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Role of orbital hybridization in anisotropic magnetoresistance
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We theoretically and numerically show that longitudinal orbital currents in ferromagnets depend on the
magnetization direction, which contribute to the anisotropic magnetoresistance (AMR). This orbital contribution
to AMR arises from the momentum-dependent orbital splitting, which is generally present in multiorbital
systems through the orbital anisotropy and the orbital hybridization. We highlight the latter orbital hybridization
as an unrecognized origin of AMR and also as a common origin of AMR and orbital Hall effect.
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I. INTRODUCTION

The anisotropic magnetoresistance (AMR), the depen-
dence of electrical conductivity on the orientation of magne-
tization with respect to the electric current direction, was first
reported by Thomson [1]. A concurrent action of magnetiza-
tion and spin-orbit coupling (SOC) accounts for occurrence
of the anisotropic conduction. Smit [2] suggested that an
admixture of parallel and antiparallel d states due to SOC
results in an unequal distribution of electrons in d orbitals,
in which the inequality is determined by the direction of
magnetization. This suggestion was further reinforced [3] by a
two-current model with s-s and s-d transitions regarding a per-
turbation owing to SOC, (L+S− + L−S+)/2, where L±(S±) =
Lx(Sx ) ± iLy(Sy) corresponds to orbital (spin) angular mo-
mentum operator. Another mechanism, proposed by Berger
[4], considered the effect of LzSz which causes an anisotropic
shape of 3d atomic wave functions. Subsequent studies have
led to profound understanding on AMR (for a detailed review,
see Ref. [5]). One of these works [6] introduced orbital
degrees of freedom which correlate with the magnetization
through a concerted action between the exchange coupling
and SOC. This correlation, given as ± 1

2λLm where λ is the
SOC strength and Lm denotes the orbital angular momentum
operator projected on the magnetization direction m, splits the
orbital energies according to the orientation of magnetization.
Considering ballistic transport in ferromagnetic nanowires,
they showed that the anisotropic conductance originated from
magnetization-dependent electronic structure at the Fermi
energy.

Since the orbital degrees of freedom are coupled to the spin
degrees of freedom through the SOC, the impact of orbitals in
SOC-related phenomena is an important task to investigate.
For instance, the surface states of topological insulators have
a chiral spin texture in momentum space [7,8], which fosters
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interesting consequences such as Edelstein effect [9], prohibi-
tion of backscattering [10], and so forth. Experimental [11,12]
and theoretical [11,13] efforts have verified the existence
of analogous momentum-space chiral orbital texture that is
coupled to the configuration of spins in momentum space
through the SOC. Likewise, the spin-momentum locking in
Rashba-type band structure is also derived from the orbital
Rashba effect [14,15], which is prior to the spin Rashba
effect. The importance of orbital degrees of freedom for spin-
transfer torques was also highlighted [16]. Considering the
close connection between orbital and spin degrees of freedom,
an exploration on orbital-related phenomena is significant to
elucidate the underlying mechanism of corresponding spin-
related phenomena in spin-orbit-coupled systems.

Orbital textures in momentum space exist even in topo-
logically trivial and centrosymmetric systems and thus are
quite generic [17–19]. This owes to the orbital hybridization,
which is an overlap between orbitals with distinct angular
quantum numbers in neighboring atomic sites and is a general
property of multiorbital systems. An important outcome of the
orbital hybridization is the orbital Hall effect, which refers
to the transverse orbital current induced by electric field.
The orbital Hall effect has been remarked as the origin of
intrinsic spin Hall effect. Kontani et al. [18] demonstrated
that the orbital Aharonov-Bohm phase that arose from sd
hybridization yields the giant orbital Hall effect, resulting in
spin and anomalous Hall effects. In addition, Go et al. [19]
systematically investigated the dependence of both intrinsic
spin Hall and orbital Hall conductivities on orbital hybridiza-
tion strength and emphasized the significance of the orbital
hybridization in spin-orbit coupled transport.

In this paper, we theoretically analyze the AMR in terms
of orbital degrees of freedom. We show that the longi-
tudinal orbital conductivity also depends on the magne-
tization direction, which we call orbital anisotropic mag-
netoresistance (OAMR), as the charge conductivity does.
The magnetization-dependent conductivities come from the
momentum-dependent orbital splitting, which is achieved by
orbital anisotropy or orbital hybridization. The former was
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alluded to the symmetrical characteristics of each orbital [6],
while the latter is the main finding in this work.

