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Van Hove bound states in the continuum: Localized subradiant states in finite open lattices
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We show that finite lattices with arbitrary boundaries may support large degenerate subspaces, stemming
from the underlying translational symmetry of the lattice. When the lattice is coupled to an environment, a
potentially large number of these states remains weakly or perfectly uncoupled from the environment, realizing
a new kind of bound states in the continuum. These states are strongly localized along particular directions
of the lattice, which, in the limit of strong coupling to the environment, leads to spatially localized subradiant
states.

DOI: 10.1103/PhysRevB.101.184306

I. INTRODUCTION

Controlling the spatial and temporal evolution of light,
acoustic, or matter waves is at the core of a wealth of mod-
ern technologies and research. Just as interference between
electronic Bloch waves underlies band-structure theory in
condensed matter, in photonics the interplay between con-
structive and destructive interference and spatial localization
is the basis of disparate applications such as lasing [1,2],
slow light [3], light focusing [4], or frequency up-conversion
[5], to name a few. Recent works have also proposed to
identity and harness lattice states strongly coupled to their
environment based on lattice symmetries for light storing [6],
and as structured environments with anisotropic properties for
quantum optics [7–9].

A concept that unifies the ideas of spatial localization
and interference is bound states in the continuum (BICs).
BICs are solutions of wave equations that are spatially
bounded even though their energy lies within the contin-
uum of a system [10]. Their spatially compact nature stems
from interference effects on the potential-energy landscape
through which the wave propagates. Because of this inter-
ferometric origin, BICs are closely related to dark states
and sub- and super-radiance phenomena [11]. The original
discovery of BICs relied on a fine tuning of the poten-
tial landscape [12], however more recently Refs. [13,14]
showed that BICs can be made robust through symmetry
arguments.

Exact BICs have a vanishing width and can hence can be
regarded as resonances with an infinite quality factor, Q. An
example of this is chiral BICs [15], which are BICs supported
by the chiral or sublattice symmetry of a finite lattice. Due to
the chiral symmetry, a large number of degenerate states can
be found at zero energy, only some of which do couple to the
environment when the system is connected to a finite number
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of in-/out-coupling ports or leads [15]. When the sublattice
symmetry of the lattice is weakly broken, these BICs evolve
into narrow (high-Q) resonances [5] which can be harnessed
for narrow-band filtering [16], or to devise new nonlinear
metasurfaces for frequency up-conversion [17]. Chiral BICs
are also closely related to compact localized eigenstates in
Lieb lattices, in that the former are born from the macroscopic
degeneracy of zero-energy states in bipartite lattices, while the
latter emerge from interferences between the many degenerate
states in the Lieb lattice’s flat band. A striking demonstration
of this effect was reported by Vicencio et al., who showed how
these states propagate without distortion in a two-dimensional
photonic lattice [18]; similar results have been investigated in
quasi-one-dimensional structures [19], and there is currently
high interest in combining ideas of chirality and flat bands
[20].

In this paper, we identify a more general mechanism sup-
porting BICs in finite lattices, without specific requirements
on lattice symmetry or the existence of flat bands. The key
idea is that of Van Hove degeneracies (VHDs), which are
directly connected with Van Hove singularities (VHSs). A
VHS is a divergence in the density of states (DOS), ρ(E ),
of an infinite lattice [21,22]. The relation between the dis-
persion relation of the system, E (k), and its DOS, ρ(E ) =∫

dS/|∇E (k)|, where dS is the isofrequency surface element,
implies that VHSs are found at the critical points of the Bril-
louin zone, where E (k) has an extremum. In a finite lattice of
suitable geometry, the VHS translates into a high-dimensional
subspace of degenerate states at the Van Hove energy—a
VHD. Further, we show that, when the lattice is coupled to an
environment, the states in the VHD split into three subspaces:
nondissipative (“subradiant”) localized states that we name
VH BICs, subradiant delocalized states, and highly dissipative
localized states, which occur as high-Q resonances for weak
coupling. We analyze the impact of these subspaces on the
transmission properties of photonic crystals, and discuss their
relation to dark states and guided modes. Finally, we discuss
the connection of VH BICs with the super-radiance transition
in finite lattices.

