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Coherence of an extended central spin model with a coupled spin bath

Pengcheng Lu ,1,2 Hai-Long Shi,3 Like Cao,3 Xiao-Hui Wang,2,3 Tao Yang ,1,2,3,4,*

Junpeng Cao,4,5,6,7,† and Wen-Li Yang1,2,3,4,‡

1Institute of Modern Physics, Northwest University, Xi’an 710127, China
2Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China

3School of Physics, Northwest University, Xi’an 710127, China
4Peng Huanwu Center for Fundamental Theory, Xi’an 710127, China

5School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China
6Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

7Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

(Received 12 February 2020; accepted 5 May 2020; published 22 May 2020)

We study an extended central spin model with an isotropic nearest-neighbor spin-exchange interaction among
the bath spins. The system is controllable by external magnetic fields applied on the central spin and the bath,
respectively. We construct a basis set of the Hilbert space and express the Hamiltonian of the extended model into
a series of 2 × 2 block matrices to obtain the exact solution of the model successfully. Therefrom, the coherence
and the spin polarization of the central spin are investigated. We find that if the couplings among the bath spins
are antiferromagnetic, the central spin has good coherence and polarization at low temperatures. Moreover, the
decoherence is greatly suppressed at the critical point where the strengths of the central and the bath magnetic
field take the same value. A dephasing phenomenon is identified when the initial state of the central spin is
unpolarized.
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I. INTRODUCTION

The central spin model, describing one central spin sur-
rounded by a number of bath spins, was first introduced
and solved by Gaudin in 1970s [1]. In the past decades, the
study of central spin systems and the related generalizations
has gained great attention because the model has appeared
in a large variety of nanostructures, such as semiconductors
[2–4], quantum dots [5–18], carbon nanotubes, and nitrogen
vacancy centers in diamond [19,20]. This model is closely
related to the spin qubit suitable for quantum information
processing, quantum computation, and quantum metrology
devices. The coupling between the central spin and the bath
spins induces many interesting phenomena such as coherence
[21], many-body localization [22], the Loschmidt echo [23],
and the solution Lee-Yang zero [24]. Great efforts are made to
understand the sources and mechanisms of decoherence, the
major obstacle for real-life functioning implementations of
the model. The exact solutions of central spin systems, giving
the many-particle eigenvalues and eigenstates, are important
to provide some believable and quantitative results for under-
standing the dynamical behavior of the system [25]. However,
only the systems with an initially fully polarized bath spin
have an exact analytical solution for the spin dynamics, while
approximation-free results can be obtained numerically for
sufficiently small systems with partially polarized nuclei [18].

*yangt@nwu.edu.cn
†junpengcao@iphy.ac.cn
‡wlyang@nwu.edu.cn

As we know, due to unavoidable interactions of the central
spin with the surrounding nuclear spins, quantum coherence
of the central spin will disappear finally. This decoherence
process is the main obstacle to quantum computing and quan-
tum information processing [7,26,27]. The environment de-
stroys quantum interferences of the system, and the unwanted
influences of the environment reduce the advantages of the
quantum computing methods. Many studies were conducted
to investigate the detrimental effect of decoherence without
considering the interactions of the bath spins due to the
complexity of the system. Another consideration is that, in
quantum dots, the Heisenberg exchange resulting from the
hyperfine interaction between the localized electron and the
nuclei dominates on short-time scales up to 1 ms [28] before
the interaction between the bath spins becomes effective.
It was found that the decoherence strongly depends on the
homogeneity of the coupling between the central spin with its
bath and the initial state of the bath spins [5,9,25,29,30]. The
decoherence times become shorter for larger inhomogeneity
in the couplings [25]. In the system with a fully polarized
and untangled bath, a persistent oscillation of the central spin
coherence, whose amplitude is inversely proportional to the
total number of the bath spins, is discovered [9], which means
that the decoherence effect in quantum dots can be effectively
suppressed by increasing the number of bath spins under the
circumstance of initial spin polarization.

However, the bath spin interaction is ubiquitous in real
materials. The bath spin coupling may induce a strong impact
on the dynamical properties of some systems. It was argued
that energy exchange through mutual interactions of the bath
modes avoids using the central spin as an intermediary and
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modifies the statistical properties of the energy levels and
eigenstates of the bath, which can significantly affect the
properties of the system [31]. However, it is still an open
question to what extent the coupling of bath spins affects the
decoherence and the possibility to tune the decoherence by
external magnetic fields in an entangled environment. With-
out considering the bath interactions, complete decoherence
occurs in the central spin model with homogeneous couplings
if the initially unentangled spin bath is with zero or small
magnetization [30]. The central spin decays infinitely fast with
increasing number of bath spins and to zero in the thermo-
dynamical limit. However, for the environment initially in an
eigenstate of the total bath spins, the central spin exhibits
persistent monochromatic oscillation with a large amplitude
[30]. An entangled bath state with zero or small magnetization
may lead to persistent oscillations of the expectation value of
the central spin in the homogeneous model, and very differ-
ent long-time evolutions are induced by different degrees of
entanglement [9]. It shows that the central spin coherence can
be protected by entanglement in the bath in Refs. [31–33].
Moreover, it was found that the XY-type interaction among
bath spins can induce a bath-size independent decay of the
coherence [33], which is also very different from that of
the noninteracting cases. In the thermal dynamical limit, the
analytical form of the Bloch vector for antiferromagnetic
coupling within the spin bath was derived to investigate the
short-time and long-time behavior of reduced dynamics of the
central spin system [34].