This paper is organized as follows. In Sec. II, we
first present a simple model demonstrating how the
orbital hybridization alone induces the orbital splitting and
causes the anisotropic conduction. An analytic derivation
of magnetization-dependent conductivity is also shown by
perturbation theory in Sec. III A. Then, in Sec. III B, we
numerically compute the charge, spin, and orbital conduc-
tivities based on Green’s function formalism [20] with the
magnetization parallel and perpendicular to the current di-
rection where the two orbital factors, the orbital anisotropy
and orbital hybridization, are treated independently. We also
inspect the SOC strength dependence of OAMR and AMR
to examine the connection between them. This work suggests
that AMR is closely related to OAMR where the role of
orbital hybridization is signified as the underlying mechanism.
It is noted that we focus on the mechanism developed by
the anisotropic band structures but ignore the process related
to the anisotropic scattering, which is manifested as the
magnetization-dependent relaxation time.

II. ORBITAL SPLITTING DUE TO ORBITAL
HYBRIDIZATION

We start with a simple tight-binding model, consisting of s
and three p orbitals (px, py, pz) in a cubic lattice [Fig. 1(a)].
The interatomic hopping integrals can be classified by the
equivalence of orbital types involved in hopping between
neighboring atomic sites. One is the hopping between identi-
cal types of orbitals such as s-to-s and p-to-p hopping [lighter
arrows in Fig. 1(a)] and the other is the hopping between
different types of orbitals, s-to-p hopping and vice versa
[darker arrows in Fig. 1(a)]. Except for isotropic s orbital,
the strength of the former hopping strongly depends on its
hopping direction (e.g., across σ bond or π bond), which
results in anisotropic splitting of orbital energies. We call this
former pathway providing an anisotropic degree to the system
as the orbital anisotropy and describe it with the difference
between tpσ and tpπ . The latter hopping between different
orbitals is mediated by the hybridization between s and p
orbitals and gives another degree of anisotropy (shown be-
low). We specify this latter route as the orbital hybridization,
and describe it with a hopping parameter between s and p,
γsp.

Let us first consider the simplest case where none of
both orbital factors, exchange interaction, and SOC are
present. In this case, the orbital part of the Hamiltonian is
simplified as

HL =
∑

σ=↑,↓

[
Es(k) |ksσ 〉 〈ksσ | +

∑
i=x,y,z

Epi (k)
∣∣kpσ

i

〉 〈
kpσ

i

∣∣ ],

(1)

where Es(pi )(k) is the energy of s(pi ) orbitals (i = x, y, z) with
a given Bloch momentum k and |kαβ〉 is the electronic state
with the Bloch momentum k, orbital state α, and spin β. Here
α = s, px, py, pz and β = ↑,↓. Note that |kαβ〉 ≡ |ψk

αβ〉 in
Appendix A. Because none of orbital factors, exchange cou-
pling, and SOC are present, the energies of p orbitals are de-
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FIG. 1. (a) Illustration of tight-binding model in a cubic lattice
with s, px , py, and pz orbitals. The hopping integrals between p
orbitals (lighter arrows) are tpσ and tpπ according to relevant bonding
type and the hopping between s and p orbitals (darker arrows)
is represented as γsp. Note that the hopping between neighboring
s orbitals is omitted. (b) Schematic band structure showing lifted
degeneracy of p orbitals originating from the inclusion of orbital
hybridization [Eq. (2)]. (c) Fermi surface (kz = 0) at an energy
crossing p orbital energies [dotted line in (b)]. Dashed contours are
the energies without effective SOC, λL · m. When the magnetization
direction is determined, each orbital experiences orbital-dependent
spin-orbit splitting. Solid contours are the resultant Fermi surface
when (left panel) m ‖ x̂ and (right panel) m ‖ ŷ.

generate (i.e., Epx = Epy = Epz ). Without loss of generality we
can adopt spherical coordinates (see Appendix B) and rewrite
the second term in Eq. (1) as the summation of the radial
p orbital contribution, Epr (k) |kpσ

k〉 〈kpσ
k |, and the tangential

p orbital contributions, Ept (k)(|kpσ
θk

〉 〈kpσ
θk

| + |kpσ
φk

〉 〈kpσ
φk

|).
Here, pk is the radial p orbital whose lobe is along k and pθk/φk

is the tangential p orbital whose lobe is perpendicular to k.
Epr (k) and Ept (k) are the energies of radial and tangential p
orbitals, respectively. Note that the degeneracy of p orbitals is
still maintained (i.e., Epr = Ept ).

Consideration of the orbital factors breaks the degeneracy.
For the orbital anisotropy, the hopping integral for the radial
orbital is tpσ and that for the tangential orbital is tpπ ; thus Epr

and Ept become different. For the orbital hybridization, the
hybridization between s orbital and the radial orbital breaks
the degeneracy between Epr and Ept . Since the effect of the
former on AMR was studied in Ref. [6], we discard it in this
section, in order to demonstrate that the orbital hybridization
alone can result in the orbital splitting. The orbital anisotropy
is restored in Sec. III.

