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Algebraic decay of the nonadiabaticity arising through chiral spin transfer torque in
magnetic domain walls with Rashba spin-orbit interaction
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Spin transfer torque in a two-dimensional electron gas system without space inversion symmetry was
theoretically investigated by solving the Pauli-Schrödinger equation for the itinerant electrons inside magnetic
domain walls. Due to the presence of the Rashba spin-orbit coupling induced by the broken inversion symmetry,
the spin transfer torque is chiral and the nonadiabaticity, which is defined to measure the relative importance
of the nonadiabatic fieldlike torque to the adiabatic dampinglike torque, exhibits an inverse power-law decay as
the domain wall width is increased. This algebraic decay is much slower than the exponential decay observed
for systems without the Rashba spin-orbit coupling, and may find applications in innovative design of spintronic
devices utilising magnetic topological textures such as magnetic domain walls and skyrmions.
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I. INTRODUCTION

From ancient times, the conventional way to manipulate
a ferromagnet’s magnetic state is through application of an
external magnetic field. The situation changed drastically in
the last two decades, following the innovative proposition by
Berger [1] and Slonczewski [2] of using high-density electric
current to exert a torque, dubbed the spin transfer torque
(STT), on local magnetization. After more than 20 years of
intensive quest for unconventional methods for magnetiza-
tion manipulation with high-energy efficiency and operation
speed, we now have many alternatives at our disposal, such
as ultrashort laser pulses [3], electric field [4], and even
magnetoelastic waves [5]. Even with so many competitors
on the arena for the manipulation of magnetization, electric
current-based methods, including the original STT, and the
later developments of the Rashba spin-orbit torque (RSOT)
[6–10] and spin-Hall effect [11] in systems with spin-orbit
interaction (SOI), attract more attention due to their easy
implementation and compatibility with current semiconductor
technology.

Investigations [12–15] following Berger’s and Slon-
czewski’s seminal works showed that the STT should be a sum
of two terms, one dampinglike torque which is already given
in their original papers, and the other an additional fieldlike
torque,

τ = α ĵ · ∇M̂ + β M̂ × ( ĵ · ∇M̂ ), (1)

for a continuous distribution of magnetization characterized
by the normalized magnetization vector, M̂ = M/M, where
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M is the magnetization vector and M the saturation mag-
netization. ĵ is a unit vector pointing to the direction of
the electric current flowing in a ferromagnet. α and β are
decomposition coefficients. As shown by a subsequent model
quantum-mechanical investigation on STT inside a magnetic
domain wall (DW) [15], the dampinglike torque is given
by the continuous rotation of the itinerant electron spin to-
wards the local magnetization, while the fieldlike torque is
attributable to the misalignment between the electron spin
and the local magnetization inside the rigid DW. With this
microscopic interpretation, the dampinglike torque [first term
in Eq. (1)] and the fieldlike torque [second term in Eq. (1)]
are usually called the adiabatic torque and the nonadiabatic
torque, respectively.

In systems without spatial inversion symmetry, such as
the interfaces between ferromagnets and heavy metals, there
could exist Rashba SOI along the symmetry-breaking di-
rection [16]. The mutual influence of the electron’s spin
and orbital dynamics induced by the Rashba SOI is derived
from the fact that the Rashba SOI can be absorbed into the
mechanical momentum operator, forming a covariant canoni-
cal momentum operator [17]: The emergent gauge potential
appearing in the covariant momentum operator depends on
the spin operator of the electron, so the covariant momentum
operator becomes chiral on the electron’s motion. The motion
of electrons under the influence of this chiral momentum
operator is different from that of decoupled spin and orbital
motion. Actually, due to the Rashba coupling between the spin
and orbital degrees of freedom, the nonadiabatic RSOT inside
magnetic DWs exhibits a topological behavior [18] that is
related to the topology of the underlying DWs in the adiabatic
limit. In addition, there are both experimental investigations
and theoretical demonstrations on chiral gyromagnetic and
Gilbert damping constants [19–21] in magnetic DWs. Along
the same line, we expect that the STT should also inherit to
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some extent the intrinsic chiral characteristic of the Rashba
SOI. This expectation is actually borne out by our numerical
results; both α and β in Eq. (1) are chiral on the magnetization
rotation in DWs. This chiral STT induced by the Rashba SOI
can be utilized to design spintronic devices based on magnetic
topological textures.

