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Resistivity minima are commonly seen in itinerant magnets and they are often attributed to the Kondo
effect. However, recent experiments are revealing an increasing number of materials showing resistivity
minima in the absence of indications of Kondo singlet formation. In a previous work [Z. Wang, K. Barros,
G.-W. Chern, D. L. Maslov, and C. D. Batista, Phys. Rev. Lett. 117, 206601 (2016)], we demonstrated that
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction can produce a classical spin liquid state at finite
temperature, whose resistivity increases with decreasing temperature. The classical spin liquid exists over a
relatively large temperature window because of the frustrated nature of the RKKY interaction produced by a
2D electron gas. In this work, we investigate the robustness of the RKKY-induced resistivity upturn against site
dilution, which provides an alternative, and more robust, way of stabilizing the classical spin liquid state down
to T = 0. By using series expansions and stochastic Landau-Lifshitz dynamics simulation, we show that site
dilution competes with thermal fluctuations and further stabilizes the resistivity upturn, which is accompanied
by a negative magnetoresistivity due to suppression of the electron-spin scattering.

DOI: 10.1103/PhysRevB.101.184432

I. INTRODUCTION

The resistivity minimum of metallic magnets is often as-
sociated with the Kondo effect [1]. Indeed, the scattering
by impurities and defects is the dominant dissipative mech-
anism at sufficiently low temperature because the phonon
population becomes arbitrarily small. The Kondo mechanism
consists of spin-flip impurity scattering. Below the so-called
Kondo temperature scale TK , the individual magnetic impuri-
ties are screened by the conduction electrons, and this effect
suppresses the correlations between different impurities [2].
However, as it was pointed out by Doniach [2], the Kondo
effect can be suppressed if the effective Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [3–5] between different
magnetic impurities becomes dominant. This work is moti-
vated by the increasing number of materials that exhibit clear
indications of dominant RKKY interaction yet still display a
resistivity minimum [6–19].

In a previous work [20], we demonstrated that the classi-
cal spin liquid state produced by a highly frustrated RKKY
interaction enhances the back scattering process (�k = 2kF )
and generates a resistivity upturn at low temperature.1 In that
work, we focused on the dense limit of one magnetic moment
per lattice site (the magnetic moments form a periodic array).
In the present work, we consider the diluted case in which
the concentration ns of magnetic moments is smaller than one
(ns < 1) and the moments are randomly distributed scattering
centers. This scenario applies to multiple materials includ-
ing SrTiO3 based thin films/heterostructures [21–23], dilute

1A special example of this mechanism is the resistivity minimum
in spin ice systems, which were demonstrated in Refs. [44,45].

magnetic semiconductors (Ga1−xMnx)As [24,25], manganites
[26], and intermetallic compounds [6,12,13,15,16]. It is then
natural to ask if the RKKY interaction can produce a resis-
tivity upturn when the concentration of magnetic impurities is
low.

To address this question, we single out the RKKY mech-
anism by assuming that the local moments are classical (the
Kondo effect is explicitly excluded). This limit is relevant
for compounds with large magnetic moments or materials
in which the “Kondo exchange” J between the spin of the
conduction electrons and the magnetic impurities is ferro-
magnetic (FM). The assumption of an effective RKKY in-
teraction between the magnetic impurities implies that we
are working in the weak-coupling limit Jη(εF ) � 1, where
η(εF ) is the density of states at the Fermi level. Two natural
consequences of the weak-coupling limit are in order. First,
higher-order spin interactions mediated by the electrons can
be neglected (for example, four-spin interactions beyond the
RKKY level [27]). Second, the mean free path l ∝ W/J2 is
much larger than the Fermi wavelength kF l � 1 (W is the
bandwidth). In three dimensions (3D), this condition leads
to metallic behavior of the electrons. In two dimensions
(2D), the system exhibits metallic behavior down to very low
temperatures below which Anderson localization becomes
relevant (the localization length depends exponentially on l
[28]). Furthermore, the weak localization is suppressed in
the presence of magnetic impurities [28]. Finally, we do
not include electron-electron or electron-phonon interactions,
which are responsible for the positive slope of the resistivity
at high enough temperatures (the resistivity minimum arises
from the combination of this effect with the low-temperature
resistivity upturn caused by the scattering with magnetic
impurities).
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FIG. 1. Schematic plot of the ionic structure factor α(k) of the
liquid metals at different temperatures [29,30].

Another natural question is: how can we distinguish be-
tween a resistivity minimum induced by the Kondo effect and
the one induced by the RKKY interaction? The results pre-
sented in this paper show that the two alternative scenarios can
be tested by measuring the temperature dependence of the spin
structure factor. When the resistivity minimum is induced by
the RKKY interaction, the low-temperature resistivity upturn
should be accompanied by an upturn of the magnetic structure
factor at wave vectors k � 2kF . This situation is similar to the
electric transport in liquid metals, where the scattering centers
are the ionic displacements instead of magnetic impurities
[29]. Within the Born approximation, the resistance of the
liquid metal due to electron-ion scattering is determined by
the Fourier transform of the pair distribution function or
ionic structure factor α(k). The temperature variation of the
resistivity follows from the temperature dependence of α(k),
which can be measured with neutron diffraction [29,30]. For
most liquid alkali and noble metals, the resistivity of the
liquid is much lower than that of the gas, because the ionic
structure factor of the liquid αliq(k) is lower than that of
the gas αgas(k) = ᾱ (ᾱ is the average value of α(k) over
the momentum space) for k � 2kF (see Fig. 1). This is so
because the ionic density is typically larger than the density
of conduction electrons, implying that αliq(k) is peaked at a
wave vector K > 2kF (the free electron Fermi surface does
not touch the boundary of the Brillouin zone). In other words,
the transition from the gas to the liquid is accompanied by a
spectral weight transfer from k � 2kF to k � K that reduces
the back scattering by a large amount.

The crucial difference between the above-described gas
to liquid metal crossover and the scattering of electrons by
magnetic impurities near the paramagnetic (“spin gas”) to
classical spin liquid crossover is that the dominant magnetic
correlations of the spin liquid state are dictated by the
electronic density. In other words, for relatively small Fermi
surfaces, the RKKY interaction between magnetic impurities
enhances the magnetic structure factor of the classical spin
liquid state at k � 2kF relative to its value in the high-
temperature paramagnetic state: Sliquid(k � 2kF ) > Sgas (note
that Sgas is independent of k). This enhancement, that can
also be verified with a neutron or x-ray scattering experiment,
increases the electronic back scattering and results in a higher
resistivity of the classical spin liquid state relative to the

high-temperature spin gas. In contrast, the resistivity upturn
produced by the Kondo effect should not be accompanied by
a similar upturn of S (k � 2kF ).

