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Spin pumping into a spin glass material
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Spin pumping is a recently established means for generating a pure spin current, whereby spins are pumped
from a magnet into the adjacent target material under the ferromagnetic resonance condition. We theoretically
investigate the spin pumping from an insulating ferromagnet into spin glass materials. Combining a dynamic
theory of spin glasses with the linear-response formulation of the spin pumping, we calculate temperature
dependence of the spin pumping near the spin glass transition. The analysis predicts that a characteristic peak
appears in the spin pumping signal, reflecting that the spin fluctuations slow down upon the onset of spin freezing.
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I. INTRODUCTION

Spin current is a flow of spin angular momentum [1]. Over
the last two decades, great progress has been made in gener-
ating, manipulating, and detecting the spin current [2,3]. With
regard to the spin current generation, as nicely reviewed in
Ref. [4], the spin pumping is now established as a charge-free
and versatile means [5–8]. In this method a pure spin current,
which is unaccompanied by a charge current, is pumped from
a ferromagnet into the adjacent spin sink material by a stim-
ulus of microwaves satisfying the ferromagnetic resonance
(FMR) condition. Thanks to the advent of the spin pumping
technique, the spin current physics has so far been investi-
gated in a variety of spin sink materials, ranging from non-
magnetic metals [9–13], semiconductors [14–16], magnetic
metals [17–19], insulators [20], to more exotic systems such
as graphene [21–23], transition metal dichalcogenides [24],
organic materials [25,26], and strongly spin-orbit coupled
materials [27,28].

Recently, the playground of the spin current physics has
been extended to disordered magnets or the so-called spin
glass (SG) materials [29,30]. The SGs are characterized by
a freezing of random spins [31], and its nature has long been
studied both experimentally and theoretically [32]. However,
despite its long history of research, the interplay of spin
current and the SG ordering has not yet been well examined.
Thus, it is quite natural to ask what happens if we inject a
pure spin current into a SG material by the spin pumping.
Experimentally, the spin pumping into a SG material was
reported in 2011 using a Ag90Mn10/Ni81Fe19 bilayer [33]. To
the best of our knowledge, however, no theoretical work on the
spin pumping into SG materials can be found in the literature.
Therefore, developing a theory of spin pumping into the SG
material is highly desirable.

In this paper we theoretically investigate the spin pumping
into SG materials. Although a metallic magnet Ni81Fe19 was
used as the spin injecting magnet in the previous experi-
ment [33], we consider here an insulating ferromagnet such

as yttrium iron garnet for the spin injector, since it makes the
spin pumping signal more visible. Our strategy to calculate
the spin pumping into SG materials is as follows. First, we
use a linear-response approach to the spin pumping [34,35].
The notion derived from the linear response approach, that
the spin pumping is intimately related to the dynamic spin
susceptibility of the spin sink layer, has successfully been
applied to the spin pumping into a ferromagnet [36], antifer-
romagnets [37,38], and recently it was also applied to the spin
pumping into superconductors [39–41]. Thus, we relate the
spin pumping signal to the dynamic spin susceptibility of the
SG layer. Next, we calculate the susceptibility of the SG layer
by employing a dynamic theory of SGs [42,43]. Not only that
this theory is known to be an alternative formulation of the
static replica theory [44–47], but also that the dynamic theory
is more suitable to discuss the dynamic quantity such as the
dynamic spin susceptibility [48].

In the literature, the dynamic spin susceptibility near the
SG transition was calculated [48], but the result was limited to
the Ising case and to an extremely low-frequency regime less
than 10 kHz, which is out of the FMR condition. In the present
paper we extend the susceptibility calculation of Ref. [48] to
the Heisenberg case and GHz frequency regime that is rele-
vant to spin pumping experiments, and calculate temperature
dependence of the spin pumping into SG materials. With this
we show that a characteristic peak structure appears near the
SG transition, which is a consequence of the slowing down of
spin fluctuations that is concomitant with the spin freezing of
the system.

