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Tensile deformations of the magnetic chiral soliton lattice probed
by Lorentz transmission electron microscopy
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We consider the case of a chiral soliton lattice subjected to uniaxial elastic strain applied perpendicular to
the chiral axis and derive through analytical modeling the phase diagram of magnetic states supported in the
presence of an external magnetic field. The strain induced anisotropies give rise to three distinct nontrivial spin
textures, depending on the nature of the strain, and we show how these states may be identified by their signatures
in Lorentz transmission electron microscopy (TEM). Experimental TEM measurements of the Fresnel contrast
in a strained sample of the prototypical monoaxial chiral helimagnet CrNb3S6 are reported and compare well
with the modeled contrast. Our results demonstrate an additional degree of freedom that may be used to tailor
the magnetic properties of helimagnets for fundamental research and applications in the areas of spintronics and
the emerging field of strain manipulated spintronics.
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I. INTRODUCTION

The connection between mechanical stress and magnetic
subsystems in solids is at the core of a new branch of elec-
tronics, strain manipulated electronics, sometimes referred
to as straintronics [1,2]. Through manipulation of the spin
degrees of freedom, it is expected that strain engineering of
the magnetic properties of spintronic devices will be able
to realize ultralow energy consumption devices approach-
ing the limit imposed by fundamental principles [3]. One
of the significant ideas of this research area is to control
magnetization on the basis of the magnetoelastic effect by
the formation of an additional magnetic anisotropy evoked
by mechanical stresses [4]. The induced strain field provides
an alternative to both the magnetic field and the spin trans-
fer torque produced by a current. This approach has been
realized in a wide range of systems, including the switch-
ing dynamics of single-domain nanoparticles by stress [5],
by ultrafast acoustic pulses [6], and by tensile strain in-
duced from a piezoelectric substrate [7–9]. Strain engineering
techniques have been successfully employed to manipulate
magnetic moments in perovskite-based multiferroics [10–15],
multiferroic thin-film heterostructures [16], and in nanowires
[17]. A change in the magnetic anisotropy governed by strain
is clearly demonstrated in ferromagnetic-ferroelectric [18,19]
and ferrite-ferroelectric heterostructures [20] due to structural
or metal-insulator [21] phase transformations in the material.

In addition, strain has long been of interest in superconduc-
tors, with recent work having shown it may be used to alter the
pair formation mechanism [22] and the transition temperature
[23] of different materials. Furthermore, a great variety of
applications are related to the development of stretchable
electronics, in which intrinsic flexible functional materials are
able to operate under mechanical strain [24–26].

An effect of elastic stresses on the magnetic properties
of chiral helimagnets is of growing interest. Recently, it was
demonstrated that a skyrmion crystal (SkX) in a cubic chiral
helimagnet is very sensitive to deformations of the underlying
crystal used to stabilize the nontrivial spin texture. Lorentz
transmission electron microscopy (TEM) studies of the mag-
netic configuration revealed that SkX distortions are amplified
by two orders of magnitude in comparison with elastic strains
in the crystal lattice [27]. This provides a new approach of
skyrmion crystal manipulation by elastic lattice degrees of
freedom [28–33].

Helimagnets of hexagonal symmetry, such as CrNb3S6,
subjected to an external magnetic field exhibit another type
of nontrivial magnetic order, the magnetic soliton lattice
[34,35]. Magnetostrictive deformations in the monoaxial chi-
ral helimagnet were addressed in Refs. [36–38], however, the
emphasis of these studies was on the spectrum of coupled
magnetoelastic waves. In those treatments, inhomogeneous
deformations induced in the crystal by the magnetic back-
ground are accounted for, but the reverse effect of the elastic
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subsystem on magnetic ordering is ignored. This approach
is justified for the magnetization-induced strains, since the
magnetoelastic coupling is much weaker than magnetic in-
teractions. In case of deformations resulting from an external
stress, such an approach is generally not valid since essential
transformations of the magnetic order may arise.

In this paper the magnetic soliton lattice deformation by a
uniaxial tensile stress applied perpendicular to the helicoidal
axis is examined. It turns out that the task is equivalent to
a search of a magnetic configuration shaped simultaneously
by an external magnetic field and a single-ion magnetic
anisotropy that may be formulated in terms of the double
sine-Gordon model (dSG). The dSG model has been argued
to be a model of several physical systems, such as the spin
dynamics in the B phase of superfluid 3He [39], propagation
of resonant ultrashort optical pulses through degenerate media
[40], nonlinear excitations in a compressible chain of dipoles
[41], and for solitonlike misfit dislocations on the Au(111)
reconstructed surface [42]. Emphasis of these studies was
placed on solitary waves, or solitons, of infinite period, that
are propagative solutions of a certain class of nonlinear partial
differential equations [43–46]. Beyond this, the dSG model
has found application in characterizing incommensurate (IC)
structures in ferroelectrics [47–49] and ferromagnets [50]
that admit the Lifshitz gauge invariant. The dSG model has
also been employed to identify incommensurate phases of
ferroelectrics in a nonzero electric field from the temperature
dependent dielectric susceptibility [51].

In magnetic systems, the different phases may be verified
by using neutron scattering as a change of satellites spots
in the diffraction data [50]. This paper introduces a way
to identify the incommensurate phases arising in the double
sine-Gordon model by means of Lorentz transmission elec-
tron microscopy. In thin films of CrNb3S6, this experimental
technique has proven to be effective in studies of magnetic
order [52], important features of magnetic chirality domains
[53], temperature dependence of the helical pitch [54], and in
the formation and movement of dislocations [55]. With the ex-
ample of deformations of the helicoidal order by mechanical
stress, we demonstrate that Lorentz TEM imaging of the mag-
netic order through the real-space Fresnel technique [56] al-
lows identification of the magnetic phase. We calculate a mag-
netic phase shift using the Fourier method, which has proved
successful in other periodic magnetic structures [57–59],
across a number of incommensurate structures in multiple
magnetic phases originating from the combined effect of
tensile strains and an external magnetic field. We compare
the calculations with experimental line profiles from Fresnel
imaging of a strained sample of CrNb3S6 as a function of
applied field and find good agreement. These results establish
strain-induced effects in CrNb3S6 and the presence of asso-
ciated incommensurate phases in the material, with potential
applications in fundamental research, magnonics, spintronics,
and the emerging area of strain manipulated spintronics.