The rest of this paper is organized as follows. In Sec. II,
we introduce the model and lay out the general formalism of
the calculation. In Sec. III, we discuss the dense limit of two
dimensional metals with a small Fermi surface. Section IV
is devoted to the general case of arbitrary concentrations of
magnetic impurities, while Sec. V focuses on the dilute limit.
In Sec. VI, we discuss the effect of an applied magnetic field.
In Sec. VII, we extend our discussion to three dimensional
systems. Conclusions and further discussions are presented
in Sec. VIII. The appendices include the formulas for the
high-temperature (high-T ) series expansion (Appendix A), a
description of the stochastic Landau-Lifshitz (SLL) dynamics
(Appendix B), a description of the bond-density wave phase
that appears at low-enough temperature in the dense limit
(Appendix C), and a discussion of the finite size effects in
the SLL simulation (Appendix D).

II. MODEL

We consider the classical Kondo lattice model (KLM) with
uncorrelated random spin vacancies on a square lattice

H =
∑

k

∑
σ

(εk − μ)c†
kσ

ckσ + J
∑

i

∑
αβ

c†
iασαβciβ · ζiSi.

(1)

The operators c†
iσ /ciσ create/annihilate an electron with spin

σ on site i, while c†
kσ

/ckσ are the corresponding operators
in Fourier space. εk is the bare electron dispersion with
chemical potential μ. J is the exchange interaction between
the local magnetic moments Si and the conduction electrons
(σ is the vector of the Pauli matrices). The classical moments
are normalized, |Si| = 1, because the magnitude of the local
magnetic moments can be absorbed in the coupling constant
J . The choice of a square lattice is immaterial because the
underlying lattice geometry does not alter the frustrated nature
of the RKKY interaction in the long wavelength limit kF � 1.

The uncorrelated random integers ζi = {0, 1} denote the
absence/presence of a magnetic impurity on site i. For a
given spin concentration ns ∈ [0, 1], the uncorrelated random
integers ζi are drawn from the distribution

P(ζi ) = nsδζi,1 + (1 − ns)δζi,0. (2)

Consequently, the disorder average of ζi gives ζi = ns.
We will focus on the weak-coupling limit Jη(εF ) � 1

of Eq. (1). In this limit, the conduction electrons can be
integrated out to obtain the effective spin Hamiltonian known
as RKKY model [3–5]:

HRKKY = −J2
∑

k

χ̃kSk · S−k

=
∑
i, j

J (ri − r j )(ζiSi ) · (ζ jS j ), (3)
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with

χ̃k = χ0
k − 1

N

∑
k

χ0
k , (4)

χ0
k = − 1

2π2

∫
dq

f (εq+k) − f (εq)

εq+k − εq
, (5)

Sk = 1√
N

∑
i

eik·riζiSi, (6)

J (r) = −J2

N

∑
k

eik·rχ̃k, (7)

where N = L2 is the total number of lattice sites, and f (ε)
is the Fermi distribution function. In the weak-coupling limit,
the Curie-Weiss temperature θCW associated with the RKKY
interaction is orders of magnitude smaller than the Fermi
temperature. Correspondingly, we can safely set T = 0 in the
Fermi distribution function that appears in Eq. (5).

In addition, we will focus on the long wave length limit
that is obtained for a sufficiently small Fermi surface (FS).
For concreteness we will fix the chemical potential at μ =
−3.396t (unless specified otherwise). We will consider two
types of dispersion relations. The first one is the parabolic
dispersion

εk = −4t + tk2, (8)

that is obtained in the long wavelength limit. The second case
corresponds to the dispersion relation obtained for the nearest-
neighbor tight-binding model

εk = −2t (cos kx + cos ky). (9)

For the tight-binding model, our choice of the chemical
potential (μ = −3.396t) leads to an electron filling fraction
of 0.05 and a small FS (Fermi wave vector kF ≈ 0.8). The
parabolic dispersion is a very good approximation in this
case and its simplicity becomes useful for understanding
different aspects of the problems that we will consider in
this paper. However, as we will see below, the lattice effects
included in the tight-binding dispersion relation (9) change the
qualitative behavior of the bare electronic susceptibility χ0

k .
The parabolic dispersion leads to a well-known flat maximum
of χ0

k for 0 � k � 2kF . This degeneracy is removed by the
quartic and higher-order corrections that appear in the Taylor
expansion of Eq. (9). This is the main reason for considering
both dispersion relations in the rest of the manuscript. As we
explain in Sec. VIII, there are multiple physical mechanisms
that can produce an effective magnetic interaction between the
local moments that is qualitatively the same as the one ob-
tained for the tight-binding model. Consequently, the results
that we will present for the RKKY interaction derived from
Eq. (9) are representative of more general situation in which
the magnetic susceptibility at k = 2kF is slightly higher than
the ferromagnetic susceptibility.

The bare electronic susceptibility for the parabolic disper-
sion (8) is [31]

χ0
k = 1

2πt
[(1 − x) + (x − 1)(1 −

√
1 − x−2)], (10)

FIG. 2. Bare electronic susceptibilities for a 2D electron gas.
(a) For parabolic dispersion along radial direction. (b) For tight-
binding dispersion along radial direction. (c) Angular dependence
for tight-binding dispersion at k = 2kF .

where x ≡ k/(2kF ). In the thermodynamic limit N → ∞, the
corresponding real-space RKKY interaction is

J (r) = J2

t

(
− k2

F

4π3/2

)
G2,0

1,3

(
k2

F r2

∣∣∣∣ 1
2

0, 0, −1

)
(11)

kF r�1≈ −J2

t

sin (2kF r)

4π2r2
, (12)

where Gmn
pq (z|a1, · · · , ap

b1, · · · , bq
) is the Meijer G function.

The bare electronic susceptibility of the tight-binding
model (9) is also known analytically along the high-symmetry
directions [32]. Given that χ0

k must be evaluated for arbitrary
values of k, we will solve Eq. (5) by applying numerical
integration methods [33].

Figure 2 shows the bare electronic susceptibility χ0
k for

a small FS in 2D. χ0
k is perfectly flat below 2kF for the

parabolic dispersion (8); while a minor upturn from k = 0 to
k = 2kF appears for the tight-binding dispersion (9), along
with a small angular modulation. Both effects are caused
by quartic, O(k4), corrections to the parabolic dispersion.
Interestingly enough, the small upturn at 2kF is enough to
stabilize various magnetic phases including spiral, conical and
skyrmion crystal orderings at low enough temperatures [34].

Within the Born approximation, the inverse relaxation time
for elastic scattering is given by

1

τkF

= 4πJ2

N

∑
k

δ(μ − εk)S (k − kF )(1 − cos θkF ,k), (13)

where S (k) is the disorder averaged static spin structure factor

S (k) = 〈Sk · S−k〉, (14)
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and 〈· · · 〉 denotes thermal average.
The electrical resistivity is given by

ρ = ρRKKY(T ) = 4

π
ρ0

∫ 1

0
dx

x2

√
1 − x2

S (2kF x), (15)

where ρ0 = 2πJ2/(tekF )2. It is clear then that the transport
cross section due to electron-spin scattering is determined by
the behavior of the static spin structure factor S (k) for k �
2kF . Especially, the back scattering process with k = 2kF has
the largest weight in Eq. (15).