In this paper, we construct an extended solvable cen-
tral spin model by introducing an isotropic nearest-neighbor
spin-exchanging interaction among the bath spins into the
standard central spin model [1], and we consider the finite
external fields for the central spin and bath spins. By using
the eigenvalues and Bethe eigenstates of the bath spins, we
propose a method to solve this extended central spin model
and obtain the exact solution of the system. By investigating
the evolution of the central spin coherence and polarization,
we show the rich dynamics of the system. The results obtained
are helpful for understanding the decoherence problems in
quantum dots. Meanwhile, we also find an interesting dephas-
ing phenomenon.

The paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian of the extended central spin system
with the isotropic spin-exchanging interactions among the
bath spins. In Sec. III A, we derive the exact solution of
the system by using the Bethe ansatz and the theory of
coupled angular momentum. The reduced density matrix of
the central spin is given in Sec. III B. In Sec. IV, we study the
evolution of the central spin coherence, defined by the l1 norm
of coherence, from some specific initial states such as bath
eigenstates and bath thermal states by using the measurement
named l1 norm. The dynamical properties of the central spin
polarization are shown in Sec. V. We give a brief summary in
Sec. VI.

II. THE EXTENDED CENTRAL SPIN MODEL

We consider a system in which one central spin is coupled
with N bath spins where the bath spins have the isotropic spin-
exchange interactions. The model is schematically shown

FIG. 1. Schematic diagram of the extended central spin model
with the isotropic exchanging interactions between the bath spins.

in Fig. 1. For simplicity, we restrict ourselves to spin-1/2
objects. The Hamiltonian of this central spin model is

H = g
N∑

j=1

�S · �σ j + �Sz + ω

N∑
j=1

σ z
j + Hx,

Hx = γ

N∑
j=1

�σ j · �σ j+1, (1)

where �S = 1
2 (σ x, σ y, σ z ) denotes the central spin, �σ j =

(σ x
j , σ

y
j , σ

z
j ) denotes the jth bath spin, and g is the isotropic

coupling strength between the central spin and the surround-
ing bath spins. The strengths of the external magnetic field
measured by the central spin and the bath spins are � and ω,
respectively. The last term Hx describes the isotropic coupling
between the bath spins, which is equivalent to a periodic XXX
spin-1/2 chain. The coupling of bath spins is ferromagnetic
(antiferromagnetic) with γ = 1 (γ = −1).

Since the bath spins are identical and indistinguishable, we

define the collective operators Jα = 1
2

N∑
j=1

σα
j , with α = x, y,

and z. Then the spin-flipping operators are J± = Jx ± iJy. The
spin-flipping operators acting on the central spin are defined
by S± = Sx ± iSy. Then the Hamiltonian (1) can be rewritten
as

H = g(J+S− + J−S+ + 2JzSz ) + �Sz + ωJz + Hx. (2)

The su(2) symmetry of the Hamiltonian Hx of the bath
spins leads to [Hx, Jα] = 0. Meanwhile, Hx and Sα are also
commutative, i.e., [Hx, Sα] = 0. Therefore, the Hamiltonian
Hx and H commute with each other, i.e., [Hx, H] = 0, which
means that they have common eigenstates. We also note that
if ω = � = 0, the system (1) has the su(2) symmetry and the
total spins (central spin plus bath spins) along each directions
are all conserved, i.e., [Jα + Sα, H] = 0. However, for the
generic values of ω and �, the su(2) symmetry is broken
and only the total spin along the z direction is conserved, i.e.,
[Jz + Sz, H] = 0.
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III. EXACT SOLUTION AND REDUCED DENSITY MATRIX

A. Exact solution

In order to obtain the eigenvalues and the eigenstates of the
Hamiltonian (2), we first seek the exact solution of the bath
Hamiltonian Hx. Using the language of the Bethe ansatz, Hx

is characterized by the R matrix [35]

R0, j (u) = u + P0, j = u + 1
2 (1 + �σ j · �σ0), (3)

where u is the spectral parameter, P0, j is the permutation op-
erator, 0 means the auxiliary space, and j means the quantum
space. From the R matrix, we can construct the monodromy
matrix

T0(u) = R0,N (u) · · · R0,1(u) =
(

A(u) B(u)
C(u) D(u)

)
. (4)

It is remarked that the matrix elements A(u), B(u), C(u),
and D(u) are the operators living in the Hilbert space of Hx.
Taking the partial trace in the auxiliary space, we obtain the
transfer matrix, i.e., t (u) = tr0T0(u), which is the generating
functions of all the conserved quantities of the bath system.
The Hamiltonian Hx is the derivative of the logarithm of the
transfer matrix t (u):

Hx = 2γ
d ln t (u)

du

∣∣
u=0 + γ N. (5)

The eigenstates of the Hamiltonian Hx are constructed by
enacting the spin-flipping operators B(u) on the reference

state |�〉:
|λ1, . . . , λM〉 = B(λ1) · · · B(λM )|�〉,

|�〉 = | ↑〉1 ⊗ · · · ⊗ | ↑〉N , (6)

where {λ j} are the Bethe roots, M is the number of Bethe
roots or the number of the flipped bath spins, and all the spins
at the reference state |�〉 are aligned as spin-up. The number
of Bethe roots is set as M � [ N

