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The intercalated water into nanopores exhibits anomalous properties such as an ultralow dielectric constant.
Multiscale modeling and simulations are used to investigate the dielectric properties of various crystalline
two-dimensional ices and bulk ices. Although the structural properties of two-dimensional (2D) ices have been
extensively studied, much less is known about their electronic and optical properties. First, by using density
functional theory and density functional perturbation theory (DFPT), we calculate the key electronic, optical,
and dielectric properties of 2D ices. Performing DFPT calculations, both the ionic and electronic contributions
of the dielectric constant are computed. The in-plane electronic dielectric constant is found to be larger than
the out-of-plane dielectric constant for all the studied 2D ices. The in-plane dielectric constant of the electronic
response (εel ) is found to be isotropic for all the studied ices. Second, we determined the dipolar dielectric
constant of 2D ices using molecular dynamics simulations at finite temperature. The total out-of-plane dielectric
constant is found to be larger than 2 for all the studied 2D ices. Within the framework of the random-phase
approximation, the absorption energy ranges for 2D ices are found to be in the ultraviolet spectra. For comparison
purposes, we also elucidate the electronic, dielectric, and optical properties of four crystalline ices (ice VIII, ice
XI, ice Ic, and ice Ih) and bulk water.
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I. INTRODUCTION

The phase behavior of two-dimensional (2D) ice is the
subject of recent experimental and theoretical interest, and is
still controversial [1–8]. Recently the report of the observation
of monolayer, bilayer, and trilayer ice using transmission
electron microscopy [1] was challenged [9]; however, several
theoretical studies based on both classical force fields and
ab initio simulations revealed the exciting possibility of ex-
ploring 2D-ice structures at specific conditions [2,3,10,11]. In
particular, both classical force fields and ab initio simulations
predict that water molecules form the ordered flat-square
lattice structure while they are trapped in a slit of a few
angstroms in size [2,10]. The confinement width needed for
the formation of stable monolayer ice is approximately h �
5–7 Å [1,10,11].

In contrast, the structural properties of 2D ice (and bulk
ice) and the electronic, dielectric, and optical properties of 2D
ice and nanoconfined water are not well understood. There-
fore, a solid theoretical background for the effects of size
reduction on the dielectric properties of ice and confined water
is highly demanded. This can be helpful to understand the
measured anomalous dielectric properties of confined water
[12]; recently, by using electrostatic force detection in atomic
force microscopy, unexpected variation in the out-of-plane
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dielectric constant of confined water between graphene and
hexagonal boron nitride (h-BN) has been observed [12]. The
presence of an interfacial water layer (having ice phase) with
vanishingly small polarization is the reason for such small
out-of-plane dielectric constant (� 2) for channels with a size
of h < 15 Å . Indeed the dielectric constant of nanoconfined
water was found to be about 2, which is above the high-
frequency dielectric constant of water, i.e., 1.8.

In the past few decades, molecular dynamics simulations
(MDSs) and Monte Carlo simulations (MCSs) have been used
to calculate the dipolar dielectric constant of water and con-
fined water. For instance the variation of the dipolar dielectric
constant with temperature and pressure for the ices Ih, III, V,
VI, and VII was studied by Aragones et al. [13]. In addition
to MDS and MCS methods, mean field theory (such as Kirk-
wood’s theory) was also used and yielded valuable insights
into the H-bonding effects on the water dielectric constant
[14]. Notwithstanding the existing MD-based theory studies
in the past few years, the questions about the ionic and elec-
tronic contributions of the dielectric constant of 2D ice are still
unanswered. Most of the previous studies reported the dipolar
dielectric constant of water confined at the nanoscale channels
[15–17]. Thus, one naturally expects to quantify the dipolar,
electronic, and ionic dielectric constants of crystalline 2D ice
and the corresponding frequency dependence. This will pro-
vide a solid theoretical support for the recent experiment [12].

