k

g1

Z
[Z2|
1| + v2|
2|]eiϕ1 , (35)


2 =T
∑
ωn

1

Vvol

∑
k

g2

Z
[Z1|
2| + v2|
1|]eiϕ2 . (36)

Generally speaking, in a two-band superconductor, we deter-
mine both the amplitude and the phase of the two pair poten-
tials in a self-consistent way by solving the gap equation. In
Eqs. (35) and (36), however, the phases of the pair potentials
have already been settled self-consistently under the condition
in Eq. (15). Thus, our remaining task is to determine |
1| and
|
2|, which is not difficult because of the simple mathematical
structure in Eqs. (35) and (36).

III. AMPLITUDE OF THE JOSEPHSON CURRENT

A. Current formula

We discuss the Josephson effect between two superconduc-
tors, where the superconducting states of each superconductor
are described by Eq. (3). We assume that ξ1, ξ2, |
1|, |
2|,
and v are common in the two superconductors. The two
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superconductors are connected by the Hamiltonian

HT =
∑
k,p,σ

[ψ†
L,1,p,σ , ψ

†
L,2,p,σ ] t̂T

[
ψR,1,k,σ

ψR,2,k,σ

]
+ H.c., (37)

t̂T =
[

t1 0
0 t2

]
, (38)

where L (R) indicates the superconductor on the left- (right-)
hand side of an insulating barrier and t1 and t2 denote the
tunneling elements through the barrier at the first band and
that at the second band, respectively. We assume that t1 and t2
are real numbers and are independent of the wave numbers of
an electron. The total Hamiltonian reads

HJJ = HL + HR + HT , (39)

where HL(R) is given by Eq. (2) with ϕ1 → ϕ1L(1R), ϕ2 →
ϕ2L(2R), and θ1 → θL(R). The Josephson current is represented
by [24]

J =e Im
∑
k,p,σ

T
∑
ωn

Tr[t̂T F̂R(k, iωn) t̂T F̂L(p, iωn)], (40)

where Tr means the trace over the two-band degree of
freedom. Since time-reversal symmetry is preserved in each
superconductor, the phases satisfy

2θL − ϕ1L + ϕ2L = 2πnL, (41)

2θR − ϕ1R + ϕ2R = 2πnR. (42)

By substituting the anomalous Green’s function in Eq. (21)
into the formula in Eq. (40), we obtain

J =J1 sin(ϕ1L − ϕ1R) + J2 sin(ϕ2L − ϕ2R)

+ J12 sin[ϕ̄L − ϕ̄R + (nL − nR)π ], (43)

ϕ̄L =ϕ1L + ϕ2L

2
, ϕ̄R = ϕ1R + ϕ2R

2
, (44)

where the amplitudes are given by

J1 =J0
T

Tc

∑
ωn

t2
1

t2
1 + t2

2

[∑
k

Z2|
1| + v2|
2|
πN0Z

]2

, (45)

J2 =J0
T

Tc

∑
ωn

t2
2

t2
1 + t2

2

[∑
k

Z1|
2| + v2|
1|
πN0Z

]2

, (46)

J12 = J0
T

Tc

∑
ωn

2t1t2
t2
1 + t2

2

v2

⎡
⎣

{∑
k

ξ2|
1| + ξ1|
2|
πN0Z

}2

−
{∑

k

ωn(|
1| − |
2|)
πN0Z

}2
⎤
⎦, (47)

J0 = πTc

2eRN
, GN = 4πe2

(
t2
1 + t2

2

)
N2

0 = R−1
N . (48)

The normal conductance GN is calculated from the normal
Green’s function in Eq. (28) at 
1 = 
2 = 0, and N0 is the
normal density of states per spin at the Fermi level. The
first term proportional to J1 is a result of the tunneling of
a Cooper pair between the first conduction band of the two
superconductors. In a similar way, the second term represents
the Josephson current between the second bands. The third

FIG. 1. The dependence of J1, J2, and J12 on temperature for
g2 = 0.5g1 and t1 = t2 = εF . The parameters are fixed at γ = v = 0
in (a) and γ = 0.2εF and v = 0.3εF in (b).

term proportional to J12 is the tunneling of an induced Cooper
pair by the band hybridization. The hybridization generates
two pairing correlations: fe and fo in Eq. (21). The component
fe belongs to an even-frequency symmetry class, as shown
in Eq. (21), and gives the first term in Eq. (47). On the
other hand, the component fo belongs to an odd-frequency
symmetry class, as shown in Eq. (21) [21], and gives the
second term in Eq. (47). As a result, J12 can be negative
when the amplitude of fo is larger than that of fe. It is known
that an odd-frequency Cooper pair indicates the paramagnetic
response to magnetic field [21,25,26] and favors the spatial
gradient in the phase.

