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Thermal activation barriers for creation and annihilation of magnetic droplet solitons in the
presence of spin transfer torque
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We study noise-induced creation and annihilation of magnetic droplet solitons in experimental parameter
regions in which they are linearly stable against drift. Exploiting the rotational symmetry of the problem, we
transform to the reference frame rotating with the droplet soliton and introduce an effective potential energy
that accounts for the work done against spin transfer torque to rotate the magnetization between two different
orientations. We use this function to compute the activation barrier in both directions between the uniform
magnetization state and the droplet soliton state for a variety of nanocontact radii and currents. We investigate
droplet soliton structures with both zero and nonzero spin-torque asymmetry parameters. Our approach can
be applied to estimate activation barriers for dynamical systems where nongradient terms can be absorbed
by changes of reference frames, and suggests a technique applicable to extended systems that may not be
uniformly magnetized.
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I. INTRODUCTION

Magnetic droplet solitons are localized, dynamical mag-
netic textures that preserve their shape on timescales long
compared to typical magnon relaxation times [1]. They are
typically generated in spin-torque oscillators (STOs) [2] with
a free layer and having perpendicular magnetic anisotropy
[3], or in nanoconstrictions using pure spin currents generated
by the spin Hall effect [4]. Unlike certain other textures,
such as dynamical skyrmions [5], droplet solitons are not
topologically protected and are sustained in driven systems
via a balance between the competing effects of ordinary dis-
sipation and an energy input provided by an external current
acting through spin transfer torque (STT). Droplet solitons,
dynamical skyrmions [5], and related textures, both topo-
logical and nontopological, have attracted substantial interest
due both to their fundamental physical interest and also from
the possibility of their applications in information storage,
transfer, and manipulation.

Droplet solitons were first predicted by Ivanov and Ko-
sevich [6] as “magnon droplets” in thin films formed by
condensation of spin waves into a circular, uniformly pre-
cessing structure whose magnetization at the center points
in the (nearly) opposite direction to that of the spins far
away. In this formulation the deviation of the magnetization
from the “up” direction (i.e., perpendicular to the plane)
at infinity is proportional to the number of quantized spin
waves excited. Ivanov and Kosevich restricted their analysis
to conservative systems, i.e., no dissipation or spin torque;
the resulting droplet structures were argued to be dynamically
stable [7]. However, once dissipation—unavoidable in any

real system—is added, these structures quickly decay. For a
review, see Kosevich et al. [1].

After the first experimental evidence [8] and direct ob-
servation [9] of droplet solitons, multiple experiments have
generated and studied magnetic droplet solitons and related
structures over the past several years [10–21]. The usual
experimental situation leading to droplet soliton generation
and decay occurs in a nanocontact spin-torque oscillator
(NC-STO), where two magnetic layers are separated by a
nonmagnetic spacer; the top layer is known as the free layer
and the bottom layer as the fixed (or polarizing) layer. To
generate droplet solitons, a nanocontact (typically with radius
of order 100 nm, although it can vary) through which a
current can be sent is placed on the free layer. This type of
setup generates a spin transfer torque [22,23] to balance the
effects of dissipation within the nanocontact region, thereby
stabilizing the droplet soliton. An external magnetic field,
usually perpendicular to the layers, is also applied, leading to
the usual Larmor precession of spins and additional stabilizing
effects [24].

Hoefer, Silva, and Keller [25] were the first to show
theoretically that magnetic droplet solitons can be formed
in such nanocontacts. Using both analytical and numerical
micromagnetic techniques, they studied droplet soliton shape
profiles, small perturbations of the droplet soliton, nucleation
processes, and related properties. One of their important
conclusions was that the externally applied sustaining current
singled out a specific droplet soliton precession frequency.

In a subsequent paper, Wills, Iacocca, and Hoefer [26] (see
also [27]) found that droplet solitons are linearly unstable at
large bias currents, being subject to a drift instability in which
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the droplet soliton center drifts outside of the nanocontact
region. (This had been noticed a year earlier in micromagnetic
simulations by Lendinez et al. [28]). Outside this region,
dissipation is uncompensated because of the absence of STT,
and the droplet soliton quickly decays. However, they also
found that the droplet soliton is linearly stable in a narrow
but experimentally accessible region of parameter space; see
Fig. 2 of [26]. This figure shows three regions in the external
field/applied current phase diagram for two nanocontact radii;
the central region is where the droplet soliton is both sustained
by the applied current and is linearly stable against drift.

This raises the question of lifetimes of linearly stable
droplet solitons in this central region at low temperature: for a
droplet soliton in this part of parameter space and centered in
the nanocontact region, what are the extreme value statistics
of a rare but large thermal (or other) fluctuation spontaneously
arising and destroying the droplet soliton? This is important
both for experimental studies of droplet solitons and possible
future device applications, and this is the question we address
in this paper.

In recent work, Moore and Hoefer [27] computed decay of
magnetic droplet solitons in the linearly stable region through
a different mechanism, namely thermally activated ejection
of the intact droplet soliton from the nanocontact region. In
the region of parameter space in which the droplet soliton is
linearly stable against drift, the decay mechanism studied here
competes with the ejection mechanism, and which one dom-
inates droplet soliton decay will depend on the experimental
parameters. We will return to this question in the Discussion
section.

The standard framework for analyzing activation over an
energy (or more generally, action) barrier is provided by
Kramers’ theory [29] in which the transition rate τ−1 between
two states separated by an energy barrier U follows to leading
order an Arrhenius law τ−1 ∼ exp[−U/kBT ] when kBT � U .
In driven or otherwise nonequilibrium systems, such a barrier
may be more difficult to properly define. In these cases, it
is useful to employ a general path-integral approach to large
deviations due to Wentzell and Freidlin [30], which rests
on finding the most probable path in state space between
two locally stable configurations. This approach is especially
useful in dealing with nonequilibrium situations [31,32] and
has been applied to thermally induced magnetic reversal under
a variety of circumstances [33–37]. We will also utilize this
approach in this paper.

The strategy employed in this paper consists of exploiting
the rotational symmetries in the problem so that Kramers’
theory of reversal rates can be applied in the presence of
spin transfer torques. This is done in two steps. First, we
introduce a pseudopotential [38] to account for the energy
required to reorient the magnetization along a specific direc-
tion against the spin torque. The functional derivative of this
term introduces an additional field, leading to an extra term
in the Landau-Lifshitz-Gilbert equation that can be canceled
by including an extra term with nonzero curl. In this way a
new dynamic equation is obtained that is phenomenologically
equivalent to the Landau-Lifshitz equation.

The second step requires transforming to a rotating frame
where the polar axis is oriented along the fixed-layer polar-
ization. In this new frame the nonzero-curl term vanishes and

the resulting simplified Landau-Lifshitz-Gilbert equation can
be studied using Kramers’ theory. We can then show that
some important features are satisfied: in the rotating frame the
effective energy decreases over time, and most importantly,
the new set of equations leads to an equilibrium distribution
for the Fokker-Planck equation. Satisfying these two require-
ments provides physical justification for the activation barriers
calculated here.

The plan of the paper is as follows. In Secs. II–IV we
describe the setup of the problem, introduce the magnetization
dynamics, and discuss key aspects of the theory of conserva-
tive droplet solitons. We then describe in Sec. V the effects of
spin transfer torque: we introduce the spin-torque pseudopo-
tential, transform to a rotating reference frame, investigate
the time evolution of the energy in this frame, and find the
magnetization configurations corresponding to energy minima
and saddle states. In Sec. VI we describe in detail the pro-
files of stationary configurations used to measure activation
barriers. In Sec. VII, we examine the dynamical evolution
of overdamped droplet solitons and find the droplet soliton
profiles that are saddles, constituting transition states for
droplet soliton creation and annihilation. The consequences
of spatial dependence of the rate of rotation of the droplet
soliton are discussed in Sec. VIII, where we show that the
transition states can still be found for a nonzero spin-torque
asymmetry parameter. In Sec. IX we calculate the Freidlin-
Wentzell action for a chosen fluctuational trajectory that is
traced in the class of shape-preserving precessional config-
urations and show that the action along that specific path
equals double the pseudopotential energy introduced here, as
would occur if the deterministic component of the dynamics
were a simple gradient flow. Finally, in Sec. X we summarize
our results, discuss the regions of parameter space where the
theory breaks down, and briefly consider extensions of the
theory and future work.

For completeness, the appendices provide additional
derivations of many of the results used in the paper. Some of
these can be found elsewhere in the literature, but they have
been rederived here using notation consistent with the main
text of this paper.

II. SETUP OF THE PROBLEM

We will study the situation of a spin-torque oscillator, as
described in the Introduction, in which the free layer is a thin
circular slab of radius ρmax and thickness d , with d � ρmax,
and the uniform fixed-layer magnetization is given by m f =
(sin θ f , 0, cos θ f ).

In the absence of currents and the resulting spin torques,
the magnetization dynamics is described by the Landau-
Lifshitz-Gilbert equation which can be presented in the fol-
lowing form. We introduce the linear operator L acting on
normalized fields and torques,

L ≡ −γ ′Ms[m × +αm × m×], (1)

where m is the unit magnetization vector (m = M/Ms) in the
free layer, Ms is the saturation magnetization, α is the damping
coefficient, γ ′ = γ0

1+α2 and γ0 = 2.211 × 105 m
A·s [39]. We

hereafter confine ourselves to the constraint |m| ≡ 1.
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In this context, a “field” is understood as a variational
derivative of an energy density E and is normalized by Ms

(i.e., heff = − 1
μ0M2

s

δE
δm for large samples, or heff = − ∇mE

μ0M2
s

for
a macrospin), and a “torque” is any term that contributes to
the time rate of change of magnetic moment per unit volume.
The effective field heff is derived in Appendix A [cf. Eq. (A9)]
and is separately given by [25]

heff = ∇2m + hZ + hoe + (Q − 1)(m · n⊥)n⊥. (2)

The first term on the right-hand side (RHS) of (2) corresponds
to the exchange energy, Eex, associated with spatially varying
magnetization; the second term is an externally applied static
field hZ associated with the Zeeman energy EZ = −m · hZ ;
the third term corresponds to the Oersted field induced by a
current (if present); and the final term is derived from the per-
pendicular magnetic anisotropy energy EK , consisting of two
parts: Q = Qn⊥ is the dimensionless crystalline anisotropy
field (with Q > 1; cf. Appendix A), and −(m · n⊥)n⊥ is the
shape anisotropy (equivalently, demagnetizing field) for a thin
film. In this equation all fields are normalized by the saturation
magnetization magnitude Ms and space is normalized by the
exchange length lex = √

2A/μ0M2
s , where A is the exchange

constant and μ0 is the permeability of free space. The geome-
try of the setup appears in Fig. 1.

Using this operator the zero-temperature magnetization
dynamics can be written in the compact form [40,41]

ṁ = Lheff . (3)

To account for thermal effects in a region of volume dV =
l2
exd an additional noise term

√
2ηẆ can be added to the

effective field [40,41]. Here, Ẇ is a three-dimensional nor-
mally distributed stochastic white noise process and the noise
strength η is given by η = αkBT

2Adγ0MS
.