Now we turn on the orbital hybridization. The or-
bital hybridization energy γsp(k) gives the sp hybridization
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Hamiltonian,

HOH =
∑

σ=↑,↓
iγsp(k)(|ksσ 〉 〈

kpσ
k

∣∣ − ∣∣kpσ
k

〉 〈ksσ |), (2)

where a finite overlap with s orbital is obtained only for
radial p orbital. The s-to-p hopping is annihilated for the
tangential p orbitals due to opposite contributions of each lobe
[red and green lobes in Fig. 1(a)], which represent opposite
orbital phases. Restoring the orbital hybridization to the sp
system, i.e., HL + HOH, the degeneracy of p orbitals is lifted
according to its character of orbital wave function [upper
(radial) and lower (tangential) energies in Fig. 1(b)]. The
resulting energies of s and p states are

Ẽs(k) = Es(k) + Epr (k)

2
− ε(k),

Ẽpr (k) = Es(k) + Epr (k)

2
+ ε(k), (3)

Ẽpt (k) = Ept (k),

where Ẽα′ (k) is an eigenvalue of HL + HOH (α′ = s, pr, pt)
and ε(k) =

√
[Es(k) − Epr (k)]2/4 + γ 2

sp(k).
Then we bring back the exchange interaction and SOC.

In the strong exchange limit of ferromagnet, a concerted
action of the exchange interaction and SOC produces an
effective correlation between orbital and magnetization [6],
HSO ∼ λL · m [Eq. (B4)]. Combining this effective SOC to
the previous system gives rise to the magnetization-dependent
energy splitting if the orbital splitting is present beforehand.
For example, when the magnetization is along the momentum
direction (i.e., m ‖ k), the p orbital energies of Hamiltonian
HL + HOH + HSO are

≈
E

‖
pr (k) = Ẽpr (k),

≈
E

‖,±
pt (k) = Ẽpt (k) ± λ. (4)

Here,
≈
E

‖
α′ (k) is the eigenenergy of HL + HOH + HSO in

which the subscript denotes the orbital character and the su-
perscript ‖ designates the relative orientation between the mo-
mentum k and the magnetization m. An additional superscript
of tangential p orbitals corresponds to the sign of spin-orbit
splitting, ±λ. Note that we omit the energy of s orbital as the
s orbital is the state for zero angular momentum. In contrast,
if the magnetization is perpendicular to the momentum (i.e.,
m · k = 0), we obtain the p orbital energies as

≈
E

⊥
pr (k) = Ẽpr (k) + Ẽpt (k)

2
+ ζ (k),

≈
E

⊥
pt (k) =

{
Ẽpr (k)+Ẽpt (k)

2 − ζ (k),

Ẽpt (k),
(5)

where ζ (k) =
√

[Ẽpr (k) − Ẽpt (k)]2/4 + λ2 and a superscript
⊥ denotes that m ⊥ k. Note that the upper (lower) case of
tangential p orbitals corresponds to the orbital state, which is
constructed with the eigenstates perpendicular (parallel) to the
magnetization direction, e.g., |kpθk〉 (|kpφk〉) when m ‖ φ̂k.
The discrepancy between Eq. (4) and Eq. (5) stems from the
indirect coupling between orbital and magnetization, L · m,
through SOC.

The variation of magnetization direction modifies the form
of effective SOC, which affects the orbital energies in an
orbital-dependent manner. However, if the orbital splitting is
absent (i.e., all orbitals are degenerate), the spin-orbit splitting
results in identical orbital energies regardless of the magneti-
zation direction, Epr ± λ and Epr . For this reason, the presence
of orbital splitting is necessary for magnetization-dependent
and anisotropic band structures. Figure 1(c) shows the alter-
ation of Fermi surface at kz = 0 for varied m direction, m ‖ x̂
and m ‖ ŷ. Before the inclusion of HSO [dashed curves in
Fig. 1(c)], the inner and outer Fermi surfaces are developed
due to the orbital hybridization, HOH. Based on this orbital
splitting, the effective SOC modifies the Fermi surfaces [solid
curves in Fig. 1(c)] which display magnetization-dependent
band structures as Eqs. (4) and (5). When an electric field
is applied in the x direction, the Fermi surfaces are shifted
along the same direction. In consequence of the anisotropic
band structures, an electric transport will also show the
magnetization-dependent behavior and thus AMR.

As a side remark, the above simple argument works when-
ever there is an orbital splitting. Although we focus on the
orbital hybridization contribution in this paper, the orbital
anisotropy, for which Epr and Ept are different, also makes
≈
E

‖
pr(pt ) and

≈
E

⊥
pr(pt ) different as studied in Ref. [6].

