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Floquet-Drude conductivity
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A generalization of the Drude conductivity for systems which are exposed to periodic driving is presented.
The probe bias is treated perturbatively by using the Kubo formula, whereas the external driving is included
nonperturbatively using the Floquet theory. Using a different type of four-times Green functions disorder
is approached diagrammatically, yielding a fully analytical expression for the Floquet-Drude conductivity.
Furthermore, the Floquet Fermi “golden rule” is generalized to t-t ′ Floquet states, connecting the Floquet-Dyson
series with scattering theory for Floquet states. It is shown that a low-energy approximation like the parabolic
one fails significantly to give the correct conductivity in a system under driving.
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I. INTRODUCTION

Paul Drude published his theory of electric transport in
metals as long ago as 1900 [1,2], which is today known as the
Drude theory. To the present day several approaches have been
developed to deepen the understanding of the microscopic
mechanisms occurring in charge transport, including scat-
tering theory using Fermi’s “golden rule” [3,4] or quantum
corrections to the Drude conductivity. The latter covers weak
(anti)localization [5,6] in the form of geometry or spin depen-
dent corrections [7–15]. In contrast to studies of static systems
the development of lasers and masers generated a rising
activity on explicitly time-dependent Hamiltonians, where the
external field cannot be considered a small perturbation [16].
In the most recent decade, owing to the possibility of changing
the topology of a system by means of external driving, the
investigation of transport in driven systems increased [17–26].
This includes transport in driven systems [27,28], either with
or without disorder [29–31], or the photovoltaic Hall effect
[19]. Most works studying the renormalization of conductiv-
ity, due to an external driving, use a perturbative approach
regarding the external driving [20,22]. We present a general
formalism that allows the determination of the Drude conduc-
tivity in the presence of a nonperturbative external driving.
We unify linear-response theory and Floquet formalism to
account for the probe bias and an external driving, providing
an alternative approach to the Keldysh formalism. Using a
different type of four-times Green’s-function formalism we
derive both a Floquet-Dyson series and a generalized Floquet
Fermi golden rule. To prove the consistency, both are shown
to yield the same scattering time, a link that was missing
so far. Even more important, the theory properly describes
not only intra- but also inter-Floquet-replica scattering being
completely neglected so far in literature. Finally, we present
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a closed analytical form for the Floquet-Drude conductivity
and apply the developed theory to a parabolic approximation
of the two-dimensional electron gas (2DEG) and the corre-
sponding tight-binding model both with circularly polarized
external driving. Regarding the 2DEG, the analysis shows that
previous results have been overestimating the effect of the
driving on the conductivity. The driven tight-binding model
shows an entirely different driving dependency even in the
low-energy limit. This observation is mainly caused by the
different eigenstates rather than the similar spectra. In conclu-
sion, low-energy models are likely to give an incorrect result
for the conductivity in presence of an external driving.

II. KUBO FORMULA FOR PERIODICALLY
DRIVEN SYSTEMS

Our first aim is to express the linear conductivity using
Floquet states [16,32,33],

|ψα (t )〉 = exp

(
− i

h̄
εαt

)
|uα (t )〉, (1)

where α is labeling a discrete set of quantum numbers and εα

are the corresponding quasienergies [34,35]. The periodicity
of the Floquet functions, which are eigenstates of the Floquet
Hamiltonian

HF (t ) = H (t ) − ih̄∂t , (2)

allow for the Fourier expansion |uα (t )〉 = ∑
n e−in�t |un

α〉 with
� being the frequency of the external driving. The probe bias,
with the corresponding vector potential A(q, ω), is treated
perturbatively in linear-response theory, i.e., using the Kubo
formula in momentum space [36],

〈Ja(q, ω)〉 = i

h̄V

∑
b

∫ ∞

−∞
dt ′

∫ ∞

−∞
dt{eiωt�(t − t ′)

× 〈[Ja(q, t ), Jb(−q, t ′)]〉Ab(q, t ′)}

− e2n

m
Aa(q, ω), (3)
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with a, b ∈ {x, y, z}, ω being the frequency of the response
current, V the volume of the system, e < 0 the electron
charge, �(·) the Heaviside function, m the effective electron
mass, and n the electron density. 〈·〉 denotes the statistical
average with respect to the system’s state which will in the
presence of external driving not be in equilibrium. However,
in what follows we shall assume the system to be in a sta-
tionary state so that occupation numbers of Floquet states are
time independent [18,27,37–41]. Treating the external driving
nonperturbatively, the current operators are expanded using
Floquet states |ψα〉 = c†

α |0〉,
Ja,b(q, t ) =

∑
αβ

Ja,b
αβ (q, t )c†

αcβ, (4)

with the fermionic annihilation (creation) operators c(†)
α . The

expansion coefficients are the matrix elements Ja,b
αβ (q, t ) =

〈ψα (t )| Ja,b(q) |ψβ (t )〉. The current expectation value is no
longer a simple product of conductance and electric field
E = −∂tA since it is convoluted over the bias frequency ω′,

〈Ja(q, ω)〉 =
∑

b

∫ ∞

−∞
dω′ σ̄ ab(q, ω, ω′)Eb(q, ω′). (5)

Thus far, the conductivity tensor σ̄ ab depends on the bias
frequency, the momentum q, and on the resulting current
frequency ω,

σ̄ ab(q, ω, ω′) = i

h̄ωV

∑
αβ

∞∑
n1..n4=−∞

( fα − fβ )

×
〈
un1

α

∣∣ ja(q)
∣∣un2

β

〉〈
un3

β

∣∣ jb(−q)
∣∣un4

α

〉
ω + 1

h̄ (εα − εβ ) + (n1 − n2)� + i0+

× δ[ω + (n1 − n2 + n3 − n4)� − ω′]

+ i
e2n

mω
δabδ(ω − ω′), (6)

with the single-particle current operator ji and the distribution
function fα,β = 〈c†

α,βcα,β〉. In what follows we limit our cal-
culations to a position independent driving field, i.e., q = 0.
Since we are ultimately interested in the DC conductivity,
Eq. (5) simplifies to

〈Ja(q, ω)〉 =
∑

b

σ ab(q, ω)Eb(q, ω), (7)

as shown in Appendix A. This allows us to express the real
part of the longitudinal DC conductivity as

Re
ω→0

[σ xx(0, ω)] = π h̄

V

( e

m

)2
∫ λ+h̄�/2

λ−h̄�/2
dε

(
−∂ f

∂ε

)
σ (ε) (8)

along with the definition

σ (ε) =
∞∑

nn′=−∞

∑
αβ

〈
un

α

∣∣ px
∣∣un

β

〉 〈
un′

β

∣∣px
∣∣un′

α

〉
× δ(ε − εα )δ(ε − εβ ), (9)

and the abbreviation Reω→0[·] for limω→0 Re[·]. A similar
result has already been derived in Ref. [18] using the Keldysh
framework. In derivating Eq. (8) one requires the difference of

two quasienergies to always be smaller than the photon energy
of the external driving. Thus far, we have not used the conve-
nient choice of the quasienergy [42] to be in [−h̄�/2, h̄�/2),
however we must choose a suitable, possibly momentum
dependent function λ such that

∀α : λ − h̄�

2
� εα < λ + h̄�

2
. (10)

III. FOUR-TIMES FLOQUET GREEN’S
FUNCTION AND CONDUCTIVITY

In this section we set up a formalism using four-times
Green’s functions to express the result of the foregoing section
for the conductivity in terms of Green’s functions. These are
the building blocks for the Floquet-Dyson equation. First, we
define a t-t ′ state for the �th Floquet zone [16,43–45]:∣∣ψ�

α (t, t ′)
〉 = e−(i/h̄)(εα+�h̄�)t |uα (t ′)〉 ei��t ′

, (11)

recovering for t = t ′ the Floquet state solution |ψα (t )〉 of
the time-dependent Schrödinger equation. For details of
the t-t ′ formalism the authors refer to Appendix B and
Refs. [16,46,47]. From the states given in Eq. (11) a bare
four-times Green function is constructed:

Gr,a
0 (t1, t2, t ′

1, t ′
2) = ∓i�[±(t1 − t2)]

× 1

T

∞∑
�=−∞

∑
α

∣∣ψ�
α (t1, t ′

1)
〉 〈

ψ�
α (t2, t ′

2)
∣∣ (12)

with the period T = 2π/� and periodicity

Gr,a
0 (t1, t2, t ′

1, t ′
2) = Gr,a

0 (t1 + T, t2 + T, t ′
1, t ′

2)

= Gr,a
0 (t1, t2, t ′

1 + T, t ′
2 + T ). (13)

This propagator fulfills[
i∂t1 − 1

h̄ HF (t ′
1)

]
Gr,a

0 (t1, t2, t ′
1, t ′

2)

= δ(t1 − t2)
∞∑

s=−∞
δ(t ′

1 − t ′
2 + sT )1. (14)

Fourier transforming the Green function and expanding the
Floquet function into a Fourier series yields

Gr,a
0 (ε, t ′

1, t ′
2) = 1

T

∞∑
n,n′=−∞

Gr,a
0 (ε, n, n′)

× e−in�t ′
1 ein′�t ′

2 . (15)