The plan of this paper is as follows. In the next section we
introduce our microscopic model, and relate the spin pumping
with the dynamic spin susceptibility of impurity spins. In
Sec. III, on the basis of the dynamic theory of SGs, we explain
how to calculate the dynamic spin susceptibility of impurity
spins. In Sec. IV the spin pumping signal into a SG material is
calculated as a function of temperature. Finally, in Sec. V we
discuss and summarize our results.
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FIG. 1. Schematics of the system considered in this paper, where
the bilayer is composed of a SG material and a ferromagnetic
insulator (FI). Here σ and S are, respectively, the conduction-electron
spin and the impurity spin in the SG layer, and � is the localized spin
in the FI layer. A spin current with a helicity opposite to � flows from
the FI layer to the SG layer.

II. MODEL

We consider a bilayer composed of a ferromagnetic in-
sulator (FI) and a SG material, as shown in Fig. 1. More
concretely, we may think of yttrium iron garnet (YIG) for
the FI layer and Mn-doped Cu (Cu:Mn) for the SG layer. We
assume that a static magnetic field H0 = H0ẑ is applied to the
FI/SG bilayer in the lateral direction, and that the anisotropy
field is much smaller than H0 such that it can be discarded.

We start from the following Hamiltonian:

H = HSG + HFI−SG, (1)

where the first term

HSG =
∑

p

ξpc†pcp + JeS

∑
ra

σ(ra) · S(ra) (2)

describes the SG layer [49,50]. Here the first term on the right-
hand side describes the conduction electron kinetic energy,
and the second term the coupling between the conduction
electron spin and magnetic impurity at an impurity position
ra, where JeS is the sd-type exchange coupling. Here c†p =
(c†p,↑, c†p,↓) is the electron creation operator for spin projection

↑ and ↓, S is an impurity spin, σ(r) = c†(r)σ̂c(r) is the spin
density operator with σ̂ being the Pauli matrices, and c(r) =
N−1/2

SG

∑
p cpeip·r with NSG being the number of lattice sites at

the SG layer.
The second term of Eq. (1),

HFI−SG = Jint

∑
rint

σ(rint ) · �(rint ), (3)

describes the interaction between the FI and SG layers. Here
Jint is the interfacial sd coupling between the conduction
electron spins in the SG and the localized spins in the FI,
where rint is a position at the FI/SG interface.

In order to investigate the spin pumping in the present
system, we use the linear-response formulation of the spin
pumping [34,35]. We consider the situation where an exter-
nal microwave with the angular frequency ωac is applied to
the FI/SG bilayer that drives the FMR of the FI side. The

SG

FI

FIG. 2. Diagrammatic representation of the magnon self-energy
giving the spin pumping signal. Here χ (σ ) is the dynamic spin
susceptibility of conduction-electron spins, whereas χ (S) is that of
impurity spins.

linear-response formulation uses the following magnon lan-
guage. In the absence of the adjacent SG layer, the uniform-
mode (Kittel mode) magnon has an intrinsic damping rate
α0ωac, where α0 is the intrinsic Gilbert damping constant. In
the presence of the SG layer, since the spin-relaxation rate
due to the SG layer is additive and hence an additional spin
dissipation channel opens, there arises an additional magnon
damping rate. Therefore, the total Gilbert damping constant α

for the bilayer is given by

α = α0 + δα, (4)

where δα is the additional Gilbert damping constant. The
relationship between this additional Gilbert damping constant
and the spin current Is pumped into the SG layer with z-axis
polarization is given by [34]

Is = δα
γ h̄

MsV

ωac(γ hac)2

(γ H0 − ωac)2 + (α0ωac)2
, (5)

where γ is the gyromagnetic ratio, Ms is the saturation mag-
netization, V is the volume of the magnet, and hac is the
amplitude of the external microwave.