This paper is organized as follows. In Sec. II we formulate
a model of the chiral helimagnet subjected to tensile elastic
strains. Calculations of the Aharonov-Bohm induced electron
phase shift for the different magnetic phases of the model are
presented in Sec. III. In Sec. IV we discuss how to identify
these magnetic phases by using the Fresnel technique of the
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FIG. 1. Schematic configuration of Lorentz microscopy of a
sample of the chiral helimagnet of thickness 2d subjected to an
external field H . A helix propagation vector is directed along the
crystallographic c axis. The tensile stress (large, magenta arrows)
results in deformations of the nominal dimensions (black outline) by
�x and �y along the x and y axes, respectively (orange outline).

Lorentz electron microscopy. Results of experimental exami-
nation of strain effects in CrNb3S6 using TEM is reported in
Sec. V wherein these findings are compared with theoretical
predictions. Our findings are summarized in Sec. VI.

II. THEORETICAL TREATMENT

The following is modeling of deformation of the magnetic
chiral helix by an external magnetic field and tensile strains.
The analysis focuses on parametrization of incommensurate
phases and construction of a “field-strain” phase diagram. The
subject of the study is the chiral helimagnet of hexagonal sym-
metry, which is a prototype of the real compound CrNb3S6

[52–55,60–63].
The helicoidal magnetic order is characterized by the mag-

netiztion vector m(r, t ) that determines the total energy den-
sity F = Fm + Fme. The former component includes mag-
netic interactions

Fm = J⊥
2

∑
α=x,y

(∂xα
m)2 + J||

2
(∂zm)2

− D(mx∂zmy − my∂zmx ) − Hxmx, (1)

where the first two terms correspond to the exchange cou-
plings in the plane perpendicular to the chiral axis J⊥, and
along this axis J||. The Lifshitz invariant has the strength
D related with the Dzyaloshinskii-Moryia interaction along
the chiral c axis which is taken to lie along the z axis, as
shown in Fig. 1. The last term describes the Zeeman coupling
with the external magnetic field H, applied along the x axis.
Hereinafter we assume that Hx � 0.

The magnetoelastic energy density complies with symme-
try of the 622 (D6) point group of the hexagonal crystal [64]

Fme = (b11 − b12)
(
uxxm2

x + uyym2
y + 2uxymxmy

)
+ (b13 − b12)(uxx + uyy)m2

z + (b33 − b31)uzzm
2
z

+ 2b44(uyzmymz + uxzmxmz ), (2)
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where ui j is the deformation tensor and bi j are the correspond-
ing magnetoelastic constants.

Taking note of the hierarchy J⊥ � J|| that exists in the
real compound CrNb3S6 [62], further simplifications may be
reached if we neglect gradients of spin fluctuations in the
plane perpendicular to the chiral axis. In this case, the mag-
netization is confined within the xy plane and modulated only
along the z direction, m = Ms{cos ϕ(z), sin ϕ(z), 0}, where ϕ

is the angle of the spin. This approximation results in the
following form of the magnetic energy:

Fm = 1

2
J||M2

s

(
dϕ

dz

)2

− DM2
s

(
dϕ

dz

)
− HxMs cos ϕ. (3)

We are going to examine deformation of the chiral soliton
lattice subjected to stretch deformation arising from tensile
strain along the y axis (see Fig. 1), when only the components
uxx and uyy are relevant. This reduces the magnetoelastic
interactions (2) to the form

Fme = (b11 − b12)
(
uxxm2

x + uyym2
y

)
= F0 + 1

2 M2
s (b11 − b12)(uxx − uyy) cos 2ϕ,

with F0 = M2
s (b11 − b12)(uxx + uyy)/2. We see that the mag-

netoelastic interaction gives rise to the term cos 2ϕ, which has
the same form as the second order single ion anisotropy term.
We note that the tensile deformations automatically bring
about a nonzero uzz component, owing to the relationship
�V/V = uxx + uyy + uzz, where �V/V is the relative change
of volume. The normal strain uzz is coupled with the mag-
netization mz, as is evident from Eq. (2). However, given the
highly anisotropic magnetic nature of CrNb3S6, we assume
that the conical spin order does not occur, and we thus ignore
uzz in our model.

Minimization of the total energy by varying the angle ϕ

leads to the double sine-Gordon (dSG) model

d2ϕ

dz2
+ 1

2
b1 sin ϕ + b2 sin 2ϕ = 0, (4)

where b1 = −2Hx/(J||Ms) and b2 = (b11 − b12)(uxx −
uyy)/J||. Here b1 > 0 as long as Hx � 0.

The dSG equation is well studied [48,50], and has two
uniform solutions with cos ϕ = −1 and cos ϕ = −b1/(4b2)
that correspond to the commensurate (C) phases 1 and 2, re-
spectively. The 1C phase exists for b1 > 4b2 and the 2C phase
exists for b1 < 4b2 provided that b1 > 0. In addition to the
commensurate solutions, there are two spatially nonuniform
ones that describe incommensurate phases with one type (1s)
and two types (2s) of the solitons [50].