Generalizing the completeness relation of the Floquet func-
tions to different times,

∑
α

|uα (t ′
1)〉〈uα (t ′

2)|
∞∑

�=−∞
δ(t ′

1 − t ′
2 + �T )

= 1

∞∑
�=−∞

δ(t ′
1 − t ′

2 + �T ), (16)

gives particular insight to the Lehmann representation of the
four-times Floquet Green function:

Gr,a
0 (ε, t ′

1, t ′
2) = 1

∑∞
�=−∞ δ(t ′

1 − t ′
2 + �T )

1
h̄ε − 1

h̄ HF (t ′
1)

. (17)
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One can show that the Fourier coefficients [46,47],

Gr,a
0 (ε, n, n′) =

∞∑
�=−∞

∑
α

∣∣un+�
α

〉〈
un′+�

α

∣∣
1
h̄ε − 1

h̄εα − �� ± i0+ , (18)

are equal to the inverse of the Floquet matrix [27,29,30,48–
53]. The periodicity of the Floquet eigenstates [54,55] sug-
gests defining the unitary transformation T as in Sec. V of
Ref. [56] which diagonalizes the Green function,

[D(ε)]nn′
αβ ≡ [

T †Gr,a
0 (ε)T

]nn′

αβ
(19)

= δαβδnn′

1
h̄ε − 1

h̄εα − n� ± i0+ , (20)

where we denoted the matrix spanned by the Fourier com-
ponents of the Green function as [Gr,a

0 (ε)]nn′ = Gr,a
0 (ε, n, n′).

The Green function defined in Eq. (15) is used to express the
conductivity from Eq. (8) as

Re
ω→0

[σ xx(0, ω)]

= −1

4π h̄V

( e

m

)2
∫ λ+ h̄�

2

λ− h̄�
2

dε

(
−∂ f

∂ε

)∫ T

0
dt ′

1

∫ T

0
dt ′

2

× tr
{

px
[
Gr

0(ε, t ′
1, t ′

2) − Ga
0 (ε, t ′

1, t ′
2)

]
px(t ′

1 ↔ t ′
2)

}
. (21)

A justification for the use of the t-t ′ formalism is given in
Appendix B 3.

IV. FLOQUET-DYSON EQUATION

The focus of this section is to formulate a perturbative
approach to include disorder in the expression of the con-
ductivity described by bare propagators, i.e., Eq. (21). In the
following, we will use the notation

〈x|Gr,a(t1, t2, t ′
1, t ′

2) |x′〉 ≡ Gr,a(t1, t2, x, x′, t ′
1, t ′

2), (22)

〈x|Gr,a(ε, t ′
1, t ′

2) |x′〉 ≡ Gr,a(ε, x, x′, t ′
1, t ′

2), (23)

for the matrix elements of the Green function in real space.
The Green function for the system with an impurity potential
V (x1, t1, t ′

1) at site x1 is supposed to fulfill[
i∂t1 − 1

h̄HF (x1, t1, t ′
1)

]
Gr,a

p (t1, t2, x1, x2, t ′
1, t ′

2)

= δ(t1 − t2)δ(x1 − x2)
∞∑

s=−∞
δ(t ′

1 − t ′
2 + sT )1 (24)

with HF (x1, t1, t ′
1) = HF (x1, t ′

1) + V (x1, t1, t ′
1). We limit the

calculation presented here to the time-independent potential
V (x), as including an explicit time dependence is straightfor-
ward; see Appendix C. Following the standard steps [36,57–
59], we can derive a recursive integral expansion, i.e., a
Dyson series, for the Green function, in the case of a system
perturbed by impurities:

Gr,a
p (ε, x1, x2, n, n′) = Gr,a

0 (ε, x1, x2, n, n′)

+ 1

h̄

∫
Vx

dx
∞∑

n1=−∞
Gr,a

p (ε, x1, x, n, n1)V (x)

× Gr,a
0 (ε, x, x2, n1, n′). (25)

The impurity potential V (x) = ∑Nimp

i v(x − ri ) is assumed to
be a Gaussian random potential, which is uncorrelated such
that the impurity average yields 〈v(x)v(x′)〉imp = Vimpδ(x −
x′) ⇔ ν(k) = Vimp and 〈v(x)〉imp = 0 (white noise) [58,59].
Fourier transforming Eq. (25) into momentum space and
performing a disorder average one arrives at the expression
for the disorder averaged Green function:

Gr,a(ε, k) = Gr,a
0 (ε, k) + Gr,a

0 (ε, k)

×
∞∑

n=1

[�r,a(ε, k)Gr,a
0 (ε, k)]n

, (26)

where the self-energy �r,a(ε, k) is the sum over all irreducible
diagrams. Applying the transformation T , the solution of the
recursive Eq. (26) in the eigenbasis is governed by

T †(k)Gr,a(ε, k)T (k)

= [D(ε, k) + T †(k)�r,a(ε, k)T (k)]
−1

, (27)

with the diagonal matrix D(ε, k) given in Eq. (19). The differ-
ence of the retarded and advanced self-energy in the first-order
Born approximation (1BA) can be related to a scattering time
derived within the framework of the Floquet Fermi golden rule
for t-t ′ states (11) as shown in the next section.

V. GENERALIZED FLOQUET FERMI GOLDEN RULE

In the following the steps of the derivation of the Fermi
golden rule for t-t ′ Floquet states are similar to the one applied
in Refs. [25,36]. The difference lies in the use of the t-t ′
Floquet states, see Eq. (11), instead of the Floquet states. A
t-t ′ state fulfills

ih̄
∂

∂t

∣∣ψ�
α (t, t ′)

〉 = HF (t ′)
∣∣ψ�

α (t, t ′)
〉
. (28)

The corresponding time-evolution operator fulfilling this
Schrödinger equation is given by

U0(t, t0, t ′) = e−(i/h̄)HF (t ′ )(t−t0 ). (29)

If a perturbation is switched on at time t0 the Schrödinger
equation becomes

ih̄
∂

∂t

∣∣��
α (t, t ′)

〉 = [HF (t ′) + V (t, t ′)]
∣∣��

α (t, t ′)
〉
, (30)

with the boundary condition |ψ�
α (t, t ′)〉 = |��

α (t, t ′)〉 for t �
t0. Changing into the interaction picture with

∣∣��
α (t, t ′)

〉
I = U †

0 (t, t0, t ′)
∣∣��

α (t, t ′)
〉
, (31)

VI (t, t ′) = U †
0 (t, t0, t ′)V (t, t ′)U0(t, t0, t ′), (32)
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one finds up to first order in the potential V∣∣��
α (t, t ′)

〉
I ≈ ∣∣ψ�

α (t0, t ′)
〉

+ 1

ih̄

∫ t

t0

dt1 VI (t1, t ′)
∣∣ψ�

α (t0, t ′)
〉

(33)

and for the overlap〈
ψ�′

β (t, t ′′)
∣∣��

α (t, t ′)
〉

= 〈
ψ�′

β (t, t ′′)
∣∣ψ�

α (t, t ′)
〉

+ 1

ih̄

∫ t

t0

dt1
〈
ψ�′

β (t1, t ′′)
∣∣V (t1, t ′)

∣∣ψ�
α (t1, t ′)

〉
. (34)

In the next step let us consider the matrix element where the
t-t ′ Floquet states have the same time dependence but different
Floquet indices,

a��′
αβ (t, t ′) =

∞∑
n=−∞

a��′
αβ (t, n) ein�t ′

(35)

= 〈
ψ�

β (t, t ′)
∣∣��′

α (t, t ′)
〉

≈ δαβ ei�(�−�′ )(t ′−t )

+ 1

ih̄

∫ t

t0

dt1
〈
ψ�

β (t1, t ′)|V (t1, t ′)
∣∣ψ�′

α (t1, t ′)
〉
.

(36)

The Fourier coefficients for a perturbation, which is time-
independent in the second time argument, are governed by

a��′
αβ (t, n) = 1

T

∫ T

0
dt ′ a��′

αβ (t, t ′) ein�t ′
(37)

= δαβδn,�−�′ e−in�t

+ 1

ih̄

∫ t

t0

dt1 e(i/h̄)[εα−εβ+(�−�′ )h̄�]t1

×
∞∑

m=−∞

〈
um+�+n

α

∣∣V (t1)
∣∣um+�′

β

〉
. (38)

We see that the transition amplitude is only a function of
the difference of the Floquet indices, a��′

αβ (t, t ′) = a(�−�′ )
αβ (t, t ′).

Analog to the last section, t0 can be set to zero and for α �= β

Eq. (36) simplifies to

a��′
αβ (t, t ′) = − i

h̄

∫ t

0
dt1

〈
ψ�

β (t1, t ′)
∣∣V (t1, t ′)

∣∣ψ�′
α (t1, t ′)

〉
. (39)

Now, let us assume a scattering event from a t-t ′ Floquet state
into another t-t ′ Floquet state with constant quasienergy, given
by ∣∣ψ�

α (ε, t, t ′)
〉 ≡ e−(i/h̄)(ε+�h̄�)t

∣∣uα (t ′)
〉
ei��t ′

. (40)

The quasienergy is independent of the quantum number. This
state is not an eigenstate of the Hamiltonian, nevertheless it
fulfills〈

ψ�
α (t, t ′)

∣∣ψ�′
β (ε, t, t ′)

〉 = δαβe−(i/h̄)[ε−εα+(�′−�)h̄�]t ei�(�′−�)t ′
.