2469-9950/2020/101(18)/184306(7) 184306-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4018-1323
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.184306&domain=pdf&date_stamp=2020-05-22
https://doi.org/10.1103/PhysRevB.101.184306


JORDI MUR-PETIT AND RAFAEL A. MOLINA PHYSICAL REVIEW B 101, 184306 (2020)

2 10 20 30 35
Lx

2

10

20

30

35

L
y

(a)

0

10

20

30

2 10 20 30 35
Lx

2

10

20

30

35

L
y

(b)

0

5

10

1 5 10 15 20
x

1

5

10

15

20

y

(d)
(c)

FIG. 1. (a) Number of degenerate states at the VH energy, nVH, for a triangular lattice with Lx columns and Ly rows. (b) Same as (a) for a
triangular lattice with a central hole of radius 1/6 of the smaller size (Sinai billiard). (c) Even-odd effect in nVH for Lx × Lx lattices without
(blue squares) and with (orange circles) a circular hole at the center. (d) Example Lx × Ly = 20×20 lattice with a circular hole of radius
R = 3.25. Each dot is a lattice site, while the dashed line indicates the boundary of the central hole.

II. VAN HOVE BICs IN OPEN FINITE LATTICES

We start considering a tight-binding Hamiltonian H on a
two-dimensional lattice, with Lx columns and Ly rows, with
hopping between nearest neighbors:

H = −t
∑
〈i, j〉

(c†
i c j + H.c.), (1)

where c†
i creates a particle on site i of the lattice, the sum is

over nearest neighbors 〈i, j〉, and t is the hopping amplitude.
This model can represent a range of material systems includ-
ing a fiber bundle, where photons hop between single fibers;
a set of coupled dielectric resonators placed in a microwave
cavity, among which microwave photons hop [23]; or single
electrons hopping in an array of quantum dots [24,25].

For concreteness, we restrict our calculations to a triangu-
lar lattice, as this has no sublattice symmetry, thus avoiding
complications in the analysis due to the interplay between VH
BICs and chiral BICs that appear in the square lattice and the
honeycomb [15].

In the limit of a large system, Lx, Ly � 1, the dispersion
relation of this system reads

E (k) = −2t

[
cos kxa + 2 cos

kxa

2
cos

√
3kya

2

]
, (2)

where a is the lattice constant, t is the nearest-neighbor
hopping matrix element, and k = (kx, ky) is a wave vector in
reciprocal space. The critical momenta where |∇E (k)| = 0
fulfill that either E (k) = 2t or the energy is at the upper
or lower edges of the spectrum. We are concerned with the
former, which correspond to a saddle point of the spectrum
and lead to a divergence in the DOS—a VHS [21,26]. These
critical momenta are k j

VH = (kx, ky) = (±π,±π/
√

3), where
j = 1, . . . , 4 indexes the four possible sign combinations.

In a finite lattice, only momenta k compatible with the
boundary conditions set by the geometry of the system are
possible. When the boundaries allow stationary waves with
wave vectors equal to kVH, the lattice will support a large
number of degenerate states at the VH energy, EVH = E (kVH),
reflecting the singularity that emerges in the infinite-size limit.
We refer to this degenerate space associated with the VHS as
a VH degenerate subspace or VHD.

The exact dimension, nVH, of the VH degenerate subspace
depends in a sensitive manner on the shape of the system.

It can be determined as the number of linearly indepen-
dent solutions of the Schrödinger equation with eigenenergy
EVH. This number equals the dimension of the Hilbert space
minus the rank of the square matrix H − EVHI, where H
is the Hamiltonian matrix and I is the Nsites × Nsites iden-
tity matrix, with Nsites the number of lattice sites. The ex-
istence of a degenerate eigenvalue of H implies that the
rank of the Hamiltonian is at most the dimension of H
minus two [15,27–29]. Generally, very symmetric structures,
such as a square domain (Lx = Ly), feature large degen-
eracies, but arbitrary boundaries may also support high-
dimensional VHDs, nVH � 1. The general solution of this
problem is highly nontrivial although some results regarding
the generalization of Bloch functions to finite lattices are
known [30,31].

We illustrate this in Fig. 1(a), where we show exact-
diagonalization results for the dimension of the VHD at E =
2t for a triangular lattice with rectangular boundaries, as a
function of the length of the sides of the rectangle, (Lx, Ly),
with Li ∈ [2, 35]. The strong peaks along the diagonals indi-
cate that generally more symmetric structures (when Lx/Ly is
a rational number) support larger degeneracies. We observe
a strong even-odd effect [see Fig. 1(c)]: square domains with
odd-length sides (i.e., Lx = Ly an odd number) systematically
support a large number of degenerate states, nVH = Lx − 1,
while even-length square domains generally support no VH
subspaces, nVH = 0.

