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Recent experiments demonstrate that antiferromagnets exhibit the spin Hall effect. We study a tight-binding
model of an antiferromagnet on a square lattice with Rashba spin-orbit coupling and disorder. By exact
diagonalization of a finite system connected to reservoirs within the Landauer-Büttiker formalism, we compute
the transverse spin Hall current in response to a longitudinal voltage difference. Surprisingly, the spin Hall
conductance can be considerably larger in antiferromagnets than in normal metals. We compare our results
to the Berry-phase-induced spin Hall effect governed by the intrinsic contribution in the Kubo formula. The
Berry-phase-induced intrinsic spin Hall conductivity in bulk systems shows the opposite behavior. The intrinsic
spin Hall effect is drastically reduced when the exchange couplings become large.
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I. INTRODUCTION

The spin Hall effect (SHE), first predicted by Dyakonov
and Perel in 1971 [1,2], is one of the cornerstone phenomena
in spintronics, as it generates spin currents from charge cur-
rents [3,4]. The inverse spin Hall effect (ISHE) enables the
detection of spin currents in spintronic devices. The SHE and
ISHE are crucial for and facilitate the generation and control
of spin currents in current-induced magnetization dynamics
[5–7] and provide a way to measure such spin dynamics
[8–10]. Nonlocal measurements of spin transport in insulators
use the SHE as an injection method and the ISHE as a detec-
tion mechanism [11–13]. Normal metals (NMs) [14–17] and
semiconductors [2,18–21] with spin-orbit coupling (SOC) are
widely used for manifestation of the SHE. Studies of the SHE
in superconductors [22–26], topological insulators [27], and
ferromagnets [28,29] have also been performed. Recently, the
SHE has been observed in antiferromagnets (AFs) [30–32].
However, only a limited number of studies on the SHE in
AFs [33] have been performed, and a broader understanding
is needed to realize its potential.

AFs have attractive features for spintronics [34,35]. The
net magnetic moment vanishes such that AFs do not produce
stray fields. Therefore, the spin configuration is protected
against external magnetic field disturbances [36]. Even so,
AFs strongly couple to currents and other materials in many
ways [37–42]. Long-range spin transport has been demon-
strated in AF insulators [13]. Ultrafast spin dynamics have
been detected via spin pumping and the ISHE [43,44]. The
terahertz dynamics of AFs can enable high-speed circuits
[45,46]. Ultrafast current-induced switching via spin-orbit
torques [47–49], in combination with nonvolatile magnetic
states, makes AFs suitable for information-dense memory
devices [50–53].

Several different mechanisms contribute to the SHE. Dis-
tinguishing the different contributions is challenging. His-
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torically, it was proposed that the processes that govern the
SHE also described a closely related phenomenon, namely
the anomalous Hall effect (AHE) [54,55]. In the AHE, a
longitudinal charge current induces a transverse charge cur-
rent. The AHE appears in systems with SOC and broken
time-reversal symmetry (e.g., ferromagnets). Based on semi-
classical models, and borrowing the nomenclature from the
AHE, it is common to separate the spin Hall conductivity
as σsH = σ int

sH + σ side
sH + σ skew

sH . The three terms denote the
intrinsic spin Hall conductivity, the side-jump contribution
[56], and the skew scattering contribution [57]. The intrin-
sic spin Hall conductivity σ int

sH stems from the bulk band
structure in the absence of scattering, expressed as a Berry-
phase term in the Kubo formula [4]. The contributions from
side-jump scattering and skew scattering are called extrin-
sic, as they are induced by impurity scattering. Semiclas-
sical wave-packet dynamics can also describe the differ-
ent terms in the spin Hall conductivity [58,59]. Within the
microscopic Kubo-Streda perturbation theory, the intrinsic,
side-jump, and skew contributions to the spin Hall conduc-
tivity correspond to different types of Feynman diagrams
[60].

The intrinsic spin Hall conductivity is relatively simple to
evaluate even for complex band structures. In materials with
strong SOC, the intrinsic contribution sometimes dominates
the SHE. Calculations based only on the intrinsic spin Hall
conductivity have given quantitative predictions for the SHE
in Pt [61] and other transition metals [62]. However, both
the intrinsic contribution and the side-jump contribution are
independent of the mean free path, and distinguishing between
the two contributions is not necessarily straightforward. Fur-
thermore, other contributions can be relevant depending on
the materials and scattering lifetimes.

In the well-studied Rashba model [63], a two-dimensional
electron gas with parabolic bands and linear-in-momentum
Rashba spin-orbit coupling (RSOC), the intrinsic spin Hall
conductivity attains a universal value [64]. However, vertex
corrections exactly cancel this contribution, and the SHE
vanishes [65–69]. This cancellation between the intrinsic part
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and the side-jump contribution is quite accidental within the
Rashba model [70].

Another way of determining the SHE is by considering
mesoscopic systems as a multiterminal scattering problem
[71]. Within numerically exact methods we can include dis-
order to all orders. Typically, the spin Hall conductance is
evaluated by computing the resulting transverse spin currents
in leads in response to a longitudinal voltage difference [72].
Computations on the mesoscopic spin Hall conductance in
NMs with RSOC show that the SHE is quite robust to spin-
conserving disorder, and the magnitude of the SHE varies for
different system parameters [72–75].

Our aim is to shed light on the SHE in AFs. A key question
is how the exchange interaction affects the magnitude of the
SHE. Furthermore, it is of interest to see if calculations of
the Berry-phase-induced intrinsic contribution to the spin Hall
conductivity captures the main quantitative and qualitative
effects of the staggered field. To address these questions, we
consider AFs with RSOC on a square lattice. We investigate
the contributions to the SHE in AFs by calculating the SHE
in two ways. First, we calculate the mesoscopic spin Hall
conductance in a four-terminal system for an AF with RSOC
and spin-conserving disorder by using an exact numerical
diagonalization. Second, we compare these results to the
intrinsic spin Hall conductivity (the Berry phase contribution),
which is calculated from the linear response Kubo formula of
a bulk system in the absence of disorder.

The remainder of this work is organized as follows. In
Sec. II we present our model for the mesoscopic spin Hall
conductance gsH describing AFs and NMs. In Sec. III we
calculate the intrinsic spin Hall conductivity σsH from the
Kubo formula. In Sec. IV we present numerical results for
gsH in AFs with spin-conserving disorder, and we compare
the mesoscopic spin Hall conductance with the Berry-phase-
induced intrinsic spin Hall conductivity σsH. Finally, we dis-
cuss and summarize our results in Sec. V.

II. MESOSCOPIC SPIN HALL CONDUCTANCE

We study a four-terminal system within the Landauer-
Büttiker formalism [71]. The system includes an AF with
RSOC confined to a finite size scattering region connected to
four leads. The leads are NMs. Each lead connects to out-of-
equilibrium reservoirs. In the reservoirs, the distributions of
the electrons are controlled by externally applied voltages Vl ,
where l = 0, 1, 2, and 3 labels each terminal (or, equivalently,
left, right, top, and bottom), as shown in Fig. 1. The temper-
ature of each reservoir is zero. Using the scattering matrix
of the system, we can calculate the charge currents Ic

l and
spin currents Is

l in each lead l driven by the electric potentials
in the reservoirs. The spin current is polarized and has three
components, Is

l = (Is,x
l , Is,y

l , Is,z
l ).

We assume that transport is in the linear regime. The
electric potentials Vl are as follows (see Fig. 1). A potential
difference �V = V1 − V0 exists between the right and left
reservoirs, with V1 = �V/2 and V0 = −�V/2. The electric
potentials in the top and bottom terminals are set to zero:
V2 = 0 and V3 = 0. The potential difference �V drives charge
currents, which, via SOC, induce transverse spin currents.