Here, we conduct a systematic study for determining the
electronic, dielectric, and optical properties of 2D ice using
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FIG. 1. The lattice structure of two-dimensional and bulk ices. The top and side views of (a) flat-square (f-SQ), (b) buckled-square (b-SQ),
(c) buckled-rhombic (b-RH), and (d) hexagonal (HEX) 2D-ice structures. The blue squares show the corresponding supercells. (e) Ice VIII, (f)
ice XI, (g) ice Ic, and (h) ice Ih. The blue cubes show the corresponding unit cells.

a multiscale approach including first-principles and molec-
ular dynamics simulations. Both the out-of-plane and in-
plane components of ionic, electronic, and dipolar dielectric
constants of the stable structure of 2D ices including the
flat-square, buckled-square, buckled-rhombic, and hexagonal
structures are investigated [2]. We also report results for the
electronic, dielectric, and optical properties of the crystalline
bulk ice and bulk water. Our work provides benchmark theo-
retical data for the electronic, dielectric, and optical properties
of crystalline 2D and bulk ices.

II. TWO-DIMENSIONAL ICE

The 2D-ice structures considered in this paper are the
flat-square (f-SQ), buckled-square (b-SQ), buckled-rhombic
(b-RH), and hexagonal (HEX) structures. Their optimized
structures were reported in Ref. [2]. The f-SQ and b-RH
(HEX) structures have square (rectangular) unit cells con-
taining 4 (8) water molecules [see Figs. 1(a)–1(d)]. In order
to eliminate the interaction between periodic images in ab
initio calculations, we set a large vacuum with height c for
calculating each 2D ice (see Sec. IV). The lattice parameters
of the simulation supercells (a, b, c) are listed in Table I.
The input lattice structures were extracted from the optimized
structures of Ref. [2]. Using the van der Waals diameter of the
oxygen atom, one can approximate the effective thickness (t)
of a given 2D-ice lattice: considering the flat structure of f-SQ,
tf-SQ = t0 = 2 × Rv , where Rv is the van der Waals radius of
the oxygen atom. For b-SQ and HEX structures, there is 1 Å

difference between the top row and bottom row of O atoms
[see side view of b-SQ and HEX structures in Figs. 1(b) and
1(d)]; thus tb-SQ, HEX = 1 + t0. For the b-RH, there is a large (4
Å) distance between the top row and bottom row of O atoms,
i.e., tb-RH = 4 + t0. All the structure parameters of the studied
systems and the important findings of this paper are tabulated
in Table I.

III. CRYSTALLINE BULK ICE

In order to compare electronic, dielectric, and optical
properties of above-mentioned 2D ices with the high-pressure
phase of ice, we also calculated the dielectric constant of
four crystalline ices, i.e., cubic (ice VIII and ice Ic) and
hexagonal (ice XI and ice Ih) bulk ices. The ice-XI, ice-Ic,
and ice-Ih structures have 8 water molecules per orthorhombic
unit cell [see Figs. 1(e)–1(h)]. The lattice parameters of the
crystalline ices are listed in Table I. The ice Ih has the
hexagonal crystalline form of ordinary ice, which is stable
at temperature 273 K (down to a few kelvins) and pressures
up to 200 MPa. The ice Ic is one of the metastable cubic
crystalline form of ice, which is stable at temperatures be-
tween 130 and 220 K. The ice VIII with 8 water molecules
per unit cell has a tetragonal crystalline form and is stable
under high pressures of about 3 GPa below 278 K. The
ice XI is a hydrogen-ordered form of ice Ih containing 8
molecules per unit cell and is stable at temperature 5 K and
pressures of about 100 MPa. We also calculated the dielectric
constant of bulk water using 17 water molecules inside a
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TABLE I. Simulation parameters used for the calculation of dielectric constant of 2D ices and bulk ices: ionic dielectric constant (εion),
the electronic dielectric constant (εel), the dipolar dielectric constant (εdip), total dielectric constant (εtot ) [41], the energy gap [�(eV)], and the
effective thickness (t ). For comparison purposes we show the corresponding data for bulk water, TMDs, and h-BN. The used temperatures in
the molecular dynamics simulations are given too.