To illustrate the generality of the mechanism supporting
the VHD in finite systems, and the fact that it does not
require a fine tuning of the lattice geometry, we calculate
next nVH for triangular lattices on rectangular domains with
a circular hole in the center of the square [Fig. 1(d)]. We
consider in particular a hole of radius 1/6 of the smaller
dimension, as this corresponds to a discretized version of
a Sinai billiard; we designate this system the Sinai lattice.
This is a well-known chaotic billiard [32], a system that
has been studied experimentally with microwave cavities
[33] and exciton polaritons in semiconductor microcavities
[34], among other photonic systems [35]. We find that even
this chaotic geometry can support large-dimensional VHDs
[see Fig. 1(b)]. Occasionally, the VHD of Sinai lattices is
even larger than that of full Lx × Ly lattices; for instance,
for Lx = Ly = 10, the full lattice has nVH = 0 (as discussed
above), while the Sinai lattice with the same values of Lx and
Ly has nVH = 1 [36].
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We consider next the fate of the states in the VHD when
the system is coupled to an environment. When we couple a
generic finite lattice to an environment, part of the eigenstates
in the VHD will acquire a finite width while part of them will
remain spatially bound within the lattice and constitute true
BICs, similarly to what happens with chiral BICs [15,29,37].
To prove this, consider the VHD at energy EVH, of dimension
nVH. Localized losses at a set of sites l ∈ L, with loss rate
γl , can be described by introducing an effective complex on-
site energy, γl , that represents the loss rate at site l . Then, the
Schrödinger equation for the part of the wave function within
the lattice, �, becomes

H� − EVH� − i
∑
l∈L

γl�l = 0. (3)

Here �l is the component of � at lattice site l . Generally,
for each lossy site the rank of the matrix H − EVHI − γlδilδ jl

is increased by one with respect to the rank of the matrix
corresponding to the closed system, H − EVHI (there can
be exceptions for specific values of γl where the rank may
remain unchanged). This reduction in the rank corresponds
to states in the VHD that acquire a finite width; we refer
to them as VH resonances. As we will show, these are still
strongly localized states, the spatial profiles of which display
features directly related to the critical moment kVH, except
perhaps in the limit γ → ∞. The other states in the VHD do
not acquire a nonzero width but constitute true BICs, which
we name VH BICs. The number of VH BICs, nBIC, generally
satisfies nBIC = nVH − |L|, where |L| is the number of lossy
sites [15,28]. Given that nVH � 1, we have that nBIC can be
very large, depending on the boundary conditions of the finite
system. Finally, the spectrum of the open system contains a
third subspace of highly delocalized states coupled weakly to
the environment.

We assess the localization of the eigenstates of Eq. (3) by
means of the inverse participation ratio (IPR). The IPR of a
pure state � over a basis set {|i〉} is defined as

IPR = 1

Nsites

1∑
i |〈i|�〉|4 . (4)

It quantifies the distribution of � over that set and can be
regarded as a measure of the “volume” of the state over the
corresponding Hilbert space. The IPR has been used to an-
alyze localization in various fermionic and bosonic systems,
as it is related to the localization length and the (multi)fractal
character of a system’s eigenstates (see, e.g., Refs. [38–40]).
Taking {|i〉} as the set of normalized eigenstates with state |i〉
localized at site i of the lattice, a state � that is delocalized
throughout the whole lattice, |〈i|�〉| = 1/

√
Nsites ∀i, satisfies

IPRdeloc = 1; on the other hand, for a state localized on site
j, i.e., |〈i|�〉| = δi j , one has IPRloc = 1/Nsites, which tends to
zero for large lattices.