V2 = 0

V3 = 0

V0 = −ΔV
2 V1 = ΔV

2

x̂

ŷ

ẑ

FIG. 1. Four-terminal scattering problem. The scattering region
includes RSOC and antiferromagnetically ordered localized spins.
The localized spins of nearest neighbors point in opposite directions,
as shown by the blue and red arrows. The scattering region has area
L2 and is connected to four NM leads. The leads are labeled l =
0, 1, 2, and 3, which correspond to the left, right, top, and bottom
leads, respectively. Each lead is in contact with an out-of-equilibrium
reservoir, where the electric potential is Vl for l = 0, 1, 2, and 3.

In the Landauer-Büttiker formalism, the out-of-equilibrium
charge currents Ic

l from lead l into the scattering region are
expressed as

Ic
l = e2

2π h̄

∑
l ′

(gl ′lVl − gll ′Vl ′ ), (1)

where gll ′ is the dimensionless electrical conductance from
lead l ′ to lead l , and the sum is over all leads l ′. Here h̄ is
the reduced Planck constant, and −e is the electron charge.
In linear transport, the conductances are evaluated at the
Fermi energy EF. The scattering matrix is unitary, and charge
currents are conserved.

To calculate spin currents, one can introduce spin-resolved
conductances gll ′ → gss′

ll ′ . In this notation, gss′
ll ′ is the conduc-

tance for spin s′ originating in lead l ′ transferred to spin s in
lead l [72]. The spin is either s =↑ or s =↓ along a chosen
quantization axis in the corresponding lead. The electrical
conductances are related to the spin-resolved conductances as

gll ′ = g↑↑
ll ′ + g↑↓

ll ′ + g↓↑
ll ′ + g↓↓

ll ′ . (2)

The spin currents in the leads can be expressed in a form
similar to Eq. (1) by defining the spin-resolved quantities

gout
ll ′ = g↑↑

ll ′ − g↑↓
ll ′ + g↓↑

ll ′ − g↓↓
ll ′ , (3a)

gin
ll ′ = g↑↑

ll ′ + g↑↓
ll ′ − g↓↑

ll ′ − g↓↓
ll ′ . (3b)

The out-of-equilibrium spin current Is,z
l in lead l is

Is,z
l = (−e)

4π

∑
l ′ �=l

(
gout

l ′l Vl − gin
ll ′Vl ′

)
, (4)
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with a flow direction towards the scattering region. Similarly,
we calculate Is,x

l and Is,y
l by changing the spin quantization

axes.
Correspondingly, the spin Hall conductance has three po-

larization components gx
sH, gy

sH, and gz
sH. In an NM, the

polarization of the spin Hall current is transverse to both the
charge current and spin flow directions, so gx

sH and gy
sH vanish.

Therefore, we mostly focus on gz
sH. gx

sH and gy
sH provide

additional information in magnetic systems.
We only include out-of-equilibrium spin currents in the

SHE. Our definition for the spin Hall conductance gz
sH is

gz
sH = 4π

(−e)

( − Is,z
2 + Is,z

3

)
2�V

. (5)

Similar expressions can be found for gx
sH and gy

sH. In Eq. (5),
−Is,z

2 is the spin current flowing into the top lead, and Is,z
3

flows from the bottom lead into the scattering region. The
distribution of the electric potentials and the spin Hall current
definition in Eq. (5) result in pure spin currents in the top (l =
2) and bottom (l = 3) leads. More asymmetric geometries and
heavy disorder can induce finite charge currents in the top and
bottom leads, which we do not consider. By using Eqs. (3)
and (4), the spin Hall conductance defined in Eq. (5) takes the
explicit form

gsH = 1

4

[ − (
gin

2,0 − gin
2,1

) + (
gin

3,0 − gin
3,1

)]
, (6)

where we omit the label for the spin polarization direction.
We consider a tight-binding model on a square lattice with

lattice constant a. The scattering region is quadratic and of
area L2 in terms of the length L = Na, where N is the number
of sites in one direction. The four leads are attached to each
side of the scattering region. The width of each lead is L.
The RSOC and localized AF spins are present only in the
scattering region. The leads are NMs described by the nearest-
neighbor hopping parameter t .

We denote operators and unit vectors with a hat. We define
the operator

ĉ†r = (ĉ†r↑ ĉ†r↓) (7)

in terms of the creation (annihilation) operator ĉ†rs (ĉrs) for
an electron at position r with spin s =↑ or s =↓. The itin-
erant spin density operator is ŝr = (h̄/2)ĉ†r σĉr, where σ =
(σx, σy, σz) is the vector of Pauli matrices.

In the scattering region, the itinerant electrons are de-
scribed by the real-space Hamiltonian Ĥ = ∑

r Ĥr, with

Ĥr = −t
∑

δ=±δx,±δy

ĉ†r ĉr+δ − JsdSr · ŝr + V imp
r ĉ†r ĉr

+ λR

2a
[i(ĉ†r σyĉr+δx − ĉ†r σxĉr+δy ) + H.c.], (8)

where t is the hopping energy and the sum (δ = ±δx,±δy)
is over nearest neighbors, with δ indicating hopping across
distances δx = ax̂ and δy = aŷ in the two spatial directions.
In Eq. (8), Jsd parametrizes the exchange coupling between
the localized spins Sr and the itinerant spins ŝr. The localized
spins are classical and static spins. V imp

r is an elastic potential
that models disorder. The statistical properties of V imp

r are

specified in Sec. IV. The second line in Eq. (8) is the RSOC
due to the broken symmetry in the ẑ direction, with λR being
the strength of the RSOC and H.c. the Hermitian conjugate.

We consider AFs where the localized spins Sr are collinear
and of equal length such that |Sr| ≡ S . However, the di-
rections of the spins Sr are opposite for nearest neighbors,
similar to a checkerboard pattern (as illustrated in Fig. 1). The
explicit form is Sr = S (−1)

x
a (−1)

y
a n, where the unit vector

n is the Néel order parameter.
In the following, we use the dimensionless quantity

ξsd = JsdS h̄

2t
(9)

to parametrize the strength of the exchange coupling and the
dimensionless variable

ξR = λR

2at
(10)

to parametrize the strength of the RSOC.
We solve the scattering problem and obtain all conduc-

tances by utilizing the Python package KWANT [76].

A. Normal metals

For comparison, we first consider an NM with RSOC, as
studied in similar models [72–75], which is well captured by
our model (i.e., when ξsd = 0). The Berry curvature contribu-
tion to the NM spin Hall conductivity is a universal value in
certain regimes [4]. However, the NM spin Hall conductance
in mesoscopic systems connected to leads usually depends on
the Fermi energy EF, system geometry, boundary conditions,
and RSOC.

On our square lattice, the Fermi energy lies between −4t
and 4t . With our definition of the spin Hall conductance
[Eq. (5)], combined with the boundary conditions for the
voltages, gz

sH is finite for the NM with RSOC, while the two
other spin polarization components vanish. The NM spin Hall
conductance as a function of Fermi energy is antisymmetric
about EF = 0. In ballistic systems, the spin Hall conductance
gz

sH increases with increasing system size (i.e., scales with the
number of lead modes N).

We consider NMs with disorder in Sec. IV C. The SHE
survives in NMs with weak spin-conserving disorder.

B. Ballistic antiferromagnets

The spin Hall conductance gsH of an AF with RSOC shows
a richer behavior. The new features are caused by the localized
spins described by the direction of the Néel order n. We
mainly focus on AFs where the Néel order is out-of-plane
(n = ±ẑ). First, in this section (Sec. II B) we consider systems
without disorder.

The coupling strength between localized spins and itinerant
spins is governed by ξsd. The other parameters that affect the
spin Hall conductance are the Fermi energy EF, the RSOC
strength ξR, and the system size, determined by N , the number
of transverse sites.

Odd and even effects (small oscillations) as a function of
the system size N are found. When N is odd, the total number
of localized spins is also odd such that the total magnetization
is finite. In contrast, when N is even, the total magnetization
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FIG. 2. Spin Hall conductance gz
sH as a function of Fermi energy

EF for an AF with out-of-plane Néel order n = ẑ. The system size is
N2 = 1002, and the RSOC is ξR = 0.1. The results are for systems
with increasing exchange coupling ξsd. ξsd = 0 corresponds to an
NM. The inset shows similar results for larger exchange parameters.

vanishes. Focusing on the main features, we only consider
systems with even N , i.e., AFs with zero total magnetization,
in the following.