(41)

Hence, Eq. (39) remains valid if the final state is of the same
form as in Eq. (40). Consider now a scattering event from

a t-t ′ Floquet state ψ�
α (k′, t, t ′) into a state with constant

energy ε,

ψ�
α (k′, t, t ′) = e−(i/h̄)[εα (k′ )+�h̄�]t uα (k′, t ′) i��t ′

� e−(i/h̄)[ε+�′ h̄�]t uβ (k, t ′) i�′�t ′
. (42)

The Fourier coefficient of the matrix element in the case of a
scattering as in Eq. (42) for a time-independent perturbation
is given by

a��′
αβ (k, k′, t, n)

= −i
Vkk′

h̄

∫ t

0
dt ′ e(i/h̄)[ε−εα (k′ )−(�−�′ )h̄�]t ′

×
∞∑

m=−∞

[
um+�+n

β (k)
]∗

um+�′
α (k′)

= −i
Vkk′

h̄

∫ t

0
dt ′ e(i/h̄)[ε−εα (k′ )−(�−�′ )h̄�]t ′

c�−�′+n
βα (k, k′),

(43)

with cn
αβ (k, k′) ≡

∞∑
m=−∞

[
um+n

α (k)
]∗

um
β (k′). (44)

This allows for a definition of the transition probability matrix[
A��′ j j′

αβ (k, k′, t )
]

n,n′ :=
∑

γ

a��′
γα (k, k′, t, n)

[
a j j′

γ β (k, k′, t, n′)
]∗

.

(45)

Equivalently to the derivation of the Floquet Fermi golden rule
presented in Ref. [42] [see Eq. (D10) in Appendix D], in the
limit t → ∞ the transition probability matrix becomes[

A��′ j j′
αβ (k, k′, t )

]
n,n′

= 4π2V 2
kk′

∑
γ

c�−�′+n
αγ (k, k′)

× δ[ε − εγ (k′) − (� − �′)h̄�]

× [
c j− j′+n′
βγ (k, k′)

]∗
δ[ε − εγ (k′) − ( j − j′)h̄�]. (46)

Since the quasienergies are always defined to be in the central
Floquet zone, cf. Eq. (D13), the probability matrix simplifies
to [

A��′ j j′
αβ (k, k′, t )

]
n,n′

= 4π2V 2
kk′

∑
γ

cn
αγ (k, k′)

× [
cn′
βγ (k, k′)

]∗
δ2[ε − εγ (k′)]. (47)

The square of the delta distribution can be rewritten as [25]

δ2(ε) = δ(ε)δ(0) = δ(ε)

2π h̄
lim

t→∞

∫ t/2

−t/2
dt ′e(i/h̄)0t ′

(48)

= δ(ε)t

2π h̄
. (49)

Using this relation and performing the time derivative of each
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matrix element yields

�nn′
αβ (k, k′) ≡

d
[
A��′ j j′

αβ (k, k′, t )
]

n,n′

dt
(50)

= 2π

h̄
V 2

kk′
∑

γ

cn
αγ (k, k′)

× [
cn′
βγ (k, k′)

]∗
δ[ε − εγ (k′)]. (51)

Finally, one can perform an impurity average and identify
〈V 2

kk′ 〉imp = Vimp. Summing the rate over all momenta one gets
the inverse scatting time matrix,(

1

τ(ε, k)

)nn′

αβ

≡ 1

Vk′

∑
k′

〈
�nn′

αβ (k, k′)
〉
imp (52)

= 2π

h̄
Vimp

1

Vk′

∑
k′

∑
γ

cn
αγ (k, k′)

[
cn′
βγ (k, k′)

]∗

× δ[ε − εγ (k′)] (53)

= i
{
T †(k)

[
�r

1BA(ε, k) − �a
1BA(ε, k)

]
T (k)

}nn′

αβ
.

(54)

This expression is equal to the result derived from the Dyson
series for the Floquet Green function. To our knowledge, this
remarkable connection has not been established before. It
comprises both inter- as well as intra-Floquet band scattering
[60,61]. One can provide a connection to previous studies by
setting n = n′ = 0 in Eq. (50), which results in the scattering
rates given Refs. [17,42] [see Eq. (D20) in Appendix D]. For
reasons of comparability, the Fermi golden rule for Floquet
states is derived in detail in Appendix D. However, in general
the relaxation rate matrix is not diagonal in the Floquet space
nor can it be reduced to the (n, n′) = (0, 0) element only, as
will be discussed later on. Also, one should notice that only
on the diagonal is the difference of the retarded and advanced
self-energy equal to the imaginary part of the retarded self-
energy.

VI. FLOQUET-DRUDE CONDUCTIVITY

Now, let us consider only the self-energy corrections dur-
ing the disorder average and perform the time integration in
Eq. (21). The disorder is not supposed to change the eigenen-
ergies of the bare system, hence we drop all off-diagonal
elements of the self-energy. This allows us to proceed ana-
lytically and ultimately express the conductivity in a compact
way,

Re
ω→0

[σ xx(0, ω)]

= h̄

4πV

( e

m

)2
∫ h̄�/2

−h̄�/2
dε

(
−∂ f

∂ε

)

× 1

Vk

∑
k

k2
x

∑
α

∞∑
n=−∞

[(
1

2τ(ε, k)

)nn

αα

]2

×
{(

1
h̄ε − 1

h̄εα − n�
)2 +

[(
1

2τ(ε, k)

)nn

αα

]2
}−2

. (55)

VII. APPLICATION TO A 2DEG

For a simple nontrivial application of the method described
above we chose a 2DEG from a direct semiconductor close
to the � point under illumination with circularly polarized
light. To allow for a direct comparison with existing theories
on the topic of conductivity in driven systems we first apply
our theory to the most simple model: The lowest s-type
conduction band is approximated by a parabolic Hamiltonian
H = p2/2m. The vector potential of the radiation,

A(t ) = Ax cos(�t )x̂ + Ay sin(�t )ŷ, (56)

is coupled to the momentum via minimal coupling leading to
the time-dependent Hamiltonian

H (t ) = h̄2

2m
{k2 + γ 2 + 2γ [kx cos(�t ) + ky sin(�t )]}, (57)

with Ax = Ay =: A and the light parameter γ := eA/h̄. The
solution of the time-dependent Schrödinger equation was
already given by Kibis [25]. To evaluate the expression for
the conductivity, one has to specify the distribution function
further. In the off-resonant regime, absorption of photons
is suppressed, hence, a Fermi distribution can be assumed.
However, since the parabolic spectrum is unbounded, it is
not obvious how to set the Fermi energy εF for the driven
parabolic spectrum [42]. Here, we truncate the momentum
range to set the Fermi energy; see Appendix E. Evaluating
Eq. (52) yields for the scattering time on the diagonal(

1

τ(εF , k)

)nn

= Vimpm

h̄3

∞∑
m=−∞

J2
m+n(zk )J2

m(zε ), (58)

together with

zk = h̄2γ k

m

/
h̄�, zε = h̄2γ

√
2mεF /h̄2

m

/
h̄�. (59)

We can further disregard all pairings of only retarded or
only advanced Green’s functions in Eq. (55), since they give
a contribution of the order of 1/(εF τ0) with τ0 being the
scattering time of the undriven system [59]. Aside from the
relation between the Fermi energy and the relaxation rate, in
the driven case one finds an important relation between the
relaxation rate and the driving frequency. This ratio controls
whether or not only the n = 0 element in Eq. (58) is sig-
nificant: If �τ0 � 1, the broadening of the nonzero Floquet
modes is small enough such that the leaking into the central
Floquet zone is negligibly small, as depicted in Fig. 1. The
theory presented here also makes the regime accessible where
�τ0 � 1. In that case, the nonzero Floquet modes contribute
significantly; see Fig. 2.