We show in Fig. 2(a1) the IPRs of all eigenstates of a
23×23 lattice as a function of the imaginary part of their
eigenenergy, for a decay rate γ = 0.102 � t (we use t = 1 as
our energy unit throughout). Lossy sites with the same value
for the coupling strength γ are placed in the 11 leftmost sites
of the bottom row. We observe that the spectrum is divided

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

C

B A

C

B A

C

B A

FIG. 2. Properties of the eigenstates of a 23×23 Sinai lattice with
losses in the 12 leftmost sites of the bottom row, with loss rate γ =
0.102 (left column), γ = 1.002 (central column), and γ = 10.002
(right column). Top row: IPR vs |Im(E )|. Middle row: IPR vs Re(E ).
Bottom row: |Im(E )| vs Re(E ). Labels (A), (B), (C) in panels (a1)–
(a3) refer to the subspaces defined in Sec. II. Curves at the top and
right of each panel show the marginal distributions of the data. Note
panel (c3) is a semilogarithmic plot.

into three subspaces:

(A) localized states with |Im(E )| � γ /4,
(B) localized states with |Im(E )| < γ/4,
(C) delocalized states with |Im(E )| < γ/4.

(Note that the factor 1/4 on the right-hand side stems from
observation of the numerical results; we are not aware of
an analytical argument for it, e.g., as might be found from
a group theory analysis.) Figure 2(c1) shows that the states
with the largest decay rates occur near Re(E ) = EVH. Finally,
Fig. 2(b1) illustrates the absence of delocalized states (IPR ≈
1) near EVH for small γ . The division into the three subspaces
A, B, and C as well as their main features remain valid as γ is
increased. The middle column of Fig. 2 shows the same results
for γ ≈ t while the right column shows results for γ � t .
[For the case γ = 0, the eigenstates of Eq. (1) are generally
all delocalized, respecting the translational symmetry and
boundary conditions of the lattice.]

Notably, set A of lossy states progressively separates in the
Im(E ) axis such that, for γ � t , the few states in set A exhaust
the whole set of lossy states and are equal to the number of
sites with losses. This can be observed in Fig. 2(c3), which
shows that Im(E ) is very small (� 10−2γ ), except for a small
number of states, for which |Im(E )|/γ  1. In Sec. V we
will relate this behavior to the phenomenon of super-radiance.
Before that, we discuss two types of propagation experiments
on finite lattices which enable us to relate the three subspaces
to dark states in Sec. III and to guided modes in Sec. IV.
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FIG. 3. (a) DOS of a 9×9 square with connections to fibers on
three sites at the top and bottom boundaries as shown in the left
inset. The right inset shows the DOS divergence close to EVH =
2t . (b) Transmittance of the same system, normalized to the input
flux on a single fiber. The inset highlights the absence of resonant
transmission features at EVH.

The qualitative evolution of these three subspaces as we
increase the coupling γ does not depend on whether nBIC is
finite or zero. In the case shown in Fig. 2, the number of lossy
sites is larger than the dimension of the VHD, but due to the
shape of the leaky region the system supports a small number
of lossless states, nBIC = 7; however, we have verified that the
overall evolution of the spaces A, B, and C with γ is the same
for a variety of shapes and sizes of the leaky region and sizes
of the lattice, which supports the generality of this picture.
Still, we remark that when nBIC > 0 the VH BICs are part of
subspace B with |Im(E )| strictly equal to zero, irrespective of
the actual value of the coupling strength γ .

III. VAN HOVE BICs AS DARK STATES
IN FINITE LATTICES

We consider first an experiment connecting leads on two
opposite borders of a finite lattice. This corresponds, e.g.,
to pumping radiation into the lattice through waveguides
coupled to selected sites on the top edge of a photonic crystal,
and collecting the output radiation through waveguides at the
bottom edge [see inset of Fig. 3(a)].

We show in Fig. 3(a) the DOS for a triangular lattice on a
9×9 square domain with three-site leads centered on the top
and bottom edges; and in Fig. 3(b) the transmittance of this
system calculated using the Landauer-Büttiker formalism and
Green’s functions [41].