We consider AFs with localized out-of-plane Néel order,
n = ẑ. In such systems, the x and y components of the spin
Hall conductance vanish (similar to in an NM); we only
discuss gz

sH here.
In Fig. 2 we show how the exchange coupling ξsd influ-

ences the spin Hall conductance gz
sH as a function of the Fermi

energy. The other system parameters are ξR = 0.1 and N =
100. The spin Hall conductance is antisymmetric about EF =
0. The general trend is that intermediate exchange couplings
can dramatically increase the typical value and even change
the sign of the spin Hall conductance. The increase in the
typical value of the spin Hall conductance persists as long as
the exchange coupling is not too strong, when ξsd is on the
order of 1 or less (similar to the hopping energy t). The inset
in Fig. 2 demonstrates that when the exchange coupling is
strong, the spin Hall conductance gz

sH approaches zero because
the system starts to become a poor conductor and the RSOC is
weak with respect to the periodic potential. Variations in the
exchange coupling ξsd influence the spin Hall conductance gz

sH
much more than variations in the RSOC ξR (not shown).

In the square ballistic system, the spin Hall conductance
increases as the width of the leads L = Na increases because
the number of modes increases. A measure of the spin Hall
conductance per mode is gz

sH/N . For small systems (small
N), finite size effects occur. With increasing N , one would
expect gz

sH/N to approach a constant value. In Fig. 3 we
show gz

sH/N as a function of N (with N even). The curves in
Fig. 3 correspond to several exchange couplings ξsd, while the
remaining parameters are n = ẑ, ξR = 0.1, and EF = −2t . For
the relevant parameters, Fig. 3 shows that gz

sH/N approaches
a constant when N is on the order of 100 and greater. To
minimize finite size effects while keeping the computation

FIG. 3. Spin Hall conductance gz
sH/N as a function of length

N , where N is even. The Néel orientation is n = ẑ. The RSOC is
ξR = 0.1, and the Fermi energy is EF = −2t . The inset shows similar
results for larger exchange couplings.

time moderate, we mostly focus on systems with N = 100 or
larger.

We also consider a few cases (results not shown) where
the localized spins are rotated in-plane (n �= ±ẑ). Rotating the
Néel order n in-plane modifies the amplitude of gz

sH. Addition-
ally, in-plane localized spins can induce finite components of
gx

sH and gy
sH, related to the spin polarizations in the x and y

directions, respectively.

III. INTRINSIC SPIN HALL CONDUCTIVITY

We complement our numerical results of the spin Hall con-
ductance related to a finite scattering region with analytical
results of the spin Hall conductivity in infinite systems. An
electric field E = Exx̂ in the x direction induces spin current
densities js,x

y , js,y
y , and js,z

y , which flow in the y direction with
spin polarization along the x, y, and z directions, respectively.
Correspondingly, the spin Hall conductivity has three polar-
ization components: σ x

sH, σ y
sH, and σ z

sH. The dimensionless spin
Hall conductivity σ z

sH related to the spin polarization along z
follows from

js,z
y = −e

4π
σ z

sHEx, (11)

and similarly for the two other spin polarization components.
In Eq. (11), js,z

y = js,z
y (ω → 0) is the average spin current,

which we evaluate in the static limit when the frequency ω →
0. Equation (21) defines the average spin current in the time
domain, which yields js,z

y (ω) after a Fourier transform to the
frequency domain.

In disordered systems there are many contributions to
the spin Hall conductivity. One of these contributions, the
Berry phase term within the linear response Kubo formula, is
intrinsic and independent of the mean free path. In this section
we calculate the intrinsic spin Hall conductivity σ z

sH for an AF
with RSOC.
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kx

ky

k

kU

π
a

π
a

−π
a

−π
a

FIG. 4. Momentum space. The magnetic Brillouin zone (MBZ)
for the AF is the red region. The vectors illustrate a momentum k and
its umklapp momentum kU. When k lies in the MBZ, kU is outside the
MBZ, and vice versa. The umklapp momentum is kU = k − ( π

a , π

a ),
as indicated by the dotted lines. Similar considerations apply to kU

when k lies in one of the other triangles/quadrants.

A. Diagonalization of the Hamiltonian of a bulk
antiferromagnet

We consider an AF with RSOC subject to periodic bound-
ary conditions in two spatial directions. The intrinsic con-
tribution to the spin Hall conductivity is calculated in the
absence of scattering. The itinerant electrons in the AF are
described by the Hamiltonian (8) with no disorder scattering,
V imp

r = 0. The system has N2 (with N even) localized spins.
Nearest-neighbor localized spins point in opposite directions,
as shown in Fig. 1.

To diagonalize the AF Hamiltonian (8), we Fourier trans-
form the annihilation operators

ĉr = 1

N

∑
k

exp(ik · r)ĉk. (12)

In Fourier space, the tight-binding hopping part of the energy
dispersion is

ε0(k) = −2t (cos kxa + cos kya). (13)

In the AF, the sd exchange coupling results in pairwise cou-
pling between different momenta: the momentum k and its
umklapp momentum kU, as illustrated in Fig. 4.

To capture the umklapp scattering in a 4 × 4 Hamiltonian,
we introduce the operator Ĉ†

k = (ĉ†k↑ ĉ†k↓ ĉ†
kU↑ ĉ†

kU↓),

and similarly for Ĉk. In this 4 × 4 basis, the Fourier transform
of the AF Hamiltonian (8) becomes

Ĥ =
∑
k∈♦

Ĉ†
k

[
ε0(k) +

(
HR Hsd

Hsd HR

)]
Ĉk (14)

in terms of the 2 × 2 matrices HR = 2tξR(σx sin kya −
σy sin kxa) and Hsd = −tξsd(n · σ ). In Eq. (14), the sum is
over k ∈ ♦, the momenta k within the magnetic Brillouin
zone, as shown in Fig. 4.

The Hamiltonian in Eq. (14) is diagonalized by a unitary
matrix Uk that transforms the operators as η̂k = U†

k Ĉk and
η̂
†
k = Ĉ†

kUk. The resulting diagonal Hamiltonian is

Ĥ =
∑
k∈♦

η̂
†
k[ε0(k) + Dk]η̂k, (15)

where Dk is a diagonal matrix containing four eigenvalues.
We specify the eigenvectors and eigenenergies for three cases:
out-of-plane localized spins, AF spins rotating in the x-z
plane, and AF spins rotating in the y-z plane, as summarized
in Appendix B.

B. Kubo formula

We calculate the intrinsic part of the spin Hall conductivity
by considering the average spin current in linear response
to an applied electric field. A time-dependent electric field
Ex(t ) = −∂tAx(t ) exists in the x direction, expressed in terms
of the vector potential Ax, which oscillates with frequency ω

but does not vary with position r. In this gauge, the scalar elec-
tric potential is zero. We evaluate the spin Hall conductivity in
the static limit ω → 0.

Consider the Hamiltonian Ĥ in Eq. (8) with V imp
r = 0.

The minimal coupling to the vector potential Ax changes
the corresponding momentum as px → px + eAx, which,
in the tight-binding model, changes the hoppings in the
x direction. We use the Peierls substitution [77] to ex-
press the change in the hoppings, which, for exam-
ple, yields ĉ†r+δx

ĉr → ĉ†r+δx
ĉrexp[i(−e/h̄)

∫ r+δx

r A(t )dr′] =
ĉ†r+δx

ĉrexp[i(−e/h̄)aAx(t )]. As a consequence, the unper-

turbed Hamiltonian Ĥ transforms into Ĥ → Ĥ + ˆδH (t ). To
first order in the vector potential, the variation in the Hamilto-
nian is

ˆδH (t ) = −a
∑

r

ĵc
r,δx

Ax(t ) (16)

in terms of the charge current operator ĵc
r,δx

between sites r
and r + δx. The charge current operator is separated into

ĵc
r,δx

= ĵc,0
r,δx

+ ĵc,a
r,δx

, (17)

where the first term is the normal charge current contribution
and the second, anomalous, term is caused by the spin-orbit
interaction

ĵc,0
r,δx

= −e
it

h̄
(ĉ†r+δx

ĉr − ĉ†r ĉr+δx ), (18a)

ĵc,a
r,δx

= eξR
t

h̄
(ĉ†r+δx

σyĉr + ĉ†r σyĉr+δx ). (18b)

The electric charge is conserved such that Eqs. (16),
(17), and (18) [together with the charge continuity equations
Eqs. (A1), (A2), and (A3)] yield a well-defined charge current.