As we discussed in Ref. [20], Eq. (15) results from expand-
ing the T matrix to the lowest order, while the Kondo effect
comes from the spin-flip second-order process (for quantum
spins):

ρ ≈ ρRKKY(T )

[
1 − 8Jη(εF ) ln

(
T

D

)]
, (16)

where D is the bandwidth. The usual expression given by
Kondo [1] is recovered in the single-impurity limit because
ρRKKY(T ) becomes temperature independent (the magnetic
structure factor is momentum independent for a single impu-
rity). In contrast, as it is shown in Ref. [20] and in this paper,
ρRKKY(T ) can also produce a resistivity upturn for a finite
magnetic impurity concentration. To single out this effect, in
this paper, we only consider classical spins so that the Kondo
effect is explicitly excluded.

In the following sections, we will evaluate Eq. (15) by
using the average spin structure factor S (k) obtained from
several approximate analytical methods which are appropriate
for different physical limits. We also provide unbiased numer-
ical results that are obtained by integrating the SLL equation
[35,36] of the RKKY model.

III. DENSE LIMIT ns = 1

The dense limit (ns = 1) has been discussed briefly in
Ref. [20], which observed that highly frustrated RKKY in-
teraction leads to a resistivity upturn upon lowering temper-
ature. Here, we further explore how the competition between
entropy and energy determines the fate of the upturn at even
lower temperatures.

As it is explicitly shown in Appendix A, the disorder
averaged static spin structure factor for arbitrary spin con-
centration can be analytically expanded in powers of the
dimensionless parameter K

t ≡ 2β

3
J2

t ns (high-temperature ex-
pansion):

S (k)

ns
≈ 1 + Kχ̃k + K2

(
χ̃2

k − 1

N

∑
q

χ̃2
q

)

+ K3

[
χ̃3

k − 1

N

∑
q

χ̃3
q − 2

N
χ̃k

∑
q

χ̃2
q

+
(

1 − 3

5n2
s

)
1

N2

∑
qq′

χ̃qχ̃q′ χ̃k−q−q′

]
. (17)

By setting ns = 1 we recover the known result in the dense
limit [20], which is the focus of the current section. Note that
all disorder realizations become the same for ns = 1, so the
“disorder average” · · · does not change anything in this limit.

FIG. 3. Disorder averaged static spin structure factors obtained
from high-T expansion (17), for the parabolic dispersion (8) (left
column) and tight-binding dispersion (9) (right column) and three
different temperatures T/ns = {0.05, 0.1, 0.3} (unit: J2/t). [(a) and
(b)] include contributions up to O(β2) for any spin concentration;
[(c)–(h)] include contributions up to O(β3) for three different spin
concentrations ns = {1.0, 0.6, 0.2}. The insets show the zoomed in
view of the T/ns = 0.05J2/t curves. The angular dependence on k
is negligible for low electron filling and high temperature: S(k) ≈
S(k).

We start by considering the parabolic case, for which χ0
k

is given by Eq. (10). Figures 3(a) and 3(c) show that S (k)
is enhanced for k < 2kF as the temperature is lowered. The
increasing weight of S (k) below 2kF significantly enhances
the electron-spin scattering [see Eq. (15)], and leads to the
resistivity upturn shown in Fig. 4(a). This result is consistent
with Ref. [20].

A closer look at Eq. (17) reveals that S (k) is perfectly flat
below 2kF to order O(β2) [see Fig. 3(a)]. This frustration (de-
generacy) is eventually lifted by thermal fluctuations, namely
the “order by disorder” mechanism [37]. Up to order O(β3),
Figure 3(c) shows that the wave vector k = 0 is entropically
favored in comparison to any other finite k0 � 2kF . The high-
T expansion is no longer reliable for very low temperatures
(T/ns < 0.05), as it is clear from the unphysical negative
values of the spin structure factor. However, our unbiased SLL
simulations demonstrate that the weight at k = 0 becomes
finally dominant, showing a tendency towards ferromagnetic
ordering [see Fig. 5(a)]. According to Eq. (15), it is clear
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FIG. 4. Electrical resistivity obtained from high-T expansion
up to order O(β3), for (a) parabolic dispersion, and (b) tight-
binding dispersion. We use three different spin concentrations ns =
{1.0, 0.6, 0.2}. The high-T expansion becomes unreliable in the
shaded low-temperature region. The symbols correspond to the re-
sults obtained from SLL simulations of the RKKY model on a square
lattice of 128 × 128 sites.

that the electron-spin scattering must be suppressed at the
lowest temperatures. Indeed, as it is shown in Fig. 6 for ns =
1, the resistivity curve has a low-temperature maximum, i.e.,
the upturn saturates and it becomes a downturn upon further
reducing temperature.

We now turn to the discussion of the tight-binding disper-
sion. Similar to the parabolic case, χ0

k is also highly frustrated
below 2kF [see Fig. 2(b)]. Upon lowering temperature, the

FIG. 5. Disorder averaged static spin structure factors obtained
from SLL simulation of the RKKY model on L = 128 square lattice,
for the parabolic dispersion (8) (left column) and tight-binding
dispersion (9) (right column). We use three different spin concentra-
tions ns = {1.0, 0.6, 0.2} and three different temperatures T/ns =
{0.001, 0.02, 0.05} (unit: J2/t). In the main panels, we average over
64 disorder realizations to estimate the error bars. The insets show
the distribution of S(k) in the 1st BZ for one disorder realization at
T/ns = 0.001J2/t (linear color scales are used in all insets).

FIG. 6. Electrical resistivity obtained from SLL simulation of
the RKKY model on a square lattice of 128 × 128 sites for the
susceptibility χ 0

k obtained from the parabolic dispersion (8). The
error bars are estimated by averaging over 64 realizations of disorder.
Both panels show the same data, with (a) linear scale and (b) linear-
logarithmic scale.

spectral weight of S (k) is enhanced below 2kF [see Figs. 3(b)
and 3(d)], and a resistivity upturn is induced by exactly the
same mechanism [see Fig. 4(b)]. Unlike the parabolic case, χ0

k
is not perfectly flat below 2kF [see Fig. 2(b)]. As we already
mentioned, the difference arises from quartic corrections to
the parabolic dispersion (8) [34]. As shown in Fig. 2(b), these
corrections induce an upturn along the radial direction, which
produces a maximum of χ0

k at k = 2kF . In other words, the
quartic corrections partially remove the magnetic frustration
in favor of the ring of wave vectors with k = 2kF . This
different selection mechanism explains the different behaviors
of S (k) for the parabolic and tight-binding cases shown in
Figs. 3(a)–3(d). The dominance of the energetic contribution
over the entropic one, i.e., maxima at 2kF instead of at k = 0
for S (k), is quite clear even for moderate temperatures [see
Figs. 3(b) and 3(d)].