Another related but distinct feature bestowed on STT in
DWs by the Rashba SOI is the algebraic decay of the STT
nonadiabaticity. The STT nonadiabaticity, which is defined
as the ratio β/α, measures the relative importance of the
nonadiabatic STT. It is an important parameter to consider
for applications of STT in current-driven DW motion, as
only the nonadiabatic STT can sustain a steady DW motion.
It also plays an important role in the understanding of the
origin of the STT, simply because it reveals the scattering
characteristics of electrons in DWs. Previous investigation
showed that it decays exponentially as the DW width is
increased [15]. This feature of the STT renders the utilization
of the nonadiabatic STT component to drive DW motion in
materials with sizable DW width difficult. However, we would
like to emphasize that this exponential decay is obtained
without considering the effect of any SOI. We will show in the
following that, by including the Rashba SOI, the exponential
decay of STT nonadiabaticity is reduced to an algebraic one,
thus facilitating the utilization of the nonadiabatic STT in
a wider range of material systems with SOI. The algebraic
decay of the STT nonadiabaticity is the main result of our
numerical investigation on STT in magnetic DWs under the
influence of the Rashba SOI.

The organization of the paper is as follows. In Sec. II a
brief description of the semiclassical theoretical framework
is given. Our numerical results are presented in Sec. III,
starting from the discussion about the STT nonadiabaticity
and then confirming the chiral character of the decomposition
coefficients α and β. Finally, Sec. IV summarizes our results
on STT inside magnetic DWs with Rashba SOI.

II. OUTLINE OF THEORY

We consider a special form of SOI in solids, the Rashba
SOI [22] in a two-dimensional (2D) electron system with-
out spatial inversion symmetry. In a 2D electron gas, there
could be electric field built up along the inversion symmetry-
breaking direction. In the rest frame of a moving electron, this
static electric field is transformed into a magnetic field, and
can influence the spin dynamics of moving electrons [16].
Hence the Hamiltonian for itinerant electrons has the form
[7–9]

H = p2

2me
+ μBσ · M + αR

h̄
σ · (p × ẑ), (2)

where me is the electron mass, μB the Bohr magneton, and h̄
the reduced Planck’s constant. p = −ih̄∇ is the momentum
operator. αR is the Rashba constant, which characterizes the
broken inversion symmetry [22]. σ = x̂σx + ŷσy + ẑσz is the
vector Pauli matrix, which is also the electron spin operator if
a multiplicative constant is ignored, with σx, σy and σz being
the Pauli matrices. It is obvious from Eq. (2) that the effec-
tive Rashba field is perpendicular to the symmetry-breaking
direction, which is ẑ in the current case. The Hamiltonian

(2) describes the energy of conduction electrons in a solid,
interacting through the s-d exchange interaction with the
localized electrons. For the purpose of illustrating the effect
of the Rashba SOI on the STT, we only consider the spin
dynamics of itinerant electrons dictated by the Hamiltonian
(2), while the local magnetic moments are assumed to be
static, as described by the magnetization texture M. As our
model Hamiltonian does not include the Coulomb interaction
between electrons explicitly, there is no physical exchange
interaction between electron spins. We use the magnetization
texture M to simulate the exchange interaction between con-
duction electrons.

The Rashba SOI’s particular form in Eq. (2) allows us
to define a covariant derivative operator [17], D = ∇ +
imeαRẑ × σ/h̄2. With the covariant derivative operator in
place of the ordinary derivative operator, the Rashba SOI
is absorbed into the kinetic energy term. The appearance
of a position-independent emergent gauge potential in the
covariant derivative signifies the chiral feature of the Rashba
SOI, but in a different form. However, this chiral feature
does not manifest itself in states with uniform magnetization
distribution, except that the electronic energy band is spin-
split and a global phase factor appears for the Bloch wave
function. The situation changes for magnetization textures,
as the gauge potential becomes position dependent if the
magnetization vector varies in space, after applying a unitary
transformation to make the magnetization parallel to the z
direction. Then the corresponding SU(2) magnetic field is
nonzero and will affect the electron’s motion. It is this nonzero
position and spin-dependent magnetic field that gives rise to
the chiral characteristics of the electron motion, and it is a
general feature for any forms of SOI.