But even in the off resonant regime, �τ0 � 1, previous
studies [20] overestimate the effect of circular driving as will
be shown in the following. The central entry of the product of
the retarded Green function with an advanced one is

[Gr (εF , k)Ga(εF , k)]00 ≈ 2π h̄(τ(εF , k))00δ(εF − εk ). (60)

Applying these simplifications to Eq. (55), one arrives at the
conductivity

Re
ω→0

[σ xx(0, ω)] = 1

V4π

(
e2

m

)
k2

F [τ(εF , kF )]00, (61)
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FIG. 1. The peaks show the broadening of the Floquet bands
caused by the scattering time. The blue shaded area is the central
Floquet zone. If �τ0 � 1, the leaking of the nonzero Floquet modes
(red curves) into the central Floquet zone is negligibly small.

where the scattering time is evaluated at the Fermi energy and
Fermi wave vector kF = √

2mεF /h̄. Hence, the ratio between
conductivity without driving and dressed conductivity is given
by

Re
ω→0

[σ xx(0, ω)]

Re
ω→0

[σ xx(0, ω)]
∣∣
γ=0

= 1∑∞
l=−∞ J4

l (zε )
. (62)

In Fig. 3 we present the conductivity of a 2DEG irradiated by
a circularly (σc) polarized light of intensity I . For comparison
also the results in the case of linearly polarized light are
shown. We conclude that for a parabolic spectrum approxima-
tion the central entry of the scattering time used in Eq. (61) is
equal to the result which one yields from the Floquet Fermi

FIG. 2. The peaks show the broadening of the Floquet bands
caused by the scattering time. The blue shaded area is the central
Floquet zone. If �τ0 � 1, the nonzero Floquet modes are leaking into
the central Floquet zone. The red shaded area marks the contribution
of the −1 Floquet band to the conductivity.
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FIG. 3. The Drude conductivity of a 2DEG irradiated by a cir-
cularly (σc) and linearly polarized light of intensity I is plotted in
comparison to the undriven case (σ0). For linearly polarized light, σ⊥
and σ‖ are shown. The ratio

√
EF /meV/[�/(rad/s)]2 = √

10/1024 is
chosen. The vertical lines indicate the minima of σc. The inset shows
the result for σc for a square lattice with lattice constant a = 5.6 Å,
h̄� = 0.3 THz, EF = 10 meV, and hopping energy g = 1.83 eV.
For the same parameters the parabolic result, Eq. (62), is σc/σ0 =
1 + 0.1I/(mW/cm2) + O[I/(mW/cm2)]

2
.

golden rule [17,25,42]. It is used, e.g., by the authors of
Ref. [20] to calculate the conductivity. However, the equation
ibid overestimates the effect of the driving for the latter.

Our method allows us to go beyond the parabolic approxi-
mation. Let us examine a square lattice tight-binding model
since here the spectrum is bounded. We define the lattice
vectors as a1 = a(1, 0)T and a2 = a(0, 1)T and restrict the
model to only nearest-neighbor hopping. Applying minimal
coupling the corresponding Hamiltonian is given by

H (t ) = −g

[∑
n

eik·an · ei(e/h̄)A(t )·an + H.c.

]
, (63)

where g is the hopping parameter. The quasienergy ε can be
obtained in an analytical form, see Appendix F,

ε = −2g

[
J0

(
a

eAx

h̄

)
cos(kxa) + J0

(
a

eAy

h̄

)
cos(kya)

]
.

(64)

In this case it can be explicitly shown that the current, av-
eraged over one period T , is given by J̄(k) = −e∇kε(k)/h̄;
see Appendix G. With this at hand and Eq. (55) the Drude
conductivity can be readily calculated applying the triangle
integration method [62–64]. The result for circularly polarized
light is plotted in the inset of Fig. 3. It shows that in the case
of a bounded spectrum the features appear at different driving
intensities and can even disappear completely for reasonable
intensities and driving frequencies in the THz regime. A
more detailed comparison between both models is given in
Appendix F 2. The inverse scattering times for exemplary
parameters for both models of the 2DEG are depicted in

184204-6
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FIG. 4. Ratio between the central entry of the dressed
inverse scattering time with the bare scattering time
[1/τ00(k)]/[1/τ00(k)|γ=0] for the parabolic dispersion. The
Fermi energy was set to 10 meV, the driving frequency to 0.3 THz,
and the intensity to 5 mW/cm2. The Fermi energy is shown as
purple contour.

Figs. 4 and 5. Figure 4 shows the normalized inverse scattering
time for the parabolic dispersion for some representative pa-
rameters. In the presence of the driving the inverse scattering
time is significantly changed compared to the static case
complying with the change of the conductivity depicted in
Fig. 3. To support the comparability of the effective model
and the tight-binding description the parameters are chosen
to be equal for Fig. 5 and Fig. 4. In contrast to the parabolic
dispersion the scattering time for the square lattice is barely

FIG. 5. Ratio between the central entry of the dressed
inverse scattering time with the bare scattering time
[1/τ00(k)]/[1/τ00(k)|γ=0] for the tight-binding model. The
Fermi energy was set to 10 meV, the driving frequency to 0.3 THz,
and the intensity to 5 mW/cm2. The Fermi energy is shown as
purple contour. It can be seen that the scattering time compared on
the Fermi contour is barely changed by the driving.

changed due to the driving at the Fermi energy (see Fermi
contour).

VIII. CONCLUSION

In this paper the Drude conductivity under an external driv-
ing has been investigated, including a formalism which allows
for a rigorous derivation of the conductivity from an appro-
priate Dyson series by means of the Floquet formalism. The
considerations are based on linear-response theory regarding
the probe bias, whereas the external driving is incorporated
nonperturbatively. Providing a new type of four-time Floquet
Green functions, we were able to express the conductivity
in terms of the aforementioned Green functions. This repre-
sentation was so far missing. This type of Green functions
allows for the formulation of a Dyson series, leading under
the assumption of Gaussian white noise to the Floquet self-
energy in Born approximation. To prove consistency of the
presented considerations a generalized Floquet Fermi golden
rule was derived yielding the same result for the scattering
time as the Dyson series, a connetion that was missing so far.
Neglecting coherent scattering processes leads to a compact
expression for the Floquet-Drude conductivity. Due to its
generality, the presented formalism can be applied to a broad
class of materials. As a first application we investigated the
conductivity for two basic models for a 2DEG. We have
shown that the effective continuum model yields a strikingly
different prediction for the conductivity compared to the tight-
binding approach. The deviations of the predictions for the
conductivity are caused by the different eigenstates of the
models rather than the similar spectra.
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APPENDIX A: FLOQUET KUBO FORMULA
FOR THE LINEAR CONDUCTIVITY

In a driven system the current is not simply a product
of resistance and electric field; see Eq. (5) together with
Eq. (6). Rather, the conductivity depends on both the fre-
quency spectrum of the bias ω′ as well as a response frequency
ω. Furthermore, we introduce

ω ≡ ω̃ + p� ⇔ |ω̃| � �/2 with p ∈ Z, (A1)

and require that the electric field Eb depends only on frequen-
cies |ω̃′| � �/2. With this, Eq. (5) becomes

〈Ja(q, ω̃ + p�)〉 =
∑

b

∫ �/2

−�/2
dω̃′ σ̄ ab

× (q, ω̃ + p�, ω̃′)Eb(q, ω̃′), (A2)

where the conductivity tensor is given by

σ̄ ab(q, ω̃ + p�, ω̃′)

= i

h̄(ω̃ + p�)V

∑
αβ

∞∑
n1..n4=−∞

184204-7
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× fα − fβ
ω̃ + p� + 1

h̄ (εα − εβ ) + (n1 − n2)� + i0+

× 〈
un1

α

∣∣ j�(q)
∣∣un2

β

〉〈
un3

β

∣∣ j j (−q)|un4
α

〉
× δ[ω̃ + p� + (n1 − n2 + n3 − n4)� − ω̃′]

+ i
e2n

m(ω̃ + p�)
δ� jδ(ω̃ + p� − ω̃′). (A3)

The argument of the δ distribution of the first term can become
zero if and only if

n1 − n2 + n3 − n4 = −p. (A4)

Since we are ultimately interested in the DC limit, we consider
only the case where p = 0. Taking only the real part of the
longitudinal conductivity one yields

Re [σ xx(0, ω̃)]

= π

V

( e

m

)2 ∞∑
n,n′=−∞

∑
αβ

[
fα − fβ

h̄ω

× 〈
un

α

∣∣px
∣∣un

β

〉〈
un′

β

∣∣px
∣∣un′

α

〉
δ
[
ω + 1

h̄ (εα − εβ )
]]

. (A5)

In the limit of ω̃ → 0 one ends up with Eq. (8).

APPENDIX B: t-t ′ FORMALISM

1. Separating the periodic from the aperiodic time dependence

In the t-t ′ formalism one starts from the Floquet states
|ψα (t )〉 = exp(− i

h̄εαt ) |uα (t )〉 but formally discriminates the
time dependence of the exponential from periodic time de-
pendence as

|ψα (t ′, t )〉 = e−(i/h̄)εαt |uα (t ′)〉, (B1)

where obviously

|ψα (t, t )〉 = |ψα (t )〉. (B2)

The advantage of this artifice lies in the fact that the evolution
of the states as a function of t is governed by the operator

UF (t ′, t ) = e−(i/h̄)HF (t ′ )t , (B3)

i.e.,

|ψα (t ′, t )〉 = UF (t ′, t − t0)|ψα (t ′, t0)〉 (B4)

= e−(i/h̄)εαt0 e−(i/h̄)HF (t ′ )(t−t0 )|uα (t ′)〉 (B5)

= e−(i/h̄)εαt |uα (t ′)〉, (B6)

which avoids any time ordering.
On the space of all states depending periodically with

period T on a parameter t ′ having dimension of time, we
define the scalar product

(ϕ|χ ) = 1

T

∫ T

0
dt ′ 〈ϕ(t ′)|χ (t ′)〉 (B7)