2 ]. By using the algebraic Bethe
ansatz method, the eigenvalues of Hx are obtained as

Ex(λ1, . . . , λM ) = −
M∑

j=1

2γ

λ2
j + 1

4

+ γ N, (7)

where the Bethe roots {λ j} satisfy the Bethe ansatz equations
(BAEs)(

λ j − i
2

λ j + i
2

)N

=
M∏

l �= j

λ j − λl − i

λ j − λl + i
, j = 1, . . . , M. (8)

The Bethe-type eigenstates (6) are the highest-weight
states of the J+ operator and are highly degenerate [36].
Because [J−, Hx] = 0, we can apply the J− operator to the
Bethe states (6) and obtain the complete basis of the Hilbert
space of Hamiltonian Hx:

|λ1, . . . , λM ; n〉 ≡ (J−)SM−n 1

QM
|λ1, . . . , λM〉,

n = SM , . . . ,−SM , (9)

where SM = N/2 − M is the magnetization of the Bethe
state |λ1, . . . , λM〉 and QM = √〈λ1, . . . , λM |λ1, . . . , λM〉 is
the corresponding normalization factor. The basis set (9)
satisfies the following:

J−|λ1, . . . , λM ; −SM〉 = 0,

J−|λ1, . . . , λM ; n〉 =
√

(SM + n)(SM + 1 − n)|λ1, . . . , λM ; n − 1〉,
J+|λ1, . . . , λM ; n〉 =

√
(SM + 1 + n)(SM − n)|λ1, . . . , λM ; n + 1〉,

Jz|λ1, . . . , λM ; n〉 = n|λ1, . . . , λM ; n〉. (10)

The basis with the same M but different n is the degenerated eigenstates of the Hamitonian Hx, and the corresponding energy is
Ex(λ1, . . . , λM ). They are uniquely determined by the complete set of physical quantities Hx and J−. The completeness of them
has been proven by Tarasov in Ref. [37].

Now, we are ready to solve the extended central spin system (2). First, we construct the complete basis of the Hilbert space
of Hamiltonian (2) as

{|λ1, . . . , λM ; n〉 ⊗ | ↑〉, |λ1, . . . , λM ; n〉 ⊗ | ↓〉},

n = SM , . . . ,−SM , M = 0, 1, . . . ,

[
N

2

]
, (11)

where | ↑〉 and | ↓〉 are the basis of the central spin. By acting Hamiltonian (2) on the above basis (13), we get

H |λ1, . . . , λM ; SM〉 ⊗ | ↑〉 =
(

Ex + ωSM + �

2
+ gSM

)
|λ1, . . . , λM ; SM〉 ⊗ | ↑〉, (12)

H |λ1, . . . , λM ; −SM〉 ⊗ | ↓〉 =
(

Ex−ωSM − �

2
+ gSM

)
|λ1, . . . , λM ; −SM〉 ⊗ | ↓〉, (13)

H |λ1, . . . , λM ; m〉 ⊗ | ↑〉 =
(

Ex + mω + �

2
+ mg

)
|λ1, . . . , λM ; m〉 ⊗ | ↑〉

+g
√

(SM + 1 + m)(SM − m)|λ1, . . . , λM ; m + 1〉 ⊗ | ↓〉, m �= SM , (14)
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H |λ1, . . . , λM ; m + 1〉 ⊗ | ↓〉 =
(

Ex + (ω − g)(m + 1) − �

2

)
|λ1, . . . , λM ; m + 1〉 ⊗ | ↓〉

+ g
√

(SM + 1 + m)(SM − m)|λ1, . . . , λM ; m〉 ⊗ | ↑〉, m �= SM, (15)

where Ex = Ex(λ1, . . . , λM ).
From Eqs. (12) and (13), we obtain two eigenstates of the

central spin system directly as

|λ1, · · · , λM ; SM〉 ⊗ | ↑〉,
|λ1, · · · , λM ; −SM〉 ⊗ | ↓〉, (16)

and we obtain the corresponding eigenvalues in the form

E±
SM

= Ex(λ1, · · · , λM ) + gSM ±
(

ωSM + �

2

)
. (17)

From Eqs. (14) and (15), we find that the basis

|λ1, · · · , λM ; m〉 ⊗ | ↑〉,
|λ1, · · · , λM ; m + 1〉 ⊗ | ↓〉, (18)

constructs a two-dimensional invariant subspace. Therefore,
the Hilbert space of the system can be divided as the direct
product of these kinds of invariant subspaces, and the Hamil-
tonian (2) is the direct sum of determined 2 × 2 matrix blocks.
This means that we can diagonalize the Hamiltonian in every
subblock. In the invariant subspace (16), the matrix form of
the Hamiltonian is

(
Ex(λ1, . . . , λM ) + m(g + ω) + �

2 g
√

(SM + 1 + m)(SM − m)

g
√

(SM + 1 + m)(SM − m) Ex(λ1, . . . , λM ) + (m + 1)(ω − g) − �
2

)
,

where m �= SM . By solving the resulting secular equation, we
obtain the eigenvalues of the Hamiltonian (2) as

E±
m = Ex(λ1, . . . , λM ) + mω

+ 1
2 {ω − g ± [[w − � − g(2m + 1)]2

+ 4g2(SM + 1 + m)(SM − m)]1/2}, (19)

where m ∈ [−SM, SM − 1]. The corresponding eigenstates are

gm|λ1, . . . , λM ; m〉 ⊗ | ↑〉
+ (εm ± ζm)|λ1, . . . , λM ; m + 1〉 ⊗ | ↓〉, (20)

where the parameters εm, gm, and ζm are given by

εm = [ω − � − g(2m + 1)]/2,

gm = g
√

(SM + 1 + m)(SM − m),

ζm =
√

ε2
m + g2

m, (21)

respectively.