We will confine our discussion on STT solely to the Rashba
SOI. But the Weyl SOI [23] is related to the Rashba SOI
by a unitary rotation in the spinor space, U = exp (iπσz/4),
through the relation σy py + σx px = U †(σx py − σy px )U . The
Weyl form of SOI is compatible with a Bloch DW as the
ground state. So if substitutions −my → mx, mx → my and
similar ones for other magnetic vectors are made, our re-
sults can be applied to the situation where the Weyl SOI is
involved. The Dresselhaus SOI due to bulk inversion sym-
metry breaking [9], σx px − σy py, differs from the Weyl SOI
only by a transformation y → −y. Since the magnetization
textures considered by us vary only along the x direction, the
Hamiltonian (2) is invariant under the inversion along the y
direction. Hence the effect of changing from the Weyl SOI
to Dresselhaus SOI amounts to a substitution my → −my.
Given the above considerations, our conclusion about the
STT nonadiabaticity and chirality should apply individually
to all three types of SOI. Some systems possess both the
Rashba SOI and the Dresselhaus SOI, such as the exemplar
(001) GaAs/Fe interface discussed by Matos-Abiague and
Rodríguez-Suárez [9]. In such systems, our results cannot
be applied directly and separate numerical investigations are
needed. However, as our perturbation analysis (Sec. III) will
show, the chirality of α and β and the algebraic decay of
the nonadiabaticity are both derived from the coupling be-
tween the orbital and spin degrees of freedom. So as far
as there is the presence of any forms of SOI, the cou-
pling between spin and orbital motion will occur, and we
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stipulate that α and β should be chiral and the decay of
nonadiabaticity algebraic.

The magnetization texture considered is a Néel DW de-
scribed by the unit magnetization vector M̂ = χ x̂sech(x/λ) −
qẑ tanh(x/λ), which is the renowned Walker profile [24]. λ =√

A/K is the DW width that is determined by the material spe-
cific exchange and anisotropy constants A and K . x̂, and ẑ are
unit vectors pointing along the x and z directions, respectively.
The charge q and the chirality χ [25] of the DW are topolog-
ical numbers to quantify its topological characteristics. Our
definition of the DW chirality differs from that in Ref. [25]
by a factor q, so the product qχ is actually the DW chirality
defined in Ref. [25]. We assume then the current is flowing
along the x direction, and the electrons are moving in the 2D
xy plane. The eigenvalue problem corresponding to the Pauli-
Schrödinger equation with the Hamiltonian (2) and the Walker
magnetization profile as given above is difficult to solve ana-
lytically. We adopt a scattering matrix method to numerically
solve the eigenvalue problem [15,26,27]. The physical picture
behind such a scattering method is simple: We inject plane
waves, which are the solutions to a uniform magnetization
distribution from both ±∞, then let them evolve according
to the Hamiltonian (2) and match the evolved waves at the
DW center by requiring the continuity of wave functions and
their first-order derivatives.

With the wave functions thus obtained, the ground-state
magnetization distribution can be expressed as an integral
over the Fermi sphere in two dimensions,

m(x) =
∫

d2k

(2π )2
ψ

†
k (x)σψk(x), (3)

where k is a Bloch wave vector in the momentum space.
We then employ a semiclassical approach with relaxation
time approximation [28] to calculate the STT in the current-
carrying state,

τ(x) = − eEτ0

(2π )2h̄

∮
dϕ kx Q′

k(x), (4)

where τ0 is the relaxation time constant, e is the electron
charge, and ϕ the angle of the wave vector relative to the x
axis. Q′ = dQ/dx denotes the x derivative of the spin current
density Q. Since we only consider the zero-temperature situ-
ation, the integration is confined to the Fermi surface in two
dimensions, which is a circle. The spin current density Q is
defined as

Q = −2�[ψ†
k (x)σψ ′

k(x)] + ŷkRψ
†
k (x)ψk(x). (5)

kR is an effective wave number proportional to the Rashba
coupling constant, h̄2kR/2me = αR, and ŷ is a unit vector
along the y direction. The full spin current density is a
second-rank tensor, with one index in the spinor space and
the other index in the coordinate space. The form Q presented
here is actually the x component of the full spin current
density tensor. As the spin current density tensor depends
on the x coordinate, in accordance with the magnetization
profile considered here, only the x component contributes to
the calculation of the STT, as shown in Eq. (5), and we do
not need the full tensor. Further details and particulars on
numerical wave function and torque calculation can be found
in Ref. [29].