If the system above is now driven by an STT-inducing
current I with contact radius ρ∗, an additional nonconservative
term must be added to (3). This results in the Landau-Lifshitz-
Gilbert-Slonczewksi (LLGS) equation [42]

ṁ = Lheff − σγ0MsV (r)

1 + α2

[
αm × m̂p − m × m × m̂p

1 + νm · m̂p

]
,

(4)

where m̂p is the magnetization direction of the fixed layer, ν is
the spin-torque asymmetry parameter (with 0 � ν < 1), V (r)
describes the spatial distribution of the (cylindrically symmet-

ric) current, and σ = J/J0, with J0 = μ0edM2
s

h̄ the magnitude
of the reduced current density [25,26]. Equation (4) is the
starting point of the analysis in this paper.

III. MAGNETIZATION EQUATIONS OF MOTION

Following [25], we begin by studying the high-symmetry
case where the free layer lies in the xy plane, hoe =
0 and hZ = hZ ẑL. (This and the following section are
mostly a review of the procedures followed and results
obtained in [25]).

Given that |m| = 1, it is useful to parametrize m in terms
of fixed spherical coordinates

m = (cos � sin �, sin � sin �, cos �) (5)

FIG. 1. Geometry of setup and coordinate systems. Current flows
upward from layer. The three coordinate systems of relevance are
(I) the laboratory frame {x̂L, ŷL, ẑL} where ẑL = n⊥ is the normal
to the film plane, (II) the fixed-layer frame {x̂P, ŷP, m̂p} where the
polarization vector m̂p makes an angle θ f with n, and (III) the
rotating frame {x̂R, ŷR, m̂p}, which rotates about m̂p with frequency
ω. Additionally, the set of eigenvectors of the operator LTL are
shown in red; these correspond to the set {m, �̂, �̂}.

and to write the field as htot = h��̂ + h��̂ + hmm, where the
unit vectors are shown in Fig. 1.

Inserting (5) into the LLGS equation (4) yields partial
differential equations (PDEs) for � and �, which are given
in [25] for α → 0. Because they will be used below, we
reproduce them here for arbitrary α (for easy comparison, we
use the same notation as [25]):

�̇

γ ′Ms
= F − α

(
G − σ

α
V P�

)
+ ασV P� (6)

and

sin �
�̇

γ ′Ms
= G + α

(
F + σ

α
V P�

)
+ ασV P�, (7)
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where V = V (ρ) and F , G, P�, and P� are functions of � and
� and are given by

F [�,�] = sin �∇2� + 2 cos �∇� · ∇�, (8)

G[�,�] = −∇2� + 1
2 sin(2�)(|∇�|2 + Q − 1)

+ hZ sin �, (9)

P�(�,�) = − cos � cos � sin θ f + sin � cos θ f

1 + ν(cos � sin � sin θ f + cos � cos θ f )
,

(10)

P�(�,�) = sin � sin θ f

1 + ν(cos � sin � sin θ f + cos � cos θ f )
.

(11)

Following Hoefer et al. [25], we rescale length, time,
current, and field parameter to remove the explicit dependence
on γ ′ and Q (recall Q > 1):

ρ = ρ ′/
√

Q − 1, γ ′Mst = t ′/(Q − 1), (12)

σ = (Q − 1)σ ′, hZ = (Q − 1)h′
Z , ρmax = ρ ′

max/
√

Q − 1.

Finally, our boundary conditions stipulate that

�(ρ ′, φ, t ′) = 0 at ρ ′ = ρ ′
max;

∂�

∂ρ ′ = 0 at ρ ′ = 0. (13)

That is, the magnetization is uniformly in the +ẑL direc-
tion outside the nanocontact. (Our boundary condition differs
from that of [25] only in that the latter takes ρ ′

max → ∞).
The boundary condition at ρ ′ = 0 ensures regularity of solu-
tions. A general treatment of boundary conditions is given in
Appendix A.

IV. CONSERVATIVE DROPLET SOLITON PROFILES

We consider first the case of a conservative system, i.e.,
α = σ ′ = 0. The droplet soliton solution in this case is given
by Hoefer et al. [25]; we briefly review it here. Although this
situation is unphysical, the solution serves as a starting point
for consideration of realistic situations.

The simplest (and most relevant) solution is one where the
magnetization precesses uniformly, i.e., �(ρ ′, φ, t ′) = �(t ′).
In this case, Eq. (8) gives F [θ,�] = 0, and consequently
Eq. (6) indicates that � is independent of time. Introducing
ω0 as a precessional frequency parameter, we can write

�(t ′) = (ω0 + h′
Z )t ′, (14)

which, using Eq. (7), results in a differential equation for � =
�0(ρ ′; ω0):(

d2

dρ ′2 + 1

ρ ′
d

dρ ′

)
�0 − 1

2
sin(2�0) + ω0 sin �0 = 0. (15)

This equation plus the boundary conditions (13) determine the
conservative droplet soliton profile �(ρ ′; ω0).

Before proceeding, we note two features of these equa-
tions. First, because 0 < ω0 < 1 [25], the droplet soliton
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FIG. 2. Conservative droplet soliton profiles for different ω0. The
amplitude of each droplet soliton at the origin mz(ρ = 0) is given
next to the frequency. The inset shows the values of the amplitude of
the droplet soliton for different shape parameters ω0.

precession frequency ω0 + h′
Z varies between the Zeeman

frequency h′
Z and the FMR frequency 1 + h′

Z . This fact plus
Eqs. (13) and (15) shows that mz(ρ ′ = 0; ω0) > −1 indepen-
dently of ω0.

Second, the frequency ω0 appears as a free parameter in
the solution; it can take any value between 0 and 1 in a
conservative system (if it existed). This is an important differ-
ence with realistic situations in which STT counterbalances
dissipation; there the droplet soliton precessional frequency
is determined by the strength of the applied current [25]. We
return to nonconservative systems later. For now, we simply
note that droplet soliton profiles �(ρ ′; ω0) are parametrized
by ω0.

Equation (15) must be solved using numerical means [43].
Figure 2 shows several solutions for different ω0 (conservative
droplet soliton profiles are also given in Fig. 2 of [25]).

We remark on several features of the conservative droplet
soliton profiles shown in Fig. 2. We note first that mz(0; ω0)
is a monotonically increasing function of ω0; in particular,
mz(0; ω0) → −1 as ω0 → 0 and mz(0; ω0) → +1 as ω0 → 1.
(The latter is unsurprising; as ω0 → 1 the droplet soliton
becomes the uniform state precessing at the FMR frequency.)
We also note that, except for ω0 close to 1, the region in which
�0 varies significantly with ρ ′ is relatively narrow.

Even though these soliton droplet profiles correspond to
an unphysical situation (i.e., absence of dissipation), they will
become important in the subsequent discussion where σ �= 0
and α �= 0. In particular we will be focusing on solutions
of Eqs. (6) and (7) that preserve shape (i.e., �̇ = 0) and
have uniform precessional frequency ( d�

dt ′ = ω). It can be
easily verified that for the highly symmetric case P� = 0,
these are equivalent conditions: (1 + α2)G[�,�] = ω sin �

and F [�,�] = αG[�,�] − σV P�.

V. EFFECTS OF SPIN TRANSFER TORQUE

In order to account for the effects of spin transfer torque,
we introduce a term in the action corresponding to an energy
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density of a pseudopotential:

EST =
{

μ0M2
s

σV (ρ)
α

m · m̂p, ν = 0,

μ0M2
s

σV (ρ)
α

ln [1+νm·m̂p]
ν

, ν �= 0.
(16)

This can be used to derive an effective field on the system
arising from the spin torque:

hST = − 1

μ0M2
s

δEST

δm
= −σV (ρ)

α

m̂p

1 + νm · m̂p
. (17)

The total field is now given by htot = heff + hth + hST, and
the equations for magnetization dynamics, now including spin
polarized currents and thermal fluctuations, become

ṁ = Lhtot − γ0Ms
σV (ρ)

α

[
m × m̂p

1 + νm · m̂p

]
(18)

= Lhtot − γ0

μ0Ms
∇m × (mEST). (19)

Equation (18) is a compact version of the stochastic
Landau-Lifshitz-Gilbert-Slonczewski equation, and will be
our starting point for further analysis. We note in particular
that the curl term is inversely proportional to α, and so
becomes important for small α. Notice that, in contrast with
the factor of γ ′ used in the definition of L, the curl term uses
γ0 instead.

With the addition of EST, the pseudoenergy becomes Etot =
Eex + EK + EZ + EST, where the terms correspond, respec-
tively, to exchange, effective anisotropy, Zeeman, and spin-
torque pseudopotential. When convenient, we will use the
reduced version of these energies E ′ = E

μ0M2
s
.

A. Transformation to a rotating reference frame

The spin-torque term on the RHS of (19) cannot be al-
gebraically manipulated into a form that is the gradient of
a smooth potential. However, in the limit of low asymmetry
parameter ν → 0 and uniform current density, it provides
useful information on how the time derivatives of the various
vectors transform between a fixed reference frame and a
rotating reference frame. We now provide this expression
explicitly.

Consider a reference frame uniformly rotating with fre-
quency ω about a fixed axis �̂. The transformation of the time
derivatives of a vector u between the fixed and the rotating
frames is given by

u̇ = ˙̃u + ω�̂ × u, (20)

where u̇ and ˙̃u denote the vector in the fixed and rotating
frames, respectively.

Equation (18) describes the dynamics of the magnetization
in a fixed reference frame. It will be useful to transform to a
reference frame that rotates about m̂p with frequency ωST =
σγ0MsV (ρ)

α
. In this frame the magnetization evolves as

˙̃mrotating frame = Lh̃tot. (21)

If the energy functional is rotationally symmetric with
respect to m̂p, the fields in the rotating frame are time
independent, and (21) describes an autonomous dynamical
system. The approach of Serpico et al. [44] can be used to

show that the magnetization in this frame evolves toward the
nearest energy minimum. It will further become evident that
in the rotating frame the magnetization of a macrospin reaches
thermal equilibrium even when ν �= 0.

To analyze droplet soliton behavior in the presence of STT,
we insert (5) into the LLGS equation (18) and rescale with
(12) to obtain equations for � and �:

�̇ = h� + αh� − σ ′V (ρ ′)
α′ P� (22)

and

sin � �̇ = −h� + αh� + σ ′V (ρ ′)
α′ P�, (23)

where P� = − m̂p·�̂
1+νm·m̂p

, P� = − m̂p·�̂
1+νm·m̂p

, h� = htot · �̂, h� =
htot · �̂, and α′ = α

1+α2 .
Each component of the field can be separated into terms

corresponding to each type of energy density (e.g., h� =
hex,� + hZ,� + hK,� + hST,�). We provide explicit expres-
sions for all field terms in Appendix E.

As they are written above, the time evolution equations
(22) and (23) are valid for any fixed coordinate system re-
gardless of the direction of the polar axis. If m̂p is chosen as
the polar axis, the last term in (22) vanishes, and P� becomes
independent of �. Furthermore, when passing to a reference
frame rotating about m̂p with frequency σ ′

α′ , an additional term
σ ′
α′ sin � must be subtracted from (23). In that frame � = �̃.
Dropping the explicit references to the dependencies on � and
� we have, in the rotating frame,

�̇ = h� + αh� (24)

and

sin � ˙̃� = −h� + αh� + σ ′

α′ [V P� − sin �]. (25)

The bracket vanishes when ν = 0 and the current strength is
uniform in the region occupied by the droplet soliton.