B. Reduced density matrix

In order to study the dynamical evolution of the system,
we calculate the time-dependent reduced density matrix of the
central spin by using the eigenvalues and eigenstates obtain in
Sec. III A. The reduced density matrix is defined as

ρc(t ) = trB{U (t )ρtot (0)U (t )†}, (22)

where trB means taking the partial trace of the bath spins,
U (t ) = exp(−iHt ) is the time evolution operator, and ρtot (0)
is the initial density matrix of the system described by the
Hamiltonian (2). Hereafter, we consider an initial state,

ρtot (0) = ρc(0) ⊗ ρB(0), (23)

where ρc(0) and ρB(0) are the initial density matrices of the
central spin and the bath spins, respectively. Obviously, at
the initial state, the central spin and the bath spins do not

have correlations. We note that ρtot (0) ensures the complete
positivity of the reduced dynamics [38,39].

At the initial time t = 0, we suppose that the state of the
central spin is a general superposition state, ρc(0) = (α| ↑〉
+ β| ↓〉)(〈↑ |α∗ + 〈↓ |β∗), where α and β are the coefficients
satisfying the normalization |α|2 + |β|2 = 1. Then, we should
determine the initial states of the bath. We consider two
fundamental cases. One is the bath initially occupying its
own eigenstate, ρB(0) = |λ1, . . . , λM ; n〉〈λ1, . . . , λM ; n|, and
the other is the bath initially in its own thermal state, ρB(0) =
1
Z e−Hx/(kBT ), at a finite temperature T , where kB is the Boltz-
man constant and Z is the partition function,

Z =
[ N

2 ]∑
M=0

∑
{λ1,...,λM }

SM∑
n=−SM

e− Ex (λ1 ,...,λM )
kBT . (24)

Note that the initial state (23) is not the eigenstate of
the central spin system (2), and we need to expand it by
the eigenstates (18) and (20). From the definition (22) and
using the initial condition (23) as well as the corresponding
eigenvalues (17) and (19), the reduced density matrix of
the central spin at time t can be obtained analytically. In
previous study [34], the analytical form of the Bloch vector
was derived for antiferromagnetic interactions within the bath
in the limit of an infinite number of environmental spins. In in-
homogeneous central-spin models without bath spin coupling,
analytical results were derived in the limiting case of a fully
polarized bath [9,29].

If the initial bath state is the highest-weight state
|λ1, . . . , λM ; SM〉, with SM = 0, the elements of the reduced
density matrix of the central spin at time t are

ρ11
c,M,0(t ) = 1 − ρ22

c,M,0(t ) = |α|2,
ρ12

c,M,0(t ) = ρ21
c,M,0(t )∗ = αβ∗e−i�t ≡ αβ∗rM,0(t ), (25)
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while with SM �= 0, the elements of the reduced density matrix
read

ρ11
c,M,SM

(t ) = 1 − ρ22
c,M,SM

(t )

= |α|2 + |β|2
2ζ 2

SM−1

g2
SM−1[1 − cos(ζSM−1t )],

ρ12
c,M,SM

(t ) = ρ21
c,M,SM

(t )∗

= αβ∗ e−iωt

2ζSM−1
[(εSM−1 + ζSM−1)ei(εSM +ζSM −1 )t

− (εSM−1−ζSM−1)e−i(−εSM +ζSM −1 )t ]≡αβ∗rM,SM (t ).

(26)

If the initial bath state is the lowest-weight state
|λ1, . . . , λM ; −SM〉, the elements of the reduced density ma-
trix are

ρ11
c,M,−SM

(t ) = 1 − ρ22
c,M,−SM

(t )

= |α|2
2ζ 2

−SM

{2ε2
−SM

+ g2
−SM

[1 + cos(ζ−SM t )]} + |β|2,

ρ12
c,M,−SM

(t ) = ρ21
c,M,−SM

(t )∗

= αβ∗ e−iωt

2ζ−SM

[
(−ε−SM + ζ−SM )e−i(−ε−SM +1+ζ−SM )t

+ (ε−SM + ζ−SM )ei(ε−SM +1+ζ−SM )t
]≡αβ∗rM,−SM (t ).