III. NUMERICAL RESULTS

For the convenience of numerical calculation and a di-
rect comparison between different quantities, we convert the
local exchange field M through relation h̄2k2

B/2me = μBM
into an effective wave number, as we already did in the
preceding section for the Rashba coupling constant αR. We
then measure them in terms of the Fermi wave number kF

for the free electron gas, the dynamics of which is gov-
erned only by the first term in the Hamiltonian (2). In our
following numerical results, we use the values kB/kF = 0.4
and kR/kF = 0.1 unless stated otherwise. The numerically
obtained spatial derivative of the equilibrium itinerant mag-
netization distribution m′ is given in Fig. 1, together with
the background local magnetization’s spatial derivative, for
two typical DW width values, λkF = 1 and λkF = 70. As
the transition from the nonadiabatic to adiabatic behavior is
defined by the critical DW width [15] λckF = k2

F /k2
B = 6.25

for kB/kF = 0.4, the value we used to introduce the exchange
interaction for itinerant magnetization, λkF = 1 corresponds
to the extremely nonadiabatic situation and λkF = 70 the
adiabatic one. In the extremely nonadiabatic limit, the spatial
variation of the itinerant magnetization is distributed over
the whole simulated region and the misalignment between
m′ and M′ is not negligible. In the adiabatic limit, however,
only the spatial variation is concentrated to the DW center
region and the misalignment between m′ and M′ is still there.
The oscillation of the itinerant magnetization observable for
short DWs is attributable to the quantum-confinement effect
induced by the presence of the local magnetization profile M.
It actually decays away very quickly: For λkF = 3 (not shown
here), the quantum oscillation is already not discernible. The
misalignment between m′ and M′ can be traced back to the
finite Rashba coupling present in our calculation. As was
discussed in Ref. [29], the definite parity for the itinerant
magnetization components arises due to the parity-time, or
particle-hole, symmetry of the Hamiltonian (2). It is inter-
esting to note that the same symmetry was also observed for
magnons inside DWs [30].

A qualitatively similar behavior is observed for the STT, as
shown in Fig. 2. In the extremely nonadiabatic limit, λkF = 1,
both the adiabatic and nonadiabatic components of the STT
contribute, manifested by the finite value of both α and β. As
we consider only the dynamics of the itinerant magnetization
m, the actual decomposition of the STT is

τ = α m̂′ + β m̂ × m̂′, (6)

using the unit vector along the direction of the derivative
of the itinerant magnetization vector m̂′ = m′/m′ instead of
the derivative of the local magnetization vector. The mag-
nitude of α and β is comparable to each other, signifying
the significant contribution of the nonadiabatic STT. As the
DW width is increased, both α and β decrease in magnitude,
with the relative importance of the nonadiabatic component
decreasing, too. As the nonadiabatic STT acts as an effective
fieldlike torque in the Landau-Lifshitz-Gilbert equation [31]
describing the magnetization dynamics phenomenologically,
the relative importance of the nonadiabatic STT warrants
more investigation.

To measure the relative importance of the nonadiabatic
STT, we follow Ref. [15] to define the nonadiabaticity of

184428-3



D. WANG AND YAN ZHOU PHYSICAL REVIEW B 101, 184428 (2020)

FIG. 1. Spatial derivative of the equilibrium itinerant magnetization distribution (m′) inside the DW region, with the DW width (a) λkF = 1
and (b) λkF = 70. The spatial derivative of the underlying s-d exchange field (M′) is also displayed. The misalignment between M′ and m′ is
mainly caused by the Rashba interaction.

the STT as the ratio between the nonadiabatic and adia-
batic coefficients at the DW center, β(0)/α(0), where the
spatial variation of the local magnetization is maximized.
The nonadiabaticity thus defined is plotted in Fig. 3, along
with the individual coefficients as a function of the DW
width. Surprisingly, the behavior of the nonadiabaticity in the
presence of the Rashba SO coupling shows a much slower
decay in the DW width, as compared to the case without
the Rashba coupling. Although the nonadiabaticity in Fig. 3
decays away as a whole, its decay is not exponential anymore,
but resembling more like a power-law decay, which is also
in contrast to the previously obtained oscillatory behavior
through analytical treatment of a semiclassical kinetic equa-
tion [32] or the unusual linear increase scaling extracted from
density functional theory calculation [33].