While the high-T expansion is not reliable at low enough
temperatures, the internal energy contribution should become
even more dominant than the entropic contribution upon
further reducing T . Indeed, our SLL simulation confirms the
development of a sharp maximum at k = 2kF along the radial
direction [see Fig. 5(b)]. Since S (2kF ) keeps growing upon
further lowering the temperature, the Born approximation

184432-5
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FIG. 7. Electrical resistivity obtained from SLL simulation of
the RKKY model on square lattice of 128 × 128 sites for the
susceptibility χ 0

k obtained from the tight-binding dispersion (9). The
error bars are estimated by averaging over 64 realizations of disorder.
Both panels show the same data, with (a) linear scale and (b) linear-
logarithmic scale.

Eq. (15) predicts that the resistivity upturn should persist for
T → 0 (see Fig. 7, ns = 1 curve), in contrast to the nonmono-
tonic behavior that was obtained for the parabolic dispersion.
Another interesting consequence of the quartic-correction to
the parabolic dispersion is the emergence of a bond-ordered
phase at low enough temperatures (see Appendix C) via a first
order phase transition. This is the origin of the discontinuous
behavior of ρ(T ) at T � 0.02J2/t for ns = 1 that is shown in
Fig. 7.

IV. GENERIC FILLING ns � 1

In this section, we move away from the dense limit to
analyze the behavior of the resistivity for general values of
ns. We will start with a few general observations that result
from the high-T expansion in Eq. (17). First, up to O(β2),
the temperature dependence of the S (k) is the same for any
ns, up to an overall rescaling of S (k) and T [see Figs. 3(a)
and 3(b)]. Consequently, the resistivity upturn should always
appear at high enough temperature regardless of the choice
of ns. This observation is confirmed by the results shown
in Fig. 4. Second, the overall rescaling factor ns in front of
S (k) simply means that the cross section is proportional to
the number of magnetic impurities [see Eq. (15)], implying

that ρ is also rescaled by ns. The qualitative behavior of ρ(T )
remains the same as the one obtained for the dense limit (see
Fig. 4). Third, the first nontrivial correction of order O(β3)
changes the behavior of the resistivity at low temperatures.

For the parabolic dispersion, the only term of order O(β3)
with momentum dependence for k < 2kF has a coefficient
[1 − 3/(5n2

s )]. This coefficient has opposite signs in the high
and low spin concentration limits, implying that the dom-
inant spin-spin correlations become ferromagnetic (k = 0)
for ns = 1 [see Fig. 3(c)], and antiferromagnetic with k =
2kF for ns � 1 [see Figs. 3(e) and 3(g)]. The critical spin
concentration for the sign change is ns = √

3/5 ≈ 0.77. Note
that this critical concentration corresponds to a crossover
between two different high-temperature behaviors. While our
SLL simulation does not have enough statistics to pin down
the critical concentration for T → 0, we have unambiguously
verified that the dominant correlations are ferromagnetic for
ns � 0.9 and antiferromagnetic with k = 2kF for ns � 0.7
[see also Figs. 5(a), 5(c) and 5(e)].

The different behaviors that are obtained in the low-
temperature regime for a parabolic dispersion and ns � 1
reflect a characteristic feature of highly frustrated systems:
weak effective interactions can tip the balance in one way
or another. The dominant ferromagnetic correlations that are
obtained in the dense limit arise from a rather fragile order
by disorder mechanism induced by thermal fluctuations. In
contrast, as we will see in the next section, the dominant k =
2kF correlations for ns � 1 arise from a much more robust
and generic mechanism that has its roots in the oscillatory
nature of the RKKY interaction. This phenomenon leads to
a more pronounced resistivity upturn that holds down to very
low temperatures (see Figs. 6 and 7).

In summary, for a parabolic or tight-binding dispersion,
the slope of the resistivity is negative, dρ/dT < 0, for any
ns in the high-temperature regime because the spectral weight
of S (k) is transferred from the region k > 2kF to the region
k � 2kF upon decreasing T . A further reduction of the tem-
perature leads to the onset of ferromagnetic correlations for
ns � 1 and a parabolic dispersion, while antiferromagnetic
correlations (k = 2kF ) become dominant for ns < 0.7 (see
Figs. 3 and 5). The natural consequence of these differ-
ent behaviors is that the resistivity has a maximum at low
enough temperature for a parabolic dispersion and ns � 1,
while it saturates towards the T → 0 value for ns < 0.7 (see
Fig. 6).

The tight-binding dispersion produces a similar behavior,
except for the low-temperature regime of the high density
limit. The basic difference is that χ0

k is now maximized
at k = 2kF , implying that the dominant correlations remain
antiferromagnetic down to T = 0 even in the ns = 1 limit.
This difference reflects the fragility of the order by disorder
mechanism that selects the ferromagnetic correlations for the
highly-frustrated RKKY Hamiltonian produced by a parabolic
dispersion. Small perturbations, such as the quartic correction
to the parabolic dispersion, can partially release the frustration
in favor of ferromagnetic or antiferromagnetic correlations.
For instance, a negative quartic correction, like the one that is
obtained for the nearest-neighbor tight-binding dispersion that
we are considering, leads to dominant low-temperature anti-
ferromagnetic correlations, while a positive quartic correction
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FIG. 8. Disorder averaged static spin structure factors obtained
from low-density expansion (19) for the parabolic dispersion (8) with
spin concentration ns = 0.2 and three different temperatures T/ns =
{0.05, 0.1, 0.3} (unit: J2/t).

leads to dominant ferromagnetic correlations (χ0
k has a global

maximum at k = 0).

V. DILUTE LIMIT ns � 1

We can further understand the dilute limit ns � 1 through
a different perturbative treatment [38,39]. To lowest order in
ns, we only need to consider two local spins, located at R0

and R1 (R0 �= R1). The spin-spin correlator can be obtained
exactly in this limit:

〈SR0 · SR1〉 = 1

2βJ (R0 − R1)
− coth [2βJ (R0 − R1)]. (18)

To order O(n2
s ), the disorder averaged spin structure

factor is

S (k)/ns = 1 + ns

∑
r �=0

cos (k · r)

{
1

2βJ (r)
− coth [2βJ (r)]

}
.

(19)

For the parabolic dispersion, we can plug in the exact
expression (11) into Eq. (19). Due to the r−2 asymptotic
decay of the RKKY interaction J (r), the infinite sum in (19)
converges rapidly as we increase the cutoff r < �. For μ =
−3.396t , we obtain good convergence for � � 256a where a
is the lattice constant.

In Fig. 8, we plot the static spin structure factor obtained
from Eq. (19) for the parabolic dispersion (8) with a low spin
concentration ns = 0.2. The result agrees qualitatively with
the high-T expansion at small ns [see Fig. 3(g)], showing
a clear enhancement at k = 2kF upon lowering temperature.
This enhancement explains why the the introduction of a sig-
nificant concentration of spin vacancies makes the resistivity
upturn more pronounced. As it is clear from Eq. (18), in
the dilute limit the two-spin correlator inherits the oscillatory
nature of the real-space RKKY interaction. Consequently, its
Fourier transform, given in Eq. (19), is strongly peaked at 2kF .