III. LINEAR RESPONSE THEORY

A. Analytical calculation

In this section, we analytically show that the orbital hy-
bridization gives rise to the AMR. The AMR is given by the
magnetization-dependent part of the electrical conductivity.
Basically, the problem is 8 × 8 since we have one s orbital
and three p orbitals for each of the spins. We assume that
the exchange interaction is strong enough for spins to be
aligned with the magnetization and thus reduce the problem
to 4 × 4. First, we express our Hamiltonians in a spherical
coordinate basis. To utilize the expression in Appendix B,
we choose our basis as (|ksσ 〉 , |kpσ

k〉 , |kpσ
−〉 , |kpσ

+〉), where
|kpσ

±〉 = (|kpσ
θk

〉 ± i |kpσ
φk

〉)/
√

2. In this basis,

HL + HOH =

⎛
⎜⎜⎜⎝

Es −iγsp 0 0

iγsp Epr 0 0

0 0 Ept 0

0 0 0 Ept

⎞
⎟⎟⎟⎠. (6)

Hereafter we omit the k dependencies in the energies for
concise presentation. Note that diagonalizing the upper 2 × 2
block gives the sp hybridized states in Eq. (3). Since the
tangential p orbitals are degenerate, the choice of the lin-
ear combination of the tangential p orbitals, i.e., (|kpσ

θk
〉 ±

i |kpσ
φk

〉)/
√

2, does not affect the matrix representation of
HL + HOH. However, it affects the SOC Hamiltonian signifi-
cantly [compare Eqs. (B4) and (B5)].

The SOC Hamiltonian in this basis is given by Eq. (B5):

HSO = −λ

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 m−,k im+,k

0 m+,k −mk 0

0 −im−,k 0 mk

⎞
⎟⎟⎟⎠, (7)
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where mk = m · k̂, m±,k = m · (θ̂k ± iφ̂k )/
√

2, and the ex-
plicit expressions of the spherical coordinate vectors are pre-
sented in Eq. (B1). From the above expression, it is evident
that the role of SOC is twofold. First, the radial component
of magnetization (mk) breaks the degeneracy between the
tangential orbitals [corresponding to Eq. (4)]. Second, the tan-
gential components of magnetization m±,k in the off-diagonal
components of HSO mix the sp hybridized states in the upper
2 × 2 block and the tangential orbitals in the lower 2 × 2
block [corresponding to Eq. (5)].

Now we treat SOC perturbatively and calculate its second
order contribution to AMR. Our perturbation theory consists
of two steps. At the first step, we block diagonalize the 4 × 4
Hamiltonian to two 2 × 2 blocks, and at the second step, we
diagonalize each of the 2 × 2 blocks. For the first step, we
decompose the Hamiltonian as Htot = H0 + H1, where

H0 =

⎛
⎜⎜⎜⎝

Es −iγsp 0 0

iγsp Epr 0 0

0 0 Ept + λmk 0

0 0 0 Ept − λmk

⎞
⎟⎟⎟⎠,

H1 = −λ

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 m−,k im+,k

0 m+,k 0 0

0 −im−,k 0 0

⎞
⎟⎟⎟⎠. (8)

Here, H0 is the block-diagonal part and H1 is the block-off-
diagonal part that is treated perturbatively. To block diago-
nalize Htot, we follow the Schrieffer-Wolff procedure [21]
by introducing a unitary transformation H′

tot = eSHtote−S by
choosing

S =
(

0 S2×2

−S†
2×2 0

)
,

S2×2 = −λ f

( −iγsp

Ept − Es

)
(m−,k im+,k ),

f = [
(Epr − Ept )(Ept − Es) + γ 2

sp

]−1
. (9)

Note that S satisfies [H0,S] = H1 + O(λ2). Then, the Baker-
Hausdorff Lemma gives the transformed Hamiltonian being

H′
tot =

(
Hsp 0
0 Hpt

)
+ O(λ3),

Hsp =
(

Es −iγsp

iγsp Epr

)
+ λ2

(
1 − m2

k

)
f

(
0 − iγsp

2
iγsp

2 Ept − Es

)
,

Hpt = Ept + λ

(
mk 0
0 −mk

)

− λ2 f

2
(Ept − Es)

(
1 − m2

k 2im2
+,k

−2im2
−,k 1 − m2

k

)
. (10)

Here we used 2m+,km−,k = 1 − m2
k. Note that H′

tot is block
diagonal, so one can diagonalize each of the 2 × 2 blocks (Hsp

and Hpt ) to analytically obtain the perturbed energy eigenval-
ues En(k) and the velocity (along x) vn,x(k) = (1/h̄)∂kxEn(k).
Here n = 0, 1, 2, 3 is the band index for s and p states.
Although we do not explicitly express En(k) here, the second

order correction is in the form of

�En(k) = m2
kEn,2(k). (11)

This magnetization-dependent correction is the key result of
our perturbation theory.