Let us briefly summarize the key ingredients in the calcu-
lation using the Landauer-Büttiker formalism. The transmit-
tance, or dimensionless conductance in units of e2/h for the
case of electronic systems, is proportional to the sum of the

transmission matrix elements between the left and right leads,
G = TRL(E ), computed at the energy of interest, e.g., the
Fermi energy for electronic conductors at zero temperature.
Each of these matrix elements can be computed with matrix
elements of the Green’s functions of the system with a self-
energy coming from the coupling with semi-infinite leads:

GR(E ) = [EI − H + �L + �R]−1, (5)

where �L and �R are the self-energies coming from the
left and right leads. In the absence of inelastic processes,
these self-energies can be obtained exactly taking into account
the transverse profiles of the modes in each of the leads,
ξm, evaluated at the lead sites coupled to the system sites.
Denoting i and j the sites in the system, and pi and p j the
sites in the lead coupled to them, we have

�L(R)(i, j) = −t
∑

m

ξm(pi ) exp(ikma)ξm(p j ), (6)

where km is the longitudinal momentum corresponding to
the energy of the incoming waves, a is the length scale
between sites which we take as a = 1, and −t is the hopping
matrix element between sites in the lead and the system. The
transmission matrix element can be expressed in a compact
form as

TRL = Tr[	RGR	LGA], (7)

where the advanced Green’s function is just the Hermitian
conjugate of the retarded one, GA = [GR]†, and the matrix
elements of the matrix 	p (p = L, R) for the different modes
can be obtained easily from the self-energy and its Hermitian
conjugate 	p = i(�p − �†

p) (p = L, R).
As we have three in-/out-coupling channels, the maxi-

mum possible transmittance normalized to the flux incoming
through one of the input channels is 3.

Typically the transmittance of such a system is proportional
to the DOS, with geometric prefactors depending on the
connection to the waveguides. Thus, a peak in the DOS at an
energy E is usually correlated to a peak in the transmission
at that energy, although the relative heights of peaks can vary
through the spectrum. This correlation holds generally true
in Fig. 3, except close to E = EVH, where the presence of
BICs leads to a divergence of the DOS which, however, does
not translate to the transmission properties. This indicates
that large numbers of states at EVH do not couple to the
leads. This situation is reminiscent of the case of chiral BICs,
where the sublattice symmetry leads to an exact zero of the
transmittance at zero energy [15]. However, in the present case
the transmittance at EVH is not exactly zero due to the tails of
other peaks close in energy.

When a state in the VHD becomes coupled to the waveg-
uides, its eigenenergy acquires a finite width and the position
of the resonance is shifted away from EVH. For weak coupling,
the width acquired is small, and such a state appears as a
narrow, or high-Q, resonance [5,15,17]. Other states in the
VHD do not couple to the waveguides and remain at EVH;
they constitute true BICs (VH BICs), and behave as perfect
dark states of the lattice. Systems with nVH � 1 can support
a large number of such dark states. The results on nVH as a
function of the lattice geometry (Fig. 1) then point to practical
guidelines for the design of metasurfaces with a large number
of dark states.
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FIG. 4. Examples of VH lattice scars. The intensity of red color
is proportional to the probability density at each lattice site (circles)
after a long time evolution of a Gaussian wave packet, subject to
localized losses at the sites marked by blue diamonds. (a) 19×19
square triangular lattice with losses in the 17 bottom-left sites.
(b) 19×19 Sinai triangular lattice with losses in four sites in the upper
right corner. The dimensions of the VHD for each closed system are
(a) nVH = 18 and (b) 5; only one BIC remains in each system after
coupling to the environment.

IV. VAN HOVE BICs AS GUIDED MODES

A complementary propagation experiment consists of in-
jecting a wave packet into the lattice, which is coupled by
a number of lossy sites to the environment, and letting it
propagate for a long time; this setup models, e.g., the prop-
agation of a wave packet down a fiber bundle with some fibers
considerably lossier than others.

We model this situation using a non-Hermitian Hamilto-
nian [42,43]:

Ĥopen = Ĥ − iγ 	̂, (8)

where Ĥ is the tight-binding Hamiltonian of the closed lattice,
and the coupling to the environment is described by the loss
rate γ and the operator

	̂ =
Nl∑
j=1

c†
j c j, (9)

identifying a number Nl of lossy sites in the lattice. The
invariance of the trace of Ĥopen implies a sum rule on the
widths of the eigenstates, which here must add to −Nlγ .

We show in Fig. 4 the normalized density after a long time
evolution simulating one such experiment, with some partic-
ular choices of lattice geometry and lossy sites. Expanding
the initial wave packet on the set of eigenstates of Eq. (8),
after a long evolution time, the remaining density will be a
linear superposition of the eigenstates with smaller Im(E ), the
actual density depending on the overlap of the initial wave
packet with each state in that space. Given the division of
the eigenstates in subspaces A, B, and C, we expect only
components within subspaces B and C to survive for long
evolution times. Moreover, for a relatively localized initial
wave packet, we expect its overlap with highly delocalized
states in subspace C to be small. Hence, in practice only the
components on the subspace B of VH BICs will be relevant.