(27)

The elements of the reduced density matrix of the
central spin with the bath occupying other eigenstates
|λ1, . . . , λM ; m′〉 are

ρ11
c,M,m′ (t ) = 1 − ρ22

c,M,m′ (t ) = |α|2
2ζ 2

m′

{
2ε2

m′ + g2
m′ [1 + cos(ζm′t )]

}

+ |β|2
2ζ 2

m′−1

g2
m′−1[1 − cos(ζm′−1t )],

ρ12
c,M,m′ (t ) = ρ21

c,M,m′ (t )∗

= αβ∗ e−iωt

4ζm′ζm′−1

[
(−εm′ + ζm′ )

× (εm′−1 + ζm′−1)e−i(ζm′ −ζm′−1 )t − (εm′ + ζm′ )

× (εm′−1 − ζm′−1)e−i(−ζm′ +ζm′−1 )t

− (−εm′ + ζm′ )(εm′−1 − ζm′−1)e−i(ζm′ +ζm′−1 )t

+(εm′ + ζm′ )(εm′−1 + ζm′−1)ei(ζm′+ζm′−1 )t
]

≡ αβ∗rM,m′ (t ), (28)

with m′ ∈ [−SM + 1, SM − 1]. For the initial bath spins at the
thermal state, the elements of the reduced density matrix are

ρkl
c (t ) = 1

Z

[ N
2 ]∑

M=0

∑
{λ1,...,λM }

SM∑
n=−SM

e− Ex (λ1 ,...,λM )
KBT ρkl

c,M,n(t ), (29)

where k, l = {1, 2} and ρkl
c,M,n(t ) are given by Eqs. (25)–(28).

IV. EVOLUTION OF THE CENTRAL SPIN COHERENCE

Provided the central spin is a qubit, the evolution of the
quantum coherence of the central spin is characterized by
the so-called l1 norm of the coherence Cl1 determined by
the absolute value of the off-diagonal element ρ12

c (t ) of the
reduced density matrix [40],

Cl1 (t ) = 2
∣∣ρ12

c (t )
∣∣ = 2|αβ∗||rM,n|, (30)

which makes it possible to study the evolution of the coher-
ence with different model parameters, showing some interest-
ing results.

As the bath spins supply the environment of the central
spin, the evolution of the central spin coherence shows varying
properties with different initial bath states. Thus we consider
the initial bath eigenstates (including the ground state) and the
initial bath thermal states separately. Meanwhile, we require
that the combination coefficients α and β of the central spin
cannot be zero, i.e., αβ �= 0. Otherwise the central spin only
occupies the spin-up state or the spin-down state which does
not evolve. From Eq. (30), we also know that the quantity |αβ|
only contributes a time-independent constant factor and does
not contribute to the evolution process. So we only consider
the coherence factor |rM,n| in the following.

A. Bath initially in its own eigenstates

Under the condition that all the bath spins occupy their
eigenstates, if the bath eigenstates are the highest-weight
(lowest-weight) states |λ1, . . . , λM ; SM〉, with SM = 0, we
know rM,0(t ) = e−i�t , which is a phase factor from Eq. (25).
Thus the coherence factor is

|rM,0(t )| = 1, (31)

which means that the coherence of the central spin
does not evolve. If the bath eigenstates are the highest-
weight state |λ1, . . . , λM ; SM〉 or the lowest-weight state
|λ1, . . . , λM ; −SM〉, with SM �= 0, the coherence factors are

|rM,SM (t )| = fM,SM−1(t ), |rM,−SM (t )| = fM,−SM (t ). (32)

If the bath eigenstates |λ1, . . . , λM ; m′〉, with m′ �= ±SM , are
between the highest-weight state and the lowest-weight state,
the coherence factor is

|rM,m′ (t )| = fM,m′ (t ) fM,m′−1(t ), m′ ∈ [−SM + 1, SM − 1].

(33)

The function fM,n(t ) is given by

fM,n(t ) =
{

1 − g2
n

ζ 2
n

sin2(ζnt )

} 1
2

, n = SM , . . . ,−SM . (34)

From the parametrization (21) and the definition (33), we
see that the coherence factor |rM,m(t )| depends on the quantity
(ω − �) and g, while it is independent of Ex. Hence we keep
� = 5 a constant and tune the value of ω. The real-time
evolutions of the central spin coherence induced by a highest-
weight state with SM = n = 4 and by a non-highest-weight
state with SM = 4 and n = 2 for fixed g are shown in Figs. 2(a)
and 2(b), respectively.

In Fig. 2(a), we show the oscillation behavior (i.e.,
| cos(gt )|) of the central spin coherence when εSM−1 = 0

184307-5



PENGCHENG LU et al. PHYSICAL REVIEW B 101, 184307 (2020)

FIG. 2. Real-time evolutions of the coherence factor of the central spin when the bath is in a highest-weight state with SM = n = 4 (a) and
a state between the highest and the lowest weight with SM = 4 and n = 2 (b) for different ω. In both plots, we set g = 1, � = 5, and N = 8.

corresponding to the highest-weight state as described by
Eq. (32). For the lowest-weight state, the coherence has the
same property as for the highest one. However, as shown in
Fig. 2(b), this kind of oscillation behavior does not exist for
other states due to the fact that εm′ = 0 and εm′−1 = 0 cannot
be 0 at the same time. Then the coherence factors for these
states are the product of two parts according to Eq. (33).

As we know, the initial state is not an eigenstate of the
Hamiltonian (2). During the evolution, if the bath spins oc-
cupy the highest-weight (lowest-weight) states, only the states
with SM and SM − 1 (−SM and −SM + 1) contribute to the
central spin coherence according to Eqs. (26) and (27). All
the other states except for those with the highest weight and
the lowest weight evolve in three state subspaces with m′ and
m′ ± 1 according to Eq. (28).