= 1

T

∫ T

0
dt ′ 〈ϕ|t ′〉〈t ′|χ〉, (B8)

which is equal to the scalar product introduced by Sambe [45].
The notation

〈t ′|ψ〉 := |ψ (t ′)〉 (B9)

suggests to consider t ′ as a coordinate rather than a time
parameter. The corresponding operator t̂ ′ can be defined to
act multiplicatively on the above wave functions,

t̂ ′|ψ (t ′)〉 = 〈t ′|t̂ ′|ψ〉 = t ′|ψ (t ′)〉, (B10)

and the canonically conjugate operator is

ŵ := −ih̄∂t ′ = HF (t ′) − H (t ′) ⇒ [ŵ, t̂ ′] = −ih̄ (B11)

with a complete system of orthonormalized periodic eigen-
functions

〈t ′|l〉 = e−i�lt ′
, ŵ|l〉 = l h̄�|l〉, (k|l ) = δkl (B12)

with k, l ∈ Z,
∞∑

l=−∞
〈t ′

1|l〉〈l|t ′
2〉 = T

∞∑
s=−∞

δ(t ′
1 − t ′

2 + sT ) (B13)

= 〈t ′
1|t ′

2〉. (B14)

In obtaining the completeness relation we have taken into
account the Fourier expansion of the Dirac comb,

∞∑
r=−∞

eir�t = T
∞∑

s=−∞
δ(t + sT ). (B15)

Switching between the two pertaining representations
amounts, up to signs and prefactors, in the usual Fourier
expansion,

〈l|ψ〉 = 1

T

∫ T

0
dt ′ 〈l|t ′〉〈t ′|ψ〉 (B16)

= 1

T

∫ T

0
dt ′ ei�lt ′ 〈t ′|ψ〉 (B17)

⇔ 〈t ′|ψ〉 =
∞∑

l=−∞
〈t ′|l〉〈l|ψ〉 (B18)

=
∞∑

l=−∞
e−i�lt ′ 〈l|ψ〉. (B19)

Finally, the analogs of the wave functions ψα (q, t ) =
〈q|ψα (t )〉 read in the t-t ′ formalism

ψα (q, t ′, t ) = 〈q|ψα (t ′, t )〉 = 〈q, t ′|ψα (t )〉. (B20)

2. Field operators and one-particle Green functions

Generalizing the states (B1) we define∣∣φr
α (t ′, t )

〉 = eir�(t ′−t )|ψα (t ′, t )〉 (B21)

= e−(i/h̄)(εα+rh̄�)t eir�t ′ |uα (t ′)〉 (B22)

with

φr
α (q, t ′, t ) = 〈

q
∣∣φr

α (t ′, t )〉 = 〈
q, t ′∣∣φr

α (t )
〉

(B23)

and the simple properties∣∣φr
α (t ′, t )

〉 = UF (t ′, t − t0)
∣∣φr

α (t ′, t0)
〉
, (B24)
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(
φr

α (t )
∣∣φs

β (t )
) = δαβδrs, (B25)

∑
α

∞∑
r=−∞

∣∣φr
α (t ′

1, t )
〉〈
φr

α (t ′
2, t )

∣∣

= 1T
∞∑

s=−∞
δ(t ′

1 − t ′
2 + sT ). (B26)

In second quantization, this allows us to define a sys-
tem of creation and annihilation operators b†

αr (t ), bαr (t )
with ∣∣φr

α (t )
〉 = b†

αr (t )|0〉, bαr (t )|0〉 = 0 (B27)

and

[bαr (t ), b†
βs(t )]± = δαβδrs, (B28)

[bαr (t ), bβs(t )]± = [b†
αr (t ), b†

βs(t )]± = 0. (B29)

Field operators can be constructed as

�(q, t ′, t ) =
∑

α

∞∑
r=−∞

φr
α (q, t ′, t )bαr (t ), (B30)

fulfilling

[�(q1, t ′
1, t ),�†(q1, t ′

2, t )]±

= δ(q1 − q2) T
∞∑

s=−∞
δ(t ′

1 − t ′
2 + sT ) (B31)

with again all other (anti)commutators at equal times t being
zero, and

〈q2, t ′
2|�†(q1, t ′

1, t )|0〉 = δ(q1 − q2) T
∞∑

s=−∞
δ(t ′

1 − t ′
2 + sT ).

(B32)

The Floquet Hamiltonian HF can be formulated as

HF (t ) =
∑

α

∞∑
r=−∞

(εα + rh̄�)b†
αr (t )bαr (t ) (B33)

and is neither bounded from below nor from above. Going
over to the Heisenberg picture,

�H (q, t ′, t ) = U †
F (t ′, t )�(q, t ′, t )UF (t ′, t )

=
∑

α

∞∑
r=−∞

φr
α (q, t ′, t )bαr (0), (B34)

we yield the retarded/advanced one-particle Green function

Gr/a(q1, t ′
1, t1, q2, t ′

2, t2)

= ∓i�[±(t1 − t2)]
1

T
〈[�H (q1, t ′

1, t1),�†
H (q2, t ′

2, t2)]
ε
〉

= ∓i�[±(t1 − t2)]
1

T

×
∞∑

r=−∞

∑
α

φr
α (q1, t ′

1, t1)
[
φr

α (q2, t ′
2, t2)

]∗

= ∓i�[±(t1 − t2)]
1

T

∞∑
r=−∞

∑
α

[
e−(i/h̄)(εα+rh̄�)(t1−t2 )

× 〈q1|uα (t ′
1)〉〈uα (t ′

2)|q2〉eir�(t ′
1−t ′

2 )
]
, (B35)

or, formulated as a Green operator,

Ĝr/a(t ′
1, t1, t ′

2, t2)

= ∓i�[±(t1 − t2)]
1

T

∞∑
r=−∞

∑
α

∣∣φr
α (t ′

1, t1)
〉〈
φr

α (t ′
2, t2)

∣∣

= ∓i�[±(t1 − t2)]
1

T

∞∑
r=−∞

∑
α

[
e−(i/h̄)(εα+rh̄�)(t1−t2 )

× |uα (t ′
1)〉〈uα (t ′

2)|eir�(t ′
1−t ′

2 )
]
. (B36)

These quantities have the significant property(
i∂t1 − 1

h̄
HF (t ′

1)

)
Ĝr/a(t1, t2, t ′

1, t ′
2)

= δ(t1 − t2)
∑

α

|uα (t ′
1)〉〈uα (t ′

2)| 1

T

∞∑
r=−∞

eir�(t ′
1−t ′

2 )

= δ(t1 − t2)1
∞∑

s=−∞
δ(t ′

1 − t ′
2 + sT ), (B37)

where we have used Eqs. (B15) and the completeness relation
of the Floquet functions |uα (t )〉. As the expressions (B36)
depend only on the difference t1 − t2 and are periodic in t ′

1,
t ′
2 we can go over to Fourier components as

Ĝr/a(ω, n1, n2)

=
∫ ∞

−∞
dt eiωt

∞∑
n1,n2=−∞

e−in1�t ′
1+in2�t ′

2 Ĝr/a(t ′
1, t, t ′

2, 0)

= 1

T

∞∑
r=−∞

∑
α

∣∣un1+r
α

〉〈
un2+r

α

∣∣
ω − 1

h̄ (εα + rh̄�) ± i0+ , (B38)

where the last line follows from

�(±t ) = ±i

2π

∫ ∞

−∞
dω

e−iωt

ω ± i0+ . (B39)

Moreover, with the spectral density

A(q1, t ′
1, t1, q2, t ′

2, t2)

= 1

2πT
〈[�H (q1, t ′

1, t1),�†
H (q2, t ′

2, t2)]
ε
〉

= 1

2πT

∞∑
r=−∞

∑
α

[
e−(i/h̄)(εα+rh̄�)(t1−t2 )

× 〈q1|uα (t ′
1)〉〈uα (t ′

2)|q2〉eir�(t ′
1−t ′

2 )], (B40)

having Fourier components

A(ω, q1, t ′
1, q2, t ′

2)

= 1

T

∞∑
r=−∞

∑
α

{δ[ω − (εα + rh̄�)]

× 〈q1|uα (t ′
1)〉〈uα (t ′

2)|q2〉eir�(t ′
1−t ′

2 )}, (B41)
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we obtain the familiar Lehmann representation of the Green
function,

Gr/a(ω, q1, t ′
1, q2, t ′

2) =
∫ ∞

−∞
dω′ A(ω, q1, t ′

1, q2, t ′
2)

ω − ω′ ± i0+ . (B42)

In summary, when treating t ′ not as a time parameter but
rather as a state coordinate, the remaining time evolution in
t is governed by the Floquet Hamiltonian being independent
of t . Thus, we are left with an effectively time-independent
Hamiltonian, and many formal manipulations known for such
a situation work just in the same way. Note, however, that
(i) the physical case still requires t = t ′, and (ii) the Floquet
Hamiltonian (B33) fails to be bounded from below.