The 1s solution is given by

cos ϕ = 2x1sn2(z̄) + 1 − x1

2sn2(z̄) − 1 + x1
, (5)

where sn(· · · ) is the Jacobi elliptic function of the dimension-
less coordinate z̄ = 2K (z − z0)/L0, with K being the elliptic
integral of the first kind. The point z0 results from the con-
dition ϕ(z0) = π [see Eq. (A2) in Appendix A]. The elliptic
modulus

κ2 = 2(x2 − x1)

(x2 + 1)(1 − x1)
(6)

a)(

b)(

c)(

z

y

x H

1s

2s

1s

FIG. 2. 3D profiles of magnetization for the incommensurate
phases of the double sine-Gordon model: (a) and (b) the 1s phase,
and (c) the 2s phase. The 1s and 1s̄ plots correspond to different
parametrizations of the same phase (see main text for details) and are
differentiated here by the emergence of ferromagnetic areas aligned
along the positive x axis inside the kinks of the 1s plot.

and the period of the solution

L0 = 4K√
2b2(x2 + 1)(x1 − 1)

are determined by the parameters x1 < −1 and x2 > 1 that
depend on the constants b1,2 and an integration constant of
the dSG equation [see Eq. (A3) in Appendix A]. The same
solution is valid for the relationship x2 < x1 < −1. To distin-
guish between these cases we denote the latter by 1s̄. In this
phase, the magnetic moments rotate around the z axis but are
mostly directed along the direction of the external magnetic
field [see Figs. 2(a) and 2(b)]. Due to spin alignment in the
almost ferromagnetically ordered areas, this spin arrangement
is related to the commensurate 1 phase.

The corresponding energy per unit length [Eq. (B2)] is
expressed in terms of the complete integrals of the first,
second (E ) and third kind,

�(α2, κ ) =
∫ π/2

0

dϕ

(1 − α2 sin2 ϕ)
√

1 − κ2 sin2 ϕ
,

where α2 = 2/(1 − x1). The parameter x1 corresponds to the
integration constant of Eq. (4) and must be obtained from a
minimum of the system energy. This leads to the equation to
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find x1:

− 1
2πq0

√
2b2(x2 + 1)(x1 − 1) + b2K

(
1 − x2

1

)
+ b2E (x2 + 1)(x1 − 1) + b2�(x1 + x2)(x1 + 1) = 0,

(7)

where x2 = −x1 − b1/2b2 and q0 = D/J|| is the wave number
of the helimagnetic structure under zero field and zero stress.

The 2s solution is defined as (see Appendix A)

cos ϕ = l − cn(z̄)

1 − lcn(z̄)
, (8)

where cn(· · · ) is the Jacobi elliptic function of the dimension-
less coordinate z̄ = 4K (z − z0)/L0. It has the period

L0 = 4K

√
2l

b1(l2 − 1)

and depends on the elliptic modulus

k2 = l (l + 4b2/b1)

l2 − 1
, (9)

which are both specified by the parameter l . This parameter
is linked to b1 and b2 by the relationship c/b1 = −b2/b1 −
l/2 − 1/(2l ), where c is a constant of integration of Eq. (4).
The parameter l may vary in the range −b1/(4b2) < l < 0 for
b2/b1 > 1/4 and in the range −4b2/b1 < l < 0 for b2/b1 <

1/4. Minimization of the energy per unit length [see Eq. (B3)]
fixes l through the relationship

−πq0

√
b1

2
(l − 1/l ) + b1(� − K )(l + b1/4b2)

+ b1(l − 1/l )E = 0, (10)

where � includes the elliptic characteristic α2 = −4lv with
v = b2/b1.

In the 2s phase, there are two energetically equivalent
directions of the magnetic moments [Fig. 2(c)]. Although the
moments rotate around the z axis, they are mainly aligned
along the directions with cos ϕ = −b1/(4b2) (corresponding
to the angle of the commensurate 2 phase, discussed above),
effectively spreading the 2π rotations across some distance.
This occurs in order to balance competition between the ex-
ternal magnetic field and an effective second order anisotropy
arising from the magnetoelastic coupling.

The phase diagram corresponding to the thermodynamical
potential F on the plane formed by the parameters b2 and
b1, which are associated with the elastic deformation and
applied field, respectively, is shown in Fig. 3.1 It is identical
to that given in Ref. [50], which was built from a free-
energy Ginzburg-Landau functional including a second order
magnetic anisotropy and an external magnetic field. The lines
presented in the phase diagram are determined by the relations

1In general, the sign of the magnetoelastic constants in unknown.
However, we demonstrate later that the 1s phase appears to corre-
spond to the case of tensile strain in CrNb3S6.

FIG. 3. The phase diagram in the (b2-b1) plane. The scale along
the axes b1,2 is chosen in units of q2

0. The parameters b2 and b1

correspond to the elastic deformation and applied field, respectively.
Examples of characteristic spin textures for the different phases are
depicted in Fig. 2. The commensurate 1 phase (1C) and 2 phase (2C)
are separated by the line b1/b2 = 4.