The spin is not conserved in a system with RSOC. In Ap-
pendix A we derive a spin continuity equation by considering
the temporal rate of change of the spin density operator ŝr. The
spin continuity equation (A4) includes nonconserving terms
due to the RSOC and spin-transfer torques, as summarized in
Eqs. (A4), (A5), (A6), (A7), (A8), and (A9) in Appendix A.
In the bulk of a system with RSOC, the definition of the spin
current is ambiguous. We use a conventional definition of the
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spin current as in Ref. [64] for comparison of our results with
the case of an NM (semiconductor).

Our definition of the spin current operator, which describes
flow in the y direction with spin polarization along z, is

ĵs,0,z
r,δy

= it

2
(ĉ†r+δy

σzĉr − ĉ†r σzĉr+δy ), (19)

where ĵs,0,z
r,δy

is the spin current between sites r and r + δy. The
spin current in Eq. (19) stems from Eqs. (A4), (A5), and (A6).

In the Kubo formula for the spin Hall conductivity σ z
sH, we

consider the average spin current operator

ĵs,z
y = 1

(Na)2
a

∑
r

ĵs,0,z
r,δy

, (20)

where N2 is the total number of lattice sites. The spin current
js,z
y that defines σ z

sH [Eq. (11)] now follows from the expecta-
tion value of the correlation function between the average spin
current operator ĵs,z

y and the charge current operator defined in
Eq. (16). Within the linear response, the average spin current
js,z
y (t ) in the time domain is

js,z
y (t ) = 1

(Na)2

∫ ∞

−∞
dt ′�(t − t ′)

(−i)

h̄
Ax(t ′)

×
〈[

a
∑

r

ĵs,0,z
r,δy

(t ),−a
∑

r′
ĵc
r′,δx

(t ′)

]〉
eq.

, (21)

where �(t − t ′) is the Heaviside-theta function, the operators
have time dependence in the Heisenberg picture, and the
expectation value of the commutator is evaluated for the
equilibrium many-particle state.

We express the spin Hall conductivity in the 4 × 4 basis
using the single-particle eigenstates ψkn along with their
corresponding eigenenergies En(k). The real part of the di-
mensionless spin Hall conductivity is

σ z
sH = 4π

(−e)

h̄

N2

∑
k∈♦

∑
n,n′ �=n

( fn′ − fn)

× Im{ψ†
kn′J s,0,z

y ψknψ
†
knJ c,a

x ψkn′ }
(En − En′ )2

, (22)

where fn = fFD[En(k) − μ] in terms of the Fermi-Dirac dis-
tribution fFD, with μ being the chemical potential. In Eq. (22),
the 4 × 4 matrices J s,0,z

y and J c,a
x originate from the spin

current ĵs,0,z
r,δy

and the charge current ĵc,a
r,δx

, respectively (the

contribution from ĵc,0
r,δx

vanishes), expressed as

J s,0,z
y = (σz ⊗ τ0)t sin kya, (23a)

J c,a
x = (σy ⊗ τ0)

et

h̄
2ξR cos kxa, (23b)

where τ0 is a 2 × 2 unit matrix.
We also use Eq. (22) to calculate σ x

sH and σ
y
sH by replacing

σz in the expression for the spin current J s,0,z
y in Eq. (23a)

with σx or σy, respectively.

1. Out-of-plane localized spins

We now present results for the spin Hall conductivity
of an AF with out-of-plane spins n = ẑ. This case involves

FIG. 5. Spin Hall conductivity σ z
sH in the NM limit (ξsd = 0).

Here we numerically evaluate Eq. (25) for values of EF and 2ξR on
an equidistant grid with 15 × 15 points. The spin Hall conductivity
σ z

sH vanishes when ξR is exactly 0; however, in the limit σ z
sH(ξR → 0),

the amplitude changes in a discontinuous manner (not visible in the
plot).

two (doubly degenerate) AF eigenenergies: E±(k) = ε0(k) +
�z

±(k), where the splitting of the two bands is

�z
±(k) = ±t

√
ξ 2

sd + (2ξR)2
(
sin2 kxa + sin2 kya

)
. (24)

The spin Hall conductivity for out-of-plane AF spins is

σ z
sH = (2π )2

N2/2

∑
k∈♦

cos kxa

2π

( f− − f+)

( �z+
t )3

(2ξR)2 sin2 kya, (25)

where f± = fFD(E± − μ). We evaluate Eq. (25) in the zero-
temperature limit, where fFD(E± − μ) → �(EF − E±). In the
bulk limit, the number of lattice sites N2 → ∞ such that∑

k∈♦ → (1/2)[(Na)/(2π )]2 ∫
k∈♦ d2k.

The spin Hall conductivity σ z
sH [Eq. (25)] as a function of

Fermi energy is antisymmetric about EF = 0. Furthermore,
σ z

sH vanishes at EF = ±4t . For out-of-plane AF spins, the spin
Hall conductivities related to the two other spin polarizations,
σ x

sH and σ
y
sH, both vanish. The spin Hall conductivity is the

same when n = −ẑ as when n = ẑ. These considerations also
apply to the spin Hall conductivity in the NM limit.

First, consider σ z
sH in the NM limit (ξsd = 0). As shown

in Fig. 5, σ z
sH is finite and approximately 0.5 when the Fermi

energy EF is between −4t and 0 and the RSOC is finite. The
amplitude of σ z

sH does not vary greatly as a function of the
RSOC. However, σ z

sH exactly vanishes when ξR = 0. In Fig. 5
we plot σ z

sH when the Rashba parameter is positive, ξR > 0.
The amplitude of σ z

sH is discontinuous in the limit ξR → 0.
Our results for the tight-binding model agree with the fact
that the dimensionless spin Hall conductivity is ±1/2, the
“universal” value [64], in the continuum model with linear-
in-momentum RSOC (excluding vertex corrections).

Next, we study the behavior of the spin Hall conductivity in
AFs. We plot typical results for the AF spin Hall conductivity
for various exchange couplings ξsd and RSOCs 2ξR in Fig. 6.
Figure 6 shows that the amplitude of σ z

sH is greatly reduced
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FIG. 6. Spin Hall conductivity σ z
sH as a function of exchange

interaction ξsd and RSOC 2ξR in an AF with out-of-plane spins
n = ẑ. The Fermi energy is EF = −2t . Each square represents σ z

sH

as calculated from Eq. (25).

for an AF with a strong exchange interaction compared to a
weak AF (or NM) with the same RSOC. Naturally, when the
exchange interaction in the AF is weak, ξsd ≈ 0, the spin Hall
conductivity is close to 1/2, the value in the NM case. The
reduction in the amplitude of σ z

sH as the exchange coupling ξsd

increases is less dramatic when the RSOC is large. The results
in Fig. 6 (where EF = −2t) are representative of the results of
σ z

sH for Fermi energies −4t < EF < 0 because the numerical
values and the shapes of the plots are very similar. The general
trend is that the Berry phase contribution to the spin Hall
conductivity decreases with increasing exchange interaction
in AFs.

As will be shown in Sec. IV, an exact numerical calcula-
tion of the transport properties using the Landauer-Büttiker
formalism gives, in certain regimes, the opposite behavior;
the spin Hall conductance increases with increasing exchange
interaction. This is yet another example that interpretation
of the spin Hall conductivity based on only the Berry phase
contribution should be applied with great care.