3. Justification of the t-t ′ formalism

The necessity to use the t-t ′ formalism is far from obvious,
hence, we would like to clarify why it is useful. We start
with the Green function of the time-dependent Schrödinger
equation

Gr,a
0 (t1, t2) = ∓i�[±(t1 − t2)]

∑
α

|ψα (t1)〉〈ψα (t2)|. (B43)

It is desirable to draw on the result from the Kubo formula
in the static case where the conductivity can be written as a
trace over the difference of retarded and advanced Green’s
functions. The ansatz is therefore

σ̃ ≡ tr
{

px
[
Gr

0(·) − Ga
0(·)]px

[
Gr

0(·) − Ga
0(·)]}. (B44)

The time dependencies of the Green functions Gr,a(·) are left
blank intentionally, since the above expression should only
show the desired structure. If σ̃ is assumed to have the above
form, there are only a few possible time dependencies of the
Green functions. In the following some attempts, using the
Green function of the time-dependent Schrödinger equation,
are presented that fail to reproduce the result obtained directly
from Eq. (9). Using the two-time Green function together with
the same time ordering as in Eq. (21) yields the expression

σ (t1, t2) = tr
{

px
[
Gr

0(t1, t2) − Ga
0(t1, t2)

]
× px

[
Gr

0(t2, t1) − Ga
0(t2, t1)

]}
. (B45)

Introducing Wigner coordinates

t = t1 − t2, T = t1 + t2
2

, (B46)

where the relative time is Fourier transformed into energy
space and the mean time is averaged over one driving cycle
leading to

σ (ε) =
∑
αβ

∞∑
nn′=−∞

〈
un

α

∣∣px
∣∣un

β

〉〈
un′

β

∣∣px
∣∣un′

α

〉
× δ(ε + εα − εβ ). (B47)

While the ordering of the Floquet indices is correct, the above
quantity is proportional to a single delta distribution and thus
not equal to Eq. (9). Any different time ordering in Eq. (B45)
leads to an incorrect ordering of the Floquet indices.

Next, the attempt is analyzed where the Green functions
depend on different relative times and the common mean time

is averaged,

σ (t, t ′) = 1

T

∫ T

0
dT tr

{
px

[
Gr

0(t, T ) − Ga
0(t, T )

]
× px

[
Gr

0(t ′, T ) − Ga
0(t ′, T )

]}
. (B48)

Now perform a Fourier transformation of both relative times
onto the same energy,

σ (ε) =
∫ ∞

−∞
dt

∫ ∞

−∞
dt ′ e(i/h̄)ε(t+t ′ )σ (t, t ′), (B49)

which leads to the correct result for the conductivity if and
only if the distribution function fulfills

∂ f

∂
[
ε + (n + n′)�

2

] = ∂ f

∂ε
∀ n, n′ ∈ Z. (B50)

The last equation requires a half integer periodicity of the
derivative of the distribution function, which is likely not to
be fulfilled by an actual distribution function. Rather curious,
defining a function by neglecting the summation over the
Floquet indices in Eq. (12), namely

G̃r,a(ε, t ′
1, t ′

2) = 1

T

∑
α

|uα (t ′
1)〉 〈uα (t ′

2)|
1
h̄ε − 1

h̄εα ± i0+ , (B51)

allows us to reproduce the result form the Kubo formula

σ (ε) =
∫ T

0
dt ′

1

∫ T

0
dt ′

2 tr{px[G̃r (ε, t ′
1, t ′

2) − G̃a(ε, t ′
1, t ′

2)]

× px[G̃r (ε, t ′
2, t ′

1) − G̃a(ε, t ′
2, t ′

1)]}. (B52)

However, the function given in Eq. (B51) is not a Green
function of the Schrödinger equation or of the t-t ′ Schödinger
equation.

The results presented in this section are not intended to
prove that it is not possible to express Eq. (9) in terms of the
Green function of the time-dependent Schrödinger equation.
Nevertheless, it demonstrates that a naive ansatz fails. If the
structure given in Eq. (B44) is desired, one way to solve the
problem is to use the four-time Green functions introduced in
Sec. III.

APPENDIX C: DYSON SERIES FOR
TIME-DEPENDENT PERTURBATIONS

Here, we use the same notation as in Eqs. (22). As already
shown in the latter, the bare Green function G0 fulfills the
equation[

i∂t1 − 1
h̄ H0

F (x1, t ′
1)

]
Gr,a

0 (t1, t2, x1, x2, t ′
1, t ′

2)

= δ(t1 − t2)δ(x1 − x2)
∞∑

s=−∞
δ(t ′

1 − t ′
2 + sT )1 (C1)

with the definition of the Floquet Hamiltonian for the unper-
turbed system

H0
F (x1, t ′

1) = H (x1, t ′
1) − ih̄∂t ′

1
. (C2)

The Hamiltonian for the perturbed one has the form

HF (x1, t1, t ′
1) = H0

F (x1, t ′
1) + V (x1, t1, t ′

1), (C3)
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where we stress that the dependency on t1 is fully kept by the
potential. Obviously, the bare Green function G0 fulfills[

i∂t1 − 1
h̄HF (x1, t1, t ′

1)

+ 1
h̄V (x1, t1, t ′

1)
]
Gr,a

0 (t1, t2, x1, x2, t ′
1, t ′

2)

= δ(t1 − t2)δ(x1 − x2)
∞∑

s=−∞
δ(t ′

1 − t ′
2 + sT )1. (C4)

We are interested in the Green function of the perturbed
system Gp being a solution of[

i∂t1 − 1
h̄HF (x1, t1, t ′

1)
]
Gr,a

p (t1, t2, x1, x2, t ′
1, t ′

2)

= δ(t1 − t2)δ(x1 − x2)
∞∑

s=−∞
δ(t ′

1 − t ′
2 + sT )1. (C5)

Equating Eqs. (C4) and (C5) we get[
i∂t1 − 1

h̄HF (x1, t1, t ′
1)

]
Gr,a

p (t1, t2, x1, x2, t ′
1, t ′

2)

= [
i∂t1 − 1

h̄HF (x1, t1, t ′
1)

]
Gr,a

0 (t1, t2, x1, x2, t ′
1, t ′

2)

+ 1
h̄V (x1, t1, t ′

1)Gr,a
0 (t1, t2, x1, x2, t ′

1, t ′
2). (C6)

The bare Green function is periodic in both t ′
1, and t ′

2,

Gr,a
0 (t, t2, x, x2, t ′

1 + T, t ′
2 + T ) = Gr,a

0 (t, t2, x, x2, t ′
1, t ′

2).
(C7)

Therefore, without loss of generality one can use the restric-
tion

t ′
1, t ′

2 ∈ [ − T
2 , T

2

]
. (C8)

Making use of the periodicity of the Green function and
requiring that the potential is as well periodic in the second
time argument,

V (x, t1, t ′
1 + T ) = V (x, t1, t ′

1), (C9)

one can show that∫
Vx

dx
∫ ∞

−∞
dt

∫ T/2

−T/2
dt ′ δ(t1 − t )δ(x1 − x)

×
∞∑

s=−∞
δ(t ′

1 − t ′ + sT )V (x, t, t ′)Gr,a
0 (t, t2, x, x2, t ′, t ′

2)

=
∫ T/2

−T/2
dt ′

∞∑
s=−∞

δ(t ′
1 − t ′ + sT )V (x1, t1, t ′)

× Gr,a
0 (t1, t2, x1, x2, t ′, t ′

2)

= V (x1, t1, t ′
1)Gr,a

0 (t1, t2, x1, x2, t ′
1, t ′

2), (C10)

where in the last step we have used that the argument of the
delta distribution can only be zero if s = 0. Comparing this
equation with Eq. (C6) one finds a Dyson expansion for the
Green function of the perturbed system,

Gr,a
p (t1, t2, x1, x2, t ′

1, t ′
2) = Gr,a

0 (t1, t2, x1, x2, t ′
1, t ′

2)

+ 1

h̄

∫
Vx

dx
∫ ∞

−∞
dt

∫ T/2

−T/2
dt ′ Gr,a

p (t1, t, x1, x, t ′
1, t ′)

× V (x, t, t ′)Gr,a
0 (t, t2, x, x2, t ′, t ′

2). (C11)

If one assumes that the potential depends only on the periodic
time component

V (x, t, t ′) = V (x, t ′) ⇔ HF (x, t, t ′) = HF (x, t ′) (C12)

the Green function depends only on the difference t1 − t2,

Gr,a
p (t1, t2, x1, x2, t ′

1, t ′
2) = Gr,a

p (t1 − t2, x1, x2, t ′
1, t ′

2). (C13)

Applying Fourier transform on Eq. (C11) with respect to t1 −
t2, one yields in energy space

Gr,a
p (ε, x1, x2, t ′

1, t ′
2) = Gr,a

0 (ε, x1, x2, t ′
1, t ′

2)

+ 1

h̄

∫
Vx

dx
∫ T/2

−T/2
dt ′ Gr,a

p (ε, x1, x, t ′
1, t ′)

× V (x, t ′)Gr,a
0 (ε, x, x2, t ′, t ′

2), (C14)

where the explicit form of the bare Green function is given by

Gr,a
0 (ε, x1, x2, t ′

1, t ′
2)

= 1

T

∞∑
r=−∞

∑
α

uα (x1, t ′
1)[uα (x2, t ′

2)]∗
1
h̄ε − 1

h̄εα − r� ± i0+ eir�(t ′
1−t ′

2 )

= 1

T

∑
nn′

Gr,a
0 (ε, x1, x2, n, n′)e−in�t ′

1 ein′�t ′
2 . (C15)

The Fourier coefficients are given by

Gr,a
0 (ε, x1, x2, n, n′) =

∞∑
r=−∞

∑
α

un+r
α (x1)