B. Dependence of J on temperature

The amplitudes of the current in Eqs. (45)–(47) are plotted
as a function of temperature in Fig. 1, where we choose
g2 = 0.5g1 and t1 = t2. The pair potentials 
1 and 
2 are
calculated by solving the gap equations in Eqs. (35) and (36).
The transition temperature at the first band for v = γ = 0
is indicated by T0. In Fig. 1(a), J1 and J2 are shown for
v = γ = 0. The two current components are independent of
each other, and J12 = 0 in the absence of hybridization. The
transition temperature at the second band is about 0.5T0 as
a result of g2 = 0.5g1. In Fig. 1(b), we show the results
of J1, J2, and J12 for v/2πT0 = 0.2 and γ /2πT0 = 0.3. The
transition temperature in this case is about 0.9T0. All current
components are finite at temperatures below 0.9T0. The results
of J12 are amplified by 30 for better visibility and are negative
at this parameter choice.

IV. CURRENT-PHASE RELATIONSHIP

Three phases, ϕ1 j , ϕ2 j , and θ j , characterize a two-band
superconducting state for j = L and R. The condition derived
from time-reversal symmetry in Eqs. (41) and (42) reduces
the degree of freedom in phases to two. The phase difference
δθ = θL − θR is a parameter characterizing a junction because
θL(R) is an intrinsic gauge parameter unique to a superconduc-
tor. Since J1 > J2 in Fig. 1, we define the phase across the
junction in terms of ϕ1L(R) by (Fig. 2)

δϕ ≡ ϕ1L − ϕ1R. (49)

184501-4



JOSEPHSON EFFECT IN TWO-BAND SUPERCONDUCTORS PHYSICAL REVIEW B 101, 184501 (2020)

ϕ
1L

ϕ

θ

2L

L

ϕ
1R

ϕ

θ

2R

R

δϕ

δθ

Left Right 

FIG. 2. In a superconductor, the phase difference between the
two pair potentials ϕ1 j − ϕ2 j is related to θ j in Eqs. (41) and (42),
which hold true in the presence of time-reversal symmetry. The
Josephson current is represented as a function of δϕ and δθ .

The phase difference in the second band is described by

ϕ2L − ϕ2R =δϕ − 2δθ. (50)

The integer numbers nL and nR in Eqs. (41) and (42) are
embedded into θL and θR, respectively. The Josephson current
becomes

J = J1 sin δϕ + J2 sin(δϕ − 2δθ ) + J12 sin(δϕ − δθ ). (51)

The δϕ corresponds to the phase difference across the junction
and is tunable in experiments. On the other hand, δθ is a gauge
parameter that depends on a sample. In what follows, we dis-
cuss characteristic properties of the current-phase relationship
under two different situations: (i) δθ is an intrinsic parameter
of a junction, and (ii) δθ is automatically adjusted to minimize
the junction energy. When an external (bosonic) degree of
freedom couples to θ , the value of θ can be a sample-specific
parameter fixed by such an interaction. When the Josephson
coupling energy EJJ is much smaller than the interaction
energy, θ could be a static parameter, as considered in case
(i). On the other hand, when the Josephson coupling energy is
much larger than the interaction, θ in the two superconductors
would be determined self-consistently to minimize the energy
of the junction, as discussed in case (ii).

A. Fixed δθ

We discuss typical Josephson junctions by fixing δθ at
several values.

(1) s++/s++. A two-band superconducting state with ϕ1 =
ϕ2 is called an s++ state in recent literature and is described
by θ = 0 or π in this paper. We first consider a junction
consisting of two s++ superconductors with δθ = 0. The
resulting current given by

J = (J1 + J2 + J12) sin δϕ (52)

is sinusoidal as a function of the phase difference. It is possible
to consider another s++/s++ junction by choosing θL = π and
θR = 0. The current in such a case results in

J = (J1 + J2 − J12) sin δϕ. (53)

Although the CPR is sinusoidal, the last term changes sign.
In an isolated superconductor, the gauge parameter θ does not
affect any observable values because it can be removed by a
gauge transformation. In a Josephson junction, however, δθ

modifies the Josephson current.