Equations (22) and (23) for the static reference frame are
closely related to those given in [25] [Eqs. (3) and (4) of
that paper], where m̂p and h both point perpendicularly to the
plane. In that specific case the following relations hold:

F [�,�] = h� − σ ′V (ρ ′)
α

P� (26)

and

G[�,�] = σ ′V (ρ ′)
α

P� − h�. (27)

For magnetization configurations where the azimuthal an-
gle is not uniform, the exchange interaction introduces com-
plications that will be examined perturbatively for small ν

(Sec. VIII). To understand the origin of these complications,
we use [cf. Eq. (5)] spherical coordinates for the magnetiza-
tion m, where now � is the polar angle that m makes with
m̂p and � is the azimuthal angle in the plane perpendicular
to m̂p. The rotational symmetry requirement indicates that for
constant � the azimuthal component of the exchange field is
zero (i.e., hex,� = − 1

sin �
δEex
δ�

= 0). However, in a nonuniform
configuration this no longer need be the case: the azimuthal
field depends on the spatial profile of �.
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Using the scaling Eq. (12) the exchange-induced azimuthal
field is given by

hex,� = − 1

sin �

⎡
⎢⎣
�

�
��

0
∂Eex

∂�
− ∇

(
∂Eex

∂∇�

)⎤⎥⎦ (28)

= [∇2� sin � + ∇� · ∇� cos �]. (29)

Because this expression is generally nonzero, the energy
will change as the magnetization rotates about m̂p. The case of
constant � is not valid when ν �= 0 or ρ∗ �= ∞, as it changes
with a �-dependent rate obtained from the second term in
Eq. (18):

−ωST

[
m × m̂p

1 + νm · m̂p

]
·
[

�̂

sin �

]
= ωST

1 + ν cos �
. (30)

This would imply that in an extended magnet the value of
� will lag in some regions compared to others. In general,
the curl term in (19) will not be absorbed into a common
rotating frame for the full magnet and, unless certain condi-
tions are satisfied [45–47], the Gibbs distribution is no longer
a stationary solution of the Fokker-Planck equation for the
micromagnetic system.

In Appendix D, we discuss the � dependence of this
precessional rate in the case of uniaxial macrospins. The rest
of this paper is concerned with shape-preserving precessional
states which may have, in addition to ωST, additional fre-
quency shifts ω(1) which must have the same value in any
reference frame.

A quantity that will appear repeatedly in the subsequent
discussion is

� ≡ m ·
(

δE ′
tot

δm
× ∇mE ′

ST

)
, (31)

which measures the degree of misalignment between fields
obtained from the total energy functional Etot and from the
spin-torque pseudopotential EST. More generally, it is a mea-
sure of the time rate of energy change for a magnetization
configuration that appears stationary in the rotating frame. We
highlight the fact that for the rotationally symmetric systems
discussed here this reduces to

� ≡ hex,�hST,�, (32)

and becomes zero if hex,� = 0.

B. Magnetization dynamics in the rotating frame

Moving to the rotating frame when ν = 0 has the advan-
tage that configurations which are critical points of the energy
landscape (h� = h� = 0) also become stationary dynamical
points (�̇ = ˙̃� = 0). This allows us to identify the saddle
states through which the magnetization passes in switching
from the basin of attraction of one local energy minimum to
that of another. In this section we examine the effects on the
various relevant physical quantities of moving to the rotating
frame.

To proceed it is useful to define a set of Euler rotations. We
start by selecting ŷ = p̂ × ẑL as the axis of nodes, and define
x̂ to complete a right-handed set of coordinates: x̂ = ŷL × ẑ.

Transformation of vectors from the laboratory frame to the
stationary frame aligned with m̂p can be effected using the
rotation matrix

RP←L =
⎛
⎝ cos θ f 0 sin θ f

0 1 0
− sin θ f 0 cos θ f

⎞
⎠. (33)

Similarly, transforming from the polarized frame to the rotat-
ing frame can be done using the matrix

RR←P =
⎛
⎝ cos ωt sin ωt 0

− sin ωt cos ωt 0
0 0 1

⎞
⎠. (34)

The combined transformation matrix, from the laboratory
frame to the rotating frame, is therefore

Rωt = RR←PRP←L

=
⎛
⎝ cos ωt cos θ f sin ωt cos ωt sin θ f

− sin ωt cos θ f cos ωt − sin ωt sin θ f

− sin θ f 0 cos θ f

⎞
⎠. (35)

Notice that in this convention the angle θ f is measured from
m̂p to ẑL. The reader is reminded that, because the trans-
formation is unitary, the inverse matrix R−1

ωt is simply the
transpose RT

ωt .
The exchange energy term ∇2m is invariant under rotation

of the coordinate system. For the remaining terms in the
energy, the corresponding fields transform and become time
dependent:

hrotating frame = Rωthlab frame. (36)

The Landau-Lifshitz operator L transforms as well:

Lrotating frame = RωtLlab frameR−1
ωt . (37)

Combining Eqs. (20) and (36) allows us to determine how the
time derivatives of vectors transform on switching from the
laboratory to the rotating frame:

u̇rotating frame = Ṙωtulab frame + Rωt u̇lab frame. (38)

We choose t = 0 to be the time when the coordinate axes
of the rotational frame coincide with the polarizer frame.
Then Rωt=0 = RP←L and Ṙωt = ṘR←P,t=0RP←L, and the
time derivative matrix at t = 0 can be written succinctly as
the cross product

ṘR←P = ω

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠ = −ωm̂p × . (39)

Finally, the full transformation of time derivatives from the
laboratory frame into the rotating frame is

u̇rotating frame = −ωm̂p × RP←Lulab frame + RP←Lu̇lab frame.

(40)

We next examine how vectors that are constant in the
laboratory frame behave in the rotating frame. For small
misalignments between m̂p and n, RP←L ≈ (1 + θ f ŷ×)
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and so

u̇rotating frame = −ωm̂p × RP←Lulab frame (41)

≈ −ωm̂p × (1 + θ f ŷL×)ulab frame. (42)

Fields that are constant in the laboratory frame will become
time dependent in the rotating frame if the RHS of (41) is
nonzero. However, the RHS does become zero in the symmet-
ric scenario in which θ f = 0 and the external fields are aligned
with m̂p. (This is the case considered by Hoefer et al. [25]).

We emphasize that the symmetry condition discussed
above is somewhat more restrictive than simple cylindrical
symmetry. The rotational symmetry must be satisfied point-
by-point in the full sample; it is not sufficient that the full
problem alone is invariant under a global rotation about a
common axis. In particular, the Oersted field and the edge-
anisotropy fields do not satisfy this more restrictive symmetry
requirement. In the rotational frame centered at an arbitrary
point away from the axis of the disk, both fields appear to
be circularly polarized. As a result, this will introduce self-
oscillations in the rotating frame that will be reflected as
quasiperiodicities in the laboratory frame. The proper treat-
ment of this quasiperiodic scenario is beyond the scope of
this work; we restrict ourselves here to the study of reversal
in the high-symmetry case. However, we anticipate that the
concepts discussed below for cases in which θ f �= 0 will be of
importance for the proper treatment of the Oersted field.

The pseudoenergy defined in Appendix A is, after rescaling
[Eq. (12)],

E ′
tot = |∇′m|2 − (m · ẑL )2 − m · h′

0 + E ′
ST. (43)

This quantity is a scalar and will therefore be invariant under
rotational transformations. The first and last terms on the RHS
are unaffected by changes in reference frame, but the second
(magnetostatic) and third (Zeeman) terms are specified for
fields that are constant in the laboratory frame. As we move to
the rotating frame their energy densities become harmonically
dependent on time. The rate of change of those quantities is
given by

d

dt
[(m · ẑL )2] = 2(m · ẑL )[ṁ · ẑL + m · żL] (44)

and

d

dt
[m · h0] = ṁ · h0 + m · ḣ0. (45)

More generally, for anisotropy energies of polynomial
type with respect to specific directions û, i.e., E ′

K =∑
n Kn(m · ûn)n, we can decompose the field h = ∑

n hn into
terms hn = −nKn(m · ûn)n−1ûn and rewrite the energy as
E ′

K = −∑
n

m·hn
n so that

dE ′
K

dt
=

∑
n

nKn(m · ûn)n−1[ûn · ṁ + u̇n · m ] (46)

= h · ṁ +
∑

n

nKn(m · ûn)n−1u̇n · m. (47)

The scalar product is unaffected when switching to the mov-
ing frame. Since in the rotating frame ṁ = Lh, and u̇ is given

by (41), we arrive finally at

dE ′

dt
≈ −α|htot|2 − ω[m̂p × (1 + θ f ŷL×)hlab frame] · m.

(48)

It is convenient to keep in mind that m̂p × hST = 0, so the
cross product in the parentheses will require only the terms
for heff given in (2). In the symmetric case (θ f = 0) we find

dE ′
tot

dt
= −α|htot|2 −

(
ωm̂p × δE ′

δm lab

)
· m

= −α|htot|2 −
(

∇mE ′
ST × δE ′

δm lab

)
· m

= −α|htot|2 + �. (49)

From this we see that, in the absence of �, the system will
evolve toward lower energies. The term � is zero when the
fields are aligned with m̂p; if not, then its magnitude oscillates
as the system rotates about m̂p. Self-oscillations occur if the
total energy change is zero after a full periodic orbit:

�E ′ = (−α|htot|2 + �)dt = 0. (50)

A similar quantity, known as the Melnikov function [42],
quantifies the energy change as the magnetization performs
one cycle in the conservative dynamics (α = 0). The calcula-
tion of that quantity requires precise knowledge of the equal
energy orbits and is the basis of calculations based on the
method of averaging [48,49]. Equation (50) can be used from
either the stationary or the rotating reference frames. At this
point, the meaning of � becomes apparent: it is a spin-torque-
induced power density influx. For a given magnetization
orientation energy is dissipated by damping at a rate α|htot|2
while the spin-torque term injects energy into the system; the
curl term in Eq. (19) is the cause of this power influx. Because
it is perpendicular to hST, the effective spin-torque energy
cannot increase; rather, the energy will flow into the other
energy terms (Eex, EK , or EZ ).

Because the external fields considered here are aligned
with m̂p, they do not contribute to a change in the energy as the
reference frame rotates. However, the same cannot be said for
the exchange field since its direction depends on the instanta-
neous spatial distribution of the magnetization. Nevertheless,
� = 0 for the set of solutions of the equation F [�,�] = 0.
If � is small, then contributions of its nonuniformities can be
neglected when calculating G[�,�].

Summarizing the above discussion: by moving to the rotat-
ing frame, it is possible to find stationary solutions if external
fields are parallel to the fixed-layer polarization; if not, then
the solutions display small self-oscillations. In the vicinity of
these configurations, the energy is guaranteed to decrease at
every cycle. We postulate (and will justify below) that these
configurations either play the role of transition barriers or else
are metastable configurations.

VI. STATIONARY SOLUTIONS IN THE ROTATING FRAME

We are now in a position to discuss the stationary solutions
of Eqs. (24) and (25); as described above, we restrict ourselves
to the case where � is spatially uniform, so that h� = 0. In
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the rotating frame the bracket vanishes when ν = 0 and as a
consequence stationary solutions require that h� = 0 as well.