[
un′+r

α (x2)
]∗

1
h̄ε − 1

h̄εα − r� ± i0+ ,

(C16)

where we used the shortened notation

uα (x1, t ′
1) ≡ 〈x1|uα (t ′

1)〉, un
α (x1) ≡ 〈

x1

∣∣un
α

〉
. (C17)

Since we required the potential to be periodic in the second
time argument it can be expanded in a Fourier series,

V (x, t ′) =
∞∑

n=−∞
Vn(x)e−in�t ′

. (C18)

This allows us to rewrite Eq. (C14) and perform the remaining
time integration,

Gr,a
p (ε, x1, x2, n, n′) = Gr,a

0 (ε, x1, x2, n, n′) (C19)

+ 1

h̄

∫
Vx

dx
∞∑

n1,n2=−∞
Gr,a

p (ε, x1, x, n, n1)

× Vn1−n2 (x)Gr,a
0 (ε, x, x2, n2, n′). (C20)

APPENDIX D: FLOQUET FERMI GOLDEN RULE

A generalization of Fermi’s golden rule [3,4,36,58,65] to
time periodic Hamiltonians, i.e., the Floquet Fermi golden
rule, was already derived by Kitagawa et al. in Ref. [17]. How-
ever, a detailed derivation and discussion of the “scattering
theory for Floquet-Bloch states” is given in Ref. [42]. The Flo-
quet Fermi golden rule was used by Kibis in Ref. [25] in order
to explain the suppression of backscattering of conduction
electrons in the presence of a high-frequency electric field.
In regard to Fermi’s golden rule for the t-t ′ Floquet states, the
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derivation of the Floquet Fermi golden rule is presented here
in detail. It is assumed that the solution of the time-dependent
Schrödinger equation

ih̄
∂

∂t
|ψα (t )〉 = H (t )|ψα (t )〉 (D1)

and the corresponding time evolution operator U0(t, t0) are
known. In the presence of a time-dependent perturbation V (t )
the Schrödinger equation becomes

ih̄
∂

∂t
|�α (t )〉 = [H (t ) + V (t )]|�α (t )〉. (D2)

The potential V (t ) is switched on at a reference time t0 such
that the solutions of the Schrödinger equation coincide for
times t � t0,

|ψα (t )〉 = |�α (t )〉 for t � t0. (D3)

At times t � t0 the particle is assumed to be in an eigenstate
of the unperturbed Hamiltonian. Standard perturbation theory
leads to the transition amplitude

〈ψβ (t )|�α (t )〉 = δαβ + 1

ih̄

∫ t

t0

dt ′ 〈ψβ (t ′)|V (t ′)|ψα (t ′)〉
(D4)

up to first order in the potential. Without loss of generality t0
can be set to zero and for α �= β the first nontrivial order of
Eq. (D4) is given by

aαβ (t ) = − i

h̄

∫ t

0
dt ′ 〈ψβ (t ′)|V (t ′)|ψα (t ′)〉. (D5)

This formula, the Floquet Fermi golden rule, is equal to
Eq. (10) of Ref. [25]. To proceed further, scattering from a
Floquet state into a state with constant quasienergy

|ψα (ε, t )〉 = e−(i/h̄)εt |uα (t )〉 (D6)

is considered. The quasienergy ε is independent of the quan-
tum number. Hence, this state is not an eigenstate of the
Hamiltonian, nevertheless it fulfills

〈ψα (t )|ψβ (ε, t )〉 = δαβ e(i/h̄)(εα−ε)t . (D7)

Consequently, Eq. (D5) remains valid if the final state is
|ψα (ε, t )〉. Now, consider a scattering event from a Floquet
state ψα (k′, t ) into a state with constant energy ε,

ψα (k′, t ) = e−(i/h̄)εα (k′ )t uα (k′, t ) � e−(i/h̄)εt uβ (k, t ). (D8)

If the perturbation V (t ) is time independent Eq. (D5) becomes

aαβ (k, k′, t ) = − i
Vkk′

h̄

∞∑
nn′=−∞

∫ t

0
dt ′ e(i/h̄)[ε−εα (k′ )−(n−n′ )h̄�]t ′

× [
un′

β (k)
]∗

un
α (k′) (D9)

with Vkk′ = 〈ϕk,r|V (r)|ϕk′,r〉 where ϕk,r = exp(−ik · r)/
√
V.

Shifting t ′ by −t/2 yields the probability density

|aαβ (k, k′, t )|2

= V 2
kk′

h̄2

∣∣∣∣
∞∑

nn′=−∞
e(i/2h̄)[ε−εα (k′ )−(n−n′ )h̄�]t

× [
un′

β (k)
]∗

un
α (k′)

∫ t/2

−t/2
dt ′ e(i/h̄)[ε−εα (k′ )−(n−n′ )h̄�]t ′

∣∣∣∣
2

.

(D10)

In the long-time limit t → ∞ this simplifies to

|aαβ (k, k′, t )|2 = 4π2V 2
kk′

∣∣∣∣
∞∑

nn′=−∞

[
un′

β (k)
]∗

un
α (k′)

× δ[ε − εα (k′) − (n − n′)h̄�]

∣∣∣∣
2

. (D11)

The quasienergies ε and εα (k) are chosen to be in the central
Floquet zone such that

∀k : |ε − εα (k)| � h̄�, (D12)

δ(ε − εα − nh̄�)δ(ε − εα − mh̄�)

= δ2(ε − εα − nh̄�)δnm. (D13)

Hence, Eq. (D11) becomes

|aαβ (k, k′, t )|2 = 4π2V 2
kk′

∞∑
n=−∞

c−n
βα (k, k′)

[
c−n
βα (k, k′)

]∗

× δ2[ε − εα (k′) − nh̄�] (D14)

with

cn
αβ (k, k′) :=

∞∑
m=−∞

[
um+n

α (k)
]∗

um
β (k′). (D15)

The square of the delta distribution can be rewritten as shown
in Eq. (48). The transition probability is then

�αβ (k, k′) := d|aαβ (k, k′, t )|2
dt

(D16)

= 2π

h̄
V 2

kk′

∞∑
n=−∞

c−n
βα (k, k′)[c−n

βα (k, k′)]∗

× δ[ε − εα (k′) − nh̄�]. (D17)

The delta distribution can only have support if n = 0. Per-
forming an impurity average according to the main text leads
to 〈V 2

kk′ 〉imp = Vimp such that

〈�αβ (k, k′)〉imp = 〈�αβ (k, k′)〉imp (D18)

= 2π

h̄
Vimp

∣∣c0
βα (k, k′)

∣∣2
δ[ε − εα (k′)]. (D19)

The scattering time is then governed by the sum over all initial
states and the sum over all momenta,

1

τβ (ε, k)
= 1

Vk′

∑
k′

∑
α

〈�αβ (k, k′)〉imp (D20)
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FIG. 6. The Floquet zones are chosen to wrap around the parabo-
las. The quasi-Fermi energy is only defined in a certain momentum
range, i.e., k ∈ [k1, k2), in the central Floquet zone.

= 2π

h̄
Vimp

1

Vk′

∑
k′

∑
α

∣∣c0
βα (k, k′)

∣∣2
δ[ε − εα (k′)]. (D21)

The last equation is the Floquet Fermi golden rule.

APPENDIX E: DEFINITION OF THE FLOQUET ZONE

In the following we would like focus on the a parabolic
spectrum and describe the appropriate choice of the function
λ, which defines the boundary for the quasienergy εα ,

∀α : λ − h̄�

2
� εα < λ + h̄�

2
. (E1)

Since the spectrum is not bounded, one has to choose the
Floquet zone as indicated in Fig. 6.

This limits the validity of the calculation to the �τ0 �
1 regime as will be clear in the following. However, this
limitation is only a peculiarity of the unbounded spectrum:
In the derivation of the main text we defined the quasienergies
to fulfill

∀k,k′ : |εα (k) − εβ (k′)| < h̄�. (E2)

As a consequence, in a system with a single band the condition
forces the band width to be smaller than h̄�. Obviously this
cannot be fulfilled by the parabolic spectrum. In the latter
case, the momentum range where the quasi-Fermi energy is
defined has to be truncated, as depicted with a red line in
Fig. 6: k1 and k2 are functions of the driving frequency �. For
decreasing � the momenta k1 and k2 move closer together.
If the momentum range k ∈ [k1, k2) is of the order of the
broadening of the Green function, the truncation leads to an
incorrect result for the conductivity.