As shown in Figs. 2(a) and 2(b), the lower bound of
the coherence factor |rM,n(t )| and the oscillation frequency
increase with increasing |ω − ωc|. There is a critical external
magnetic field, ωc, applied to the bath spins determined by
the constraint εSM−1 = 0, which makes the lower bound of the
coherence factor |rM,n(t )| reach 0. When |ω − ωc| increases,
the factor gn/ζn in Eq. (34) turns out to be smaller than 1,
which raises up the lowest bound of the coherence factor. If
|ω − ωc| is big enough, the coefficient gn/ζn will be close to
0 and the coherence factor |rM,n(t )| will approach 1, which
means the central spin coherence is kept very well. Now, we
study the evolution of the central spin coherence for fixed ω.
The evolutions of the coherence factor |rM,n(t )| induced by
the highest-weight (lowest-weight) state and other states of
the bath spins are shown in Figs. 3(a) and 3(b), respectively.
We see that the lower bound of the coherence factor |rM,n(t )|
moves up with increasing g from the value gc, where gc is
the critical coupling between the central spin and the bath
spins determined by the constraint εSM−1 = 0. Here, with
increasing g, the increasing rate of the lower bound of |rM,n(t )|
turns slowly, while the oscillation of |rM,n(t )| becomes rapid.
These phenomena can be explained analytically based on the
knowledge given in Sec. III A. With increasing g, both εn and
gn grow. Thus the oscillation frequency ζn increases while the
oscillation amplitude decreases. Meanwhile, the increasing of
εn will enhance the coherence while the increasing of gn will
reduce the coherence. Due to the fact that gn will decrease
with decreasing g from the critical value of gc, we can draw

the conclusion that the weak coupling between the central spin
and the bath spins can enhance the central spin coherence.

The physical picture is as follows. Although the interac-
tions between the central spin and the bath spins are isotropic,
from the derivation in Sec. III A, we see that the contribution
of the couplings between the central spin and the bath spins
in the z direction enters the term εn, while the contributions of
the couplings in the x and y directions enter the term gn. From
Eq. (21), the couplings in the z direction can be regarded as a
total effective magnetic field applied on the central spin. This
total effective magnetic field is generated by the polarization
of bath spins as well as the external magnetic field applied
on the central spin, which tunes the energy gap of the central
spin. It is hard to flip the central spin from the spin-up state
to the spin-down state if the total effective magnetic field is
very large. However, the couplings in the x and y directions
will reduce the coherence of the central spin. This is because
more possible states are involved during the evolution, which
can be seen from Eqs. (14) and (15).

We also find that for the highest-weight states with differ-
ent SM , the lower bound of the coherence factor |rM,SM (t )| is
smaller if SM is larger. This is because, for a large SM , gn is
large and more possible states contribute to the coherence of
the central spin. Therefore, we conclude that the coherence
of the central spin can be enhanced by increasing |ω − ωc| or
decreasing |g − gc| in the system (1).

If all the bath spins occupy their eigenstates, although there
are interactions between the bath spins, the coupling constant
γ , the energy Ex of the bath spins, and some details of Bethe
states are still not included in the coherence factor |rM,n(t )|.
This is because the operation of taking trace erases some
information about the bath spins. If we consider other physical
quantities or the evolution of the coherence at the thermal
state, the corresponding results will be different as discussed
in the following.

B. Bath initially in its own thermal state

In order to study the effects induced by the interaction
of the bath spins, we consider that the evolution of the
central spin coherence begins in a thermal environment at
a finite temperature T . All the eigenstates |λ1, . . . , λM ; SM〉
with degeneracy SM of bath spins should be ergodic during the
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FIG. 3. Real-time evolutions of the coherence factor of the central spin when the bath is in a highest-weight state with SM = n = 4 for
different g (a) and in a state between the highest weight and the lowest weight with SM = 4 and n = 2 for g = 10 (b). In both plots, we set
ω = 12, � = 5, and N = 8.

evolution. Then the central spin coherence is the summation
of the production of the coherence of each eigenstate, rM,n(t ),
and its weight, e−Ex/(kBT ), for all the eigenstates of the bath
spins in the form of

|r(t )| =
∣∣∣∣∣∣

1

Z

[ N
2 ]∑

M=0

∑
{λ1,...,λM }

SM∑
n=−SM

e− Ex (λ1 ,··· ,λM )
kBT rM,n(t )

∣∣∣∣∣∣, (35)

where the energy Ex of the bath spins is determined by the
Bethe roots {λ1, . . . , λM} obtained from Eq. (6) and by solving
the BAEs (7).

We study the antiferromagnetic environment and the fer-
romagnetic environment separately to identify the different
evolution behaviors of the central spin coherence in these
two states. The coherence factors |r(t )| for the bath spins
with antiferromagnetic coupling and ferromagnetic coupling
at different temperatures are shown in Figs. 4(a) and 4(b),
respectively. There is no obvious lower bound for the case
with a ferromagnetic bath where the oscillation frequency
of the coherence is high. The lower bound of |r(t )| for the
case with an antiferromagnetic bath decreases with increasing
temperature T due to the fact that more Bethe states are
occupied by the bath spins and involved in the evolution of
the central spin at high temperatures. When the temperature

tends to infinity, the weight factors e−Ex/(kBT ) of all bath
eigenstates are about the same for both antiferromagnetic and
ferromagnetic baths. Hence the evolution curves with high
temperatures are similar and the coherence of the central spin
becomes poor.