We will refer to this highly symmetric scenario in which
θZ = θ f = ν = 0 as the unperturbed case, with solutions
�0 = 0 and �0(r). The equations then become

h(0)
� = h(0)

ex,� + h(0)
Z,� + h(0)

K,� + h(0)
ST,�,

(51)

0 = ∇′2�0 − hZ sin �0 − 1

2
sin 2�0 + σ ′V

α
sin �0,

and

h(0)
� = h(0)

ex,� + h(0)
Z,� + h(0)

K,� + h(0)
ST,�

(52)

is trivially zero due to the uniformity of �0 and the rotational
symmetry of the setup. In cylindrical coordinates this becomes

�̇0 = ∂2�0

∂ρ ′2 + 1

ρ ′
∂�0

∂ρ ′ − 1

2
sin(2�0) + ωh sin �0 = 0

(53)

and

ωh =
[
σ ′V (ρ ′)

α
− h′

Z

]
. (54)

Equations (53) and (54) are identical to Eqs. (13)–(17) in [25].
As in [25], we search for stationary solutions in which the
spin-torque term counteracts the damping. However, Hoefer
et al. [25] analyzed the case where the dissipative terms were
a small perturbation; we do not make this assumption here.

Moving to the rotating frame allows us to ignore the
precession of the system and gives us direct access to the
slow dynamics in which the solutions to (53) correspond to
dynamic equilibrium configurations which could be stable or
unstable depending on the values of ωh and current profile
σ ′V . As in [25], we define the current profile using the
Heaviside step function H, with a step at the nanocontact
radius ρ∗: V (ρ) = H(ρ∗ − ρ). The nontrivial solutions are
identical to those found in [25] for the case hZ = 0, ν = 0,
and ρ∗ = ρmax → ∞. In [25] these are found to be unstable
to small perturbations (see in particular Fig. 4 of that paper). In
fact, our analysis indicates that these unstable solutions play
an important physical role in the current context: they are
the saddle configurations separating the two stable constant
solutions � = 0 and � = π .

For intermediate nanocontact radii and current strength
we obtained equilibrium configurations by performing a time
integration of �̇ using conservative droplet soliton profiles as
the initial condition [43]. Final results are shown in Fig. 3.
For low currents the magnetization relaxes toward � = 0,
but if the current magnitude passes a certain threshold σcrit ,
then inside the nanocontact region the magnetization switches
to �(ρ = 0) → π . Once the magnetization stops evolving,
the domain wall separating the � = 0 orientation from the
� = π orientation is in the vicinity of the nanocontact’s edge.
The overall configuration inside the nanocontact corresponds
to the stable droplet soliton for a given radius and current
strength. These stable states are related to the stationary low-
frequency droplet solitons of [24] which are described to
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FIG. 3. Main figure: Stable droplet solitons for a variety of cur-
rents σ ′/α (with Q = 2) for ρ ′∗ = 5. In general, the transition region
between mz = −1 and mz = +1 is approximately aligned with the
nanocontact’s edge. The asymmetry parameter ν = 0 in these cases.
The yellow region indicates the range of ρ ′ within the nanocontact
region. Inset: mz vs ρ ′ at σ ′/α = 0.13 for several nanocontact radii.

be stable against small displacements from the center of the
nanocontact and are described as circular domain walls.

Notice that there will be an abrupt change in the preces-
sional frequency at the nanocontact edge (since ωST|ρ→ρ∗− =
σ ′/α′, but ωST|ρ→ρ∗+ = 0). However, since �(ρ < ρ∗) → π

for very large currents, � becomes undefined. Additionally
the � profile inside will merge nicely with the outside �

profile of low-frequency stationary droplet solitons [24] which
are of the form cos(�) = tanh(ρ − 1/ω). The droplet soliton
radii for the stable droplet solitons considered here will be
larger than the radius of the nanocontact.

As we have already seen, given a spin-polarized current
density, there is a reference frame rotating at frequency ωST =
σ ′
α′ for which the unstable solutions of (53) appear stationary.
These are the saddle states between the configurations parallel
and antiparallel to m̂p. In the laboratory frame they precess
with frequency ωST. This interpretation of Eq. (53) allows us
to define a critical current above which reversal is guaranteed.
That is, if we set ρ∗ = ∞, and consider a small, global
fluctuation δ� away from � = 0, we find

�̇ ≈
{
−1 +

[
σ ′

α

(
1

1 + ν

)
− h′

Z

]}
δ� > 0, (55)

whenever

σ ′

α
>

(
σ ′

α

)
crit

= (1 + ν)(h′
Z + 1). (56)

For a finite nanocontact radius, the critical current must be
larger and its meaning needs to be be reevaluated. For finite
ρ∗ there will be a current magnitude for which the solution
� = 0 becomes unstable, but the reversed region does not
expand much farther than the nanocontact radius: doing so
would severely increase the exchange energy, by increasing
the size of the reversed region and consequently the size of
the domain wall that surrounds such fluctuations. As long as
the domain wall is enclosed inside the nanocontact region any
exchange energy cost will be compensated by a corresponding
decrease in the value of the pseudopotential energy EST. This
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stops when the droplet soliton radius becomes comparable to
ρ∗: further increases in the current density only serve to pin
the magnetization closer to � = π but do not produce further
growth of the droplet soliton radius.

In summary, if σ ′
α

> ( σ ′
α

)
crit

, the solution � = 0 is no
longer stable, and a droplet soliton will be formed necessarily
as the energy-minimizing configuration. When σ ′

α
< ( σ ′

α
)
crit

,
the solution � = 0 is stable, and two nonuniform solutions
of (53) exist: one is an energy minimum (stable droplet
soliton), and the other is the saddle state (unstable droplet
soliton) (these correspond to the stable and unstable branches
shown in Fig. 4 of [25]). In the limit of infinite nanocontact
radius all droplet solitons are saddles and the uniform � = π

configuration is the stable state. (It has been suggested that
these saddle states appear similar to experimentally realized
spin-torque oscillator states observed in [50,51]).

Numerical solutions for the stationarity condition

To find solutions of Eq. (53) we use the BVP4C method
from Matlab, as was done in [25]. The key difference is
that we solve the equation for finite nanocontact radii, so the
values of σ ′/α need to be larger. We set ρ ′

max = 100, fix the
value of � at ρ ′ = 0, and let σ ′/α be an eigenvalue parameter
to be found numerically. We impose the following boundary
conditions:

∂�

∂ρ

∣∣∣∣
ρ=0

= 0, �(ρ = 0) = �max, �(ρ = ρmax) = 0.

(57)

By performing this “poor man’s continuation” we can feed
the solutions as initial guesses and solve for a wide range
of parameters [43]. Every set of values ν, ρ∗, and �max is
associated with a value of σ ′/α.

For comparison to the limit ρ∗ → ∞, we will identify
ω0 with the eigenvalue corresponding to the parameter set
ν = 0, ρ∗ = ρmax, and � = �max. Keeping the same �max but
varying ν and ρ∗ we find new values of σ ′/α that have the
same amplitude at the origin. In this way, we can compare the
frequency that a finite nanocontact droplet soliton would have
if it had the same amplitude �max of the conservative droplet
soliton.

In Fig. 4 we show results of this procedure for different
values of ρ∗ and fixed �max = 3

4π . As the nanocontact area
is reduced, a larger current is required to keep the fluctuations
stationary. The profile is narrower in the radial direction. Be-
cause very strong currents are necessary for small nanocontact
radii, the uniform � = 0 state ceases to be metastable and the
droplet soliton is sustained. For large radii, fluctuations of this
amplitude require smaller currents but they represent energy
saddles.

VII. OVERDAMPED DYNAMICS AND ACTIVATION
BARRIERS

In this section we perform two types of simulations to
confirm that solutions of Eq. (53) are indeed saddle configu-
rations in the energy landscape. The first is a one-dimensional
relaxation calculation which drops the precessional terms
in Eqs. (22) and (23); the second is a full micromagnetic
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FIG. 4. Profiles of stationary fluctuations of amplitude �max =
3π/4 at different nanocontact radii ρ∗ (Q = 2). As indicated in the
legend a reduction in ρ∗ must be accompanied by an increase on the
current density. Inset: Currents required to maintain the fluctuation
stationary. In these curves, ν = 0. The area between the critical (solid
black line) and the sustaining current (dotted black line) provides the
range of currents in the region of bistability. These curves for critical
and sustaining currents are obtained from the data of Fig. 9.

simulation using OOMMF [39] in which the spin-torque term
EST is added to the energy [43].

Both simulations approximate the same physical system,
modeling a magnetic material with exchange constant A =
13 pJ/m and saturation magnetization Ms = 8 × 105 A/m.
To simplify the algebra, we selected an unphysically large
K (so that Q = 2), but our approach will remain valid for
more realistic values. The nanocontact diameter used is r∗ =
50 nm (ρ∗′ = 4.4) and the thickness is d = 1 nm. The critical
current, Ic = πJcr∗2, for these parameters is 2.40 mA.

A. 1D relaxation

In the rotating reference frame, the long-term evolution
can be captured using only the damping terms in Eqs. (22)
and (23):

�̇ = αh�, �̇ = αh�. (58)

Here we assume uniform precessional states, i.e., � = ωt
and ∇� = 0, which guarantee that h� = 0 always. The time
evolution of the droplet soliton profiles, �(ρ, t ), contains
enough information to verify whether a given configuration
corresponds to a thermally activated transition state.

Starting with solutions of Eq. (53), we set α = 1 and
integrate �̇ = h� forward in time. We vary σ to find two
values σ+ and σ− that satisfy two conditions: first, 0 < σ+ −
σ− < 5 × 10−5, and second, the initial profile relaxes to the
uniform state for σ− and to the stable droplet soliton for σ+.
If the slope of the curve Etot (t ) is close to zero at t = 0, we
take this as confirmation that the initial state constitutes the
transition configuration for thermal activation [43].

Figure 5 illustrates this procedure. The difference of Etot

values between the saddle droplet soliton and the uniform
state (�+) constitutes the barrier for droplet soliton creation;
the difference between the saddle droplet soliton and the
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FIG. 5. Time evolution of the 1D overdamped dynamics. The ini-
tial state at time 0 is the droplet soliton saddle. Time increases from
the center to the left for σ−, corresponding to droplet annihilation,
and from the center to the right for σ+ corresponding to droplet
creation. The spatial profiles, mz(ρ ), of the final states are shown
as in opposite margins and for the initial state in the center above the
curve. The energy barriers for creation, �+, and annihilation, �−,
are shown in the figure with vertical arrows. The light yellow shade
represents the area covered by the nanocontact. In this figure the
initial profile is defined with ωh = 0.9911, mz(ρ = 0) = 0.52. The
two currents used for the time integration shown are σ− = 0.992218
and σ+ = 0.992249.

stable droplet soliton (�−) constitutes the barrier for droplet
soliton annihilation. Besides Etot, Fig. 5 also shows the energy
terms excluding the spin-torque contribution (EK − Eex =
Etot − EST). It is clear from this figure that Etot is a better
descriptor of thermal stability than the value without EST.

In Sec. VII C, we will repeat this procedure systematically
to find the energy barriers for different applied currents and
nanocontact radii.

B. Overdamped micromagnetic simulations

We reproduce the qualitative features of the overdamped
1D dynamics with an equivalent system using OOMMF. To
reduce computational time we drop the demagnetizing field

term and set the crystalline anisotropy to Keff = K
2 = μ0M2

s
2 ,

which in turn sets Q = 2. Because the precessional term
cannot be dropped independently of the STT term, we allow
for precession and set α = 1. The disk has a diameter of 500
nm and we discretize the problem with 1 nm cubic cells.

The extension for spin-torque dynamics by Xiao et al. [52]
was modified so that EST was included as an energy term
[43]. The dynamical part of the code was left unchanged and
is based on Eq. (B1). The secondary spin-torque term, an
additional curl-like term in the OOMMF extension, was set to
zero. We set OOMMF’s polarization and asymmetry to P = 2
and � = 1.0, respectively. This corresponds to ν = 0.0 and
fully efficient polarization.