(AB) line:

−πq0

√
2b1 + 2b1

√
1 − 4v + b1√|v|arcsinh(2

√
|v|) = 0,

(11)

(BC) line:

−πq0

√
2b1 + 2b1

√
1 − 4v + b1√

v
arcsin(2

√
v) = 0, (12)

(OC) line:

b1 = 2q0

√
2b2, (13)

(CD) line:

πq0

b1

√
2b2 =

√
16v2 − 1 + arcsin

(
1

4v

)
. (14)

It should be noted that the OB line divides the area of the 1s
phase where different forms of x1,2 parametrization are used,
and does not correspond to any phase transition. The bound-
aries between the incommensurate and commensurate phases,
i.e., the AC and CD lines, are related with continuous second
order phase transitions of the nucleation type, according to de
Gennes classification, [65] and may be derived from the limit
κ2 → 1. In this limit, the definitions (6) and (9) impose addi-
tional constraints on the parameters x1, x2, or l as functions of
b1, b2. Given these connections, similarly treating Eqs. (7) and
(10) at κ2 → 1 leads to Eqs. (11), (12), and (14), respectively.
The transition across the OC border relates to a continuous
transformation from one incommensurate phase to another
that happens at κ2 = 0. In Ref. [47] it has been argued that this
boundary is not a phase transition line, since any derivative of
thermodynamic potential is continuous at the boundary [66].
Repeating the above procedure, i.e., by addressing Eqs. (7)
and (10) subject to new links of the limit, one may deduce
Eq. (13).
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The coordinates of the points A, B, C, and D in the
(b2, b1) plane are q2

0(−π2/8, 0), q2
0(0, π2/8), q2

0(0.5, 2), and
q2

0(π2/8, 0), respectively. We highlight these specific points
because the exchange coupling J and the magnetoelastic con-
stant b11 − b12 may be found from comparison with critical
values of the incommensurate-commensurate phase transition
either at zero strain or at zero magnetic field.

III. SIMULATED LORENTZ PROFILES

We examine in detail below the magnetic phase shift
imparted to an electron wave passing through a specimen with
an incommensurate magnetic order of the dSG model. For the
rectangular geometry sketched in Fig. 1, the magnetic phase
shift, based on the Aharonov-Bohm effect, is given by [67]

φ(z) = − e

h̄

∫
l
Ax(r)dr, (15)

where the line integral is performed within the specimen for
samples with no stray field, A is the magnetic vector potential
inside the sample, e is the absolute value of the electron
charge, and h̄ is the reduced Plank constant. The specimen has
the form of a thin slab of constant thickness 2d . The electron
beam passes through the film, parallel to the x axis, and the
object in the yz plane lies perpendicular to the incident beam,
as shown in Fig. 1. It is supposed that the magnetic phase
shift depends only on the z coordinate and does not change
in the xy plane lying perpendicular to the helicoidal axis.
Since the recorded phase is simply related with the in-plane
magnetization in the sample

My = − h̄

2eμ0d
∂zφ, Mz = h̄

2eμ0d
∂yφ,

it is easy to see that the y component of the sample magneti-
zation My(r) = M0 sin ϕ(r) alone determines the x component
of the magnetic vector potential

Ax(r) = μ0

4π

∫
My(r′)

(z − z′)
|r − r′|3 dr′. (16)

It is convenient to use the Fourier transform of this expres-
sion

Ax(k) = −iμ0
kz

k2
My(k),

where My(k) = M0
∫

dr sin ϕ(r)e−ikr.
Direct calculation for the specified geometry results in

My(k) = 4πM0δ(ky)
sin(kxd )

kx

∫ ∞

−∞
dze−ikzz sin ϕ(z), (17)

where, for simplicity, we assume that the slab plane is infinite.
Then, the magnetic phase shift is given by

φ(z) = − e

h̄
Ax(kx = 0, z)

= − e

h̄

∫ ∞

−∞

dky

2π

∫ ∞

−∞

dkz

2π
Ax(0, ky, kz )eikzz.

Next, we give results for the magnetic phase shift sepa-
rately for each of the phases. In the following section we
use these equations to examine the Fresnel contrast that the
different magnetic phases produce.

1s phase. In the case of the 1s phase, with the parameters
x1 < −1 and x2 > 1, evaluation of the magnetization (17) can
be carried out with the aid of the Fourier series for sin ϕ(z)
(see Appendix C). Then the ultimate result for the magnetic
phase shift is as follows:

φ(z) = −2eμ0M0d

h̄
√−2b2

[
am(z̄ + b) − am(z̄ − b) − π

K
b
]
, (18)

where am(· · · ) is the Jacobi’s amplitude function and b is
specified by Eq. (C2).

In the case of x2 < x1 < −1, the result

φ(z) = 2eμ0M0d

h̄
√

2b2

{
iam[z̄ − K + i(K ′ − b)]

− iam[z̄ − K − i(K ′ − b)] + π

K
(K ′ − b)

}
(19)

may be obtained by application of the same technique. Here b
is determined by Eq. (C5) and K ′ denotes the complete elliptic
integral of the first kind with the complementary elliptic
modulus κ ′ = √

1 − κ2.
2s phase. For the 2s phase, derivation of the Fourier series

for the transverse magnetization component is covered in
Appendix D. Using the Fourier transformation in the general
scheme of magnetic phase shift calculations, we obtain the
overall result

φ(z) = 2
eμ0M0d

h̄
√

2b2

{
−1

4
ln

(
1 − κcd[z̄ + i(K ′ − b)]

1 + κcd[z̄ + i(K ′ − b)]

)

− 1

4
ln

(
1 − κcd[z̄ − i(K ′ − b)]

1 + κcd[z̄ − i(K ′ − b)]

)
+ π

2K
(K ′ − b)

− i

2
am[z̄ − i(K ′ − b)] + i

2
am[z̄ + i(K ′ − b)]

}
.

(20)

A link between the parameters b and l is conditioned by
Eq. (D1) in Appendix D.

IV. IDENTIFICATION OF THE DSG PHASES BY TEM

It is instructive to consider the contrast that would be
obtained from Lorentz TEM imaging of the different phases
outlined in the previous section. Electron holography [68]
provides access to the phase shift imparted on the transmitted
beam due to components of the integrated induction lying
perpendicular to the beam. The differential phase contrast
(DPC) technique essentially maps the first derivative of the
magnetic phase change, similar to the Foucault imaging tech-
nique [69,70]. In the Fresnel technique, contrast sensitive to
the second derivative of the phase is obtained by defocusing
the image. It is routinely used to image domain walls [71],
and it is with this technique that remainder of this section is
concerned.