ε0

εel εion εdipolar εtotal

Structure a b c t �(eV) xx yy zz xx yy zz xx yy zz xx yy zz T (K) Reference

2D ice:
f-SQ 5.84 5.84 15 (t0 =) 3 5.49 2.0 2.0 1.7 1.0 1.0 2.0 1.55 1.54 2.41 3.55 3.54 5.11 80 Present work
b-SQ 5.78 5.78 20 4 5.55 1.8 1.8 1.49 3.85 3.9 0.01 Ref. [28] Present work
b-RH 4.47 5.76. 20 8 5.55 1.45 1.45 1.3 10.75 0.95 1.0 1.49 1.52 1.92 12.69 2.92 3.22 80 Present work
HEX 8.7 7.72 15 4.0 5.12 1.71 1.71 1.45 2.0 1.90 3.53 3.02 4.32 2.49 5.73 6.93 6.47 80 Present work

Bulk ice:
Ice VIII 4.73 4.73 6.85 5.37 2.36 2.36 2.34 3.96 3.96 0.26 8.71 8.54 1.03 14.03 13.86 2.63 80 Present work
Ice XI 4.45 7.7 7.27 5.06 1.83 1.82 1.82 1.81 0.83 0.93 2.06 1.31 1.86 4.7 2.96 3.61 80 Present work
Ice Ic 6.48 6.48 6.48 4.99 1.77 1.77 1.76 1.21 1.21 0.16 2.1 2.1 1.01 4.08 4.08 1.93 80 Present work
Ice Ih 7.81 7.38 4.52 5.05 1.80 1.80 1.80 1.14 1.0 0.96 1.94 1.92 1.5 3.88 3.72 3.26 200 Present work

Bulk:
Water 7.93 7.93 7.93 4.99 1.85 1.84 1.86 1.28 1.16 1.29 72 72 72 74.13 74 74.15 300 Present work

h-BN:
h-BN 2.51 2.51 25.1 3.17 5.97 4.97 4.97 2.89 1.85 1.85 0.4 Ref. [18]

TMDs:
MoS2 3.21 3.21 32.1 6.12 <2 15.1 15.1 6.4 0.2 0.2 0.0 Ref. [18]
WS2 3.21 3.21 32.1 6.14 <2 13.6 13.6 6.3 0.1 0.1 0.0 Ref. [18]
WSe2 3.34 3.34 33.4 6.52 <2 15.1 15.1 7.5 0.2 0.2 0.0 Ref. [18]

cubic unit cell with size 7.93 × 7.93 × 7.93 Å 3. We have
used 20 different relaxed MDS configurations as inputs for
the density functional theory calculations of bulk water. For
the bulk water and bulk crystalline ices, we applied periodic
boundary conditions in all directions, though for the 2D ices,
a vacuum space must be set (see Sec. V A). In order to
obtain more insights and for comparison purposes, we put in
order the dielectric constant of some common 2D materials
such as monolayer h-BN and monolayers of three transition
metal dichalcogenides (TMDs) [18], i.e., MoS2, WS2,
and WSe2.

IV. DIELECTRIC CONSTANT

For the polar systems, the total dielectric constant tensor
includes three main contributions, i.e., electronic, ionic, and
dipolar:

ε
μν
total = ε

μν
el + ε

μν
ion + ε

μν
dip. (1)

The indexes μ and ν run over the three spatial direc-
tions. At zero kelvins the dipolar term vanishes. By in-
creasing the temperature of the 3D material, the dipolar
term becomes important and should be taken into account.
Note that different bulk ices are stable at different tem-
peratures [19]. In Table I, the relevant temperatures are
listed.

V. THE METHODS

In this study, density functional theory (DFT) has been
implemented for electronic band structure calculations. We

have used density functional perturbation theory (DFPT) to
obtain the electronic and ionic dielectric constants at zero
kelvins. Moreover, molecular dynamics simulations (MDSs)
have been used to find the dipolar dielectric constant at a
finite temperature for 2D (bulk) ices. In order to calculate the
optical dielectric function, the random-phase approximation
(RPA) [20] based on DFT ground-state calculations has been
conducted. In the following sections, we briefly explain the
different used methods.

A. Density functional theory: Electronic band structure

We have calculated the electronic band structure of 2D ices
using DFT as implemented in the Quantum-ESPRESSO (QE)
package [21]. We have used ultrasoft pseudopotentials to treat
the interaction between the ion cores and valence electrons
and applied the generalized gradient approximation for the
exchange-correlation interactions. We also have studied the
effect of nonlocal correlations using the van der Waals density
functional of Dion et al. [22]. Accuracy of forces on each atom
has been considered about 0.1 mRy/bohr for the variable-
cell optimization, relaxing the cell parameters and atomic
positions. In order to accurately calculate the structural and
electronic properties, kinetic energy cutoffs of 150 Ry and
1500 Ry were found to be sufficient for the wave functions
and charge densities, respectively, where the k-point grid
for 2D (bulk) ices was set to 6 × 6 × 1 (6 × 6 × 6). The
k-point grid for 2D (bulk) ices was chosen as 24 × 24 × 1
(24 × 24 × 24) for non-self-consistent calculation in a partial
density of states (PDOS) analysis. A smearing parameter of
0.01 Ry has been used for the PDOS analysis. In addition,
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the total energy convergence threshold was set to 10−12 eV.
The Coulomb cutoff technique [23,24] was used to reduce
interactions between periodic images and the cost of the ab
initio calculations for 2D-ice structures.