We emphasize that our modification of the OOMMF code
does not alter the dynamics; it is merely a bookkeeping change
to incorporate the spin-torque pseudopotential into the energy.
However, because the new term is relatively large we were

FIG. 6. Overdamped (α = 1) OOMMF dynamics. The initial
state is the droplet soliton saddle. The time evolution for creation and
annihilation is the same as in Fig. 5. The spatial profiles, mz(x, y),
of the final states are shown as in opposite margins and for the
initial state in the center above the curve. The energy barriers for
creation (�+) and annihilation (�−) are again depicted with vertical
arrows. The area covered by the nanocontact is indicated by a white
circle. In this figure the initial profile is defined with ωh = 0.9911,
mz(ρ = 0) = 0.52. The two currents used for the time integration
shown are I− = 2.491 mA and I+ = 2.492 mA, so that σ = 1.04.

forced to relax the standard restriction that energy changes
remain below a predetermined threshold. As a consequence,
traces of energy evolution in time shown below appear noisy.

The initial magnetization is a 2D realization of the saddle
configuration used in Sec. VII C. Successive simulations find
two currents, I+ and I−, with difference δI = I+ − I− =
10−4; the system evolves toward the uniformly magnetized
state mz = 1 for I− and to the stable droplet soliton for
I+. Results are shown in Figs. 6 and 7. These figures show
qualitative agreement between the 1D model and the OOMMF
micromagnetic simulations. In the latter the initial state is a
saddle for a slightly larger current, σ = 1.04.

There are quantitative discrepancies between the two sim-
ulations that can be attributed to the fact that in the full mi-
cromagnetic simulations ∇� may be nonzero. Furthermore,
the slightly larger current of the OOMMF simulation widens
the stable droplet soliton profile (see Fig. 8), changing all
energy terms.

C. Energy barriers in the 1D approximation

Here we use the 1D overdamped approach to obtain the
energy barriers for the droplet soliton at different scaled
currents σ/α and nanocontact radii ρ∗.

The first step is to find the values of σ/α for different
droplet soliton amplitudes and nanocontact radii ρ∗, which
is done by solving Eq. (53). The resulting values are shown
in Fig. 9. It can immediately be seen that as ρ∗ increases,
the infinite-nanocontact limit is rapidly approached. For the
thermal stability calculations, the relevant segments are the
solid parts of the curve; for those values the solutions rep-
resent saddle configurations which are then used as starting
configurations for the overdamped simulations, as explained
in Sec. VII A.

184421-10



THERMAL ACTIVATION BARRIERS FOR CREATION AND … PHYSICAL REVIEW B 101, 184421 (2020)

FIG. 7. Magnetization configurations of the overdamped (α = 1) OOMMF dynamics, and spatially averaged magnetization components
vs time. Both simulations start with the same initial configuration. As in the previous two figures, time evolution occurs to the left for I− =
2.491 mA and to the right for I+ = 2.492 mA. Points in the curve are associated with the figures in the top row. Consistent with expectations,
the low-amplitude droplet soliton (saddle state) has a higher frequency than the large-amplitude droplet soliton (stable droplet soliton). The
precessional frequency of each configuration can be estimated visually from this plot after rescaling time ω = 2π

γ0MsT giving ωsaddle = 0.9964
and ωstable = 0.1735.

After simulating all saddle points the energy barriers were
measured. Results are shown in Fig. 10. For large values of
σ/α, the annihilation barrier �− is close to linear, reflecting
the fact that once the nanocontact region is saturated the
profile remains unchanged, and EST is roughly ωST multiplied
by the nanocontact area. As σ/α is reduced [Fig. 10(b)], this
quasilinearity is lost for smaller radii.

The creation barrier �+ [Figs. 10(c) and 10(d)] has a
singularity at σ/α = 0 and decreases rapidly toward the crit-
ical current, consistent with expectations. As the nanocontact
radius is reduced, the region of bistability is reduced and the
barriers for droplet soliton creation grow.

VIII. PERTURBATION EXPANSIONS NEAR STATIONARY
DYNAMICAL POINTS IN THE ROTATING FRAME

Small asymmetry parameter ν, θ f = 0, θZ = 0

In this case, the fields are time independent, and we expect
stationary states in the rotating frame. More generally, we can
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FIG. 8. Profiles of �(ρ ) for overdamped micromagnetic simu-
lations. Solid lines represent the droplet soliton profiles obtained
from the overdamped 1D dynamics; the superimposed dots are ob-
tained from OOMMF simulations. We attribute the small quantitative
discrepancies partly to discretization effects and partly to the fact
that exchange energy contributions from variations in the azimuthal
direction are neglected in the 1D model.

expect a frequency shift ω(1) that will be observable in both the
static and the rotating frames. The first-order perturbations of
the equations of motion obey

�̇1 = h(1)
� + αh(1)

� , (59)

�̇1 = −h(1)
� + αh(1)

� − σ ′V ν

2α′ sin 2�0. (60)
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FIG. 9. Solutions of Eq. (53) for various mz amplitudes at the
origin: given mz(ρ = 0), the algorithm finds σ/α as an eigenvalue of
(53). Along the left axis the frequency for the infinite nanocontact
is shown; a dashed line of slope 1 depicts the infinite nanocontact
limit. The different finite-nanocontact curves are superimposed over
the infinite-nanocontact line already at moderate sizes. All curves
are shown with two branches: the solid lines, where the slope is
positive, represent the saddle states, and the dashed lines indicate
the corresponding stable states. The critical current for a given
nanocontact radius is the point at which the corresponding curve
crosses the uniform state, i.e., where mz(ρ = 0) = 1. The sustaining
current for each radius corresponds to the vertex where the two
branches meet. The filled black circles show the frequencies obtained
from visual inspection of the OOMMF simulation; the points are
expected to lie in the curve corresponding to ρ∗ = 4.4.
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As they are written above, both equations contain differen-
tial operators acting on �1 and �1, but they can be decoupled
at points of uniform precession about m̂p, i.e., where �̇1 = 0
and �̇1 = ω(1). This decoupling results in

h(1)
� =

(
α

1 + α2

)[
ω(1) + σ ′V ν

2α′ sin 2�0

]
(61)

and

h(1)
� = −

(
1

1 + α2

)[
ω(1) + σ ′V ν

2α′ sin 2�0

]
. (62)

Thanks to our choice of coordinate system, a similar proce-
dure can be performed to obtain decoupled equations to higher
orders by substituting h(n)

� = −αh(n)
� , from �̇n = 0, into the

equation for �̇n = ω(n). However, for now we restrict our
discussion to the first-order case.

Setting θ f and θZ to zero (cf. Appendix E) we obtain the
first-order perturbation equation for �1:

h(1)
� = h(1)

ex,� + h(1)
Z,� + h(1)

K,� + h(1)
ST,�, (63)

which after some manipulation simplifies to

L��1 = − ω(1)

(1 + α2)
, (64)

with the Schrödinger operator L� defined as

L� ≡
(

−h′
Z + σ ′V

α

)
cos �0 − cos 2�0 + ∇′2. (65)

Similarly for �1,

h(1)
� = h(1)

ex,�,
(66)

L��1 = α′
[
ω(1) + σ ′V ν

2α′ sin 2�0

]
,

with the corresponding Schrödinger operator

L� ≡ [(∇′�0)2 − cos �0(cos �0 − ωh)] + ∇′2. (67)

Since the two operators L� and L� are linear in �1 and �1,
the solution of Eqs. (64) and (66) must be linear combinations
of their eigenfunctions:

�1 =
∑

n

cn�
(1)
n , �1 =

∑
n

dn�
(1)
n , (68)

where �(1)
n and �(1)

n are the basis vectors which satisfy

L��(1)
n = ϑn�

(1)
n , L��(1)

n = ϕn�
(1)
n , (69)

and appropriate boundary conditions. With the solutions to
this eigenproblem the stationary configuration is described by
the set of coefficients {cn, dn} which satisfy

∑
n

cnϑn�
(1)
n = − ω(1)

(1 + α2)
(70)

and ∑
n

dnϕn�
(1)
n = α

[
ω(1) + σ ′V ν

2α′ sin 2�0
]

1 + α2
. (71)

In each of these equations, the right-hand side should be
orthogonal to the kernel of the corresponding Schrödinger op-
erator. It can be verified that the function ϕ0 = sin �0 belongs
to the kernel of L�, which provides a necessary condition for
the existence of a coherent perturbation:

ω(1) = −σ ′ν
α′

∫ ρ∗

0 cos �0 sin2 �0ρdρ∫ ∞
0 sin �0ρdρ

. (72)

For this condition to be sufficient, we need to complement
equation Eq. (66) with appropriate boundary conditions satis-
fied by ϕ0 so that, based on the uniqueness and completeness
theorem, it becomes the unique element of the kernel of L�.

From the condition of regularity at the origin for �0 we get

∂ϕ0

∂ρ

∣∣∣∣
ρ=0

= cos �0
∂�0

∂ρ

∣∣∣∣
ρ=0

= 0. (73)

For the second boundary condition, we can postulate that the
azimuthal angle far from the nanocontact is unperturbed:

ϕ(ρ → ∞) = sin �0

∣∣
ρ→∞ = 0. (74)

Using a similar procedure to that described in Sec. VI, we
find the numerical solutions to the perturbation equations. The
procedure is summarized as follows: for a given ν a frequency
shift is obtained using Eq. (72). We guess the initial values of
the perturbation function at the origin [i.e., �1(ρ = 0) and
�1(ρ = 0)] and let the BVP4C method from Matlab find
values for ω(1) corresponding to those boundary conditions
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[43]. We iteratively tune �1(ρ = 0) and �1(ρ = 0) so that
the output from Matlab approaches the value obtained from
Eq. (72). This results in functions �1(ρ) and �1(ρ) with
frequency shifts given by ω(1). An example of such a solution
is shown in Fig. 11.

These results show three effects that can be expected when
the spin-torque-induced precessional frequency is rotationally
symmetric but no longer radially uniform: a frequency shift
(ω(1) �= 0), an amplitude change (�(1) �= 0), and a radially
dependent buckling (�(1) �= 0).

From the uniqueness argument we conclude that ρ∗, ν, σ ,
and α determine uniquely the shape of the perturbed droplet
soliton and the new frequency of precession. It is clear that
in a frame rotating with frequency ω0 + ω(1) the droplet
soliton appears stationary. Unfortunately, this situation occurs
for a configuration for which h(1)

� �= 0 and h(1)
� �= 0. As a

consequence, an estimate of the escape rates based solely on
potential energy differences is no longer applicable. In this
case, is is necessary to use the more general approach of
Freidlin and Wentzell. We will return to this issue in Sec. IX
and calculate the action for a specific class of fluctuational
trajectories.

Nevertheless, we point out that the droplet soliton profiles
found by solving Eqs. (64) and (66) have a well defined energy
to first order in ν. This can be seen from Eq. (32), using the
first-level expansion for hST,�:

h(0)
ST,� ≈ σ ′V

α

[
sin �0 + ε�1 cos �0 + ν sin 2�0

2

]
. (75)

Using h(1)
ex,� from Eq. (61) we obtain the spin-torque power

density:

�(1) = (
h0

ST,� + h1
ST,�

) × h(1)
ex,� (76)

= h(0
ST,� × h(1)

ex,� (77)

= σV

α
sin �0 × α

[
ω(1) + σ ′V ν

2α′ sin 2�0
]

1 + α2
. (78)

Finally, integrating over the full disk we find

2π

∫
�(1)ρdρ = 0 (79)

from the orthogonality condition Eq. (72). This means that for
the droplet soliton profiles discussed above, the spin-torque
power inflow in some regions of the disk is balanced by a
spin-torque power outflow in another region. Since the fields
are calculated only to first order, the total power dissipation,
given by Eq. (50), is also zero.