To calculate the electrical conductivity, we ignore the
interband contribution which is negligible when the level
broadening is smaller than the energy differences between the
bands. Then, the electrical conductivity is approximated as

σ = e2τ

V

∑
k,n

δ(EF − En(k))vn,x(k)2, (12)

where EF is the Fermi level and h̄/τ is the level broadening.
The magnetization-dependent contribution in Eq. (11) clearly
implies the existence of AMR in our model. To explic-
itly demonstrate that the AMR is generated by the orbital
hybridization, we discard the effect of orbital anisotropy
(Epr = Ept ) which has been already studied [6] and consider
only that the s band is located at the Fermi level. Then, up to
second order in γsp, the energy eigenvalue for Hsp in Eq. (10)
gives

≈
Es(k) ≈ Es − γ 2

sp

Epr − Es
−

(
1 − m2

k

)
λ2γ 2

sp

(Epr − Es)3

≡ E0,0(k) + m2
kE0,2(k), (13)

where E0,2 ∝ λ2γ 2
sp. Assuming that E0,0(k) and E0,2(k)

are spherically symmetric (thus dependent solely on k)
and quadratic in k, Appendix D gives the electrical
conductivity

σ = e2τkF

3h̄2π2

[
EF + 2E0,2(kF )m2

x

]
, (14)

where kF is the Fermi wave vector. The second term (∝λ2γ 2
sp)

corresponds to the AMR induced by the orbital hybridization.
We remark that the function f (k) in Eq. (9) diverges when

both the orbital anisotropy and the orbital hybridization are
zero. However, this does not mean that the SOC contribution
diverges there. Since our perturbation theory treats λ as the
smallest factor, it is implicitly assumed that λ � f −1/2, which
is consistent with our numerical simulation parameters. If this
assumption does not hold, one needs to start with the exact
expression of S in Appendix C, expand S with respect to γsp

and Ept − Epr first, and then discard O(λ3). This procedure
yields a different expression, but the main message of our
theory is unaltered by the order of expansions.

B. Numerical calculation

In this section, we numerically compute the longitudinal
charge, spin, and orbital conductivities based on Green’s
function formalism [20], not relying on the perturbation the-
ory for SOC. Detailed description of the Hamiltonian and
its numerical parameters are given in Appendix A. Note
that the orbital currents carry an angular momentum aligned
along the magnetization. We assume an electric field Ex

along the x direction and calculate the resulting conductivities
which are composed of the Fermi surface and Fermi sea
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FIG. 2. Band structures and corresponding EF dependence of AMR and OAMR (a) with both orbital anisotropy and hybridization, (b) with
orbital anisotropy and without orbital hybridization, (c) without orbital anisotropy and with orbital hybridization, and (d) without both orbital
anisotropy and orbital hybridization. (Left panels) The band structures of tight-binding model [Eq. (A2)] for magnetization along the z
direction, where the lowest two bands correspond to s orbital state. (Right panels) The AMR of charge, spin, and orbital conductivities in which
the black, red, and blue curves correspond to the charge, spin, and orbital conductivities. Note that h̄/e is defined as unity for convenience.

contributions:

σX = σ I
X + σ II

X ,

σ I
X = − h̄Ex

4π

∫
d3k

(2π )3

× Tr
{
X

[
gR

Evx
(
gR

E − gA
E

) − (
gR

E − gA
E

)
vxgA

E

]}
EF

,

σ II
X = − h̄Ex

4π

∫ EF

−∞
dE

∫
d3k

(2π )3

× Tr

{
X

[
∂gR

E

∂E
vxgR

E − gR
Evx

∂gR
E

∂E
− 〈R ↔ A〉

]}
, (15)

where the subscript X refers to charge, spin, and orbital, and
the corresponding operators X for the physical quantities are
vx, σm ⊗ vx, and (Lmvx + vxLm)/2, respectively. Here vx is
velocity matrix defined as ∂kxH and σm(Lm) is Pauli matrix
(orbital angular momentum operator) projected to the mag-
netization direction m. σ I

α is the Fermi surface contribution
and σ II

α is the Fermi sea contribution; gR(A)
E is the retarded

(advanced) Green function defined as (E − H ± iη)−1, where
η is the level broadening. We only consider the Fermi surface

contribution since the Fermi sea contribution is found to be
negligible in our calculation.