Since Eq. (19) only includes the first two terms of an
expansion in powers of ns, this equation is valid as long as

FIG. 9. Electrical resistivity obtained from low-density expan-
sion (20) for the parabolic dispersion (8) and three different spin
concentrations ns = {0.2, 0.05, 0.01}. The structure factor S(k) ob-
tained from the expansion is not positive-definite in the shaded low-T
region. The symbols show results obtained from SLL simulation,
where the parameters are the same as in Fig. 6.

the second term of order O(ns) is much smaller than the first
term. When this condition is violated at very low temperature
T � Tlow, the structure factor S (k) is no longer positive-
definite. For the typical ns values considered in this section
(0.01 � ns � 0.2), the lowest temperature for maintaining a
positive-definite S (k) is about Tlow/ns ∼ 0.005J2/t .

For the parabolic dispersion, we obtain the following ex-
pression for the resistivity in the dilute limit:

ρ

nsρ0
= 1 + 2ns

∑
r�=0

[
J1(2kF rx )

2kF rx
− J2(2kF rx )

]

·
{

1

2βJ (r)
− coth [2βJ (r)]

}
, (20)

where Jn(x) are the Bessel functions of the first kind. Once
again, the infinite sum shows good convergence for a cutoff
� � 256a. The ρ(T ) curves shown in Fig. 9 for different
low-density values confirm the resistivity upturn. As expected,
the low-density approximation becomes more accurate as
we decrease ns and increase T (see comparison to the SLL
simulation in Fig. 9).

The upturn remains noticeable only when the ratio between
the magnetic impurity and the carrier concentration, ns/ne, is
larger than a certain value. This becomes clear if we rewrite
Eq. (20) in the limit of ne � 1 and ns � 1:

ρ

nsρ0
≈ 1 + ns

ne
g

(
tT

J2ne

)
, (21)

where ne ≈ k2
F /(2π ) and

g(y) =
∫ ∞

0
rdr

[
J2

0 (r) − J2
1 (r)

]

·
{

y

2J̃ (r)
− coth

[
2J̃ (r)

y

]}
. (22)
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We note that

J̃ (r) ≡ 2πt

J2k2
F

J

(
r

kF

)
(23)

is independent of kF according to Eq. (11). Given that

y = tT

J2ne
= tT

J2ns

ns

ne
, (24)

it is clear that y � 1 for the base temperature Tlow/ns ≈
0.005J2/t used in Fig. 9. Given that g(y) ≈ 0.18/

√
y for

y � 1, we finally obtain

ρ

nsρ0
≈ 1 + 0.18

√
ns

ne

√
J2ns

tT
. (25)

This equation implies that, given a dimensionless base tem-
perature θB = Tlow/ns(J2/t ), the resistivity upturn becomes
relatively small for ns/ne � θB.

As already noted in Ref. [39], the low-density expansion
can be obtained by rearranging terms in the high-T expansion.
A straightforward expansion of Eq. (19) up to O(β3) reveals
that

S (k)/ns = 1 + Kχ̃k − 3K3

5n2
s

1

N2

∑
qq′

χ̃qχ̃q′ χ̃k−q−q′ , (26)

where K ≡ 2β

3 J2ns. This expression coincides with the terms
in Eq. (17) up to O(n2

s ).

VI. EFFECT OF MAGNETIC FIELD

As we discussed in the previous sections, the resistivity
upturn considered in this paper arises from the enhanced
magnetic structure factor below 2kF as the temperature is
lowered. However, it is clear that the k = 0 component of the
structure factor does not contribute to the collision integral in
Eq. (15). Given that the application of a uniform magnetic
field transfers spectral weight from finite k to k = 0, the
resulting magnetoresistance should be negative.

The Zeeman interaction between uniform magnetic field
and the magnetic impurities is:

HZeeman = −H
∑

i

ζiS
z
i , (27)

where we have absorbed the g-factor into the definition of H .
The Zeeman coupling to itinerant electrons is not included
because the Pauli susceptibility is several orders of magnitude
smaller than the susceptibility of the local moments.

At low temperatures, the local moments become fully
polarized above the saturation field Hsat and the electron-spin
scattering is completely suppressed because the spin structure
factor has a peak at k = 0 and negligible weight for finite k
values. From Eq. (15), it is clear that such structure factor can-
not produce a resistivity upturn upon lowering temperature.

For H < Hsat, a finite amount of the spectral weight in S (k)
is transferred from finite k to k = 0. As shown in Fig. 10,
this effect reduces the electron-spin scattering along with
the resistivity upturn. We note, however, that there are other
mechanisms, such as Kondo screening [40] and Anderson
localization [28], which also produce a negative magnetore-
sistance.

FIG. 10. Electrical resistivity obtained from SLL simulation of
the RKKY model on L = 128 square lattice, for the susceptibility χ0

k
obtained from the tight-binding dispersion (9) and different Zeeman
fields H = {0, 0.0025, 0.025, 0.25} (unit: J2/t). Both panels show
the same data, with (a) linear scale and (b) linear-logarithmic scale.

The above analysis, which leads to a negative magne-
toresistance, is only appropriate for systems with isotropic
magnetic interactions. The problem becomes more com-
plex for materials with significant exchange or single-ion
anisotropy because the competition between the Zeeman and
the anisotropy terms may induce nonlinear effects that can
change the sign of magnetoresistance for magnetic fields
well below saturation. Nevertheless, regardless of the sign of
the magnetoresistance, the RKKY-induced resistivity upturn
should still survive, as long as S (k � 2kF ) is enhanced upon
lowering temperature. We also note that the application of a
magnetic field can also lead to more subtle effects, such as
a nonmonotonic temperature dependence of the resistivity in
RKKY systems with competing k = 2kF and k = 0 fluctua-
tions, such as the one obtained for the tight-binding dispersion
(9), due to a spectral weight redistribution within the interval
0 � k � 2kF .

VII. THREE-DIMENSIONAL CASE

In this section, we briefly extend our discussion to the
3D case. For simplicity, we will focus on the limit of low
magnetic impurity concentration ns � 1, and a low electron
filling fraction given by kF = 0.777. Consequently, as long

184432-8
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as the band structure of the 3D lattice has a single global
minimum (single electron pocket), we can approximate the
single-electron dispersion with the parabolic function

εk = k2

2m
. (28)

As we will see below, the 3D case is much less sensitive to
quartic or higher-order corrections because the 3D RKKY
interaction is much less frustrated than the 2D case.