APPENDIX F: EXAMPLE: DRIVEN SQUARE LATTICE

1. Closed expression for the Floquet functions

In this section we derive a fully analytic solution of the
time-dependent Schrödinger equation for the quadratic lattice

with time-periodic driving and compare it with the results for
the parabolic dispersion. As in the main text, we define the
two lattice vectors of the square lattice with a lattice constant
a as

a1 = a

(
1
0

)
, a2 = a

(
0
1

)
(F1)

and choose the vector potential as

A =
(

Ax sin(�t )
Ay cos(�t )

)
, (F2)

which allows us to tune the polarization between linear, ellip-
tic, and circular for appropriate choices of amplitudes Ax, Ay.
The time-dependent tight-binding Hamiltonian with hopping
parameter g and a limitation to nearest-neighbor hopping is
this given by

H (t ) = −g[eik·a1 · ei(e/h̄)A·a1 + eik·a2 · ei(e/h̄)A·a2 + H.c.].
(F3)

In the following we will make use of the identities

∫
dt eiγ sin(�t ) =

∞∑
n=−∞

Jn(γ )
∫

dt ein�t (F4)

=
∑
n �=0

Jn(γ )

in�
ein�t + J0(γ )t, (F5)

∫
dt eiγ cos(�t ) = 2

∞∑
n=1

inJn(γ )

n�
sin(n�t ) + J0(γ )t, (F6)

which are based on the Jacobi-Anger expansion [66]. To solve
the time-dependent Schrödinger equation

ih̄
∂

∂t
ψk(t ) = H (t )ψk(t ) (F7)

we choose the ansatz

ψk(t ) = e−(i/h̄)F (t ) with F (t ) =
∫

dt H (t ). (F8)

Integrating the Hamiltonian (F3) yields

F (t ) = − 2g[J0(aγx ) cos(kxa) + J0(aγy) cos(kya)]t

− geikxa
∑
n �=0

Jn(aγx )

in�
ein�t − ge−ikxa

∑
n �=0

Jn(aγx )

−in�
e−in�t

− 2geikya
∞∑

n=1

inJn(aγy)

n�
sin(n�t )

− 2ge−ikya
∞∑

n=1

(−i)nJn(aγy)

n�
sin(n�t ). (F9)

The light parameters are defined by γi = eAi/h̄. The
quasienergy is the nonoscillatory part of F (t ), thus

ε = −2g[J0(aγx ) cos(kxa) + J0(aγy) cos(kya)]. (F10)
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FIG. 7. The conductivity (shifted and rescaled) for a driven
square lattice model is shown as a function of intensity I for different
numbers of Floquet modes taken into account.

The Floquet function can be, under the use of the Jacobi-
Anger expansion [66], expressed as

u(t, γx, γy) =
∏
n �=0

∞∑
��′=−∞

J�

(
−2g

h̄

Jn(aγy)

n�

)

× J�′

(
−2g

h̄

(−1)nJn(aγx )

n�

)

× ei�(kya+n�t )ei�′(kxa+n�t− nπ
4 ) (F11)

=
∏
n �=0

∞∑
��′=−∞

cn,�,�′ ei(�+�′ )n�t (F12)

=
∞∑

n=−∞
us

n(γx, γy) e−in�t (F13)

together with

cn,�,�′ := J�

(
−2g

h̄

Jn(aγy)

n�

)
J�′

(
−2g

h̄

(−1)nJn(aγx )

n�

)

× ei�kya ei�′(kxa−nπ/4). (F14)

The closed expression for the Floquet functions has been
used to calculate the inset of Fig. 3. A substantial number of
Floquet modes have to be taken into account to calculate the
conductivity. Figure 7 shows the convergence of the numerical
calculations for a different number of Floquet modes taken
into account.

2. Comparison with the continuum model

As promised in Sec. VII, we would like to clarify the
difference between the results for the conductivity in the
continuum case and the tight-binding model.

Corresponding to Eq. (62), features related to the driving
are visible if

zεF = h̄2γ kF

m

/
h̄�, with γ = eA

h̄
, (F15)

is of the order of 1, since the first zero of the Bessel function
J0 is at ≈2.4. Now let us consider the tight-binding model.
In contrast to the parabolic spectrum the Floquet functions
of the circularly driven square lattice are rather complicated

FIG. 8. The absolute value of the Floquet function u0 plotted
as a function of the intensity I for different kF directions φ. The
dashed lines correspond to the approximation Eq. (F17) [only the
term proportional to (kF γ )2 is taken into account]. Parameters: EF =
10 meV, � = 0.3 THz.

as can be seen by examining Eq. (F13). However, we can
approximate them for small γi and k and focus on |u0| to get a
grasp on how they depend on the intensity. For simplification
we set γx = γy and choose spherical coordinates for the wave
vectors, kx = kF cos(φ), ky = kF sin(φ). A lengthy calculation
yields

us
0(γ , γ ) = �

2π

∫ T

0
dt u(t, γ , γ ) (F16)

= 1 − 2 − √
2 sin(2φ)

8

(
αa2kF γ

�

)2

− 3(2
√

2 − 3)

256

(αaγ

�

)4

− α2

256

a4γ 4

�2
+ O

(
k4−p

F γ p
)
, (F17)

with α = 2g/h̄ and p ∈ {0, . . . , 4}. The corresponding up
0 for

the parabolic case can be deduced from Ref. [20]:

up
0 = J0(zεF ) (F18)

= 1 − h̄2k2
F

2m

γ 2

2m�2
+ O

(
z3
εF

)
. (F19)

A comparison of both cases results in

up
0

us
0

≈ 1

1 − sin(2φ)√
2

, (F20)

which gives on average 〈up
0/us

0〉φ = √
2. Although this is a

rough estimate (taking into account all Floquet functions the
difference in conductivity is even more significant, as shown
in Fig. 3) it shows that already at small intensities I ∼ γ 2

one can expect a difference between the result for the con-
ductivity depending on whether the parabolic approximation
is used or the tight-binding model. For moderate values of
EF = 10 meV and a low driving frequency � = 0.3 THz
we also evaluate the full expression for us

0, Eq. (F13). The
result is plotted in Fig. 8 where it is also compared to the
approximation Eq. (F17). A convergence test, shown in Fig. 9,
shows that a considerable number of Bessel functions have to
be taken into account in Eq. (F13) to reach convergence at
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FIG. 9. Check of convergence of the Floquet function u0 with the
number of maximal n, l , and l ′ taken into account in Eq. (F14), here,
as an example, for a wave-vector direction of φ = π/4. Parameters:
EF = 10 meV, � = 0.3 THz.

I > 1 mW/cm2. In Fig. 10 the same result is compared to the
continuum approximation result.

APPENDIX G: CURRENT OPERATOR FOR
THE SQUARE LATTICE

Following Ref. [67], the current density j is given by the
continuity equation

∂ρ(r, t )

∂t
= −∇ · j(r, t ), (G1)

where ρ describes the density of particles. Introducing the
polarization operator P(t ) = ∫

d3r rρ(r, t ), it can be shown
that

∂P(t )

∂t
=

∫
d3r r

∂ρ(r, t )

∂t
= −

∫
d3r r∇ · j(r, t ) (G2)

=
∫

d3r j(r, t ). (G3)

Now, assume a hopping Hamiltonian in second quantization.
The polarization operator is the product of position operator
rm and particle number operator nm = a†

mam,

P = e
∑

m

rmnm. (G4)

FIG. 10. The absolute value of the Floquet function u0 plotted
as a function of the intensity I . The dashed line corresponds to the
Floquet function up

0 of the continuum model, Eq. (F18). Parameters:
EF = 10 meV, � = 0.3 THz.

Using the Heisenberg equation of motion the current operator
is

J(t ) = ∂P
∂t

= i

h̄
[H, P] (G5)

= i
e

h̄

∑
n,m

(rn − rm)gn,m(t )a†
nam. (G6)

First, we assume that only hopping to nearest neighbors is
present. The nearest-neighbor vectors are denoted as δ such
that the current operator becomes

J(t ) = i
e

h̄

∑
n, j

δ jgδ j (t )a†
nan+δ j . (G7)

In the last step we assumed that the hopping amplitude is only
a function of the difference of the positions. Expanding the
creation and annihilation operators in momentum space

a(†)
n =

∑
k

e(−)ik·rn a(†)
k (G8)

and performing the sum over all positions yields for the
current operator

J(t ) = i
eg

h̄

∑
j,k

δ je
i(e/h̄)A(t )·δ j eik·δ j a†

kak (G9)

≡
∑

k

J(k, t ) a†
kak. (G10)

Now focus on the square lattice with nearest-neighbor vec-
tors δ1 = a(1, 0)T and δ1 = a(0, 1)T and circularly polarized
driving A(t ) = A( cos(�t ), sin(�t ))T. The current coefficient
becomes

J(k, t )

= i
ega

h̄

(
eik·δ1 ei(e/h̄)A(t )·δ1 − e−ik·δ1 e−i(e/h̄)A(t )·δ1

eik·δ2 ei(e/h̄)A(t )·δ2 − e−ik·δ2 e−i(e/h̄)A(t )·δ2

)
(G11)

= i
ega

h̄

∞∑
n=−∞

(
eik·δ1 inJn(γ )ein�t − e−ik·δ1 (−i)nJn(γ )e−in�t

eik·δ2 Jn(γ )ein�t − e−ik·δ2 Jn(γ )e−in�t

)
.

(G12)

Now focus on the n = 0 component, i.e., average over one
driving period,

J̄(k) ≡ 1

T

∫ 2π/�

0
dt J(k, t ) (G13)

= i
ega

h̄
J0(γ )

(
eik·δ1 − e−ik·δ1

eik·δ2 − e−ik·δ2

)
(G14)

= −2
ega

h̄
J0(γ )

(
sin(kxa)
sin(kya)

)
. (G15)

Comparison with the quasienergy of the circularly driven
square lattice ε(k) = −2gJ0(γ )[cos(kxa) + cos(kya)] yields

J̄(k) = − e

h̄
∇kε(k). (G16)
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