The behavior of the STT nonadiabaticity can be un-
derstood qualitatively by a perturbation analysis of the
Pauli-Schrödinger equation. Using a unitary transformation
Hα = U †HU with U = exp (−iασy/2), we can transform the
Hamiltonian (2) into a different form in the spinor space,

Hα = −[∂x − i(kR + α′)σy/2]2 + ξzσz + k2
R/4, which is mea-

sured in units of the Fermi energy of the free electron gas,
in accordance with what we did for the wave numbers.
The positive local effective exchange field ξz is given by
the relation ξ 2

z = k4
B + k2

Rk2
y + 2kRkyk2

B sin θ , depends on both
position and momentum. The rotation angle α is related to the
magnetization angle θ and the electron’s transverse momen-
tum ky [29], tan α = tan θ + kRky/k2

B cos θ . The Hamiltonian
Hα can be expanded into the sum of a position-independent,
unperturbed part H0 and a position-dependent, perturbation
potential V , Hα = H0 + V . The unperturbed Hamiltonian is
given by H0 = −∂2

x + ξ0σz + ikRσy∂x, and the perturbation is
V = kRα′/2 + α′2/4 + iσy(α′∂x + α′′/2) + (ξz − ξ0)σz, with

a constant exchange field ξ0 =
√

k4
B + k2

Rk2
y . In the adiabatic

(λ → ∞) and weak Rashba coupling (αR → 0) limit, the
position-dependent part V can be treated as a perturbation
to the position-independent Hamiltonian H0. In accordance
with our numerical scattering approach to solve the eigen-
value problem corresponding to the Hamiltonian (2), which

FIG. 2. Numerically calculated STT, τ, for (a) λkF = 1 and (b) λkF = 70. The corresponding decomposition coefficients α and β are
displayed in the insets. The observable oscillation for λkF = 1 is due to the quantum-confinement effect induced by the presence of the short
DW. As the DW width is increased, the quantum oscillation is smoothed out, as shown in (b). The unit for the 2D STT is jμBkF /πe, where
j is the current density for the free electron gas and μB is the Bohr magneton. As we use only unit vectors for the decomposition of the STT,
Eq. (6), the decomposition coefficients α and β have the same unit as that for the STT.
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FIG. 3. Nonadiabaticity β(0)/α(0) as a function of the DW
width λ, with individual coefficients α(0) and β(0) shown in the
inset. Obviously, the decay of the nonadiabaticity is not simply
exponential. The solid line in the main panel is the result fitted
according to Eq. (9), while those in the inset are merely guides to
the eye.

appears in our perturbation analysis is actually the potential in
momentum space, with incoming momentum ki and scattered
momentum k f along the x direction,

V (k f , ki ) = p cschp

8πλ
− χ

kRky

k2
B

π2 + 4p2

16π2λ
sechp + qχ

kR

8
sechp

− qχ
ks

8

(
sechp − 2χ

kRky

πk2
B

p cschp

)
σy

+χ
λkR

4
kyσzsechp. (7)

p = (k f − ki )λπ/2 is the normalized momentum transfer and
ks = k f + ki the sum of the injected and scattered momenta.
As the anti-Hermitian part of V (k f , ki ) involves the digamma
function and is very complicated, we only show the Hermitian
part in Eq. (7). Correction to wave functions can be obtained
by considering the scattering of the zeroth-order wave func-
tions by the potential V (k f , ki ). With the obtained perturbative
wave functions, we can proceed to calculate the magnetization
and the STT using Eqs. (3), (4), and (5), then decompose the
STT according to Eq. (6) to get the coefficients α and β.
Further calculation details can be found in Ref. [29], so we
only give the final results in the following.

To the lowest order, the equilibrium itinerant magnetization
m is everywhere parallel to the local magnetization M, m ∝
M. Correspondingly, their spatial derivatives are also parallel
to each other, m′ ∝ M′ = (x̂ cos θ − ẑ sin θ )θ ′. Recalling the
definition of the magnetization angle θ , we can immediately
calculate its spatial derivative, λθ ′ = qχsech(x/λ), which is
proportional to the product of the charge and the chirality.
The phenomenological decomposition of the STT (6) then
has the form τ = αqχ (x̂ cos θ − ẑ sin θ ) + ŷβqχ . The lowest-
order perturbation result for the STT gives τ ∝ m′, where
only the adiabatic component contributes. According to this
expression, the adiabatic coefficient at the DW center α(0)

FIG. 4. Dependence of the nonadiabaticity on the Rashba cou-
pling strength for λkF = 10, with α(0) and β(0) shown in the inset.
The solid line in the main panel is fitted to a parabola, while those in
the inset are only guides to the eye.