The corresponding bare electronic susceptibility is again
known analytically at T = 0:

χ0
k = mkF

2π2

[
1 + 1 − x2

2x
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣
]
, (29)

where x ≡ k/(2kF ).
The RKKY interaction in real space is obtained by Fourier

transforming (29):

J (r) = −J2

t

sin(2kF r) − 2kF r cos(2kF r)

16π3r4
. (30)

A big difference relative to the 2D case is that the RKKY in-
teraction is no longer highly frustrated because χ0

k in Eq. (29)
has a single global maximum at k = 0 and it decreases mono-
tonically with k for low electron filling.

In the dense limit ns = 1, the low-temperature dependence
of the resistivity should be affected by the onset of domi-
nant ferromagnetic correlations. The situation is analogous to
the 2D case with parabolic dispersion, where ferromagnetic
correlations arise from an order by disorder mechanism. As
we have seen in Sec. III, the onset of low-temperature ferro-
magnetic correlations at T ∼ TF produces a maximum in the
resistivity (see Fig. 6). In other words, the resistivity upturn
stops around TF . This is also the expected behavior of the
resistivity for the 3D case in the dense limit. The two main
differences relative to the 2D case are the following. (i) The
low-temperature ferromagnetic correlations of the 3D system
are more robust against small corrections of χ0

k due to lat-
tice effects or the inclusion of electron-electron interactions.
(ii) The onset of ferromagnetic correlations can in principle
occur at a rather high temperature, making the resistivity
upturn practically unnoticeable. Both differences are a direct
consequence of the much smaller frustration of the 3D RKKY
interaction (χ0

k has a single global maximum).
What is the effect of dilution in the 3D case? After replac-

ing the 3D version of the RKKY interaction (30) into the low-
density expansion of S (k) given in Eq. (19), it becomes clear
that S (k) still has a maximum at k = 0 (see Fig. 11). The key
observation, however, is that S (k) remains close to S (0) for
k � 2kF , while it drops to much smaller values for k > 2kF .
This behavior of S (k) is enough to still produce a pronounced
resistivity upturn because the higher dimensionality enlarges

FIG. 11. Disorder averaged static spin structure factors obtained
from the low-density expansion (19) for the 3D parabolic dispersion
(28) with spin concentration ns = 0.1 and four different temperatures
T/ns = {0.2, 0.05, 0.02, 0.01} (unit: J2/t). We set the Fermi wave
vector to kF = 0.777.

the relative volume of the phase space that has a significant
contribution to the collision integral. In other words, the
weight factor, x2/

√
1 − x2 of the 2D collision integral (15)

is replaced by x3 in the 3D collision integral:

ρ = 4ρ0

∫ 1

0
dxS (2kF x)x3, (31)

where ρ0 = 3πJ2/(tekF )2. In 2D, the dominant contribution
to the resistivity comes mostly from back scattering processes
(k very close to 2kF ) because they are the ones that pro-
duce the maximal deviation angle (θ = π ) from the origi-
nal direction of propagation of the conduction electron (the
differential scattering cross section σ (θ ) is multiplied by a
factor (1 − cos θ )). In 3D, the relative weight of the scattering
processes decreases more slowly as we move away from the
back scattering condition (θ = π or k = 2kF ) because the
number of final states, which is proportional to sin θ increases
and reaches its maximum value for θ = π/2 or k = √

2kF

(the differential scattering cross section σ (θ ) is multiplied
by a factor (1 − cos θ ) sin θ ). Consequently, the temperature
dependence of S (k) shown in Fig. 11 is enough to still
produce a pronounced resistivity upturn.

Once again, we emphasize that the enhancement of S (k)
below 2kF in the dilute limit under consideration (ns � 1)
is a direct consequence of the momentum dependence of the
RKKY interaction given in Eq. (29). After inserting the 3D
expression of S (k) that is obtained from Eqs. (30) and (19)
into the 3D collision integral (31), we obtain

ρ

nsρ0
= 1 + 4ns

∑
r �=0

6 + 3[(2kF rx )2 − 2] cos (2kF rx ) + 2kF rx[(2kF rx )2 − 6] sin (2kF rx )

(2kF rx )4

{
1

2βJ (r)
− coth [2βJ (r)]

}
. (32)

Figure 12 shows the resistivity curves obtained for three
different values of the density ns = {0.1, 0.05, 0.01}. As

expected, there is a clear resistivity upturn that, like in the 2D
case, becomes less pronounced for small values of ns/ne.
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FIG. 12. Electrical resistivity obtained from the low-density ex-
pansion (32) for the 3D parabolic dispersion (28) and three different
spin concentrations ns = {0.1, 0.05, 0.01}. We set the Fermi wave
vector kF = 0.777.

VIII. CONCLUSIONS

To summarize, the resistivity upturn that was reported in
the dense limit ns = 1 for a highly frustrated RKKY inter-
action [20] becomes even more pronounced for ne < ns < 1.
The disorder introduced by the dilution effect eliminates the
requirement of magnetic frustration for the stabilization of
classical spin liquid with dominant antiferromagnetic corre-
lations at k � 2kF . Moreover, unlike the dense limit case, this
classical spin liquid regime induced by disorder persists down
to T = 0. Since magnetic frustration is no longer required,
the resistivity upturn is also found in the 3D case, where the
RKKY interaction favors ferromagnetic correlations. In other
words, by moving away from the dense limit, the resistivity
upturn induced by the RKKY interaction becomes a more
general effect.

It is important to keep in mind that the dilution effect
reduces the energy scale of the RKKY interaction: TRKKY →
nsTRKKY. It is then clear that for antiferromagnetic interaction
between the local moments and the conduction electrons, the
Kondo temperature will become larger than nsTRKKY for low
enough values of ns. As we have shown in this manuscript,
another limiting factor is the carrier concentration ne: the
resistivity upturn induced by the RKKY interaction remains
noticeable only for ns/ne larger than a certain value. For 3D
systems, it has been suggested that the combination of disor-
der, frustration, and anisotropy in the dilute RKKY systems
leads to a glass transition at a low enough temperature TG

[41]. Such transition has not been considered here because
a numerical study of dilute 3D systems, including possible
effects of magnetic anisotropy, is beyond the scope of this
manuscript. We conjecture that the resistivity upturn that is
reported here for the 3D case should saturate for T < TG and
exhibit hysteric behavior in field-cooled and zero-field-cooled
experiments or simulations.