IX. CONNECTION WITH FREIDLIN-WENTZELL
THEORY

We next establish a connection between the pseudoenergy
and the Freidlin-Wentzell action [30] for randomly perturbed
dynamics. For simplicity, we use polar coordinates in the
fixed laboratory frame, keeping track of the energy func-
tions E0 = Eex + EK + EZ and Etot = E0 + EST. Writing the
Landau-Lifshitz operator and its inverse as

L�,� =
(

α 1
− 1

sin �
α

sin �

)
, L−1

�,� =
(

α − sin �

1 α sin �

)
1 + α2

,

(80)

the equation of motion in the presence of noise can be written

ṁ�,� − L�,�htot − f =
√

2ηL�,�Ẇ, (81)

where three two-component vectors have been
introduced: ṁ�,� = {�̇, �̇}, f = {0, ωST

1
1+ν cos �

} =
{ 1

sin �
δEST
δ�

,− 1
sin �

δEST
δ�

}, and htot = {− δEtot
δ�

,− 1
sin �

δEtot
δ�

}.
The deterministic part of Eq. (81) can be simplified using

the vector b�,� ≡ L�,�htot + f , resulting in the equation

L−1
�,�[ṁ�,� − b�,�] =

√
2ηW. (82)

The Freidlin-Wentzell action per unit thickness is

S =
∫∫∫

Lρdρdφdt, (83)

where

L = 1
2A

−1
ii [ṁ�,� − b�,�]2

i (84)

is the Freidlin-Wentzell Lagrangian and

A−1 = (
L−1

�,�

)T
L−1

�,� =
(

1 0
0 sin2 �

)
(85)

is the inverse of the diffusion tensor.
Because the white noise modeling thermal effects do not

destroy the global rotational symmetry of the magnetization,
we can integrate out the azimuthal coordinates, leading to the
reduced action

Sρ =
∫∫

Lρdρdt (86)

with

Lρ (h�, h�, �̇, �̇; t, ρ) = 2πρ

2
A−1

ii [ṁ�,� − b�,�]2
i . (87)
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Because of the rotational symmetry we can write

A−1
ρ = (

L−1
�,�

)T
L−1

�,� =
(

ρ 0
0 ρ sin2 �

)
(88)

= (
√

2πρ )2A−1. (89)

The extra radial factor accounts for the fact that coherent
thermal fluctuations for annuli of radius ρ and width dρ be-
come rarer as ρ increases. This can be interpreted as follows:
if the sample is discretized in infinitesimal segments of dV
and the thermal field on each segment has standard deviation
hth, then the averaged field fluctuation on the annulus as a
whole grows only as hρ = √

ρhth. At any instant of time, a
coherent fluctuation of unit size observed at radius ρ requires
a thermal energy density proportional to h2

ρ = ρh2
th, thereby

decreasing in likelihood as ρ increases. The Freidlin-Wentzell
Lagrangian is a measure of such thermal energy and therefore
grows proportionally to the volume.

We will calculate the action for two specific translation
paths m↓, m↑ that we now define. First we separate the
damping from the precessional part of the Landau-Lifshitz
operator:

L�,� = Lα
�,� + Lγ

�,�, (90)

Lα
�,� = α

(
1 0
0 1

sin �

)
, Lγ

�,� =
(

0 1
− 1

sin �
0

)
, (91)

which allows us to write the (deterministic) drift field as

b�,� = Lα
�,�htot + Lγ

�,�(htot + hST). (92)

The paths of interest are then defined as follows:

ṁ↓ = b�,� = Lα
�,�htot + Lγ

�,�(htot + hST) (93)

and

ṁ↑ = b�,� − 2Lα
�,�htot2

= −Lα
�,�htot + Lγ

�,�(htot + hST). (94)

Our choice of fluctuational paths is motivated as follows:
one of the two pieces of the drift field, Lα

�,�htot, is curl-free
and so can be derived as the gradient of a potential. The
other piece, Lγ

�,�(htot + hST), is divergenceless and so can
be represented as the curl of a (separate) potential function.
We choose the fluctuational trajectory so that the nonzero-curl
term does not contribute to the Freidlin-Wentzell action.

The action for the “downhill” path m↓ is zero, since ṁ↓
runs parallel to the deterministic field. The Lagrangian for the
“uphill” path ṁ↑ is

L = 1
2A

−1
ii [ṁ↑ − b�,�]2

i

= 1
2A

−1
ii

[
ṁ↑ − Lα

�,�htot − Lγ

�,�(htot + hST)
]2

i

= 1
2A

−1
ii

[
ṁ↑ + Lα

�,�htot − Lγ

�,�(htot + hST)
]2

i

− 2
[
Lα

�,�htot
]T
A−1

ii

[
ṁ↑ − Lγ

�,�(htot + hST)
]

= −2
[
Lα

�,�htot
]T
A−1

ii

[
ṁ↑ − Lγ

�,�(htot + hST)
]

= −2hT
tot

(
Lα

�,�

)T
A−1

ii ṁ↑

+ 2hT
tot

(
Lα

�,�

)T
A−1

ii Lγ

�,�(htot + hST)

= L0 + LST. (95)

The first term is

L0 = −2hT
tot

(
Lα

�,�

)T
A−1

ii ṁ↑

= +2αρ

[
δEtot

δ�
�̇ + δEtot

δ�
�̇

]
, (96)

which, after integrating over time and space, gives

S0 =
∫∫

L0dρdt = 2�Etot. (97)

The second term, using hST = {− δEST
δ�

, 0}, gives

LST = 2αhex,�hST,� = 2αρ�. (98)

Therefore, integration over time and space gives the spin-
torque-induced action

SST =
∫∫

LST = 2α

∫∫
�ρdρdt . (99)

As described before, the total power input in the droplet
soliton configurations described satisfies∫

�ρdρ = 0. (100)

So, combining Eqs. (97)–(100) for escape trajectories
which include configurations having zero spin-torque-induced
energy flow, the Freidlin-Wentzell action is simply twice the
energy difference between the initial and final states, as is the
case in simpler systems with gradient drift fields arising from
a potential.

X. DISCUSSION

In this paper we have studied the thermal stability of
magnetic droplet solitons which are linearly stable against
the drift instability [25,27]. Taking advantage of the rotational
symmetry, we transform the problem to a reference frame that
rotates with the droplet soliton, thereby simplifying the prob-
lem. We introduced a pseudopotential that can incorporate
the nongradient spin-torque terms, allowing us to analyze the
problem using the Kramers approach to computing reversal
rates. Numerical simulations of the dynamical LLGS equa-
tions demonstrate that the system indeed evolves toward one
or another (depending on initial conditions) of the pseudopo-
tential minima.

Our central result is summarized in Fig. 10, which shows
the activation barriers for thermally (or other noise) induced
escape from the droplet soliton to the uniform magnetization
state, for a variety of nanocontact radii and spin-torque-
inducing currents. As a function of current, barriers grow
faster for larger radii.

We next discuss possible scenarios in which these results
can be generalized, and discuss the model’s limitations, and
in particular situations where it breaks down.

Large Oersted fields are known to induce modulational
instabilities that force the droplet soliton out of the nanocon-
tact region at relatively short times [10,26]. For this regime,
thermal activation over a barrier is irrelevant since the droplet
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soliton decays before thermal processes can play any role. But
even for moderate currents the Oersted field introduces a time-
harmonic perturbation of the dynamics that we have omit-
ted. A continuous generalization of the Poincaré-Melnikov
method is worth pursuing to incorporate fields with in-plane
components. This will be the focus of future work.

In our approach, we initially assumed that the magnetiza-
tion has a common frequency of precession with ∇� = 0.
This requires ν = 0. For ν �= 0, to first order the spin-torque
dynamical term produces exchange-driven shearing of the
magnetization, resulting in a nonuniform �. As shown in
Fig. 11, three main effects are observed: first, a distortion of
the �(ρ) profile of the droplet soliton; second, a frequency
shift common to all reference frames; and third, a “buckling”
of the azimuthal angle �(ρ) �= 0.

An extreme situation involved with this shearing occurs
for small nanocontact radii. Inside the nanocontact the spin-
torque-induced precessional term is proportional to σ ′/α, and
outside it is zero. Because the two regions precess at different
rates, large exchange torques are created at the nanocontact
edge. The interfacial shear at the boundary between the two
regions will produce similar effects to those found for ν = 0,
and can be neglected if sin θ ≈ 0 at the nanocontact edge.
This is the case for small and large amplitude droplet solitons,
or for large ρ∗. However, as ρ∗ → 0 this shearing becomes
important and the spin-torque energy might “leak” beyond
the nanocontact region resulting in spatial modulation of the
magnetization far beyond the nanocontact region (see [53]
for examples of such modulation). For this scenario, the total
energy of the system will continue to increase as oscillations
develop far from the nanocontact. However, as we discussed
in the main text of the paper, the limit ρ∗ → ∞ is valid for
radii that are experimentally relevant.

As noted in the introduction, even in the region of the
current/field phase diagram where the droplet soliton is lin-
early stable to the drift instability, thermal activation over a
barrier can still eject the droplet soliton from the nanocontact
region. Numerical estimates of this thermally induced ejection
have been provided in [27], where two mechanisms for ther-
mally activated droplet soliton annihilation were considered:
“noise-induced damping,” which corresponds to the droplet
soliton decay mechanism considered in this paper, and ejec-
tion via drift instability. Because our analysis mostly considers
different regions of the parameter space from those addressed
in [27], a direct comparison between our results and theirs is
not possible at the present time. We expect this to be a topic for
future study. Nevertheless, as a first step we summarize below
the differences in parameters chosen so that the difference in
the regions of parameter space studied in the two papers is
clarified.

The droplet soliton profile configurations used in [27] are
restricted to the case of small σ and α, while this constraint
is not present in the current work. Figure 9 summarizes the
result that the conservative droplet soliton profiles correspond
to saddle configurations in the ρ∗ → ∞ limit. The procedure
we have followed allows us to find droplet soliton profiles for
saddle states at arbitrary values of ρ∗, and also at ν �= 0 when
hZ = 0.

Reference [27] examines mostly cases where hZ > 1.0
and the applied current is moderate-to-large. Our discussion

focuses instead on zero or small fields (cf. Fig. 10), given
that the low-field regime provides the widest range of droplet
soliton stability with respect to applied current (cf. Fig. 2 of
[26]). Turning on an external field has several effects: first, it
produces a shift of the droplet soliton frequency with respect
to the current, similar to that observed for conservative droplet
solitons [24]. This has the effect of reducing the droplet soli-
ton amplitude. More relevant to the present discussion is that it
lowers the activation barrier for both modes of droplet soliton
decay. In addition, [27] found that increasing the current in
large fields facilitates escape via the drift instability.

It is important to note that the formulation used for STT
both in our paper and in the sequence of papers leading up
to [24] assumes a fixed-layer polarization m̂p perpendicular
to the film plane [24–26,54]. This setup differs from actual
experiments that typically use an easy-plane polarization layer
[3,28,55,56]. As a consequence, large external fields are
needed to reorient p̂ along n⊥ in order to approximate the
highly symmetric case. Such large fields reduce the range
of currents in which the stationary droplet soliton is stable
against drift, as discussed in [27].