According to the linear-response formulation [34,35], the
additional magnon damping rate can be calculated from the
corresponding magnon self-energy 	(ω) whose process in-
volves the spin transfer across the interface (Fig. 2). In the
present situation, up to the lowest order with respect to Jint ,
the self-energy is given by

	(ω) = − J2
intNint

h̄2NSGNFI

∑
q

χ (σ )
q (ω)JeSχ

(S)
q (ω)JeSχ

(σ )
q (ω), (6)

where Nint is the number of the localized spins � at the FI/SG
interface, and NFI is the number of lattice sites in the FI layer.
In the above equation, χ (σ )

q (ω) is the Fourier transform of
the retarded susceptibility of the conduction-electron spin σ,
i.e., χ (σ )

q (t − t ′) = i
(t − t ′)〈[σ−
q (t ), σ+

−q(t ′)]〉, where 
(t ) is
the step function and we defined O± = Ox ± iOy for a vector
operator O. By contrast, χ (S)

q (ω) is the Fourier transform
of the retarded susceptibility of the impurity spin S, i.e.,
χ (S)

q (t − t ′) = i
(t − t ′)〈[S−
q (t ), S+

−q(t ′)]〉.
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Using the relation δα = −ω−1
ac Im	(ωac) [34], the addi-

tional Gilbert damping constant δα is expressed as

δα ≈ J2
intNint

h̄2NFI

(
χ

(σ )
0 JeS

)2 1

ωac
Imχ

(S)
loc (ωac), (7)

where we introduced a shorthand notation χ
(σ )
0 = χ

(σ )
q=0(ω =

0), and χ
(S)
loc (ω) = N−1

SG

∑
q χ (S)

q (ω) is the local susceptibility
of impurity spins. In obtaining the above result, we made use
of the fact that χ

(S)
loc (ω) is defined in a small q region q � 2π/b

where b is the average distance of two magnetic impurities. In
this small q region, the conduction-electron spin susceptibility
is approximated by the uniform and static component χ

(σ )
0 ,

where this quantity is pure real.
Equation (7) means that the additional Gilbert damping

constant δα due to the spin pumping is proportional to the
imaginary part of the dynamic spin susceptibility χ

(S)
loc (ω). In

this expression, the strongest temperature dependence upon
the SG transition results from the imaginary part of the
dynamic spin susceptibility Im[χ (S)

loc (ω)]. This means that, as
long as the temperature dependence is concerned, the part
other than Im[χ (S)

loc (ω)] can be regarded as being temperature
independent, and the temperature dependence is dominated
by that of Im[χ (S)

loc (ω)]. We adopt this approximation in the
numerical calculation in Sec. IV.

The quantity χ
(S)
loc (ω) is a correlation function between

two impurity spins, and hence it can be evaluated using our
knowledge on SGs. In the next section we evaluate χ

(S)
loc (ω)

using a dynamic theory of SGs [42,43].

III. DYNAMIC SPIN SUSCEPTIBILITY
OF IMPURITY SPINS

In this section, by employing a dynamic theory of
SGs [42,43], we sketch our procedure for calculating the
dynamic spin susceptibility χ

(S)
loc (ω) appearing in the spin

pumping signal [Eq. (7)]. We emphasize that we use the
dynamic model of the Heisenberg spin glasses developed by
Sompolinsky and Zippelius [43], which is constructed on top
of a similar dynamic theory of Ising spin glasses [42].

We first integrate out the conduction-electron degrees of
freedom in the Hamiltonian for the SG layer HSG. Then, HSG

is transformed into the following form [49,50]:

HSG = 1

2

∑
i �= j

Ji jS(ri ) · S(r j ), (8)

where Ji j is nominally the RKKY interaction of the form Ji j =
JeS cos(2kFri j )/r3

i j with ri j = |ri − r j |. However, following
the standard approach to the SG problem [32], we regards Ji j

as Gaussian random variables with zero mean and variance
[J2

i j]av = J2/NS , where [· · · ]av means the random average over
the distribution of Ji j , and NS is the number of impurity spins.