2. In-plane localized spins

In this section we show how the spin Hall conductivity
behaves when the AF spins rotate towards the in-plane con-
figuration. We consider two cases. We use the polar angle θ to
describe how the Néel order parameter n rotates in either the
x-z plane or the y-z plane. We summarize the expressions for
the spin Hall conductivities in the two scenarios in Appendix
B.

First, the AF spins rotate in the x-z plane, n =
(sin θ, 0, cos θ ). For the z polarization of the spin, the spin
Hall conductivity σ z,xz

sH as a function of θ [Eq. (B5)] is
symmetric about θ = π/2 (where n = x̂), as illustrated in
Fig. 7. Similar to the case of out-of-plane spins (Sec. III B 1),
the overall amplitude of σ z,xz

sH is mostly determined by ξsd

and ξR; varying only θ results in a small decrease/increase
in σ z,xz

sH around θ = π/2, as shown in Fig. 7. Increasing ξsd

reduces the amplitude of the spin Hall conductivity. σ z,xz
sH

FIG. 7. AF spin Hall conductivity σsH for different spin polariza-
tions when the AF spins rotate in the x-z plane: n = (sin θ, 0, cos θ ).
In this case, the Fermi energy is EF = −2t , the RSOC is ξR = 0.1,
and the exchange interaction is ξsd = 0.2. The inset shows similar
curves at a larger RSOC: ξR = 0.2.

does not vary greatly when changing EF. However, σ z,xz
sH is

antisymmetric about EF = 0. In Fig. 7 we consider the spin
Hall conductivities for all three spin polarizations in a system
with EF = −2t , ξsd = 0.2, and ξR = 0.1. The inset in Fig. 7
shows similar curves at a larger RSOC ξR = 0.2. When the
AF spins rotate in-plane, the spin Hall conductivity for the x
polarization of the spin σ x,xz

sH becomes finite [Eq. (B6)]. As
shown in Fig. 7, σ x,xz

sH is antisymmetric about θ = π/2. The
spin Hall conductivity σ

y,xz
sH for the y component of the spin

vanishes for all θ .
Next, we consider AF spins that rotate in the y-z plane, n =

(0, sin θ, cos θ ). In this scenario, only the spin Hall conductiv-
ity σ

z,yz
sH for the z polarization of the spin is finite (results not

shown). The spin Hall conductivities σ
x,yz
sH and σ

y,yz
sH , related to

the x and y polarizations of the spin, respectively, both vanish.
As shown in Appendix B, from Eq. (B10), σ

z,yz
sH behaves

similarly to σ z,xz
sH when we consider σ

z,yz
sH as a function of θ

(results not shown). σ
z,yz
sH is symmetric about θ = π/2 (where

n = ŷ). The amplitude of σ
z,yz
sH is mostly determined by ξsd and

ξR; rotating the AF spins in-plane results in moderate changes
in σ

z,yz
sH .

A substantial AF exchange interaction significantly re-
duces the Berry-phase-induced intrinsic spin Hall conductiv-
ity also when the AF spins rotate in-plane.

IV. DISORDER AND SPIN HALL CONDUCTANCE

In this section, first, we investigate the electrical char-
acteristics of finite-sized AFs with spin-conserving disorder.
We focus on systems where the conducting properties follow
Ohm’s law. Second, we look at how the spin Hall conductance
scales when the size of the disordered AFs changes. Finally,
we compare the computed AF spin Hall conductance with the
intrinsic Berry phase spin Hall conductivity in bulk systems.

Disorder in the mesoscopic regime is modeled by the on-
site elastic potential V imp

r �= 0 in the Hamiltonian (8). The
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disorder potential is present at all sites in the scattering region.
V imp

r takes a random value uniformly distributed within −W
and W . The disorder then has zero mean, 〈V imp

r 〉 = 0, and
the variance is 〈(V imp

r )2〉 − 〈V imp
r 〉2 = (1/3)W 2. We calculate

the average of the transport properties by considering many
disorder configurations.

A. Ohmic regime

We now introduce disorder (V imp
r �= 0) in AFs in a system

that is similar to Fig. 1, as discussed in Sec. II. In this section
we change the geometry of the AF by considering a scattering
region of a rectangular shape [instead of the square shape of
area (Na)2]. We only consider AFs of rectangular shapes in
this part (Sec. IV A).

The length of the AF conductor (scattering region) is Nxa,
where Nx is the number of sites in the x direction. The width of
the conductor is Nya, where Ny is the number of sites in the y
direction. Four leads are attached to the sides of the scattering
region, and the widths of the leads are determined by Nxa
(top/bottom leads) and Nya (left/right leads). Otherwise, we
use the same boundary conditions as in Sec. II.

To estimate when the AFs are in the ohmic regime, we
define the effective two-terminal conductance geff

c as

geff
c = 1

2
(g01 + g10), (26)

which is the average transmission for an electron originating
in the left (right) lead scattering into the right (left) lead.
We are interested in how the electrical resistance of the AF
scales as the length of the conductor varies. For systems in
two spatial dimensions, the effective charge conductivity σ eff

c
can be suitably defined as

σ eff
c = geff

c
Nx

Ny
(27)

based on the effective two-terminal conductance geff
c from

Eq. (26). When σ eff
c is independent of the system length

Nxa, the AF conductor is in the ohmic regime, analogous to
Ohm’s law for a conductor where the charge current is driven
by an electric field E = �V/(Nxa) in terms of the potential
difference �V between two terminals.

We now present the typical results for the effective charge
conductivity σ eff

c of the AFs (and NMs). In Fig. 8 we plot σ eff
c

as a function of even Nx for AFs with out-of-plane spins (n =
ẑ). The different curves correspond to increasing exchange
coupling ξsd. In evaluating σ eff

c , we average over 100 disorder
configurations with disorder strength W = 0.11t . The error
bars show the standard deviation. The other parameters used
in Fig. 8 are EF = −2t and ξR = 0.1. The AF width is fixed
at Nya = 100a. In Fig. 8, σ eff

c saturates in the region of Nx

between 100 and 200 for several exchange couplings ξsd. In-
creasing ξsd to an amplitude of |ξsd| ∼ 1 does not significantly
alter the regions where σ eff

c is independent of the system
length. However, increasing |ξsd| to above 1 (similar to the
cases discussed in Sec. II B) increases the electrical resistance
in the AF such that the electrons become localized. The slope
of σ eff

c increases with the RSOC ξR because spin flip allows
more conducting paths for the electron flow. The inset in Fig. 8
illustrates how the effective charge conductivity σ eff

c for an

FIG. 8. Effective charge conductivity σ eff
c as a function of length

Nx, with Nx even. The different curves are for AFs with out-of-plane
spins (n = ẑ) with different exchange couplings ξsd but otherwise the
same parameters. The points show σ eff

c as an average over disorder
realizations. The error bars show the standard deviation. Each point
is averaged over 100 disorder configurations with disorder strength
W = 0.11t . The width of the AF is kept constant, Ny = 100. The
Fermi energy is EF = −2t , and the RSOC is ξR = 0.1. The inset
shows similar curves in the NM limit (ξsd = 0), where the different
curves correspond to different disorder strengths W but otherwise the
same parameters.

NM changes when the disorder strength W is varied around
W ∼ 0.1t . An increase in the disorder strength W results in a
σ eff

c that rapidly decreases as a function of conductor length
Nxa. Similar results are found for the relevant AFs when
varying W .

Based on our considerations of the effective charge con-
ductivity σ eff

c , the AFs are close to the ohmic regime when
the disorder strength is approximately W ≈ 0.1t , the AF
exchange couplings obey |ξsd| � 1, and the RSOC obeys
|2ξR| � 1. Similar results are found at different Fermi energies
EF (Fig. 8 shows the results at EF = −2t) for the system sizes
we considered.

B. Spin Hall conductance and Ohm’s law

We now investigate how the spin Hall conductance gsH

in disordered AFs scales as the system size increases. The
disorder strength W and the other system parameters of the
AFs are chosen such that the electrical properties are in the
ohmic regime (see Sec. IV A).