Because our methods exploit the presence of circular sym-
metry, and used p̂ as a privileged direction for the polar
axes to define the rotational reference frame, our predic-
tions are relevant to a so-called “all-perpendicular” device
(i.e., p̂||n⊥) [11].

We now estimate droplet soliton lifetimes in the presence
of thermal noise due to the decay mechanism described in
this paper, based on data from Fig. 10. We emphasize that
these estimates are based on the leading-order asymptotics,
i.e., the action barriers which determine the exponential Ar-
rhenius factor, of the activation times for droplet soliton decay.
The prefactors, which correspond to subdominant terms, are
estimated below. We caution that these transition times should
not be confused with deterministic creation and annihilation
times, which are on the nanosecond timescale.

We assume a Co/Ni free layer in zero field with magnetiza-
tion μ0Ms = 0.9 T and HK = 1.35 T (Q = 1.5), as in [55]. We
assume A = 13 pJ/m and α = 0.01. With these parameters,
we examine the droplet soliton stability in a nanocontact of
scaled radius ρ ′∗ = 5 (r∗ = 22.5 nm). The sustaining current
is Imin = 2.3 mA and the critical current is Imax = 9.0 mA. If
we assume an attempt rate given by f0 = ωSTα = σγ0Ms we

can estimate lifetimes using f −1
0 e

�
kBT at room temperature T =

300 K. With a current of 2.8 mA the mean lifetime of a droplet
soliton in the presence of thermal noise is approximately 12
minutes (�− ≈ 26kBT ) while the uniform state is very stable
(�+ ≈ 127kBT ). For a larger current of 6.5 mA, the droplet
soliton generation time is slightly under 2 minutes (�+ ≈
25kBT ). Once nucleated, however, it is very stable (�− ≈
190kBT ). In a highly symmetric experimental setup, the signal
from the resonant frequency of the droplet soliton is very
weak, and one must rely on magnetoresistance measurements
to determine the presence or absence of a droplet soliton.
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APPENDIX A: EFFECTIVE FIELD AND BOUNDARY
CONDITIONS

Consider a quasi-2D system with nanocontact radius ρ∗,
free-layer radius ρmax, surface area �, and thickness d . Using
the Kohn-Slastikov approximation [57], we write the micro-
magnetic energy as

E

d
=

∫
�

{
A|∇m|2 −

(
KS − μ0M2

s

2

)
m2

z − μ0Msm · H0

}
d2r

+ Kedge

∮
∂�

(m · n‖)2dr, (A1)

where Kedge = μ0M2
s d

4π
| ln ( t

2R )|, n‖ is the in-plane vector per-
pendicular to the sample’s edge, and the field H0 = Hoe + HZ

includes external and Oersted contributions.
Varying both sides of Eq. (A1) yields

δE

d
=

∫
�

2A(∇m) · (∇δm)d2r (A2)

−
∫

�

2

(
KS − μ0M2

s

2

)
(ẑ · m)(ẑ · δm)d2r (A3)

−
∫

�

μ0MsH0 · δmd2r (A4)

+ 2
∮

∂�

[Kedge(m · n‖)]δm · ndr. (A5)

The first term contains derivatives of δm and corresponds
to the effects of exchange. Following Brown and Miltat
[58] we use the relation ∇ · (∇m · δm) = (∇2m)δm + ∇m ·
∇δm to integrate by parts, yielding

∫
�

(∇m) · (∇δm) =
∫

�

∇ · (∇m · δm)d2r

−
∫

�

(∇2m)δmd2r. (A6)

Using Gauss’ theorem to rewrite the first term on the RHS
yields

∫
�

(∇m) · (∇δm) =
∮

∂�

(
∂m
∂n‖

· δm
)

dr

−
∫

�

(∇2m)δm d2r. (A7)

Rearranging this variational expression into bulk and sur-
face terms we get

δE

d
=

∫
�

[
− 2A(∇2m) − 2ẑL

(
KS − μ0M2

s

2

)
(ẑL · m)

+μ0MsH0

]
δmd2r + 2

∮
∂�

[
Kedge(m · n‖)(n‖ · δm)

+ A
∂m
∂n‖

· δm
]

dr. (A8)

From the bulk integral we obtain the effective field

heff = − 1

μ0M2
s

δE
δm

= l2
ex(∇2m) + (Q − 1)(ẑL · m)ẑL + h0, (A9)

where Q = 2KS/(μ0M2
s ) > 1 is the (dimensionless) magni-

tude of the crystal anisotropy field.
Turning to the surface integral∮

∂�

[
Kedge(m · n‖)(n‖ · δm) + A

∂m
∂n‖

· δm
]

dr, (A10)

we rewrite the magnetization variation as δm = δθ × m,∮
∂�

[
Kedge(m · n‖)n‖ · (δθ × m) + A

∂m
∂n‖

· (δθ × m)

]
dr,

(A11)

which shows that any variation conserves the norm of m.
Finally, using the cyclic permutation of the triple vector

product gives the surface integral contribution to the energy
variation,∮

∂�

[
Kedge(m · n‖)(m × n‖) + A

(
m × ∂m

∂n‖

)]
δθdr.

(A12)

For this contribution to be extremal, it must be zero inde-
pendently of δθ , so

Kedge(m · n‖)(m × n‖) + A

(
m × ∂m

∂n‖

)
= 0. (A13)

Cross-multiplying with m gives the boundary condition,

Kedge

A
(m · n‖)[(m · n‖)m − n‖] = ∂m

∂n‖
. (A14)

Since the vector normal to the surface lies along ρ̂ we get

Kedge

A
(m · ρ̂ )[(m · ρ̂)m − ρ̂] = ∂m

∂ρ
, (A15)

so, recalling that � is the angle the magnetization makes with
respect to the normal to the free-layer disk, we have

Kedge

A
sin �(m sin � − ρ̂ ) = ∂m

∂ρ
. (A16)

For rescaling in a way compatible with Eq. (12) we need to
use Kedge = K ′

edge

√
Q − 1.

The boundary condition (A16) is compatible with the cases
we have been studying: if we set � = 0 at ρmax then ∂m

∂ρ
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must also be zero at ρmax. That is, the homogeneous Dirichlet
boundary condition enforces the free boundary condition.

However, an expression for more general scenarios is also
possible: if � �= 0 at the boundary, the proper boundary
condition would be

∂�

∂ρ
= −Kedge

2A
sin(2�) cos2(� − φ), (A17)

∂�

∂ρ
= Kedge

2A
sin[2(� − φ)]. (A18)

These boundary conditions are important for studying dy-
namical skyrmions [5,59].

APPENDIX B: DERIVATION OF THE
LANDAU-LIFSHITZ-SLONCZEWKSI EQUATION

The magnetization dynamics in the presence of spin-
polarized currents are obtained by adding the Slonczewski
spin torque to the Landau-Lifshitz-Gilbert equation [60]:

ṁ = αm × ṁ + γ0Ms

[
σV

m × m × m̂p

1 + νm · m̂p
− m × heff

]
.

(B1)

Cross-multiplying Eq. (B1) with m, substituting the result
back into the second term of Eq. (B1), expanding triple cross
products, and exploiting the fact that m · ṁ = 0 yields

ṁ = Lheff − γ0MsσV

1 + α2

[
αm × m̂p − m × m × m̂p

1 + νm · m̂p

]
. (B2)

Because α is of order 10−2, the α2 term in the denominator is
usually dropped. In our case, this is not necessary.

Because the first term in brackets is proportional to α it has
been named the “damping-like” torque, and the second term
the “field-like” torque. This is unfortunate since the second
term acts along the field lines while first term is curl-like.
Following our discussion about thermal equilibrium it should
be clear that the second term permits the definition of a
potential, while the first does not. In our framework, the first
term gets absorbed by the transformation to the rotating frame
while the second term is absorbed into the energy functional.

In standard micromagnetic packages [39,61] the third term
in Eq. (B1) is written as

|γ0|βε(m × mp × m), (B3)

with the parameters

ε = P�2

(�2 + 1) + (�2 − 1)(m · mp)
and β =

∣∣∣∣ h̄

μ0e

∣∣∣∣ J

dMs

with polarization P, asymmetry �, and current density J
expressed in units of A/m2. The parameters ν and � are
related by

ν = �2 − 1

�2 + 1
, �2 = 1 + ν

1 − ν
.

The normalized spin-torque coefficient is σ = J
Jc

, where the

critical current density Jc = μ0edM2
s

ξ h̄ depends on an efficiency

factor ξ = P(ν+1)
2 which in this paper we fixed to ξ = 1.

APPENDIX C: EQUILIBRIUM DISTRIBUTION OF THE
LANDAU-LIFSHITZ AND LANDAU-LIFSHITZ-GILBERT

EQUATIONS

In this section we summarize the well known result that
dynamical systems of the form Eq. (21) evolve toward a ther-
mal equilibrium distribution for the magnetization. Consider
a segment dV = l2

exd of the sample with uniform magnetiza-
tion; the exchange interaction with nearest-neighbor regions
can be assumed to be included in the effective field. In this
section we assume that the restrictions described above are
satisfied.

To study thermal effects we separate the stochastic field
hth from the deterministic field hdet = heff + hST. In this way,
Eq. (21) can be written in Langevin form as [40]

ṁrotating frame = Lhdet + Lhth (C1)

which, due to the constraint of constant magnetization mag-
nitude, can be interpreted using either the Ito or Stratonovich
interpretation [41].

For the following discussion it is convenient to rescale the
energy functional E ′ = − Etot

μ0M2
s

and rewrite the deterministic

field as hdet = − δE ′
tot

δm . The standard way of writing the RHS of
Eq. (C1) is as the sum of a “deterministic drift,” representing
the evolution at zero temperature, b = Lhdet, and a stochastic
noise process hth = √

2ηẆ:

ṁrotating frame = b +
√

2ηLẆ. (C2)

In the jargon of stochastic equations L is known as the
diffusion matrix, and the product a = LLT as the diffusion
tensor.

The diffusion matrix can be separated into a symmetric and
antisymmetric part:

L = LS + LA. (C3)

Conveniently, the two parts satisfy LALA
T = − γ ′Ms

α
LS. This

is seen more easily using tensor notation:

LAi,k
= −γ ′Msεi jkm j, (C4)

LSi,k
= γ ′Msα[δi,k − mimk]. (C5)

Using the property of the Levi-Civita tensor εi jkεimn =
(δ jmδmn − δ jnδkm), the diffusion tensor and its “inverse” can
be shown to be, respectively,

a = γ ′2M2
s (1 + α2)[δi,k − mimk] = γ0

α
MsLS, (C6)

a−1 = [δi,k − mimk]

γ ′2M2
s (1 + α2)

. (C7)

Because the diffusion tensor has a zero eigenvalue, it is not
invertible. As a consequence, the component of the thermal
field parallel to m has no effect on the time evolution, and
its inverse is defined only for vectors perpendicular to m,
which is the case for both ṁ and b. For this reason, the
noninvertibility of a in three dimensions presents no obstacle
for analysis.