B. Density functional perturbation theory: Electronic and ionic
dielectric constant

The dielectric properties of the 2D ices were determined
using the DFPT approach. In DFPT, the dielectric constant
tensor is defined as a linear response to the perturbative
electric field [25,26] and the ionic displacement is considered
as a perturbation to the equilibrium system. The response of
the electronic charge density to the perturbative electric field
in the linear response regime is employed to determine the
electronic contribution of the dielectric tensor, i.e., the high-
frequency dielectric constant (εel). Subsequently, the static
dielectric constant (εμν

0 ) is the summation of the electronic
and the ionic parts of the system to the applied electric field:

ε
μν
0 = ε

μν
el + ε

μν
ion, (2)

where

ε
μν
ion = 4π

�

∑
m

Sm, μν

ω2
m

. (3)

Here Sm is the mode oscillator strength tensor, defined in terms
of the Born effective charges Z∗, the atomic masses Mi, and
the normalized eigenvectors ui,mμ of the ith ion along a given
direction μ for a particular mode m. Also ωm is the phonon
mode frequency and � is the unit cell volume. Thus, in order
to compute ε0, the knowledge of all the phonon frequencies at
the zone center of Brillouin zone is needed. The latter requires
the solution of the dynamical matrix at the zone center.

C. Molecular dynamics simulations: Dipolar dielectric constant

By means of equilibrium molecular dynamics simulations
employing the large-scale atomic/molecular massively par-
allel simulator LAMMPS [27], we computed the molecular
(dipolar) dielectric constant of 2D ice at 80 K. Our simulated
systems contain 2D ices, confined between two walls, sepa-
rated by a distance [2] h = 2t (these walls are used to produce
the confining potential). The number of water molecules is
400, 100, and 128 for f-SQ, R-SQ, and HEX, respectively
[28]. The TIP4P model was employed to describe the water
molecules [29]. The NVT ensemble (Nosé-Hoover thermostat)
is used to keep the temperature at 80 K for 2D and bulk ices
excluding ice Ih (200 K). We modified the TIP4P model to
incorporate the lattice structure of the optimized structures
by using DFT: we changed bond lengths and bond angles of
water molecules relevant to the DFT outputs [2]. Also, the
charges of the O and H atoms were modified such that a large
dipole moment (∼3D) for a single water molecule is reached
[13]. In order to verify this modification, we calculated the
variation of the dipolar dielectric constant of bulk water with
time using the modified TIP4P model; see Fig. 2(a). It is seen
that the dielectric constant of bulk water lies in an acceptable
range; i.e., it is between the dielectric constant of bulk water
using the TIP4P and TIP4P/2005 models.

FIG. 2. (a) The variation of dielectric constant of bulk water with
time using the modified TIP4P model in this study. (b) The in-plane
radial distribution function of f-SQ 2D ice. Two arrows indicate the
emergence of two peaks in f-SQ which are absent in bulk ices. (c) The
radial distribution function of three typical bulk ices.

Periodic boundary conditions were applied along the x, y
directions and the confinement was along the z direction. The
particle-particle particle-mesh method was used to compute
the long-range Coulomb interaction with a relative accuracy
of 10−4. Water bond lengths and bond angles were fixed
by the SHAKE algorithm [30]. In all MDSs a time step of
1 fs was chosen. Following the system relaxation (1 ns), the
thermodynamical sampling was done up to 8 ns to ensure
the smoothness of the converged dielectric constant. The
temperature in MDSs for bulk ices (water) was set to be 80 K
(300 K) because all of the studied bulk ices are stable at this
temperature.