should scale inversely proportional to the DW width λ, α(0) ∝
1/λ. Including the first-order correction to wave functions, a
finite nonadiabatic STT at the DW center emerges, which is
proportional to

qχ

(
a

λ2
+ qχkR

b + ce−γ λ

λ

)
, (8)

where a, b, c, and γ are constants determined by the effec-
tive exchange splitting kB and possibly the Rashba coupling
strength kR. The exponential and inverse power-law terms are
brought about by the terms with nonzero and zero-momentum
transfers in the momentum-space effective potential [29,34].
Using this result for the coefficient qχβ(0), the nonadiabatic-
ity has the form

β(0)

α(0)
= a

λ
+ qχkR(b + ce−γ λ). (9)

The corresponding fit to the expression (9) is displayed in
Fig. 3. The agreement of the fit to the numerical result is
satisfactory.

The first-order perturbative result can only be used to
understand the DW width dependence of the nonadiabaticity
of the STT in the adiabatic limit. In fact, there could be higher-
order terms contributing to the multiplicative coefficients a, b,
and c of the exponential and power functions of λ. Especially
for short DWs, the nonadiabaticity in Fig. 4 shows significant
nonlinear dependence on the Rashba coupling constant, al-
though the nonlinear behavior of both individual coefficients
exhibit mild impact of higher-order terms, cf. insets to Fig. 4.

Finally, we would like to check that the coefficients α and
β are chiral under the influence of the Rashba SOI. Due to
the fact that the unit vector m̂′ is proportional to the product
qχ , this geometrical factor has to be factored out in the
consideration of the chirality of α and β, as explicitly shown in
Eq. (8), where the expression for β is given in the parentheses.
As is obvious from the expression for β in Eq. (8), in addition
to a term independent of the topological features of the DW,
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FIG. 5. Chiral decomposition coefficients α and β for different combinations of the DW charge q and chirality χ with (a), (b) λkF = 10
and (c), (d) λkF = 70. It is evident that both α and β are almost completely determined only by the product qχ , rather than their separate
values. The thin solid line shown in (c) is proportional to the x derivative of the magnetization angle, θ ′. In the adiabatic and vanishing Rashba
SOI limit, α should be proportional to θ ′. The deviation from this asymptotic behavior can result in the appearance of terms higher order in the
derivative θ ′, in the expansion of the STT in terms of the variation of magnetization in space.

the term proportional to the Rashba interaction depends on
the product of the DW’s charge and chirality, giving rise to
a dynamical dependence on the DW topology. Although this
behavior is in stark contrast to that of the nonadiabatic RSOT,
which is solely determined by the product of charge and
chirality [18], it is actually borne out by the numerical results,
as shown in Fig. 5. For short DWs, the Rashba contribution
to β is smaller compared to the contribution to the STT
arising from the spatial variation of the magnetization, and the
nonadiabatic STT is dominated by the spatial variation of the
magnetization. In the adiabatic limit, the Rashba contribution
becomes important, so the nonadiabatic coefficient β shows
the characteristic qχ behavior [Fig. 5(d)], although there is
still some deviation from the perfect qχ behavior due to the
contribution from the spatial variation of the magnetization. A
similar behavior can be observed for the adiabatic coefficient
α in Fig. 5. The dependence on the product qχ makes both
α and β chiral, reminiscent of the chiral nature of the Rashba
SOI and confirming our expectation that the coefficients α and
β should be chiral.

IV. CONCLUSION

To conclude, we have investigated the DW width scal-
ing of STT in magnetic DWs with a sizable Rashba SOI,
which is originated from the broken inversion symmetry
at ferromagnet/heavy-metal interfaces. In the conventional

case where only the spatial variation of magnetization is
responsible for the emergence of the nonadiabatic STT, an
exponential decay for the nonadiabaticity, which is used to
measure the relative importance of the nonadiabatic to the
adiabatic torques, was observed. In contrast, in DWs with
Rashba SOI, the decay of the nonadiabaticity is algebraic,
much slower than an exponential behavior. Due to the pres-
ence of the finite Rashba SOI, both the adiabatic and the
nonadiabatic decomposition coefficients for the STT exhibit
chiral dependence on the topology of the underlying DW,
especially in the adiabatic limit where the Rashba contribution
is dominant. This chiral feature of the STT decomposition
coefficients is absent in systems without Rashba SOI.
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