We distinguish two orbital factors and their consequential
anisotropic conductions. As mentioned in Sec. II, the orbital
anisotropy and the orbital hybridization are controlled via the
difference between p-to-p hopping parameters |tpσ − tpπ | and
the hopping parameter between s and p orbitals γsp, respec-
tively. The band structures and the Fermi energy dependence
of anisotropic conductivities for each combination of orbital
factors are shown in Fig. 2. Here, we represent an anisotropic
conductance as �σX ≡ σ

m‖ŷ
X − σ

m‖x̂
X .

The transport of electron charge, spin, and orbital shows
isotropic behavior on the magnetization direction when both
orbital anisotropy and hybridization are absent [Fig. 2(d)].
This is due to the exact degeneracy of p orbitals, which
yields identical band structures for varied m. The inclusion
of orbital anisotropy or orbital hybridization to the system
[Figs. 2(a)–2(c)] produces AMR indicating a relation between
AMR and orbital physics. Besides well-known AMR, which
regards charge currents entailing spin degrees of freedom [22],
finite �σorbital states that the orbital conductivities also depend
on the relative orientation between current and magnetization,
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FIG. 3. EF dependence of (a) AMR and (b) OAMR with varied
SOC strength, λ. Horizontal dotted lines indicate the local maxima
(−1.60 eV and −1.55 eV, respectively) and the dependence of charge
and orbital conductivities are calculated at this Fermi energy, which
is summarized in (c). OAMR and AMR of varied SOC strength is
normalized by OAMR and AMR of λ = 0.1 eV, which are shown
as filled symbols. Dotted lines show linear and quadratic guidelines
which well describe the tendency of calculated values.

which we coin as OAMR. This generic and inherent correla-
tion between orbital and magnetization will invigorate the po-
tential utilization of orbital transport [23,24] in ferromagnets.
Note that the s orbital may produce AMR under the presence
of orbital hybridization [−2.5 eV � EF � 1.0 eV in Figs. 2(a)
and 2(c)], through which the anisotropic property of p orbitals
is imparted. In addition, there is a somewhat complicated re-
semblance between the EF dependence of AMR and OAMR.
This tendency is comprehensible considering the fact that the
SOC correlates the feature of orbital and spin [17–19], where
a further examination is done below.

The relevance of OAMR to AMR is observed through their
dependence on the strength of SOC (Fig. 3) in the system
with both orbital hybridization and anisotropy [Fig. 2(a)].
To avoid severe alteration of the band structures, we restrict
our interest to s band contribution and weak SOC regime,
which gives the spin and orbital as a good quantum number.
The calculated AMR and OAMR with λ = 0.1, 0.05, and
0.025 eV are shown in Figs. 3(a) and 3(b). Note that both
AMR and OAMR vanish when λ = 0. Then, we select a spe-

cific Fermi energy for each phenomena to precisely determine
the order of SOC. For clarity, −1.60 eV and −1.55 eV are
selected respectively in which AMR and OAMR exhibit local
maxima and the corresponding values are normalized by �σ

at λ = 0.1 eV. The dotted guidelines in Fig. 3(c) show that
AMR and OAMR follow quadratic and linear manner with
respect to SOC. The linear dependence of OAMR may be
understood as a consequence of effective SOC, λL · m, which
provides a pathway to interact with the magnetization in terms
of magnetization-dependent orbital energies. As long as the
anisotropic band structures prevail the electric conduction, the
magnetization-dependent orbital currents will provoke spin
currents in a similar manner according to the SOC. On that
ground, the OAMR is appreciated as the source of AMR. Note
that although the strength of SOC is chosen to be comparable
to or weaker than that of exchange coupling to maintain
consistency with the previous analytical calculation, strong
SOC does not alter our main conclusion qualitatively (not
shown).

IV. CONCLUSION

To conclude, we investigated the orbital origin of AMR
based on a tight-binding model with s and p orbitals. We found
that the orbital hybridization is the unnoticed origin of AMR
which highlights the role of orbital physics in understand-
ing spin-related phenomena in spin-orbit-coupled systems.
Along with the orbital anisotropy, the orbital hybridization
generates the momentum-dependent orbital splitting which is
the main ingredient of magnetization-dependent band struc-
tures. Through the effective correlation between the orbital
and the magnetization, the electronic structure of the system
responds to the magnetization direction, which ultimately
derives AMR. We showed that not only charge (or spin) con-
ductivity but also orbital conductivity exhibits magnetization-
dependent tendency, which we called OAMR. Moreover, this
OAMR contributes to AMR through SOC as the orbital Hall
effect does for the spin Hall effect [17–19]. The alikeness of
OAMR and orbital Hall effect is also found in the fact that
the orbital hybridization is the common source of both phe-
nomena, emphasizing the importance of the orbital hybridiza-
tion in several substantial observations of spintronics. In this
respect, the measurement of AMR in materials exhibiting
considerable orbital Hall conductivities [25] is intriguing. For
systematic investigation, we also propose nonmagnetic metals
where AMR and OAMR occur through the Zeeman coupling
but material-dependent exchange coupling is excluded.
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APPENDIX A: TIGHT-BINDING HAMILTONIAN