While Fresnel imaging of domain structures is generally
considered to be a nonlinear imaging mode, at small defocus
values the Fresnel image intensity I is linear in the second
derivative of the phase [71] and may be used directly in a
quantitative manner [72]:

I (r) ≈ 1 − � f λ

2π
∇2

⊥φ(r) = 1 − � f λ

2π
φ′′(z), (21)
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FIG. 4. Upper panels: Profile evolution of φ′′(z) with the magnetic field for the 1s magnetic phase along the selected directions of the phase
diagram indicated by the red arrows in (a): (b) at large (b2 = −0.8π 2/8), (c) at small (b2 = −0.3π 2/8), and (d) at zero elastic deformations.
Lower panels: Equivalent plots for the 1s̄ and 2s phases shown in (e): (f) at small (b2 = 0.24π 2/8), (g) at intermediate (b2 = 0.67π 2/8), and
(h) at large (b2 = 0.96π 2/8) elastic deformations. The b2 values are given in units of q2

0. The values of b1 for all plots are chosen as (from
bottom to top) 0.05, 0.30, 0.65, 0.99, and 0.9999 from a critical value of the IC-C phase transition at a given b2 value.

with λ the electron wavelength, � f the defocus distance, and
∇2

⊥ the Laplacian relating to coordinates perpendicular to the
beam.

Next, we examine the Fresnel contrast for different regions
of the phase diagram with reference to Fig. 4. For each panel
row in the figure, the second to fourth columns depict the
simulated profiles at positions along the arrows in the first
column, with the field strength increasing from bottom to top.
At the outset, we examine a situation in the absence of elastic
deformations. In this case, we obtain the sine-Gordon model
whose behavior has been well explored by TEM [52–55]. At
small fields, the magnetic order is close to a helix and the pro-
file of the second derivative of the phase imparted on the trans-
mitted beam approximates a sinusoidal waveform [bottom
row of Fig. 4(d)]. With an increase in the field [moving up the
rows in Fig. 4(d)], the main peaks corresponding to 2π rota-
tions of the spins, narrow and additional low magnitude peaks
develop. In achieving the incommensurate-commensurate
phase transition, these additional peaks broaden and transform
into plateaus. This situation reflects modification of the soliton
lattice by the external magnetic field, namely a growth of
commensurate, forced ferromagnetic regions (FFM) in order
to lower the Zeeman energy.

Switching on small deformations gives rise to an effective
anisotropy field parallel to the magnetic one, but unlike the lat-
ter, it prefers magnetization directions both along and against
the magnetic field [see Fig. 2(a)]. As a result, this leads to
a more rapid broadening of the main peaks and the shallow
peaks associated with the FFM regions [Fig. 4(c)].

At stronger deformations, the induced anisotropy field
dominates, changing drastically the φ′′(z) profile, causing
bifurcation of the main peaks and the appearance of additional
peaks between the main ones, resulting in a symmetrical “up-
up-down-down” structure [Fig. 4(b)]. Increasing the applied
field breaks the symmetry due to formation of FFM regions
that are visible as broad plateaus as the IC-C phase transition
between the 1s and 1c phases is approached.

A specific feature of the 1s̄-phase evolution is that it is
preceded by the 2s phase at small magnetic fields [arrow 4 in
Fig. 4(e)]. With the growth of the magnetic field, the triangular
waveform of the 2s phase transforms continuously to a profile
with sharp peaks separated by plateaus, however, in contrast
to the 1s phase, without additional peaks [Fig. 4(f)]. Another
characteristic feature is that these peaks are narrower than
those of the 1s phase near the IC-C phase transition of the
1s̄-1c type.

A change of the electron phase second derivative under the
effect of a magnetic field occurs entirely inside the 2s phase at
stronger deformations [arrows 5 and 6 in Fig. 4(e)]. At small
fields, the strain induced anisotropy field prevails, so there
is a nonsinusoidal symmetrical profile [Figs. 4(g) and 4(h)].
However, only one kind of peak survives as the field increases,
namely, that which corresponds to fast rotating kinks with
advantageous Zeeman arrangement of moments. The broad
plateau areas have characteristic dips whenever magnetization
reaches full saturation. These plateaus are a manifestation of
the commensurate magnetic order of the 2c type, i.e., the
canted phase.

V. EXPERIMENTAL RESULTS

In order to experimentally observe strain effects discussed
in the theory section of this work, we examine the prototypical
chiral helimagnet CrNb3S6 by TEM. We adopt a similar
approach to that of Shibata et al. [27] by aiming to induce
tensile strain upon cooling through differential coefficients of
expansion of the sample mounted on a Si support. An electron
transparent focused ion beam prepared cross section of the
crystal was mounted over a slot in a Si support structure
[Figs. 5(a) and 5(b)] and the sample cooled to 106 K, below
the critical temperature of ∼127 K. A custom intermediate
sample holder [Fig. 5(d)] was used to avoid additional strain
arising from mounting in a Gatan HC3500 sample holder
[Fig. 5(c)]. During cooling, the lower thermal expansion rate
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FIG. 5. CrNb3S6 sample preparation and characterization.
(a) and (b) Top and side view SEM images of the sample mounted
on a Si support, pre and post thinning, respectively. The scale bars
in (a) and (b) are 4.5 μm. (c) Sample mounted in a Gatan HC3500
sample holder in a custom brass sample “cradle.” (d) Schematic
of the sample cradle used to isolate the sample from strain during
mounting. (e) Thickness map from electron energy loss spectroscopy
performed in scanning mode TEM (STEM), analyzed following
Iakoubovskii method [73] implemented in the fpd library [74] using
a density of 5.03 g/cm3 [38], giving an inelastic mean free path of
126 nm. The convergence and collection semiangles were 29 and 36
mrad, respectively. (f) CTEM image of the same area displayed in (e)
showing bend contours and (cyan rectangle) the region under study.