At low temperatures, the Bethe states |λ1, . . . , λM ; SM〉
with small SM dominate for the antiferromagnetic coupling,
while the Bethe states with large SM dominate for the ferro-
magnetic coupling, which results in the obvious difference
between the coherence behaviors with an antiferromagnetic
bath and a ferromagnetic one. For the antiferromagnetic bath,
the lower the temperature is, the better the central spin coher-
ence is. We note that the number of possible states is larger
with larger SM and the degeneracy of Bethe states is higher.
Since more states are involved in the evolution for the case
with ferromagnetic coupling, the central spin coherence is
not as good as that with antiferromagnetic coupling at low
temperatures.

The evolutions of the coherence factor |r(t )| in the anti-
ferromagnetic environment at finite temperatures with fixed g
and fixed ω are shown in Figs. 5(a) and 5(b), respectively,
while keeping � = 5 and N = 8. As shown in Fig. 5(a),
there is a critical external magnetic field of the bath spins
whose value is the same as the external magnetic field of the

FIG. 4. Real-time evolutions of the coherence factor |r(t )| of the central spin in the antiferromagnetic bath (a) and the ferromagnetic bath
(b) at different temperatures. In both plots, we use g = 1, ω = 10, � = 5, and N = 8.
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FIG. 5. Real-time evolutions of the coherence factor |r(t )| of the central spin in the antiferromagnetic environment at finite temperature
for varying ω but g = 1 fixed (a) and for varying g but ω = 12 fixed (b). In both plots, we use T = 1, � = 5, and N = 8.

central spin, i.e., ω = �, which gives nearly perfect periodical
oscillation of the coherence. This behavior is completely con-
trary to the coherence evolution when the bath spins occupy
their eigenstates, where the lower bound is the smallest at
the critical ωc = 12 as shown in Fig. 2(a). Meanwhile, the
coherence will not improve with increasing ω, which is also
contrary to the result in Fig. 2(a). This is because when
we consider finite temperatures, all the possible states are
included.

Let us give some detailed analyses at the critical point ω =
�. From Eq. (21) and considering the fixed g, at the critical
point of ω′

c = �, we have

ε2
n + g2

n = ζ 2
n = g2

(
S2

M + SM + 1/4
)
, n ∈ [−SM , SM],

(36)

with ζn related to the evolution frequency of the coherence
as shown in Eq. (34). This indicates that ζn with different
quantum numbers n but the same highest-weight SM are equal,
which can be regarded as the number of permitted occupation
states being reduced.

With ω fixed in Fig. 5(b), the decoherence is quick at the
beginning of the evolution of the system with increasing g.
For large g, the oscillation decoherence is obvious. Due to
the facts that SM is large at low temperatures and that we do
the summation of all possible states, the coupling between the
central spin and the bath spins does not have a critical value.
Moreover, the evolution of the coherence is affected by the
number of bath spins. The larger the number of bath spins N
is, the more states that are involved in the evolution. As shown
in Fig. 6, reducing the number of bath spins suppresses the
decoherence of the central spin greatly.

V. EVOLUTION OF THE CENTRAL SPIN POLARIZATION

In this section, we consider the dynamical properties of the
central spin polarization. The time-dependent spin polariza-
tion along the z direction is defined as

Sz
0(t ) = tr

{
Sz

0U (t )ρtot (0)U †(t )
} = tr{Szρc(t )}, (37)

by using the central spin operator along the z direction, Sz, and
the reduced density matrix of the central spin at the time ρc(t ),

The spin polarization at the initial bath thermal states reads

Sz
0(t ) = 1

Z

[ N
2 ]∑

M=0

∑
{λ1,...,λM }

SM∑
n=−SM

e− Ex (λ1 ,...,λM )
kBT ρ11

c,M,n(t ), (38)

where ρ11
c,M,m(t ) is the element of ρc(t ) given by

Eqs. (25)–(28). Clearly, the value of Sz
0(t ) depends on

the combination coefficients α and β of the initial state of
the central spin. We take the parametrizations α = sin θ

and β = cos θ for simplicity. The central spin polarization
Sz

0(0) = (sin2 θ − cos2 θ )/2 at t = 0. For the given value of
θ = 0.4π , the spin polarization starts from 0.404 51. The
same as before, we consider the antiferromagnetic bath and
the ferromagnetic bath separately to discover the different
effects on the central spin polarization.