Hamiltonian HSG in Eq. (8) is the same as the vector spin
version [51] of the Sherrington-Kirkpatrick (SK) model [45],
so that we employ the established dynamical approach. Fol-
lowing Sompolinsky and Zippelius [43], we first replace HSG

with its soft-spin version:

βH̃SG = 1

2

∑
α

∑
i j

(r0δi j − βJi j )S
α
i Sα

j − β
∑

i

hα
i Sα

i , (9)

where β = 1/kBT is the inverse temperature, and each com-
ponent of the soft spin varies −∞ < Sα

i < ∞, where the
Greek superscript α = x, y, z specifies the direction in spin
space. Here we consider a paramagnet/SG transition by ig-
noring any tendency to ferromagnetic order, such that r0 in
Eq. (9) is chosen to be a positive constant. Next, we introduce
the Langevin dynamics

−1
0 ∂t S

α
i = −∂ (βH̃SG)

∂Sα
i

+ ξα
i (t ), (10)

where 0 is the bare relaxation rate. In the above equation,
ξα

i (t ) is a thermal noise represented by a Gaussian random
variable with zero mean and variance〈

ξα
i (t )ξα′

j (t ′)
〉
ξ
= 2−1

0 δi jδα,α′δ(t − t ′), (11)

where 〈· · · 〉ξ means the average over ξα
i . In the following

calculation the response function

Gαα′
i j (t − t ′) =

[
∂
〈
Sα

i (t )
〉
ξ

∂hα′
j (t ′)

]
av

(12)

plays an important role. This is because the spin susceptibility
can be calculated by the relation

χαα′
i j (ω) = βGαα′

i j (ω), (13)

where Gαα′
i j (ω) is the Fourier transform of Gαα′

i j (t − t ′). Be-
sides, we need to define the correlation function

Cαα′
i j (t − t ′) = [〈

Sα
i (t )Sα′

j (t ′)
〉
ξ

]
av. (14)

To proceed further, we precisely follow the procedure of
Refs. [42,43,52], which involves a lots of technical algebra.
Since reviewing the details of Refs. [42,43,52] is beyond
our scope, we leave it to the original paper and a famous
textbook [53], and we briefly sketch the derivation of the
self-consistent dynamical equation in the mean-field limit.
First, we rewrite Eq. (10) in terms of a generating functional,
and introduce an auxiliary field Ŝα

i as was done by Martin,
Siggia, and Rose [54]. Next, this generating functional is
averaged over Ji j without using replicas [55], which generates
temporally nonlocal quartic interactions among Sα

i and Ŝα′
i .

Then we introduce new auxiliary fields Qαα′
1 , Qαα′

2 , Qαα′
3 , and

Qαα′
4 to decouple the quartic terms, and we evaluate the

functional integral by using the saddle-point approximation.
Following the above procedure, we obtain the new equation

of motion for Sα
i containing the local self-interaction, which in

the frequency space is written as

− iω

0
Sα (ω) =

∑
α′

{[−r0 + βhα (ω)]δαα′

+ (βJ )2Gαα′
(ω)}Sα′

(ω) + φα (ω), (15)

where Gαα′
(ω) is the local response function Gαα′

ii (ω). Here
and hereafter, the site index i is discarded. In the above
equation, φα is a new noise field satisfying

〈φα (ω)φα′
(ω′)〉φ = 2πδ(ω + ω′)

[
2δαα′

0
+ (βJ )2Cαα′

(ω)

]
,

(16)
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where Cαα′
(ω) is the Fourier transform of the local correlation

function Cαα′
ii (t − t ′), and 〈· · · 〉φ is the average over φα (ω).

In the approach by Sompolinsky and Zippelius [43] the
weak external-field limit was considered, such that after
the random average, physical quantities are diagonal in
spin space. Therefore, the local correlation function is sep-
arated as C(t ) = q + �C(t ), where Cαα′

(t ) = C(t )δαα′ and
q = C(t )|t→∞. In parallel with this separation, the noise field
φα is divided into two parts,

φα (ω) = f α (ω) + uα (ω), (17)

where the first term f α (ω) satisfies

〈 f α (ω) f α′
(ω′)〉 = 2πδ(ω + ω′)δαα′

[
2

0
+ (βJ )2�C(ω)

]
,

(18)

with 〈· · · 〉 being the usual thermal average over f α (ω),
whereas the second term uα (ω) satisfies