of the Si support nominally causes tensile strain to form in
the sample in the direction across the Si gap, corresponding
to a direction perpendicular to the chiral c axis. However, due
to nonuniform thickness of the lamella [Fig. 5(e)] and sample
warping during thinning [Fig. 5(b)], additional localized strain
terms may arise and, indeed, the precise magnetic order varied
across the sample. Curvature of the sample is also visible in
the conventional TEM (CTEM) image of Fig. 5(f) through
the presence of bend contours, diffraction effects that create
intensity variations due to gradual variation in the crystal
alignment with respect to the beam. Because of these effects,
unfortunately, we cannot quantify the strain in the sample
from the nominal structural and thermal properties of the
sample (where they are known). However, we can estimate the
strain from comparison with theory, as discussed at the end of
this section.

To characterize the field dependence of the magnetic con-
figuration in the sample, it was imaged in Fresnel mode in an

JOEL ARM 200cF TEM equipped with a cold field emission
gun operated at 200 kV [75]. An external field was applied
perpendicular to the sample c axis by varying the current
through the objective lens, from the remnant field (104 Oe)
until the sample was fully field polarized (∼2000 Oe), while
maintaining a defocus of ∼300 μm.

Figure 6(a) shows a Fresnel image of the region under
study, located at a crystallographic grain boundary defining
regions of opposite chirality (marked by the red dashed line)
at an intermediate field of 1728 Oe. Solitons are visible as
narrow dark or bright lines (marked by the black and white
overlays), depending on the chirality of the grain [53]. Across
the imaged area, the solitons remain parallel to one another as
a result of the c axis being aligned [53]. Importantly, between
the solitons are narrower lines of the same intensity sign which
are not observed in strain-free samples (see Fig. 3 of Ref. [53]
for examples).

Averaged experimental line profiles from imaging the sam-
ple in Fresnel mode as a function of applied field are shown
by the colored lines in Fig. 6(b). The overlaid black lines
are the same data Fourier filtered to mainly remove high
frequency components primarily deriving from noise. The
same features of the profiles are present on both sides of the
grain boundary, except for an inversion of the contrast. At
low applied field strengths, the soliton profile is approximately
sinusoidal but, as the field strength increases, additional peaks
(or troughs) become apparent (arrowed), starting at values of
∼1500 Oe and extending to ∼1800 Oe, before the sample
becomes field polarized at ∼2000 Oe. Figure 6(c) shows the
field dependence of the simulated contrast of the 1s phase,
with parameters chosen to match the experimental profiles.
While the contrast transfer function of the main imaging
lens in the experiment reduces the high spatial frequency
components in the experimental profiles, the general features
and evolution of the profiles with field match well those of
the calculated profiles, including the appearance of additional
peaks while the lattice is still relatively dense.

Finally, from our identification of the approximate point
in the phase diagram for our experiment, b2/b1 ≈ −10−2,
we can estimate the strain from known CrNb3S6 values of
the magnetization Ms = 131.5 kA m−1 and the magnetoelastic
constants (b11 − b12)M2

s ∼ 1 MPa [38] through

uxx − uyy = − 2μ0HxMs

(b11 − b12)M2
s

b2

b1
, (22)

where μ0 = 4π × 10−7 H/m is the vacuum permeability.
Given the choice Hx = −1700(4π )−1 × 103 A m−1 that cor-
responds to −1700 Oe, we obtain an estimate of the strain in
our sample of uyy − uxx ≈ 4.47 × 10−4, which is of the same
order of magnitude as observed in similar experiments. [27]

VI. CONCLUSIONS

In summary, we have studied the influence of an ex-
ternal tensile force on a monoaxial helimagnets having a
helical magnetic order due to competition between magnetic
anisotropies in chiral crystals with Dzyaloshinskii-Moriya ex-
change interactions and shown that this effect can be described
by the double sine-Gordon model. The investigation presented
is sufficient to set up a complete picture of Lorentz TEM
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FIG. 6. Comparison of experimental strain induced CrNb3S6 Fresnel contrast with simulated data. (a) Lorentz TEM image at an applied
field of 1728 Oe from the region under study in Fig. 5(f). The overlaid black and white lines highlight the weak magnetic contrast. The
thickness of the middle stripe is 126 nm. (b) Average experimental Fresnel line intensity profiles as a function of the applied field, showing
additional peaks and troughs (prominent examples are arrowed) in the field range of ∼[1500, 1800] Oe. The black lines are [20, 200] nm
period bandpass filtered versions of the averaged data (colored lines). The red dashed lines in (a) and (b) mark the approximate location of the
crystallographic grain boundary. (c) Simulated contrast for the elastic deformation parametrized by b2 = −0.01 · π 2q2

0/8 that corresponds to
the 1s phase, showing very similar features to those shown in (b). This b2 value is related with the upper limit b∗

1 = 0.976 · π 2q2
0/8 as follows

from Eq. (11). For comparison with the experimental data, b∗
1 was set as 1787.1 Oe.

imaging of incommensurate magnetic structures of the model
and trace its evolution with application of magnetic field and
mechanical stress. Through comparison with the dSG model
we have identified the incommensurate 1s phase by exper-
imental Fresnel TEM imaging of a mechanically strained
sample of the chiral helimagnet CrNb3S6, confirming a result
first theoretically predicted by Iwabuchi [48]. Our results
demonstrate an additional degree of freedom for control of
the anisotropies present in chiral helimagnets for potential
applications in the areas of spintronics and the emerging field
of strain manipulated spintronics.