A microscopic picture of dielectric properties of 2D ices
could be found by calculating the fluctuations of the total po-
larization of a system, �M, at finite temperature. By calculating
different components of the total dipole moment, i.e., Mx, My,
and Mz after equilibration, one obtains different components
of the molecular dielectric constant tensor as [31]

ε
μν
dip = ε∞ + σ 2

μν

ε0kBTV
, (4)

where ε∞ is the optical dielectric constant and taken to be
1. Also, σ 2

μν = 〈MμMν〉 − 〈Mμ〉〈Mν〉 while μ, ν = x, y, z and
V is the volume of the system. Here, the time averaging
was taken for more than 5 ns when the in-plane dielectric
constant is converged. Note that Eq. (4) can only be used for
homogeneous systems [15].
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D. Random-phase approximation: The frequency-dependent
optical dielectric constant

The optical dielectric function εel(ω) was calculated using
norm-conserving pseudopotentials, in the energy range of 0
to 30 eV. In order to increase accuracy for the dielectric
function calculations, we used the k-point grid for 2D (bulk)
ices as 12 × 12 × 1 (12 × 12 × 12). The optical dielectric
constant was calculated (the frequency-dependent part of the
electronic dielectric constant or equivalently the electronic
part of the dielectric function) within the framework of the
random-phase approximation (RPA) based on DFT ground-
state calculations. The mentioned dielectric function consists
of frequency-dependent real [εr

el(ω)] and imaginary parts
[εi

el(ω)]. It is represented as

εel(ω) = εr
el(ω) + iεi

el(ω). (5)

The imaginary part of dielectric function [εi(ω)] can be cal-
culated using the Kubo-Greenwood formalism [32]. Once we
know the imaginary part, the real part can be obtained using
the Kramers-Kronig relations (for more details see Ref. [33]).
Note that the optical dielectric constant extracted from the
RPA (at zero frequency) is compatible with that obtained
from DFPT.

VI. RESULTS AND DISCUSSION

A. Electronic band structure

The electronic band structure and partial density of states
(PDOS) of 2D and bulk ices are shown in Fig. 3. We found
the direct band gap of energy about 5.49, 5.55, and 5.12 eV
for f-SQ, b-SQ, and HEX 2D ices and 5.37 and 4.99 eV
for ice VIII and ice Ic, respectively. The electronic band
structure for b-RH 2D ice, ice XI, and ice Ih confirms the
indirect band gap. The corresponding energy gap for b-RH,
ice XI, and ice Ih is 5.55, 5.06, and 5.08 eV, respectively.
The PDOSs are shown on the right side of the panels of
Fig. 3. It is seen that in contrast to the conduction bands,
the O (H) atom contribution in the valance band is larger
(negligible). Notice that the difference between the energy
gap of 2D ices (and 2D h-BN) and bulk water (bulk h-BN) is
small, i.e., 2% (4%), as compared to the difference between
bulk TMDs and 2D TMDs; see Fig. 4. This is due to the
weak hydrogen bond between water molecules in bulk and
2D ices as well as the insulating feature in all phases of
water and h-BN. The TMDs have large reductions of energy
gap while transiting from 3D to 2D. The obtained energy
gap, the electronic band structure, and the PDOS for ice
VIII, ice XI, and ice Ih are in agreement with the results of
Refs. [36–39].

Independently of water phase (including ice), the nearest-
neighbor distances between oxygen atoms of water molecules
are almost the same, i.e., 2.8–3 Å; i.e., all the ice phases
formed under very high pressures satisfy the so-called Bernal-
Fowler ice rules, where each water molecule has four
hydrogen-bonded neighbors with a quasitetrahedral config-
uration with two short O-H distances (the donated protons)
and two long ones (the accepted protons). Transiting from
bulk into 2D phase of ice, the crystalline structure with larger
density can be formed where the nearest-neighbor distances

are more or less the same but the preferential tetrahedral
bonding geometry is different. In Figs. 2(b) and 2(c) we depict
the in-plane radial distribution function for the O-O distance
in f-SQ and the 3D-radial distribution function of three bulk
ices (ice XI, ice Ic, and ice Ih). As can be seen, as expected the
nearest-neighbor O-O distances (first peaks) for all structures
are equal. However, the second nearest neighbors [shown by
arrows in Fig. 2(b)] are different. The latter causes a larger
density of f-SQ [10] (1.36 g cm−3) as compared to bulk crys-
talline ices, i.e., 0.92 g cm−3 ice Ih and 0.92 g cm−3 ice XI.