We consider a general ferromagnetic system with SOC in a
simple cubic structure. Since the conduction electrons have
s character in most materials under our consideration, the
minimal model should include s and p orbitals to realize a
mixture between different orbital states. By assuming s, px,
py, and pz orbitals at each Bravais lattice, the Bloch basis
|ψk

αβ (r)〉 is defined by∣∣ψk
αβ (r)

〉 =
∑

R

eik·R|ψαβ (r)〉, (A1)

where R is the lattice sites, α = s, px, py, pz, and β = ↑,↓.
Based on the Bloch basis, the tight-binding Hamiltonian is
written as

H = HL + 2�ex

h̄
m · S + 2λ

h̄2 L · S. (A2)

Here, HL is the orbital part of the Hamiltonian, �ex is
the exchange parameter, λ is the strength of SOC, and
m, S, L correspond to the unit vector along the magneti-
zation direction, spin angular momentum operator (h̄/2)σ,
and orbital angular momentum operator, respectively. The
components of orbital angular momentum operator L in the
[|ψk

s (r)〉 , |ψk
px

(r)〉 , |ψk
py

(r)〉 , |ψk
pz

(r)〉] basis is

Lx =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎠,

Ly =

⎛
⎜⎝

0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

⎞
⎟⎠,

Lz =

⎛
⎜⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎠. (A3)

The second and third terms in Eq. (A2) are the exchange
interaction and SOC, respectively, and the orbital part of the
Hamiltonian [Eq. (1)] is composed of matrix elements given
as 〈

ψk
s↑(↓)

∣∣HL

∣∣ψk
s↑(↓)

〉 = Eon
s + 2tsσ (cos kxa

+ cos kya + cos kza),〈
ψk

px↑(↓)

∣∣HL

∣∣ψk
px↑(↓)

〉 = Eon
p + 2tpσ cos kxa

+ 2tpπ (cos kya + cos kza),〈
ψk

py↑(↓)

∣∣HL

∣∣ψk
py↑(↓)

〉 = Eon
p + 2tpσ cos kya

+ 2tpπ (cos kza + cos kxa),〈
ψk

pz↑(↓)

∣∣HL

∣∣ψk
pz↑(↓)〉 = Eon

p + 2tpσ cos kza

+ 2tpπ (cos kxa + cos kya),〈
ψk

s↑(↓)

∣∣HL

∣∣ψk
px↑(↓)

〉 = 2iγsp sin kxa,

〈
ψk

s↑(↓)

∣∣HL

∣∣ψk
py↑(↓)

〉 = 2iγsp sin kya,〈
ψk

s↑(↓)

∣∣HL

∣∣ψk
pz↑(↓)

〉 = 2iγsp sin kza, (A4)

where Eon
s(p) is the on-site energy of the s(p) orbital and

tsσ , tpσ (π ), and γsp are the two-center integrals [26] cor-
responding to the nearest-neighbor hopping between s or-
bitals, p orbitals through σ (π ) bond, and between s and
p orbitals, respectively. Numerical values of parameters
are chosen as Eon

s = −1.0, Eon
p = 1.0, tsσ = −0.25, tpσ =

0.6 (0.1), tpπ = −0.15 (0.1), γsp = 0.5, λ = 0.1, and �ex =
0.1, all in units of eV. Values in parentheses correspond to the
system without orbital anisotropy. Note that Es < Ep resem-
bles the orbital level of ferromagnetic metals (3d < 4s < 4p).

APPENDIX B: SPHERICAL COORDINATES

For a given Bloch momentum k, one can uniquely de-
fine the two angles θk = cos−1 kz/|k| and φk = arg (kx + iky).
Then, we can define the three unit vectors (k̂, θ̂k, φ̂k ) for a
spherical coordinate system, where

k̂ = (sin θk cos φk, sin θk sin φk, cos θk ),

θ̂k = (cos θk cos φk, cos θk sin φk,− sin θk ),

φ̂k = (− sin φk, cos φk, 0). (B1)