Finally, for the dense limit (ns = 1), the highly frustrated
nature of the RKKY interaction generated by a 2D elec-
tron gas makes the low-temperature transport properties very
sensitive to small lattice effects. For the parabolic disper-
sion of the 2D electron gas, the resistivity upturn is finally

suppressed at low enough temperatures due to a ferromagnetic
tendency induced by an order by disorder mechanism. In
contrast, lattice effects (tight-binding dispersion for nearest-
neighbor hopping) induce a negative quartic correction to the
single-electron dispersion, which leads to bond-density wave
ordering (translation and C4 rotation symmetry breaking). The
bond-density wave ordering does not suppress the resistivity
upturn. We note that higher-order corrections to the parabolic
dispersion are not the only factors that can lift the degeneracy
of susceptibility χ0

k of the 2D electron gas. The inclusion
of electron-electron interactions also modify the momentum
dependence of χ0

k , although it is not fully settled what is
the magnitude of the wave vector that maximizes the sus-
ceptibility [42]. Other types of exchange interactions between
the local moments, including direct exchange, super-exchange
and dipole-dipole interactions, can also lift the degeneracy of
χ0

k for k � 2kF and modify the low-temperature behavior of
the resistivity curve. Consequently, the results presented in
this paper for the RKKY interaction derived from the tight-
binding dispersion (9) are representative of a more general
physical situation represented by the magnetic susceptibility
χ0

k shown in Fig. 2(b).
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FIG. 13. Nonzero free graphs of spin correlator 〈SR0 · SR1 〉 for
the RKKY model (3) under zero magnetic field, up to O(β3).
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APPENDIX A: HIGH-TEMPERATURE EXPANSION

The two-spin correlator at relatively high temperatures can be obtained from the standard free graph expansion [43]. In
absence of external magnetic field, the only nonzero graphs for the RKKY Hamiltonian (3) up to O(β3) are given by Fig. 13.
For R0 �= R1 on a square lattice:

〈SR0 · SR1〉=−2β

3
ζR0ζR1 J (R0 − R1) + 4β2

9
ζR0ζR1

∑
r

ζrJ (R0 − r)J (R1 − r) − 8β3

27
ζR0ζR1

∑
rr′

ζrζr′J (R0 − r)J (R1 − r′)J (r − r′)

+ 8β3

27
ζR0ζR1 J (R0 − R1)

∑
r

ζr[J
2(R0 − r) + J2(R1 − r)] − 16β3

135
ζR0ζR1 J3(R0 − R1) + O(β4). (A1)

By taking the Fourier transform (6) and using

δ̃k ≡ 1

N

∑
r

ζre
ik·r, (A2)

we obtain the static spin structure factor in k space:

S (k) = δ̃0 + 2β

3
J2

∑
q

|δ̃k+q|2χ̃q + 4β2

9
J4

∑
qq′

(
δ̃qδ̃q′ δ̃−q−q′ χ̃k−qχ̃k+q′ − 1

N
|δ̃q|2χ̃q′ χ̃q−q′

)

+ 8β3

27
J6

∑
k1k2k3

[
δ̃k+k1 δ̃−k+k2 δ̃−k1+k3 δ̃−k2−k3 χ̃k1 χ̃k2 χ̃k3 − 1

N
δ̃k1+k2 δ̃−k1+k3 δ̃−k2−k3 χ̃k1 χ̃k2 χ̃k3

]

− 8β3

27
J6 1

N

∑
k1k2k3

(
δ̃k+k1+k2+k3 δ̃−k−k1 δ̃−k2−k3 + δ̃k+k1 δ̃−k−k1+k2+k3 δ̃−k2−k3

)
χ̃k1 χ̃k2 χ̃k3

+ 16β3

135
J6 1

N2

∑
k1k2k3

∣∣δ̃k+k1+k2+k3

∣∣2
χ̃k1 χ̃k2 χ̃k3 + O(β4). (A3)

These are some useful formulas for the disorder average:

|δ̃k|2 = n2
s δk + ns(1 − ns)

N
, (A4a)

δ̃qδ̃q′ δ̃−q−q′ = n3
s δqδq′ + n2

s (1 − ns)

N
(δq+q′ + δq′ + δq) + ns(1 − ns)(1 − 2ns)

N2
, (A4b)

δ̃k+k1 δ̃−k+k2 δ̃−k1+k3 δ̃−k2−k3 = n4
s δk+k1δ−k+k2δ−k1+k3 + n3

s (1 − ns)

N

(
δk+k1δ−k+k2 + δk+k1δ−k−k3 + δk+k1δ−k2−k3

+δ−k+k2δ−k1+k3 + δk+k3δ−k+k2 + δk1+k2δ−k1+k3

)
+ n2

s (1 − ns)(1 − 2ns)

N2

(
δk+k1 + δk−k2 + δk1−k3 + δk2+k3

)
+ n2

s (1 − ns)2

N2

(
δk1+k2 + δk+k3 + δk+k1−k2−k3

) + ns

N3
(1 − ns)

(
1 − 6ns + 6n2

s

)
. (A4c)

The disorder averaged static spin structure factor is

S (k)/ns = 1 + Kχ̃k + K2

(
χ̃2

k − 1

N

∑
q

χ̃2
q

)

+ K3

⎡
⎣χ̃3

k − 1

N

∑
q

χ̃3
q − 2

N
χ̃k

∑
q

χ̃2
q +

(
1 − 3

5n2
s

)
1

N2

∑
qq′

χ̃qχ̃q′ χ̃k−q−q′

⎤
⎦ + O(β4), (A5)

where K ≡ 2β

3 J2ns.
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APPENDIX B: STOCHASTIC LANDAU-LIFSHITZ
DYNAMICS

The classical (large-S) limit of the RKKY model (3) can
be studied by unbiased numerical methods. Typical choices
include classical Monte Carlo (MC) and the SLL dynamics,
which give the same exact results on finite lattices for models
without large spin anisotropy. Here we use SLL dynamics
because it is numerically more efficient.

The SLL equation is

dSi

dτ
= −γ Si × ( f i + bi ) − αγ

S
Si × [Si × ( f i + bi )], (B1)

where f i are the molecular fields produced by the RKKY
interactions:

f i = −dHRKKY

dSi
= 2

J2

√
N

∑
k

eik·ri χ̃kS−k, (B2)

and bi are Gaussian random fields which satisfy

〈bi(τ )〉 = 0, (B3a)

〈bi,α (τ )b j,β (0)〉 = 2DLLδi jδαβδ(τ ). (B3b)

The value of DLL is fixed by the fluctuation-dissipation
theorem,

DLL = α

1 + α2

kBT

γ S
. (B4)

The gyromagnetic ratio and the damping factor are set to
γ = 1 and α = 1, respectively. Note that the fields f i can be
obtained by two consecutive fast Fourier transforms (FFT).
Thus, the cost of computing f i on all sites is O(N ln N ),
which is an important gain in comparison to naive O(N2)
implementations.

Denote the r.h.s of Eq. (B1) as F i(τ, {S j (τ )}). From a
random initial spin configuration at time τ = 0, we numeri-
cally solve Eq. (B1) by the Euler predictor-corrector (Heun)
method:

S̄i(τn+1) = Si(τn) + δτF i(τn, {S j (τn)}), (B5a)

Si(τn+1) = Si(τn) + δτ

2
F i(τn, {S j (τn)})

+ δτ

2
F i(τn+1, {S̄ j (τn+1)}), (B5b)

where S̄i(τn+1) is the predictor and Si(τn+1) is the corrected
new spin configuration. After each step, we renormalize the
spin magnitude to S = 1.