On the other hand, the most well-known electrical conduc-
tivity mechanism for all phases of water/ice is the Grotthuss
mechanism (GM), also known as proton jumping. In the
GM an excess proton or proton defect diffuses through the
hydrogen bond network of water molecules and a covalent
bond between neighboring molecules is formed and broken
continuously. Because of the same nearest-neighbor distance
in bulk ice (bulk water) and those of 2D ice, the GM mech-
anism should be valid for 2D ices. Subsequently only an
infinitesimal increase in the band gap 2D ices as compared
to the bulk ices is seen. This was confirmed by our ab initio
simulations.

Moreover, h-BN is a wide band gap semiconductor with
high thermal and chemical stability. In both bulk and mono-
layer h-BN, N atoms and B atoms are hybridized with sp2 at
the interlayer forming a honeycomb structure. In bulk h-BN
there are weak interactions between each layer of h-BN, such
as electrostatic interactions and van der Waals interactions,
which cause the electrical band gap of both bulk h-BN and
2D h-BN to become more or less equal [40]. The transition
from bulk into 2D TMDs also obeys the same general rule;
i.e., the band gap of a 2D TMD is larger than that of bulk.

B. Dielectric constant

Here, we turn our attention to the main focus of this
paper. The dielectric constants extracted from QE represent
the combined dielectric constant of 2D ice and the surround-
ing large vacuum with a height c. In order to distill the
dielectric constant of 2D ices, we eliminate the contribution
of the vacuum using a capacitance model [18]. In fact, in
the out-of-plane (in-plane) direction, the capacitance of the
supercell extracted directly from the QE code (εSC) is
the series (parallel) combination of vacuum capacitance and
the 2D-ice capacitance. This helps us to find the out-of-plane
and in-plane relative dielectric constant of 2D ices using
below the equations [18]

εzz =
[

1 + c

t

(
1

εSC
− 1

)]−1

, εxx,yy = 1 + c

t
(εSC − 1). (6)

Here t is the effective thickness of 2D ice.
In order to make sure that the used c values are sufficiently

large and the obtained εxx,yy,zz were converged well, we per-
formed several additional calculations and found correspond-
ing εSC . The results show that when c values change from 12
Å to 40 Å, the εxx,yy,zz values only increase about 5%. Thus,
the used vacuum size (see Table I) is sufficiently large.
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FIG. 3. The electronic band structure of (a) f-SQ, (b) b-SQ, (c) b-RH, (d) HEX, (e) ice VIII, (f) ice XI, (g) ice Ic, and (h) ice Ih and
corresponding partial density of states. The arrows denote the type of band gap (direct or indirect) and the insets show the corresponding
Brillouin zones.

Using the aforementioned correction, the results for the
electronic (εel), ionic (εion), and dipolar (εdip) dielectric con-

stants for 2D ices are listed in Table I. The main findings are
illustrated in Fig. 5 and are listed as follows:
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FIG. 4. The energy gap of bulk phase and 2D phase of various
materials. The data for transition metal dichalcogenides were taken
from Refs. [34,35].

(i) εxx
ion � ε

yy
ion for 2D ices except for b-RH ice in εxx

ion �
10ε

yy
ion, which is due to the remarkable in-plane anisotropy in

the lattice structure of b-RH.
(ii) εxx

el � ε
yy
el for 2D (bulk) ices and is larger than (equal

to) εzz
el . The larger the εxx

el and ε
yy
el , the greater the flatness of

the structures. This is due to the confined electron clouds in
quasi-2D space.

(iii) εxx
el and ε

yy
el of f-SQ ice are larger than those for other

2D ices. This might be due to the confining electron in the 2D
plane and stronger response of system to an in-plane electric
field, where for other 2D ices there is a small buckling in their
geometry.

(iv) Because of the crystalline structure of all the
studied crystalline 2D ices and bulk ices their dipolar
contributions are remarkably smaller than that of bulk
water.

(v) The electronic dielectric constants of 2D and bulk ices
are smaller than for other 2D materials such as MoS2, WSe2,
and WS2 [18]. The latter are attributed to the semiconducting
nature of the TMDs rather than the insulating nature of 2D
ices.

FIG. 6. The total dielectric constant (εtotal) of 2D ices, bulk ices,
and bulk water [41].