The wave function of a state within the VHD can be written

�VH(r) =
∑

j

∑
K

Aj,Kei(k j
VH·r+K·r), (10)

where r = (x, y) is a position in the lattice, k j
VH are the VH

wave vectors of that lattice, and the K sum runs over all
reciprocal-lattice vectors. For the case of the triangular lat-
tice k j=1..4

VH = (±π,±π/
√

3) and �VH will feature increased
density, due to constructive interference, along the diagonals
and along zig-zag lines of the lattice, while the destructive
interference reduces the density elsewhere. This behavior is
transmitted to the VH BICs, and hence to the surviving density
profile after a long evolution time, as is apparent in Fig. 4.
These localized structures are very much related to the lattice
scars observed in chiral lattices [37] and to the chaotic scars
in chaotic quantum billiards [44,45] and we name them VH
lattice scars. The localization and directionality properties of
VH lattice scars can be engineered by designing the spatially
varying optical properties of the lattice. Conversely, given
a lattice geometry, inclusion of lossy sites with controllable
decay rate allows triggering a super-radiant transition [46], as
we discuss next.

V. VAN HOVE BICs AS LOCALIZED SUBRADIANT STATES

Several authors have considered the super-radiant
transition in open systems in the language of non-Hermitian
Hamiltonians like Eq. (8) (see, e.g., Refs. [47,48]). As the
loss rate γ is increased, the nature of the system eigenstates
evolves as follows. For small γ , the eigenstates of Ĥopen

are well described by the eigenstates of Ĥ acquiring some
width depending on the amplitude of their wave function at
the lossy sites. On the other hand, for strong coupling, the
eigenstates of 	̂ become good eigenstates of Ĥopen. In the
latter case, for Nl smaller than the number of lattice sites, the
set of eigenstates can be divided into “super-radiant” states
with very large widths |Im(E )|  γ that practically exhaust
the sum rule for the resonant width, and “subradiant” states
in the kernel of 	̂, which remain virtually decoupled from
the continuum [|Im(E )| � γ ]. In the language of Sec. II, the
super-radiant states correspond to the highly dissipative states
in subspace A, while the subradiant states are in subspaces B
and C. It follows from the results in Figs. 2(a1)–2(a3) that all
super-radiant states are strongly localized (IPR � 1) for all
values of the coupling γ . On the other hand, the subradiant
states are split between localized and delocalized (extended)
states. Note that subradiant states with energy near EVH are
consistently well localized (IPR � 1) [cf. Figs. 2(b1)–2(b3)].

VI. CONCLUSIONS

We have established a very general mechanism supporting
the existence of bound states in the continuum (BICs) in finite
lattices based on Van Hove degeneracies, which does not
require a distinct symmetry [13–15] or flat bands [18,29]. At
the energy where the density of states diverges due to a Van
Hove singularity, there may be a large number of degenerate
states depending on the boundaries of the finite lattice. In
that case, if the system is coupled to the environment through
a finite number of sites, a part of this degenerate subspace
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generally remains uncoupled from the environment, becoming
a set of BICs or localized subradiant states. These VH BICs
are spatially localized along a specific direction of the lattice,
resembling lattice scars [37] and compact localized states
found in flat bands [18–20]. They do not decay and do not
contribute to transport. As such, they could be useful for
storing or transmitting information without distortion, e.g., in
photonic crystal slabs with losses [6,49]. Due to the peculiar
spatial structure of VH BICs, they could also be harnessed
to engineer exotic models relying on a highly anisotropic
coupling between emitters on a photonic crystal [8,9,50–52].

On the other hand, states in the VH degenerate space that
do couple to the environment are, for weak coupling, spatially
localized high-Q resonances that can find applications in slow
light and electromagnetically induced transparency [3,53],
frequency conversion [17], and refractive index sensing (e.g.,
for biosensing applications) [54,55], among others [56,57].
For large coupling, these states exhaust all the losses in the
system. Because of this, they can be regarded as super-radiant

states, while the rest of the spectrum, having negligible
widths, describes subradiant states, a prediction that could be
tested in plasmonic metamaterial arrays at optical frequencies
[7,58].
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