A meaningful comparison between the spin Hall conduc-
tance gsH in mesoscopic systems and the intrinsic spin Hall
conductivity σsH in bulk systems requires that the spin Hall
conductance gsH be independent of the system size. Ohm’s
law for charge currents relates the electrical conductance to
the electrical conductivity, similar to Eq. (27). Similarly, we
can envision an Ohm’s law for spin currents, which relates gsH

to σsH. We focus on AFs with a square shape of area (Na)2.
For such systems, when gsH is constant as the AF width Na
varies, we can directly compare the spin Hall conductance to
the spin Hall conductivity, i.e., gsH = σsH.
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FIG. 9. Spin Hall conductance gz
sH as a function of size N , with

N even. The curves show AFs with out-of-plane spins (n = ẑ) with
different exchange couplings ξsd. Here gz

sH is averaged over 100
disorder realizations, with disorder strength W = 0.11t . The error
bars show the standard deviation. The RSOC is ξR = 0.1, and the
Fermi energy is EF = −2t . The inset shows similar results at a larger
RSOC, ξR = 0.2.

Here we present results for gz
sH as a function of size N .

We consider AFs with N up to 200. In Fig. 9 the spin Hall
conductance gz

sH as a function of even N is shown for AFs with
out-of-plane spins (n = ẑ) for several exchange couplings ξsd.
The values of gz

sH in Fig. 9 are averaged over 100 disorder
realizations at disorder strength W = 0.11t , and the error bars
show the standard deviation. The common system parameters
for the curves in Fig. 9 are an RSOC of ξR = 0.1 and a Fermi
energy of EF = −2t . The inset of Fig. 9 shows similar results
for a larger RSOC of ξR = 0.2. As shown in Fig. 9, most of
the curves for gz

sH do not vary greatly when the length varies
between Na = 100a and Na = 200a.

We have focused on AFs in the ohmic regime where W ∼
0.1t , while the RSOC and the exchange interaction are of
intermediate strengths. The general trend in this regime is
that gz

sH does not vary greatly as a function of width Na
for N ∼ 100 and greater, similar to the results illustrated
in Fig. 9. gz

sH as a function of N varies more when the
RSOC and exchange interaction are larger. The standard
deviation of gz

sH increases when W , ξR, and ξsd increase.
Typically, when |2ξR| and/or |ξsd| are large (on the order
of 1), the spin Hall conductance gz

sH depends on the system
size.

In general, apart from the smallest systems (N � 100), gz
sH

does not vary greatly with size for W ≈ 0.1t , exchange cou-
pling |ξsd| � 0.5, and RSOC |2ξR| � 0.5. Within this regime,
the spin currents in the top/bottom leads are pure spin currents
because the charge currents induced in the transverse leads
are very small compared to the spin currents. The results are
similar at different Fermi energies EF (Fig. 9 shows the results
at EF = −2t). We take these results into consideration when
we compare the spin Hall conductance gsH to the spin Hall
conductivity σsH in Secs. IV C and IV D for NMs and AFs,
respectively.

FIG. 10. Spin Hall conductance gz
sH in the NM limit (ξsd = 0)

as a function of Fermi energy EF and RSOC 2ξR. Here each square
represents one value of gz

sH averaged over 100 disorder configura-
tions. The system size is N2 = 1002, while the disorder strength is
W = 0.11t .

C. Disordered normal metals

Here we show spin Hall conductance gz
sH results for NMs

(ξsd = 0) with disorder. We consider NMs in the ohmic regime
(W ≈ 0.1t) for an RSOC ξR of intermediate strength, where
gz

sH is approximately independent of size (see Sec. IV B). gz
sH

attains a constant value independent of the RSOC and the
Fermi energy (gz

sH is antisymmetric about EF = 0). The spin
Hall conductances related to the x and y polarizations of the
spin vanish, similar to in ballistic NMs.

In Fig. 10 we plot the spin Hall conductance gz
sH for an

NM as a function of RSOC 2ξR and Fermi energy EF for a
system of size N2 = 1002. We average gz

sH over 100 disorder
configurations at disorder strength W = 0.11t . As illustrated
in Fig. 10, the spin Hall conductance gz

sH is approximately
constant when varying the Fermi energy and the RSOC, and
the average value of all points in Fig. 10 is gz

sH ≈ 0.13. In
Fig. 10, for the few points closest to EF ≈ −4t and EF ≈
0, the standard deviations ∼0.1 are on the order of gz

sH;
otherwise, the standard deviations ∼0.01 are much smaller
than gz

sH.
For NMs we can compare the spin Hall conductance gz

sH
in mesoscopic systems with the Berry-phase-induced intrinsic
spin Hall conductivity σ z

sH in bulk systems. Both gz
sH and σ z

sH
take a constant value, independent of the RSOC ξR and the
Fermi energy EF, as illustrated in Figs. 10 and 5, respectively.
When the Fermi energy obeys −4t < EF < 0, the values of
gz

sH ∼ 0.1 and σ z
sH ≈ 0.5 are on the same order but somewhat

different. We note here that for NMs with RSOC in the contin-
uum model, the contribution to the spin Hall conductivity σ z

sH
from the Berry phase is 0.5, while vertex corrections yield a
vanishing σ z

sH [64–70]. In our tight-binding model, σ z
sH ≈ 0.5

coincides with the result in the continuum limit. However,
gz

sH ∼ 0.1 is between the results for the continuum model with
and without vertex corrections.

184411-9



GULBRANDSEN, ESPEDAL, AND BRATAAS PHYSICAL REVIEW B 101, 184411 (2020)

FIG. 11. Spin Hall conductance gz
sH for an AF at Fermi energy

EF = −2t , plotted as a function of exchange interaction ξsd and
RSOC 2ξR. Each value of gz

sH is calculated as an average over 100
disorder configurations, where the disorder strength is W = 0.11t .
The system size is N2 = 1002.

D. Antiferromagnets with disorder

In this part we present results for the spin Hall conductance
gz

sH in AFs with spin-conserving disorder. We consider AFs in
a regime where the conductive properties behave similar to
Ohm’s law, where gz

sH does not change greatly for different
system sizes, as discussed in Secs. IV A and IV B. Within this
regime, we compare the mesoscopic spin Hall conductance
gz

sH in AFs to the intrinsic spin Hall conductivity σ z
sH. In the

following we focus on gz
sH, related to the z component of the

spin, in AFs with out-of-plane localized spins.
The spin Hall conductance gz

sH in AFs with disorder (W ∼
0.1t) shows quite different behavior at different Fermi ener-
gies. In many cases, gz

sH varies considerably as a function of
the RSOC ξR and exchange interaction ξsd in the AF.

Figures 11 and 12 show the results for gz
sH in AFs at dif-

ferent Fermi energies: EF = −2t and EF = −3t , respectively.
Apart from the different values of EF, the AFs in Figs. 11
and 12 have the same system parameters. The system size is
N2 = 1002. gz

sH is averaged over 100 disorder configurations,
with disorder strength W = 0.11t . At EF = −3t , the spin Hall
conductance gz

sH ∼ 0.1 does not vary greatly when varying
the RSOC ξR and/or the exchange interaction ξsd, as shown
in Fig. 12. However, at Fermi energy EF = −2t , Fig. 11
illustrates that gz

sH varies considerably between 1.0 and −1.0
when changing ξR and ξsd. For intermediate RSOC ξR, Fig. 11
illustrates that, in certain regimes, increasing the exchange
interaction ξsd in AFs can increase the spin Hall conductance
gz

sH, similar to the results in Sec. II B. In Figs. 11 and 12 the
typical standard deviations in gz

sH are greatest when ξR and/or
ξsd are large, on the order of 0.02.