The aforementioned items are represented in Figs. 7(a) and
7(b). Consequently the total dielectric constants (Fig. 6) of
the studied ices (except for b-RH and ice VIII) are smaller
than 10.

C. Optical dielectric function

In Fig. 7, the real (εr) and imaginary (εi) parts of the optical
dielectric function are shown for 2D and bulk ices and bulk
water. The results show the following:

(i) For 2D ices, εxx 	= εzz in both real and imaginary parts,
which is expected.

(ii) Because of the isotropic (anisotropic) lattice of the
f-SQ and b-SQ ices (b-RH and HEX) for both real and
imaginary parts, εxx

el (ω) = ε
yy
el (ω) [εxx

el (ω) 	= ε
yy
el (ω)].

(iii) Despite the bulk cubic ice structures (ice VIII
and ice Ic) and the bulk hexagonal ice structures (ice
XI and ice Ih), the dielectric functions are almost equal,
i.e., εxx

el (ω) � ε
yy
el (ω) � εzz

el (ω), for both real and imaginary
parts.

The absorption behavior of ices can be understood by
analyzing the imaginary part of the dielectric function. Also,

FIG. 5. The electronic (a) and ionic (b) dielectric constant of 2D ices, bulk ices, and TMDs. The data for TMDs were taken from Ref. [18].
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FIG. 7. The real and imaginary part of dielectric function for (a) f-SQ, (b) b-SQ, (c) b-RH, (d) HEX, (e) ice VIII, (f) ice XI, (g) ice Ic, (h)
ice Ih, (i) bulk water. The green-solid (pink-dashed) arrows refer to the optical gap (energy gap).

the absorption edge gives the optical gap (�o). Moreover, the
peaks in the εi(ω) function are related to interband transitions
in the electronic band structure. For instance, the first peak
corresponds to the energy gap (�). Indeed, the first critical

point calculated in εi
el(ω) is related to the transition from

valence band maximum to the conduction band minimum, i.e.,
the energy band gap.
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FIG. 8. The real dielectric function of 2D and bulk ices: (a) in-plane (xx, yy components) and (b) out-of-plane (zz component).

The green-solid and pink-dashed vertical arrows in Fig. 7
denote the optical gap and energy gap. In general, the optical
gap is equal to the electronic band gap minus the exciton
binding energy. In other words, the optical gap and electronic
gap should be equal if the many-body perturbation theory
is not taken into account. Therefore, our obtained difference
between optical gap and electronic band gap is due to the
smearing applied in the implemented Kubo-Greenwood ap-
proach [42]. Moreover, note that εr (ω = 0) in Fig. 7 and
ε0

el listed in Table I apparently are different. However, the
difference originates in the two different methods that we
employed to calculate them. The first one is the microscopic
dielectric function that was obtained by using the RPA and
the second one is the macroscopic dielectric function that
was obtained by using DFPT. Thus, they coincide if the same
method is used to obtain them.

To compare the optical properties of 2D and bulk
ices, we demonstrate in Fig. 8 (Fig. 9) the real
(imaginary) dielectric functions. The results show the
following:

(i) The real part of the dielectric function has larger values
in bulk ices as compared to 2D ices in the low-energy region.
This is due to the fact that electrons are distributed in 3D
space in bulk ice. Moreover, the peaks are larger in 2D ices
as compared to the bulk ices.

(ii) The negative values of the real dielectric function
of bulk ices correspond to the largest electromagnetic wave
reflection. In fact the inductive properties will dominate in this
range of energies with the negative values of the real dielectric
function. In simple words, at these energy ranges (e.g., in ice
VIII the energy range 15–20 eV has the negative dielectric
function) the electric displacement vector and the electric field
vector have opposite directions.

(iii) There is a redshift (a move toward the lower-energy
region) of the major peaks of εi

el(ω) for bulk ices in compar-

ison to 2D ices. In all the studied ices, the prominent peaks
in εi

el(ω) correspond to optical transmission which is mainly
due to the interband transition from the p valence bands to
the s conduction bands [i.e., the O-p orbital below the Fermi
level (valence band) and H-s orbital above the Fermi level
(conduction band)]. The PDOS of each system is shown in
the right-hand-side panels of Fig. 3.

(iv) The absorption energy ranges for 2D and bulk ices
are in the ultraviolet spectra (>3.2 eV) and visible spectra
(between 2 and 3.2 eV), respectively.