In Fig. 7(a), we show the time evolution of the
spin polarizations at different temperatures in the an-
tiferromagnetic bath. We see that the spin polarization
is suppressed with the increase of the temperature. At
zero temperature, the antiferromagnetic bath spins occupy
their ground state |λ1, . . . , λM ; SM〉, with SM = 0. The ini-
tial state is |λ1, . . . , λM ; SM〉 ⊗ (sin θ | ↑〉 + cos θ | ↓〉). We
have proved that the states |λ1, . . . , λM ; SM〉 ⊗ | ↑〉 and

FIG. 6. Real-time evolutions of the coherence factor |r(t )| of the
central spin in the antiferromagnetic environment at finite temper-
ature with different numbers of bath spins, where g = 1, ω = 10,
� = 5, and T = 1.
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FIG. 7. Real-time evolutions of the spin polarization Sz
0(t ) of the central spin at different temperatures in the antiferromagnetic bath (a) and

the ferromagnetic bath (b). In both plots, we use g = 1, ω = 10, � = 5, θ = 0.4π , and N = 8.

|λ1, . . . , λM ; −SM〉 ⊗ | ↓〉 are the eigenstates of the system
(2) in Sec. III A, which means Sz

0(t ) does not evolve with
time. With increasing temperature, the weight of this state
decreases, which makes the spin polarization decrease as
well. For the ferromagnetic bath, the spin polarization oscil-
lates stronger at lower temperatures, while the mean value
increases with the temperature as shown in Fig. 7(b). These
behaviors are contrary to those for the antiferromagnetic bath
shown in Fig. 7(a).

An interesting dephasing process is discovered, which
means that the diagonal elements of the reduced density
matrix remain unchanged while the nondiagonal elements
evolve. This phenomenon appears at θ = π/4, which means
that the weights of the | ↑〉 and | ↓〉 states are the same. The
initial spin polarization is zero according to (〈| ↑ | + 〈↓ |)
Sz(| ↑〉 + | ↓〉) = 0. Through detailed calculations, we find
that Sz

0(t ) does not evolve for any temperatures and other
system parameters. However, the result does not suggest that
the central spin keeps the initial coherence properties. Because
the central spin coherence will evolve for other initial values
of θ as stated in Sec. IV, the central spin and the bath spins do
exchange information.

The evolution of the spin polarization also changes with
ω and g. For fixed g, we find that the evolution of spin
polarization has an upper bound and a lower bound as shown

in Fig. 8(a), where the upper bound is nothing but the ini-
tial spin polarization. The lower bound and the oscillation
frequency increase with increasing |ω − ω′

c|, where ω′
c = �

is the critical point. The information exchange between the
central spin and the bath spins is enhanced at the critical point
ω = ω′

c as shown by the mauve dashed line in Fig. 8(a). As
shown in Fig. 8(b), the lower bound of the spin polariza-
tion with fixed ω decreases while the oscillation frequency
increases with increasing g. This means that the information
exchange becomes more frequent with stronger couplings
between the central spin and the bath spins. For the evolution
of the central spin polarization with varying ω and g in the
ferromagnetic bath, the system has properties similar to those
in the antiferromagnetic bath.

VI. CONCLUSIONS

In this paper, we have studied the extended central spin
model with XXX isotropic spin-exchanging interaction be-
tween the bath spins. By using the Bethe states of the bath
spins and the spin-flipping operators, we construct a complete
basis of the Hilbert space for the central spin system. We
find that the Hilbert space can be divided into the direct
product of some two-dimensional invariant subspaces. Thus
the Hamiltonian can be expressed by the direct sum of certain

FIG. 8. Real-time evolutions of the spin polarization Sz
0(t ) of the central spin in the antiferromagnetic environment at finite temperature for

varying ω but g = 1 (a) and for varying g but ω = 50 (b). In both plots, we use T = 1, � = 5, θ = 0.4π , and N = 8.
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2 × 2 matrix blocks. By solving the eigenequations, we obtain
the exact eigenstates and the associated eigenvalues of the
extended central spin system.

With the help of the exact solutions, we obtain the reduced
density matrix and study the coherence of the central spin
in different situations. If the bath spins occupy an eigen-
state, we find that the external magnetic fields (ω and �),
the couplings between the central spin and the bath spins
along the z direction, and the magnetization of the bath spins
(measured by the quantum number m) can constitute a total
magnetic field ε applied on the central spin. Thus the central
spin coherence can be enhanced by increasing |ε − εc| or by
decreasing the coupling between the central spin and the bath
spins. With the initial thermal state of the bath spins, the
central spin coherence in the antiferromagnetic environment
can be enhanced by decreasing the temperature or the number
of the bath spins. We also find that the central spin has good
coherence at the critical point of ω = �. The decoherence
rate in an initial short time is slower if the coupling is
weak.

The dynamical behaviors of the central spin polarization
has been studied under different circumstances. With increas-
ing temperature, the spin polarization decreases in the anti-
ferromagnetic bath while it increases in the antiferromagnetic
bath. A dephasing process is discovered in our central spin
model, where the central spin polarization is fixed even though
there is information exchange between the central spin and the
bath spins. Moreover, the information exchange between the
central spin and the bath spins is enhanced at ω = �, which
induces stronger oscillation of the central spin polarization. At
low temperatures, the central spin coherence and polarization

in the antiferromagnetic bath and the ferromagnetic bath show
completely different evolution properties. The antiferromag-
netic bath gives much better coherence and polarization of the
central spin. These results are helpful for further insight into
the mechanisms of decoherence and are useful in selecting
optimal configurations from the enormous freedom of the
solid states in real implementation. We also note that our
method can be applied to study the extended central spin
models with bath spins in an isotropic nearest-neighbor inter-
action spin chain with a higher spin or spin chains associated
with higher-rank algebras such as su(n), so(n), sp(2n), etc.
The generalization to a system with an anisotropic bath spin
interaction (such as the XXZ or XYZ spin chain) is still an
interesting open problem.
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