The spin Hall conductance gz
sH is antisymmetric with

respect to EF = 0, which is due to particle-hole symmetry
[72]. The energy dispersion of the propagating modes are
symmetric with respect to EF = 0. Changing the sign of the
Fermi energy (EF → −EF) transforms electronlike carriers
into holelike carriers, and vice versa, such that gz

sH changes

FIG. 12. Spin Hall conductance gz
sH for an AF with Fermi energy

EF = −3t . The RSOC is determined by 2ξR, while ξsd is the strength
of the exchange interaction. The size of the AF is N2 = 1002. Each
square represents gz

sH as an average over 100 disorder realizations at
disorder strength W = 0.11t .

sign. The magnitude of the spin Hall conductance depends on
the ratio between the number of available propagating modes
to the transverse size N . This ratio changes as a function of
Fermi energy. Close to the band bottom (EF close to −4t)
there are less available modes per transverse site N that
contribute to the spin Hall conductance. When EF is close to
0, there are more modes relative to the transverse size that can
contribute to the spin transport. For instance, this indicates
why the overall amplitude of the spin Hall conductance is
smaller when the Fermi energy is −3t as compared to the
results at EF = −2t , as shown in Figs. 11 and 12.

Now we compare the results for the spin Hall conductance
gz

sH in AFs with disorder (W ∼ 0.1t) to those for the intrinsic
spin Hall conductivity σ z

sH induced by the Berry phase term in
the Kubo formula (Sec. III B). As functions of Fermi energy,
both gz

sH and σ z
sH are antisymmetric about EF = 0 (we discuss

−4t < EF < 0 in the following). In AFs, the results for gz
sH are

quite different from those for σ z
sH. The spin Hall conductance

gz
sH varies considerably for different Fermi energies EF, while

the Berry phase contribution to the spin Hall conductivity σ z
sH

is similar at different EF. In some regimes (e.g., see Fig. 11),
an increasing exchange interaction and/or varying RSOC ξR

can enhance the amplitude of the spin Hall conductance gz
sH.

In contrast, the qualitative picture of the spin Hall conductivity
σ z

sH is that increasing the exchange interactions ξsd in AFs
reduces the SHE.

V. CONCLUSIONS

We considered the spin Hall effect in antiferromagnets. As
a description we use a tight-binding model with Rashba spin-
orbit coupling and a staggered on-site exchange field. We also
study how on-site spin-independent disorder governs transport
properties.

The mesoscopic spin Hall conductance gz
sH varies con-

siderably and is sensitive to the parameters of the system,
such as the Fermi energy, the exchange interaction, and the
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spin-orbit interaction. In some regimes, increasing the ex-
change interactions increases the spin Hall conductance gz

sH.
The spin Hall effect in antiferromagnets may, therefore, be
more substantial than the corresponding effect in the normal
state. This is somewhat surprising to us since, naively, the
staggered exchange coupling competes with the spin-orbit
coupling. A larger exchange interaction align the itinerant
spins more strongly to the Néel field. This alignment could
reduce the impact of the spin-orbit coupling. Indeed, this hap-
pens for very large strengths of the exchange interaction, but
for more moderate values we find that the intricate interplay
with the spin-orbit coupling produces the opposite effect.

When the disorder, the spin-orbit coupling, and the ex-
change interaction are of intermediate strengths, we identify a
diffusive regime where we can make a qualitative comparison
between the mesoscopic spin Hall conductance gz

sH and the
Berry-phase contribution to the spin Hall conductivity σ z

sH.
Compared to our mesoscopic antiferromagnet, the spin Hall
conductivity σ z

sH calculated from the Berry-phase contribution
in the Kubo formula behaves differently than the results
from the exact numerical diagonalization of the spin Hall
conductance. For instance, an increasing exchange interaction
in antiferromagnets significantly reduces the Berry-phase con-
tribution to the spin Hall conductivity, opposite to the exact
numerical results.

As in other systems, our results demonstrate that comput-
ing the spin Hall effect in antiferromagnets from the Berry-
phase-induced spin Hall conductivity in the Kubo formula is
insufficient and neither quantitatively nor qualitatively repro-
duces the exact numerical results for a disordered system.
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APPENDIX A: SPIN AND CHARGE CURRENTS

The time evolution of an operator in the Heisenberg picture
Ô(t ) = eiĤt/h̄Ôe−iĤt/h̄ is determined from the commutator
h̄∂t Ô(t ) = i[Ĥ , Ô(t )], with Ĥ being the Hamiltonian. For
brevity, we omit the Heisenberg time dependence in the
following.

The itinerant charge density operator at position r is ρ̂r =
−eĉ†r ĉr. From the time rate of change of the charge density
operator and using Ĥ from Eq. (8), the continuity equation for
the charge current is

0 = ∂

∂t
ρ̂r +

∑
δ=±δx,±δy

ĵc
r,δ. (A1)

In Eq. (A1), the operator ĵc
r,δ denotes the charge current

between lattice sites r and r + δ. The charge current operator
is separated into the two terms

ĵc
r,δ = ĵc,0

r,δ + ĵc,a
r,δ , (A2)

where

ĵc,0
r,δ = −e

it

h̄
(ĉ†r+δ

ĉr − ĉ†r ĉr+δ), (A3a)

ĵc,a
r,±δx

= ±eξR
t

h̄
(ĉ†r±δx

σyĉr + ĉ†r σyĉr±δx ), (A3b)

ĵc,a
r,±δy

= ∓eξR
t

h̄
(ĉ†r±δy

σxĉr + ĉ†r σxĉr±δy ). (A3c)

A finite RSOC induces the terms ĵc,a
r,δ , which depend on the

spin and spatial direction, as shown in Eq. (A3).
A spin continuity equation is derived from the time rate of

change of the spin density operator ŝr:

0 =∂ ŝr

∂t
+

∑
δ=±δx,±δy

ĵ
s
r,δ + JsdSr × ŝr, (A4)

where ĵ
s
r,δ denotes two types of spin currents between sites r

and r + δ. In addition, the spin continuity equation [Eq. (A4)]
contains the on-site torques JsdSr × ŝr, which act on the
localized spins Sr. The two types of spin currents are denoted:

ĵ
s
r,δ = ĵ

s,0
r,δ + ĵ

s,a
r,δ, (A5)

where

ĵ
s,0
r,δ = it

2
(ĉ†r+δ

σĉr − ĉ†r σĉr+δ) (A6)

is the spin current in the absence of RSOC. We label the three
spin polarizations as ĵ

s,0
r,δ = ( ĵs,0,x

r,δ , ĵs,0,y
r,δ , ĵs,0,z

r,δ ). Spin is not
conserved in a system with RSOC. We have not included the
anomalous part ĵ

s,a
r,δ in the calculation of the spin Hall conduc-

tivity. We use ĵ
s,0
r,δ as defined in Eq. (A6) as our definition of

the spin current, which we use in the Kubo formula (22).
By labeling the three spin polarizations of the anomalous

spin current as ĵ
s,a
r,δ = ( ĵs,a,x

r,δ , ĵs,a,y
r,δ , ĵs,a,z

r,δ ), the exact expres-
sions are as follows. For the x component of the spin,

ĵs,a,x
r,±δx

= ±ξR
it

2
(ĉ†r±δx

σzĉr − ĉ†r σzĉr±δx ), (A7a)

ĵs,a,x
r,±δy

= ±ξR
t

2
(ĉ†r±δy

ĉr + ĉ†r ĉr±δy ), (A7b)

for the y component,

ĵs,a,y
r,±δx

= ∓ξR
t

2
(ĉ†r±δx

ĉr + ĉ†r ĉr±δx ), (A8a)

ĵs,a,y
r,±δy

= ±ξR
it

2
(ĉ†r±δy

σzĉr − ĉ†r σzĉr±δy ), (A8b)

and for the z component,

ĵs,a,z
r,±δx

= ∓ ξR
it

2
(ĉ†r±δx

σxĉr − ĉ†r σxĉr±δx ), (A9a)

ĵs,a,z
r,±δy

= ∓ ξR
it

2
(ĉ†r±δy

σyĉr − ĉ†r σyĉr±δy ). (A9b)

Note that the sign changes in ĵ
s,a
r,δ when changing δ → −δ,

in the anomalous part of the spin current.
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APPENDIX B: KUBO FORMULA FOR AN
ANTIFERROMAGNET

In this Appendix we summarize the expressions for the
spin Hall conductivities of an AF, together with the related
single-particle eigenfunctions and eigenenergies. We focus on
the solutions when the localized AF spins are out-of-plane
(n = ±ẑ), in the x-z plane [n = (sin θ, 0, cos θ )], or in the y-z
plane [n = (0, sin θ, cos θ )]. Here θ is the polar angle relative
to the ẑ axis.