[uα (ω)uα′
(ω′)]u = (2π )2δ(ω + ω′)δ(ω)δαα′ (βJ )2q, (19)

where [· · · ]u is the average over uα (ω).
From Eqs. (18) and (19) we find that f α (ω) is a usual

thermal fluctuation, whereas uα (ω) represents a frozen ran-
dom field that breaks the ergodicity. Since uα acts as a
static random field, Sompolinsky and Zippelius introduced the
“unaveraged” response function over u:

gαα′
(ω, u) = ∂〈Sα (ω)〉

∂hα′ (ω)
, (20)

where gαα′
(ω, u) is related to Gαα′

(ω) through

Gαα′
(ω) = [gαα′

(ω, u)]u. (21)

Note that the average over u is separated as

[· · · ]u = [[· · · ]û]u, (22)

where [· · · ]û means the angular average over a unit vector û =
u/u, and from Eq. (19) the average of a quantity Q(u) over u
is given by

[Q(u)]u =
∫ ∞

0

4πu2du

[2π (βJ )2q]3/2
e−u2/[2(βJ )2q]Q(u). (23)

Now we discuss the Dyson equation for gαα′
(ω, u). In

doing so, we introduce the matrix notation ǧ(ω, u), where the
matrix element of ǧ(ω, u) equals gαα′

(ω, u), i.e.,

ǧ(ω, u) = (gαα′
(ω, u)). (24)

With this matrix notation the Dyson equation for g(ω, u),
which results from Eq. (15) with static random field u, is given
by

ǧ(ω, u)−1 = Ǧ(0)(ω)−1 − 	̌(ω, u), (25)

where the bare propagator is given by Ǧ(0)(ω)−1 = [r0 −
iω/0 − (βJ )2G(ω)]1̌, and 	̌(ω, u) is the self-energy com-
ing from the frozen u field. Since we are interested in the
dynamic behavior of Ǧ(ω), we solve the Dyson equation
by perturbation with respect to �Ǧ(ω) = Ǧ(ω) − Ǧ(0). We
define η̌(ω, u) = iω/0 + (βJ )2�Ǧ(ω) − �	̌(ω, u), where

�	̌(ω, u) = 	̌(ω, u) − 	̌(0, u), and rewrite the Dyson equa-
tion as ǧ(ω, u)−1 = ǧ(0, u)−1 − η̌(ω, u). To proceed further,
we disregard �	̌(ω, u) as it brings only a small change [48].
This allows us to regard η̌(ω, u) as u independent, and the
matrix η̌ becomes diagonal in spin space, i.e., η̌(ω) = η(ω)1̌.
Then, after expanding the Dyson equation up to η̌2 and
averaging the result over u, we obtain a quadratic equation
for �Ǧ(ω) = �G(ω)1̌:

�G(ω)
[
1 − (βJ )2

[
ǧ2

0

]
u

]
=

(
i
ω

0
+ (βJ )2�G(ω)

)2[
ǧ3

0

]
u + i

ω

0

[
ǧ2

0

]
u, (26)

where we introduced the shorthand notation [ǧn
0]u =

[ǧ(0, u)n]u. Note that [ǧn
0]u is diagonal in spin space after

the average over u, such that it appears in Eq. (26) as a c
number. Equation (26) can be solved for �G(ω). After using
the relation in Eq. (13), we obtain

χ
(S)
loc (ω) = χ

(S)
loc (0) + T̃ /3

2
[
ǧ3

0

]
u

(
D −

√
D2 − i

4ω

0

[
ǧ2

0

]
u

[
ǧ3

0

]
u

)
,

(27)

where D = (T̃ /3)2 − [ǧ2
0]u − 2i(ω/0)[ǧ3

0]u, T̃ = T/Tg.
Note that, in contrast to the Ising spin glass [45], the
present Heisenberg spin glass has a transition temperature
Tg = J/3kB [51].