Throughout this paper, we use a conservative time
step nsδτ = 0.1(J2/t )−1 (this choice has been benchmarked
against MC simulations). We use time τeq to equilibrate the
system, and another 8τeq for measurements. The equilibration
times τeq used in the SLL simulation for different system sizes

are (1) L = 32: τeq = 2 × 104(J2/t )−1; (2) L = 64: τeq = 1 ×
105(J2/t )−1; and (3) L = 128: τeq = 4 × 105(J2/t )−1.

Since we only have discrete values of momenta on finite
lattices, we estimate the Born approximation by a Lorentzian

FIG. 14. SLL simulation results of the RKKY model on a square
lattice of 128 × 128 sites for χ 0

k obtained from the tight-binding dis-
persion and spin concentration ns = 1. [(a) and (b)] Snapshot of the
local bond order parameters at temperature T = 0.005J2/t . Note that
these panels include only a small region of the finite square lattice
that has been used in the simulation. (c) Temperature dependence
of the bond order parameter, Ising nematic order parameter, and
resistivity anisotropy. The error bars are estimated by averaging over
64 disorder realizations.

broadening of the delta functions. Equations (13) and (15)
become

1

τkF

≈ 4πJ2

N

∑
k

η

π
[(

μ − εkF +k
)2 + η2

]S (k)

× (1 − cos θkF ,kF +k), (B6)

ρ = 4

N
ρ0

∑
k

ηt(
εkF − εkF +k

)2 + η2
S (k)

× (
1 − cos θkF ,kF +k

)
, (B7)

where the sum is performed for S (k) for every discrete k
point in the 1st BZ. Throughout the paper, we choose the
broadening factor η = t/L.

In principle, any kF on the small FS can be used for
evaluating the resistivity. In Figs. 6 and 7, we average the
resistivity over 360 different kF uniformly distributed on the
FS to achieve better statistics. In Fig. 14, we use kF = (kF , 0)
for evaluating ρxx and kF = (0, kF ) for evaluating ρyy.
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APPENDIX C: BOND-DENSITY WAVE PHASE

In this section, we will discuss the low-temperature ordered
phase of the dense limit ns = 1. As it is shown in Fig. 2(c),
χ0

k has a very small angular dependence for the tight-binding
dispersion on the square lattice, with four degenerate maxima
at the discrete wave vectors: ±Q1 ≡ ±(2kF , 0) and ±Q2 ≡
±(0, 2kF ). At high temperatures, the magnetic structure factor
has the same intensity at these four wave vectors because they
are related by symmetry transformations (diagonal reflections
and 90◦ rotations). However, as it is shown in the inset of
Fig. 5(b), these symmetries are spontaneously broken at low
enough temperatures: S (k) has strong intensity either at ±Q1
or at ±Q2.2 The choice of ±Q1 or ±Q2 depends on the initial
random spin configuration (the tunneling time between both
configurations becomes much longer than the simulation time
at low enough temperatures).

The low-temperature phase breaks both the lattice C4 sym-
metry and the translational symmetry of the original Hamilto-
nian. To characterize this phase, we introduce the local bond
order parameters

κx
r ≡ Sr · Sr+x̂, (C1a)

κy
r ≡ Sr · Sr+ŷ, (C1b)

and the local Ising nematic order parameter,

γr ≡ Sr · Sr+x̂ − Sr · Sr+ŷ. (C2)

Figures 14(a) and 14(b) show the real-space distribution
of κx

r and κ
y
r for a snapshot of the SLL simulation. Since

the magnetic susceptibility is maximized at 2kF , the bond
ordering wave number is expected to be 4kF . For the finite
size systems that have been simulated, the bond ordering wave
vector locks at the closest value to 4kF that is commensurate
with the lattice. For the particular case μ = −3.396t , we get
4kF ≈ 3.193. For finite square lattices of linear size up to
L = 128, the bond ordering wave vectors that result from the
SSL simulations are always (π, 0) or (0, π ). For this reason,
we use bond susceptibility

1

N

〈(
κx

(π,0)

)2 + (
κ

y
(0,π )

)2〉
(C3)

to identify the transition shown in Fig. 14, where κ
x/y
k are the

Fourier transforms of κ
x/y
r . The transition temperature is found

to be Tc ≈ 0.002J2/t . The corresponding error bars in Fig. 14
are quite large because of the the multiple domains that result
from the SLL simulations.

The C4 rotation symmetry breaking is revealed by the
Ising-nematic order parameter

〈[
1

N

∑
r

γr

]2〉
(C4)

2We have also verified this transition using a Monte Carlo simula-
tion.

FIG. 15. Electrical resistivity obtained from SLL simulation of
the RKKY model on square lattice with different system sizes
L = {32, 64, 128}, for parabolic dispersion (left column) and tight-
binding dispersion (right column). The errorbars are estimated by
averaging over 64 disorder realizations.

shown in Fig. 14(c) and by the resulting anisotropy of the
resistivity 〈∣∣∣∣ρxx − ρyy

ρxx + ρyy

∣∣∣∣
〉
. (C5)

The parabolic dispersion does not contain the C4 lattice
anisotropy. Our SLL simulations for the magnetic susceptibil-
ity χ0

k obtained from the parabolic dispersion do not exhibit
any nematic transition down to T/ns = 10−4J2/t . This result
indicates that the lattice anisotropy plays a crucial role in the
stabilization of the bond ordering.

APPENDIX D: FINITE SIZE EFFECTS IN
SLL SIMULATIONS

In Fig. 15, we compare the SLL results for three different
system sizes L = {32, 64, 128}. The results are qualitatively
the same for different system sizes. A relatively good conver-
gence is achieved in most of the cases, except for the dense
limit (ns = 1) of the tight-binding case [see Fig. 15(b)], which
exhibits the bond-density wave ordering at low temperatures.

The formation of the bond-density wave phase at low
temperatures is accompanied by the generation of metastable
domain wall defects in our SLL simulation (we initialize the
spins from random configurations in all of our SLL simula-
tions). These defects are very difficult to eliminate within a
reasonable amount of computation time (unless we bias the
initial spin configuration as the bond-density wave with one
domain, or use some advanced MC update schemes). This is
partly the reason of the slow convergence of the tight-binding
case for ns = 1 plot [see Fig. 15(b)].
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There is still another finite size effect that we noticed
in our SLL simulation for the tight-binding dispersion and
ns = 1. The real-space molecular fields given in Eq. (B2)
are obtained from a sum over N = L2 wave vectors k. In
the thermodynamic limit, the peaks of χ̃k are located exactly
at ±(2kF , 0) and ±(0, 2kF ) [see Fig. 2(c)]. However, these

points cannot be accessed on a finite lattice without fine-
tuning the chemical potential. Thus, the maxima of χ̃k are
shifted slightly off the high-symmetry directions. The SLL
simulations pick up this finite size effect at the lowest tem-
peratures by showing peaks slightly off the high-symmetry
axes.
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