The AF eigenfunctions ψkn and eigenenergies En(k) are
found by diagonalizing the Hamiltonian Ĥ in Eq. (14), written
as Ĥ = ∑

k∈♦ Ĉ†
k [ε0(k) + UkDkU†

k ]Ĉk. The unitary matrix Uk

contains the four orthonormal eigenvectors ψkn as its col-
umn vectors. The corresponding eigenenergies are En(k) =
ε0(k) + [Dk]nn, where ε0(k) is the hopping energy [Eq. (13)]
and Dk is a diagonal matrix. The spin Hall conductivities are
calculated by using Eq. (22) together with ψkn and En(k).

In the case of out-of-plane AF spins (n = ±ẑ), the eigen-
functions, eigenenergies, and spin Hall conductivity are found
by considering the limits cos θ → ±1 in the corresponding
expressions obtained for AF spins in the x-z plane or the y-z
plane, as summarized in Appendices B 1 and B 2, respectively.
When n = ẑ, the eigenenergies are doubly degenerate, as
Dk = diag(�z

−,�z
+,�z

−,�z
+), with �z

± from Eq. (24). For
out-of-plane AF spins, the only nonzero terms in Eq. (22)
stem from the expectation values between states with different
energies, which yields the finite spin Hall conductivity σ z

sH in
Eq. (25).

For brevity of notation, we define the parameters

M = −tξsd, (B1a)

R = 2tξR, (B1b)

X = sin kxa, (B1c)

Y = sin kya, (B1d)

which we use in the following.

1. Néel order parameter in the x-z plane

Localized AF spins in the x-z plane are described by the
Néel order parameter n = (sin θ, 0, cos θ ). We diagonalize the
Hamiltonian Ĥ in Eq. (14). The relevant terms are labeled
Ĥ = ∑

k∈♦ Ĉ†
k [ε0(k) + Uxz

k Dxz
k Uxz†

k ]Ĉk.
The eigenenergies consist of ε0(k) plus one of the eigen-

values determined by Dxz
k = diag(�xz

1,−,�xz
1,+,�xz

2,−,�xz
2,+),

written explicitly as

�xz
1,±
t

= ±
√

ξ 2
sd + 4ξ 2

R(X 2 + Y2) + 4ξsdξRY sin θ, (B2a)

�xz
2,±
t

= ±
√

ξ 2
sd + 4ξ 2

R(X 2 + Y2) − 4ξsdξRY sin θ. (B2b)

Corresponding to the four eigenvalues �xz
1,± and �xz

2,±, the
eigenfunctions are ψxz

1,± and ψxz
2,±. The unitary matrix Uxz

k is
written in block form as Uxz

k = (ψxz
1,−, ψxz

1,+, ψxz
2,−, ψxz

2,+). The
eigenfunctions have four components, written as

ψxz
1,± = 1

2
√

�xz
1,±

√
�xz

1,± + M cos θ

(
γ1,±

−γ1,±

)
, (B3a)

ψxz
2,± = 1

2
√

�xz
2,±

√
�xz

2,± − M cos θ

(
γ2,±
γ2,±

)
, (B3b)

in terms of

γ1,± =
(M sin θ − R(Y + iX )

M cos θ − �xz
1,±

)
, (B4a)

γ2,± =
(M sin θ + R(Y + iX )

M cos θ + �xz
2,±

)
. (B4b)

The spin Hall conductivity is calculated from Eq. (22)
together with Eqs. (B2), (B3), and (B4). For the z polarization
of the spin, the spin Hall conductivity σ z,xz

sH when the AF spins
rotate in the x-z plane is

σ z,xz
sH = (2π )2

N2/2

∑
k∈♦

cos kxa

2π

[(
f xz
1,− − f xz

1,+
2(

�xz
1,+
t )3

− f xz
2,− − f xz

2,+
2(

�xz
2,+
t )3

)

× 2ξRξsdY sin θ

+
(

f xz
1,− − f xz

1,+
2(

�xz
1,+
t )3

+ f xz
2,− − f xz

2,+
2(

�xz
2,+
t )3

)
(2ξR)2Y2

]
, (B5)

where f xz
1,± = fFD(ε0 + �xz

1,± − μ), and similarly for f xz
2,±.

For the x polarization of the spin, the spin Hall conductivity
is

σ x,xz
sH = (2π )2

N2/2

∑
k∈♦

cos kxa

2π

(
f xz
1,− − f xz

1,+
2(

�xz
1,+
t )3

− f xz
2,− − f xz

2,+
2(

�xz
2,+
t )3

)

× 2ξRξsdY cos θ. (B6)

The integrands in the expressions of σ z,xz
sH and σ x,xz

sH , in
Eqs. (B5) and (B6), respectively, are both even in kx and even
in ky.

For the y polarization of the spin, the spin Hall conductivity
σ

y,xz
sH vanishes.

2. Néel order parameter in the y-z plane

In the case where the AF spins rotate in the y-z plane,
the Néel order parameter is n = (0, sin θ, cos θ ). Here the
Hamiltonian Ĥ = ∑

k∈♦ Ĉ†
k [ε0(k) + Uyz

k Dyz
k Uyz†

k ]Ĉk is diago-
nalized by Dyz

k = diag(�yz
1,−,�

yz
1,+,�

yz
2,−,�

yz
2,+), with the four

eigenvalues

�
yz
1,±
t

= ±
√

ξ 2
sd + 4ξ 2

R(X 2 + Y2) + 4ξsdξRX sin θ, (B7a)

�
yz
2,±
t

= ±
√

ξ 2
sd + 4ξ 2

R(X 2 + Y2) − 4ξsdξRX sin θ. (B7b)

The unitary matrix is Uyz
k = (ψyz

1,−, ψ
yz
1,+, ψ

yz
2,−, ψ

yz
2,+), writ-

ten in terms of the eigenfunctions

ψ
yz
1,± = 1

2
√

�
yz
1,±

√
�

yz
1,± − M cos θ

(
κ1,±
κ1,±

)
, (B8a)

ψ
yz
2,± = 1

2
√

�
yz
2,±

√
�

yz
2,± + M cos θ

(
κ2,±

−κ2,±

)
, (B8b)
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where

κ1,± =
(−iM sin θ + R(Y + iX )

�
yz
1,± − M cos θ

)
, (B9a)

κ2,± =
(−iM sin θ − R(Y + iX )

−�
yz
2,± − M cos θ

)
. (B9b)

Based on Eqs. (22), (B7), (B8), and (B9), the spin Hall
conductivity for AF spins in the y-z plane yields

σ
z,yz
sH = (2π )2

N2/2

∑
k∈♦

cos kxa

2π

⎛
⎝ f yz

1,− − f yz
1,+

2(
�

yz
1,+
t )3

+ f yz
2,− − f yz

2,+

2(
�

yz
2,+
t )3

⎞
⎠

× (2ξR)2Y2 (B10)

when we consider the z component of the spin. In Eq. (B10),
f yz
1,± = fFD(ε0 + �

yz
1,± − μ), and similarly for f yz

2,±. The inte-
grand in Eq. (B10) is even in kx and even in ky.

For the x polarization of the spin, the expression for the
spin Hall conductivity is

σ
x,yz
sH = (2π )2

N2/2

∑
k∈♦

cos kxa

2π

⎡
⎣ f yz

1,− − f yz
1,+

2(
�

yz
1,+
t )3

− f yz
2,− − f yz

2,+

2(
�

yz
2,+
t )3

⎤
⎦

× 2ξRξsdY cos θ

= 0, (B11)

where σ
x,yz
sH vanishes because the integrand in Eq. (B11) is

antisymmetric in both kx and ky.
The spin Hall conductivity σ

y,yz
sH for the y polarization of

the spin vanishes because the relevant expectation values in
Eq. (22) have no finite imaginary part.
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