Original experimental data files are available in the En-
lighten Research Data repository at the University of Glasgow
[76].
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APPENDIX A: REDUCTION OF ALGEBRAIC
INTEGRANDS TO JACOBIAN ELLIPTIC FUNCTIONS

From Eq. (4) it is straightforward to see that

(
dϕ

dz

)2

= b1 cos ϕ + b2 cos 2ϕ + c, (A1)

where c is a constant of integration.
The requirement of positiveness of the right-hand side of

this relation for ϕ values where it reaches a minimum results
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in three different solution domains:

(I) v < 0, u > 1 − v,

(II) 0 < v <
1

4
, 1 − v < u < v + 1

8v
,

(III) v > 0, u > v + 1

8v
,

where u = c/b1 > 0 and v = b2/b1.
Integration of (A1) gives

z − z0 = ∓ 1√
b1

∫ x(z)

−1

dx√
(1 − x)(1 + x)(u + x + 2vx2 − v)

,

(A2)

where x = cos ϕ and ϕ(z0) = π .
In region (I), where u + x + 2vx2 − v = 2v(x − x1)(x −

x2) with

x1,2 = −1 ± √
1 − 8v(u − v)

4v
, (A3)

the hierarchy x1 < −1 < x(z) < 1 < x2 is fulfilled.
Then, the integration in Eq. (A2) may be realized through

the inverse Jacobian elliptic function [77],∫ y

c

dx√
(a − x)(b − x)(x − c)(x − d )

= g sn−1(sin ϕ, k),

provided a > b � y > c > d . Here

g = 2√
(a − c)(b − d )

,

ϕ = sin−1

(√
(b − d )(y − c)

(b − c)(y − d )

)
,

and

k2 = (b − c)(a − d )

(a − c)(b − d )
.

This ensures the solution (5).
In region (II) the hierarchy

x2 < x1 < −1 � x(z) � 1

exists. This enables us to use∫ y

b

dx√
(a − x)(x − b)(x − c)(x − d )

= g sn−1(sin ϕ, k),

where

ϕ = sin−1

(√
(a − c)(y − b)

(a − b)(y − c)

)
,

and

k2 = (a − b)(c − d )

(a − c)(b − d )

provided d < c < b < y � a. This results once more in
Eq. (5).

In the domain (III) one has D = 1 − 8v(u − v) < 0, there-
fore

u + x + 2vx2 − v = 2v

[(
x + 1

4v

)2

+ |D|
16v2

]
.

This allows us to apply∫ y

b

dt√
(a − t )(t − b)

[
(t − b1)2 + a2

1

] = gcn−1(cos ϕ, k),

with

g = 1√
AB

,

A =
√

(a − b1)2 + a2
1, B =

√
(b − b1)2 + a2

1,

k2 = (a − b)2 − (A − B)2

4AB
,

ϕ = cos−1

[
(a − y)B − (y − b)A

(a − y)B + (y − b)A

]
,

provided a � y > b. The integration yields (8).

APPENDIX B: THE THERMODYNAMICAL POTENTIAL

The energy per unit length, measured in units J||M2
s /2,

E = 1

L0

∫ L0

0
dz

[(
dϕ

dz

)2

− 2
D

J||

(
dϕ

dz

)
+ b1 cos ϕ

+ b2 cos 2ϕ

]

may be reduced to the form

E = −c − 4πq0

L0
+ 2

L0

∫ L0

0
dz

(
dϕ

dz

)2

, (B1)

where the result (A1) is used.
1s phase. By substituting here the solution (5) and carrying

out integration with respect to the coordinate z, we get

E = −c − πq0

K

√
2b2(x2 + 1)(x1 − 1) + 2b2(x2 + 1)(x1 − 1)

× E

K
− 2b2

(
x2

1 − 1
) + 2b2(x1 + 1)(x2 + x1)

�

K
, (B2)

where � is the complete elliptic integral of the third kind

�(α2, κ ) =
∫ K

0

du

1 − α2sn2u

with α2 = 2/(1 − x1) and 0 < α2 < κ2 < 1. To obtain (B2)
we make use of the result∫ K

0

du

(1 − α2sn2u)2

= 1

2(1 − α2)(κ2 − α2)
[−α2E + (α4 − 2α2κ2

− 2α2 + 3κ2)� + (α2 − κ2)K].

2s phase. Making an evaluation of ϕ′
z with the aid of the

solution (8), we obtain as the final result

E = b2 − b1l

2
+ b1

2l
− b2

1

4b2
− πq0

K

√
b1(l2 − 1)

2l

− b1
(1 − l2)

l

E

K
+ b1

(
l + 1

4v

)
�

K
. (B3)
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This expression involves the elliptic integrals for which α2 =
−4lv should be chosen. In contrast with the 1s phase, there
is the hierarchy 0 < κ2 < α2 < 1. To eliminate the parameter
c in Eq. (B1), we made use the relationship u = −v − l/2 −
1/(2l ).

APPENDIX C: FOURIER TRANSFORM OF THE 1S PHASE

Most notably we note the result

sin ϕ = ±
2
√

x2
1 − 1 sn(z̄)cn(z̄)

2sn2(z̄) − 1 + x1
(C1)

originated from Eq. (5).
In determining the parameter b such that

sn2(b, κ ) = x2 + 1

x2 − x1
, (C2)

we have 0 < sn2b < 1 in region (I), where x1 < −1 and
x2 > 1.