In the following calculation we take the mean-field approx-
imation of the classical Heisenberg spins under a frozen u
field. We use 〈Sα〉 = 〈S〉ûα and 〈SαSα′ 〉 = δαα′/3, where 〈S〉 =
coth(u) − 1/u is the Langevin function. Then, recalling that
[〈SαSα′ 〉]u = [〈S〉2]u[ûα ûα′

]û = [〈S〉2]uδαα′/3, the spin glass
order parameter q can be calculated from

q = 1
3 [〈S〉2]u, (28)

where the quantity [〈S〉2s]u is given by

[〈S〉2s]u =
∫ ∞

0

4πu2du

[2π (βJ )2q]3/2
e−u2/[2(βJ )2q]

×
(

coth(u) − 1

u

)2s

. (29)

In a similar manner we use [ǧ0]u = (1 − 3q)/3,
[ǧ2

0]u = (1 − 6q + 3[〈S〉4]u)/9, and [ǧ3
0]u = (1 − 9q +

9[〈S〉4]u − 3[〈S〉6]u)/27. At the SG transition, the
Almeida-Thouless condition [56] holds, which in the present
notation takes the form[

ǧ2
0

]
u = (T̃ /3)2. (30)

Then, following Sompolinsky and Zippelius [42] we assume
that Eq. (30) holds not only at Tg but also below Tg, meaning
that the SG phase is characterized by the marginal instability
condition.

IV. RESULTS FOR SPIN PUMPING INTO SPIN
GLASS MATERIALS

In this section, using the formalism developed in the pre-
vious two sections, we calculate temperature dependence of
the spin pumping signal. The key equation in the present
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FIG. 3. Static spin susceptibility χ
(S)
loc (0) as a function of temper-

ature calculated using Eq. (31).

argument is Eq. (7), which relates the spin pumping with the
dynamic spin susceptibility of SG materials.

Before presenting our results for the spin pumping that is
intimately related to the dynamic spin susceptibility χ

(S)
loc (ω), it

is instructive to examine the static spin susceptibility χ
(S)
loc (0).

This quantity can be calculated using [57]

χ
(S)
loc (0) = 1

3T̃
(1 − 3q), (31)

where the additional factor 3 follows from the relation
[gαα′

]u = δαα′ (1 − 3q)/3. Figure 3 shows the static spin sus-
ceptibility χ

(S)
loc (0) as a function of temperature, calculated

from Eq. (31). The result reproduces the well-known cusp
structure at Tg [45,51].

Now we discuss the spin pumping into a SG material. In
discussing the spin pumping signal in the present case, the
important parameter is the ratio of the microwave angular
frequency ωac to the relaxation rate of localized spins 0, i.e.,
ω̃ac ≡ ωac/0. Since the magnitude of ωac under the FMR
condition is of the order of 60 GHz, the parameter ω̃ac is de-
termined by a material parameter 0. The spin relaxation time
in a prototypical SG material Cu:Mn is reported to be of the
order of picosecond (corresponding to 0 ∼ 103 GHz) [58],
and hence the parameter ω̃ac under the FMR condition is
estimated to be ω̃ac ∼ 0.1. Note that the previous calculation
of the dynamic spin susceptibility [48] was done for very
low frequencies ω̃ac � 10−4, which is far out of the FMR
condition.

Figure 4 shows temperature dependence of the spin pump-
ing signal, calculated from Eqs. (7) and (27). First, we see that
a clear peak structure appears at Tg. Second, upon the increase
of the parameter ω̃ac, the height of the peak is reduced.
This is because the peak structure originates from the critical
slowing down of spins that develops on the verge of the spin
freezing [53], so that the effects of the slowing down are
more prominent when the paramagnetic state has a more rapid
dynamics (i.e., larger 0) in comparison to the spin frozen
state.

As shown in Fig. 4, the peak structure is visible for a
parameter region ω̃ac � 0.1. Since the parameter ω̃ac for a

FIG. 4. Temperature dependence of the additional Gilbert damp-
ing constant [Eq. (7)] in a SG/FI bilayer (Fig. 1), calculated for
several values of ω̃ac = ωac/0.

prototypical SG material Cu:Mn is estimated about ω̃ac ∼
0.1 [58] as mentioned above, we expect that we can observe a
peak structure in the spin pumping signal near Tg. Therefore,
we propose a spin pumping experiment for a Cu:Mn/YIG
system in order to test our theoretical prediction. Frequency
(ωac) dependence of the peak mentioned above, namely, the
lower the frequency ωac, the higher the peak, is a key to
identify the predicted signal.