(2) s+−/s+−. A two-band superconducting state with ϕ1 =
ϕ2 + π is called an s+− state and is described by θ = ±π/2.
In a junction consisting of two s+− superconductors with θL =
θR = π/2, the CPR is given by Eq. (52). However, when we
choose θL = π/2 and θR = −π/2, the CPR becomes Eq. (53).
As in case (1), the CPR is sinusoidal in both cases.

(3) s+−/s++. Finally, we consider a junction consisting
of an s++ superconductor and an s+− superconductor. The
results are summarized as

J = (J1 − J2) sin δϕ ∓ J12 cos δϕ (54)

for θL = ±π/2 and θR = 0. When we choose θL = ±π/2 and
θR = π , the CPR becomes

J = (J1 − J2) sin δϕ ± J12 cos δϕ. (55)

The sign change of J2 indicates the π phase difference in
the pair potentials in the second band. The most important
feature is the appearance of the cos δϕ term, which suggests
the breakdown of time-reversal symmetry even at δϕ = 0.
According to Eq. (51), the cos δϕ term always appears when
δθ is neither zero nor π . The obtained results recover the
conclusion in a previous paper [12].

B. Varied δθ

The Josephson current is related to the junction energy EJJ

by J (δϕ) = e∂δϕEJJ. Namely, the Josephson current vanishes
at the ground state. From the relation, the junction energy can
be described by

eEJJ = −J1 cos δϕ − J2 cos(δϕ − 2δθ ) − J12 cos(δϕ − δθ )

(56)

� − (J1 + J2 + |J12|). (57)

As shown in Eqs. (45)–(47), J1 and J2 are always positive, but
J12 can change sign. We first discuss the case of J12 > 0. As
shown in Fig. 1, the first term proportional to J1 is the most
dominant in our model and takes its minimum at δϕ = 0. The
second and third terms, however, take their minima at δϕ =
2δθ and δϕ = δθ , respectively. As we discussed in Sec. II,
the gauge parameter θ does not affect the physics of a single
superconductor in the presence of time-reversal symmetry
because it is possible to remove it by a unitary transformation.
In addition, θ originates from the difference in phases of two
atomic orbital functions [18,23]. Therefore, it is reasonable
to consider that two superconductors would adjust their gauge
parameters δθ to minimize the junction energy spontaneously.
Indeed, EJJ is at its absolute minimum at (δϕ, δθ ) = (0, 0) for
J12 > 0.

For J12 < 0, the junction energy EJJ takes its minimum at
(δϕ, δθ ) = (0, π ). Namely, the sign change of J12 is absorbed
as a π shift of δθ . The CPR remains sinusoidal even at
such a nontrivial solution because the π shift in θ does not
break time-reversal symmetry as shown in Eq. (15). Thus, we
conclude that the CPR is sinusoidal as

J = (J1 + J2 + |J12|) sin δϕ, (58)

when the two superconductors minimize the junction energy
spontaneously by adjusting their gauge parameter δθ .
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V. CONCLUSION

We studied theoretically the Josephson effect in a tunnel
junction consisting of two two-band (two-orbital) supercon-
ductors, where the spin-singlet s-wave pair potential in each
conduction band, the hybridization, and the band asymmetry
are considered. In a two-band metal, the superconducting state
is characterized by three phases: the phase of the pair potential
at the first band ϕ1, that at the second band ϕ2, and the phase
of the band hybridization θ . When time-reversal symmetry
is preserved in a two-band superconductor, the relation 2θ −
ϕ1 + ϕ2 = 2πn reduces the phase degree of freedom to two
(i.e., ϕ1 and θ ).

On the basis of a standard current formula, the Josephson
current is calculated by the anomalous Green’s functions on
either side of the junction. The Josephson current depends
not only on the phase difference across the junction δϕ1 =
ϕ1,L − ϕ1,R but also on the difference of the gauge parameter
δθ = θ1 − θ2 in the two superconductors. The current-phase

relationship deviates from the sinusoidal function for δθ 
= 0.
The dependence of the Josephson current on temperature, the
behavior of the gauge parameters in real junctions, and effects
of odd-frequency Cooper pairs on the Josephson current are
also discussed.
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