Taking account of Eq. (6), one may present (C1) in the form

sin ϕ = 1
2

√
(x2 + 1)(1 − x1)[dn(z̄ + b, κ ) − dn(z̄ − b, κ )],

where the positive sign is taken for certainty.
A required result is achieved through the series expansion

dn(u) = π

2K
+ π

2K

∑
n =0

exp
(
in π

K u
)

cosh
(
π K ′

K n
) . (C3)

Calculation of the magnetic phase shift gives rise to

φ(y, z) = −4eμ0M0d

h̄
√−2b2

∞∑
n=1

cos
(

πnz̄
K

)
sin

(
πnb
K

)
n cosh

(
πnK ′

K

)

= −2eμ0M0d

h̄
√−2b2

[
am(z̄ + b) − am(z̄ − b) − π

K
b
]

(C4)

that amounts to (18), keeping in mind the Fourier series for
the Jacobi’s amplitude function

am(u) = πu

2K
+

∞∑
n=1

sin
(
n π

K u
)

n cosh
(
π K ′

K n
) .

Similarly, the parameter b may be introduced for the II
region, where x2 < x1 < −1, such that

sn2(b, κ ′) = x2 + 1

x2 − 1
, (C5)

with κ ′ = √
1 − κ2 is being the complementary modulus.

As a next step, consider the following expression:

1
2

√
(x1 + 1)(x2 − 1)[sc(z̄ − ib, κ ) + sc(z̄ + ib, κ )]. (C6)

By using addition theorems for the Jacobi elliptic functions
cn(· · · ) and sn(· · · ) it may be reduced to√

(x1 + 1)(x2 − 1)sn(z̄)cn(z̄)dn(ib)

× cn2(ib) + sn2(ib)dn2(z̄)

cn2(z̄)cn2(ib) − sn2(z̄)sn2(ib)dn2(z̄)dn2(īb)
.

This result may be simplified via the Jacobi imaginary trans-
formations

sn2(ib, κ ) = − sn2(b, κ ′)
cn2(b, κ ′)

= 1

2
(1 + x2),

cn2(ib, κ ) = 1

cn2(b, κ ′)
= 1

2
(1 − x2),

dn2(ib, κ ) = dn2(b, κ ′)
cn2(b, κ ′)

= 1 − x2

1 − x1
,

which yields

±
2
√

x2
1 − 1 sn(z̄)cn(z̄)

1 − x1 − 2sn2(z̄)
. (C7)

This outcome is nothing but sin ϕ as evident in Eq. (C1).
Going back to Eq. (C6) it can be seen that periodicity of

elliptic functions transforms this expression into

− i

2

√
(x1 − 1)(x2 + 1){dn[z̄ − K + i(K ′ − b), κ]

− dn[z̄ − K − i(K ′ − b), κ]}. (C8)

By combining Eqs. (C7) and (C8) we obtain

sin ϕ = − i

2

√
(x1 − 1)(x2 + 1){dn[z̄ − K + i(K ′ − b), κ]

− dn[z̄ − K − i(K ′ − b), κ]}. (C9)

Once again using the Fourier series expansion (C3) we get

φ(y, z) = −4eμ0M0d

h̄
√

2b2

∞∑
n=1

sinh
(

πn
K [K ′ − b]

)
n cosh

(
πnK ′

K

)
× cos

(πn

K
[z̄ − K]

)
which provides the answer (19).

APPENDIX D: FOURIER TRANSFORM OF THE 2S PHASE

In advance we note that

sin ϕ = ±
√

1 − l2 sn(z̄)

1 − lcn(z̄)

stemming from Eq. (8) and introduce the parameter b, 0 <

b < K ′, that obeys the equations

sn2(b, κ ′) = 1 − l2, cn2(b, κ ′) = l2,

dn2(b, κ ′) = −4lv. (D1)

As an alternative, one may verify the result

sin ϕ =
√

1 − l2

2dn(b, κ ′)
[ns(z̄ − ib, κ ) + ns(z̄ + ib, κ )

− cs(z̄ − ib, κ ) − cs(z̄ + ib, κ )],
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which can be easily proved by means of the definition (9), the
Jacobi imaginary transformations

dn(ib, κ ) = dc(b, κ ′) = −i
√

4v/l,

sn(ib, κ ) = isc(b, κ ′) = −i
√

1 − l2/l,

cn(ib, κ ) = nc(b, κ ′) = −1/l,

and the addition theorems for the Jacobi elliptic functions.

Using periodicty of the elliptic functions

ns(z̄ ± ib, κ ) = κsn[z̄ ∓ i(K ′ − b), κ],

cn(z̄ ± ib, κ ) = ∓ i

κ
ds[z̄ ∓ i(K ′ − b), κ],

one may reach the endpoint convenient for a Fourier series
expansion

sin ϕ = κ
√

1 − l2

2dn(b, κ ′)

{
sn[z̄ + i(K ′ − b), κ] + sn[z̄ − i(K ′ − b), κ] + i

κ
(dn[z̄ − i(K ′ − b), κ] − dn[z̄ + i(K ′ − b), κ])

}
, (D2)

where

sn(u) = π

2iKκ

∞∑
n=−∞

exp
[

iπu
2K (2n + 1)

]
sinh

[
πK ′
2K (2n + 1)

] (D3)

and dn(· · · ) is given by Eq. (C3).
Then the corresponding result for the magnetic phase shift

φ(y, z) = 2
eμ0M0d

h̄
√

2b2

{ ∞∑
n=0

cos
[

π
2K (2n + 1)z̄

]
cosh

[
π

2K (2n + 1)(K ′ − b)
]

(n + 1/2) sinh
[

πK ′
2K (2n + 1)

] −
∞∑

n=1

cos
[

π
K nz̄

]
sinh

[
π
K n(K ′ − b)

]
n cosh

[
πK ′
K n

]
}

may be simplified to the form (20), where the relationship∫ u

K
dt sn(t ) = 1

2κ
ln

(
1 − κcdu

1 + κcdu

)
should be accounted for.
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