V. DISCUSSION AND CONCLUSION

The main result of this paper is the theoretical prediction
that the spin pumping into a SG material, whose signal is
proportional to the additional Gilbert damping constant δα,
can be enhanced near the SG transition. The physics behind
this enhancement is explained in the following way. First, a
SG material exhibits the critical slowing down upon the spin
freezing [53], meaning that the spin relaxation rate of the SG
material is reduced. Then, recalling that the spin pumping rep-
resents an additional damping of magnons in the spin injecting
magnet, this type of enhancement in the spin pumping signal
can be interpreted as a kind of the inverse of the motional nar-
rowing [59,60] as discussed in Ref. [61] (see Sec. VI therein).
It means that a reduction of the spin relaxation rate in the spin
sink material results in a broadening of the magnon damping
in the adjacent magnet, leading to the enhancement of the spin
pumping.

The spin pumping has an advantage that it can measure
the dynamic spin susceptibility of a thin film sample. So
far this fact has been applied to the spin pumping into fer-
romagnets [34,36], antiferromagnets [37,38], and supercon-
ductors [39–41]. Extending the same idea to SGs within the
linear-response approach, we formulated the spin pumping
into a SG material, and shown that the signal is expressed
by using the local spin susceptibility of the SG material
[Eq. (7)]. Moreover, the spin pumping into a SG mate-
rial is predicted to exhibit a characteristic peak around Tg

(Fig. 4).
The height of the predicted peak in the spin pumping signal

is controlled by the ratio of the microwave angular frequency
to the relaxation rate of impurity spins, i.e., ω̃ac = ωac/0.
That is, a smaller ω̃ac is better for an experimental detection of
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the peak. Conversely, it means that if the parameter ω̃ac is too
large, the peak is not visible. To test our theoretical prediction,
we hope a future spin pumping experiment using an insulating
magnet with, e.g., Cu:Mn/YIG structure, since use of an
insulating magnet instead of a metallic magnet makes the spin
pumping signal more visible owing to the smallness of the
intrinsic Gilbert damping term α0.

Before the conclusion, we briefly comment on the previous
experiment of the spin pumping into a SG material using
Ag90Mn10/Ni81Fe19 [33]. In that experiment, the SG transi-
tion temperature is estimated to be Tg = 25 K from the cusp
in the susceptibility data of a thick Ag90Mn10 film. Note that
this thick film is different from the thin film used for the spin
pumping experiment. In the spin pumping experiment, a weak
temperature dependence of the signal was measured around
Tg, but no pronounced peak expected from the theoretical cal-
culation (Fig. 4) can be seen. The reason could be either (i) the
important parameter ω̃ac = ωac/0 is too large in Ag90Mn10

for the enhanced spin pumping to be detected (see Fig. 4), or
(ii) the SG transition temperature of the thin film sample is
much lower than 25 K, since the thin film may have lower Tg

than the thick film used to determine Tg = 25 K.
To conclude, we have theoretically examined the spin

pumping into a SG material. We have shown that the temper-
ature dependence exhibits a characteristic peak near the SG
transition, whose height is controlled by the dimensionless
angular frequency ω̃ac = ωac/0. This is a consequence of
the critical slowing down of spin fluctuations upon the spin
freezing. Since the spin pumping has an advantage of being
able to measure the spin dynamics of a thin film sample [39],
we hope that the present theory stimulates further experiments
of the spin pumping into SG materials.

ACKNOWLEDGMENT

This work was financially supported by JSPS KAKENHI
Grant No. 19K05253.

[1] S. Maekawa, H. Adachi, K. Uchida, J. Ieda, and E. Saitoh, Spin
current: Experimental and theoretical aspects, J. Phys. Soc. Jpn
82, 102002 (2013).
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