The analysis presented in [40] shows that the
Langevin-type Eq. (C2) is associated with a Fokker-Planck
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equation of the form

Ṗ = ∇m · ([b − ηLLT ∇m]P). (C8)

For the noise strength η to be directly related to tempera-

ture, the Boltzmann distribution P(m) = 1
Z e− Etot dV

kBT must be a
stationary solution of the Fokker-Planck equation; i.e.,

Ṗ = ∇m ·
(

[b − ηLLT ∇m]
1

Z e− Etot dV
kBT

)
(C9)

must vanish.
To proceed, it is useful to write b as

b = (LS + LA)

(
−δE ′

tot

δm

)
. (C10)

The antisymmetric parts result in a curl-like term,

LA

(
−δE ′

tot

δm

)
P = γ ′Msm × δE ′

tot

δm
1

Z e− Etot
kBT

= γ ′

μ0Ms
∇m × (mEtot )

1

Z e− Etot
kBT

= − γ ′kBT

μ0MsdV
∇m × (mP), (C11)

which is divergenceless. In a similar fashion, the symmetric
piece becomes gradient-like:

PLS

(
−δE ′

tot

δm

)
= −LS

1

Z e− Etot
kBT ∇mE ′

tot

= kBT

μ0M2
s dVLS∇mP. (C12)

The stationarity condition, Ṗ = 0, can be simplified as

0 = ∇m ·
(

kBTLS∇mP

μ0M2
s dV − ηγ0MsLS∇mP

α

)

= ∇m ·
([

kBT

μ0M2
s dV − ηγ0Ms

α

]
LS∇mP

)
. (C13)

This establishes the relation between the noise strength and
temperature as η = αkBT

2Adγ0Ms
. We emphasize that the second

term in Eq. (19) is the reason that most spin-torque-driven
systems are not in thermal equilibrium.

In the stationary reference frame, the Fokker-Planck equa-
tion leads to a differential equation for the distribution P of
the form

Ṗ = ∇m ·
(

− γ0

μ0Ms
∇m × (mEST)P

)
(C14)

since all other terms on the RHS still cancel. This can be
manipulated into the more compact form

Ṗ = −P
2Adγ0Ms

kBT
� = −P

α

η
�, (C15)

which implies that fluctuations near equilibrium evolve at a
rate α

η
�.

APPENDIX D: UNIAXIAL MACROSPIN

Previous work (see, for example, [37,62–64]) has studied
the problem of reversal rates of a uniaxial macrospin in the

FIG. 12. (a) Instantaneous state of a twisted coordinate system
produced by a latitude-dependent rate of rotation. (b) The hypothet-
ical energy surface of a system with rotational symmetry sharing
the polar axis with the twisting coordinate system. The shape of
this surface remains unchanged even though the coordinate system
is twisted around it. (c) The corresponding Boltzmann distribution
function for the same magnetic system at a high temperature.

presence of STT. Here, we briefly discuss how our approach
compares to previous work on these systems.

References [62–64] introduce an effective energy term as
an ansatz for the stationary solution of the Fokker-Planck
equation; this term is consistent with our definition of the
pseudoenergy. The equations of motion are phenomenologi-
cally equivalent, but our version has an explicit curl-like term.
As explained in the main text, this term can be absorbed by
transforming to an appropriate reference frame when ν = 0.

However, when ν �= 0, one cannot drop the second term
of Eq. (18). Nevertheless, in the highly symmetric case such
a term does not result in an increase of the total energy
Etot. Its inclusion in the dynamics affects the deterministic
trajectories but not the energy distribution of the ensemble.
For this reason, the Boltzmann distribution for ν = 0 is also a
solution of the Fokker-Planck equation when ν �= 0 as long as
the fields are axially symmetric.

A simple geometrical analog helps clarify this point. In
a spherical coordinate system with m̂p as the polar axis,
m · hST = cos �, m × m̂p = − sin ��̂, and the second term
in Eq. (18) becomes

−ν[m · hST]m × m̂p = ω(ν; �) sin ��̂

with

ω(ν; �) = ωST
ν cos �

(1 + ν cos �)
.

This would have the proper structure except that now the an-
gular velocity of the rotating frame depends on �. In that case,
one could envision a twisted coordinate systems for which the
meridians twist around m̂p in a screw-like fashion, such as the
one shown in Fig. 12(a), with the degree of twist increasing
with time. With the exception of the poles, the transformation
between a fixed frame and a twisting reference frame is
invertible. Because none of of the energy terms depend on
the azimuthal angle, the energy remains unchanged even as
the meridians appear more twisted from the perspective of the
stationary frame [Fig. 1(b)]. In consequence, the equilibrium
distribution function is invariant even though the individual
trajectories of the particle become more mixed.
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In summary, the introduction of a pseudoenergy associated
with spin torque, the absorption of the extra precessional term
into a change of reference frame, and the symmetry of the
pseudoenergy with respect to the reference frame guarantee
that at long times uniaxially symmetric systems reach thermal
equilibrium in the presence of spin torque even for cases
where ν �= 0.

The work of Pinna et al. [37] treats the uniaxial problem
using the Freidlin-Wentzell formalism. Their fluctuational
trajectories are the macrospin version of the fluctuational
trajectories proposed in Sec. IX. They demonstrated that,
provided the deviation from uniaxial symmetry is not too
strong, the fluctuational paths will not cross and the optimal
escape trajectory remains well behaved (e.g., no singularities
occur in the action). As shown in Sec. IX, the action along the
escape fluctuational path remains S = 2�Etot .

Because of its symmetry, the uniaxial macrospin case pro-
vides a simpler situation which shows that these two distinct
approaches provide consistent and complementary results.

APPENDIX E: EXPLICIT EXPRESSIONS FOR ENERGY
AND FIELD IN THE ROTATING FRAME

The pseudoenergy used in this paper is given by Etot =
Eex + EK + EZ + EST. Although the pseudoenergy is invariant
under changes of reference frame, the explicit form of all
terms (except Eex) depends on the orientation of the coordinate
axes. The fields in the rotating frame can be obtained using the
general expressions

h� = − 1

μ0M2
s

δE
δ�

, h� = − 1

μ0M2
s

1

sin �

δE
δ�

. (E1)

Following [25], we will treat � and � perturbatively with the
expansions

� = �0 + ε�1, � = �0 + ε�1

sin �0
. (E2)

Here �0 and �0 = 0 are solutions of Eqs. (24) and (25)
with ε set to zero; �1 and �1 are the perturbative solutions
to first order in ε. The expansion incorporates perturbations
arising from small experimental misalignments θz, θ f and the
spin-torque asymmetry parameter ν. To denote the order of
the perturbation we use a superscript; e.g., h(1)

ex,� denotes the
perturbation expansion to first order in the exchange-induced
field in the azimuthal direction.

To first order, the azimuthal time derivative is

sin ��̇ ≈ (sin ��̇)(0) + ε�1 cos �0�̇0 + ε�̇1. (E3)

We now consider the contributions of each of the terms in the
pseudoenergy.

1. Exchange

The exchange energy surface density is invariant with
respect to changes in the coordinate system,

Eex

μ0M2
s

= l2
ex

2
(|∇�|2 + sin2 �|∇�|2). (E4)

Similarly for the field expressions,

hex,� = sin �∇2� + 2 cos �∇� · ∇�, (E5)

hex,� = ∇2� − 1
2 sin 2�|∇�|2. (E6)

Their perturbative expansions, to first order in ε, are

hex,� ≈ ε

[
∇2�1 + �1(∇�0)2 − �1

cos �0

sin �0
∇2�0

]
(E7)

and

hex,� ≈ h(0)
ex,� + ε[∇2�1], (E8)

where h(0)
ex,� = ∇2�0. We note that the term in square brackets

with sin �0 in the denominator can be replaced by using the
equation for h(0)

� = 0 [Eq. (51)]. The first-order term is then

h(1)
ex,� ≈ {[(∇�0)2 − cos �0(cos �0 − ωh)] + ∇2}�1. (E9)

2. Anisotropy

The anisotropy surface energy density

EK

μ0M2
s

= −Q − 1

2
(m · ẑL )2 (E10)

favors magnetization orientation along the anisotropy axis ẑL,
which is oriented perpendicular to the sample plane. This
axis rotates around m̂p in the rotating frame. These two
vectors make an angle θ f . The energy density for a given
magnetization orientation (�,�) in the rotating frame is time
dependent:

EK

μ0M2
s

= − [sin � sin θ f cos(ωt + �) + cos θ f cos �]2

2/(Q − 1)
.

(E11)

Consequently, the fields are

hK,�

Q − 1
= 1

2
sin 2� sin2 θ f cos2(ωt + �)

+ 1

4
cos 2� sin 2θ f cos(ωt + �)

− 1

2
sin 2� cos2 θ f (E12)

and

hK,�

Q − 1
= −1

2
sin � sin2 θ f sin[2(ωt + �)]

− 1

2
cos � sin 2θ f sin(ωt + �). (E13)

We set h(0)
K,� = Q−1

2 sin 2�0 for the limit θ f = 0. The pertur-
bative expansions for small θ f are

hK,�

(Q − 1)
≈ h(0)

K,�

Q − 1

− θ f

2
cos 2�0 cos ωt + ε�1 cos 2�0 (E14)

and

hK,� ≈ 1
2 (Q − 1)θ f cos �0 sin ωt . (E15)
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3. Zeeman

To describe the orientation of the field, we use polar
coordinates in the laboratory reference frame,

hZ = (cos φZ sin θZ , sin φZ sin θZ , cos θZ ), (E16)

where the field misalignment θz is presumed to be small.
The Zeeman energy density EZ

μ0M2
s

= −m · hZ in the rotating
frame is

EZ

−hZμ0M2
s

= cos φZ sin θz[sin � cos θ f cos(ωt + �)

− sin θ f cos �] sin φZ sin θz sin � sin(ωt + �)

+ cos θz[sin � sin θ f cos(ωt + �)

+ cos θ f cos �], (E17)

with corresponding fields

hZ,�

hZ
= cos φZ sin θz[cos � cos θ f cos(ωt + �)

+ sin θ f sin �] sin φZ sin θz cos � sin(ωt + �)

+ cos θz[cos � sin θ f cos(ωt + �) − cos θ f sin �]

(E18)

and

hZ,�

hZ
= − cos φZ sin θz cos θ f sin(ωt + �)

+ sin φZ sin θz cos(ωt + �)

− cos θz sin θ f sin(ωt + �). (E19)

Using h(0)
Z,� = − sin �0, the leading-order perturbation ex-

pansions for small θz and θ f are

hZ,�

hZ
= h(0)

Z,� + θz cos �0 cos(ωt − φZ )

+ θ f cos � cos(ωt ) − ε�1 cos �0 (E20)

and
hZ,�

hZ
= −θz cos φZ sin(ωt − φz ) − θ f sin (ωt ). (E21)

4. Spin torque

The pseudopotential energy density and field were intro-
duced in Eqs. (16) and (17). The denominator of the spin-
torque field term can be written as an expansion in ν:

1

1 + νm · m̂p
=

∞∑
n=0

(−νm · p)n. (E22)

Notice that in the rotating frame m · m̂p = cos �, m̂p · �̂ =
− sin �, and m̂p · �̂ = 0. After rescaling, the field compo-
nents are

hST,� = +σV

α
sin �

∞∑
0

(−ν cos �)n (E23)

and

hST,� = 0. (E24)
Taking ν as a small parameter and h(0)

ST,� = σV
α

sin �0, the
perturbative expansion becomes

hST,� = h(0)
ST,� + σV

α

[
ε�1 cos �0 − ν

2
sin 2�0

]
. (E25)

To first order in ν, the term in parentheses in Eq. (25) is

σ ′V
α′

�
− sin �) ≈ −ν

σ ′V
2α′ sin 2�0. (E26)
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