Let |kpσ 〉 = (|kpσ
x 〉 , |kpσ

y 〉 , |kpσ
z 〉) be a three dimensional

vector consisting of p orbital states where σ = ↑,↓. Note that
|kαβ〉 ≡ |ψk

αβ〉, where α = s, px, py, pz and β = ↑,↓. Then

|kpσ
k〉 = |kpσ 〉 · k̂ is the radial orbital and |kpσ

θk
〉 = |kpσ 〉 · θ̂k

and |kpσ
φk

〉 = |kpσ〉 · φ̂k are tangential orbitals. Therefore, the
orbital part of the Hamiltonian is written as

HL = Es(k) |ksσ 〉 〈ksσ | + Epr (k)
∣∣kpσ

k

〉 〈
kpσ

k

∣∣
+ Ept (k)

( ∣∣kpσ
θk

〉 〈
kpσ

θk

∣∣ + ∣∣kpσ
φk

〉 〈
kpσ

φk

∣∣ ). (B2)

The orbital angular momentum operator L is also rewritten
in spherical coordinates as

L · k̂ = ih̄
∣∣kpσ

φk

〉 〈
kpσ

θk

∣∣ − ih̄
∣∣kpσ

θk

〉 〈
kpσ

φk

∣∣,
L · θ̂k = ih̄

∣∣kpσ
k

〉 〈
kpσ

φk

∣∣ − ih̄
∣∣kpσ

φk

〉 〈
kpσ

k

∣∣, (B3)

L · φ̂k = ih̄
∣∣kpσ

θk

〉 〈
kpσ

k

∣∣ − ih̄
∣∣kpσ

k

〉 〈
kpσ

θk

∣∣,
which gives the effective SOC in the basis
(|ksσ 〉 , |kpσ

k〉 , |kpσ
θk

〉 , |kpσ
φk

〉) as

HSO = −λ

h̄
L · m

= −λ

⎛
⎜⎝

0 0 0 0
0 0 −imφk imθk

0 imφk 0 −imk
0 −imθk imk 0

⎞
⎟⎠, (B4)

where m = mkk̂ + mθk θ̂k + mφk φ̂k.
Another useful basis is given by a linear combination of the

tangential orbitals. Defining |kpσ
±〉 = (|kpσ

θk
〉 ± i |kpσ

φk
〉)/

√
2,

the off-diagonal components in the tangential orbitals are
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eliminated. In the basis (|ksσ 〉 , |kpσ
k〉 , |kpσ

−〉 , |kpσ
+〉),

HSO = −λ

⎛
⎜⎝

0 0 0 0
0 0 m−,k im+,k
0 m+,k −mk 0
0 −im−,k 0 mk

⎞
⎟⎠, (B5)

where m±,k = (mθk ± imφk )/
√

2.

APPENDIX C: EXACT EXPRESSION OF S

The exact expression of S satisfying [H0,S] = H1 without small λ approximation is given by

S =
(

0 S2×2

−S†
2×2 0

)
,

S2×2 = λ

⎛
⎝ iγspm−,k

(Epr−Ept −λmk )(Ept −Es+λmk )+γ 2
sp

− γspm+,k

(Epr−Ept +λmk )(Ept −Es−λmk )+γ 2
sp

− m−,k (Ept −Es+λmk )
(Epr−Ept −λmk )(Ept −Es+λmk )+γ 2

sp
− im+,k (Ept −Es−λmk )

(Epr−Ept +λmk )(Ept −Es−λmk )+γ 2
sp

⎞
⎠. (C1)

APPENDIX D: DERIVATION OF EQ. (14)

We rewrite Eq. (12) as

σ = e2τ

V
Im

∑
k

v0,x(k)2

EF − E0(k) − iε
, (D1)

for an infinitesimal ε > 0. Here we take the single s band
(n = 0) only as mentioned in the main text. We assume that
E0,0(k) and E0,2(k) are spherically symmetric and quadratic
in k. Then, we may write

E0(k) = ak2 + b(m · k)2, (D2)

v0,x(k) = 2a

h̄
kx + 2b

h̄
mx(m · k), (D3)

where E0,0(k) = ak2 and E0,2(k) = bk2 for a positive a. Since
b ∝ λ2γ 2

sp, we keep first order contributions from b only. After

some algebra,

σ = e2τ

V
Im

∑
k

4ak2

3h̄2

a + 2bm2
x

EF − ak2 − iε

= 4ae2τ

3h̄2V

(
a + 2bm2

x

)∑
k

k2δ(EF − ak2)

= 2ae2τ

3h̄2π2

(
a + 2bm2

x

) ∫
dk k4δ(EF − ak2)

= e2τ

3h̄2π2

(
a + 2bm2

x

) ∫
dk k3δ(kF − k)

= e2τ

3h̄2π2

(
a + 2bm2

x

)
k3

F

= e2τkF

3h̄2π2

[
EF + 2E0,2(kF )m2

x

]
, (D4)

where kF = √
EF /a.
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