The obtained dielectric functions for ice VIII, ice XI, ice
Ic, ice Ih, and bulk water are consistent with the results of
Refs. [36,43], Ref. [39], and Refs. [44,45], respectively. Note
that εr (ω = 0) in Fig. 7 and ε0

el listed in Table I apparently
are different. However, the difference originates in the two
different methods that we employed to calculate each of
them. The first one corresponds to the microscopic dielectric
function which was obtained by using the RPA and the second
one corresponds to the macroscopic dielectric function which
was obtained by using DFPT.

D. Mechanical stiffness of 2D ice

It is insightful to calculate mechanical stiffness of a typ-
ical 2D ice (the results are selectively presented for f-SQ).
We performed an additional calculation for determining the
Young’s modulus and Poisson’s ratio of f-SQ ice. We applied
both uniaxial and biaxial strains and found the corresponding
energies Eu and Eb, for uniaxial and biaxial strained systems.
Next, the best fits on the two equations Eb = 2bu2

b and Eu =
1
2 (b + μ)u2

u helped us to obtain the 2D-bulk modulus b and
2D-shear modulus μ. Here uu and ub are the applied uniaxial
and biaxial strains, respectively. Consequently, the Young’s
modulus (Y2d ) and Poisson’s ratio (ν2d ) can be computed
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FIG. 9. The imaginary dielectric function of 2D and bulk ices: (a) in-plane (xx, yy components) and (b) out-of-plane (zz component).

[46]:

Y2d = 4bμ

b + μ
, ν2d = b − μ

b + μ
. (7)

The results are Yf-SQ = 3.6 N/m and ν = 0.6. The Young’s
modulus of 2D ice is 2 orders of magnitude smaller than the
one for graphene, i.e., 340 N/m [47]. This is due to the weak
hydrogen bonds in 2D ices compared to the strong planar
covalent bonds in graphene. The corresponding Poisson’s
ratio of 2D ice is larger than that for graphene (0.3). The
obtained Young’s modulus (Poisson’s ratio) for 2D ice is more
or less equal to the bulk modulus of bulk ice. In Table II, we
list the Young’s modulus/bulk modulus and Poisson’s ratio
of f-SQ/bulk crystalline ice. To convert the N/m units in Y2d

to Pa units, one may use the simple relation Y3d = Y2d/t0,
where t0 = 3 Å is the effective thickness of f-SQ ice (see
Table I).

VII. CONCLUSIONS

In summary, we found that the energy gap in f-SQ, b-SQ,
and HEX 2D-ice structures and cubic bulk ices (ice VIII and
ice Ic) is direct, whereas b-RH 2D ice and hexagonal bulk ices
(ice XI and ice Ih) have an indirect band gap. The underlying

TABLE II. The Young’s modulus and Poisson’s ratio of f-SQ and
bulk modulus (B) of three bulk crystalline ices.

Ice Y (GPa) ν

f-SQ 12 0.6 [present work]

Ice B (GPa) ν

Ice VIII [48] 18
Ice VII [48] 13 0.28 [49]
Ice Ih [48] 8.5 0.325 [49]

lattice structure and symmetry significantly influence the ionic
and dipolar terms, but their effects on the electronic dielectric
constant are negligible.

We found the total out-of-plane dielectric constant is larger
than 2 for all the studied 2D ices (except b-SQ) and bulk
ices, i.e., εzz

total > 2.0 (see Table I). This clearly shows that the
lattice structure of the confined water in the recent experiment
[12] is not any of the lattice structures of the studied 2D
ices here, and likely has random structure. On the other
hand the small out-of-plane dielectric constant of about � 2.1
(for nanoconfined water in channels with heights h ∼ 10 Å)
[12] should not correspond to a monolayer water. Beyond
∼15 Å a nonlinear increase (up to the bulk value) in the
dielectric constant was found [12]. Therefore, we do not
expect to recover experimental data when studying monolayer
crystalline ice. It is also interesting to know that there are no
reliable experimental data for the in-plane dielectric constant
of confined water at subnanometer scale slits. Equivalently,
the density of trapped water may be much lower than the bulk
density [12]. This motivated us to determine the dielectric
properties of amorphous 2D ice in an ongoing study.

The optical gap of 2D ices is found to be larger than
that of bulk ices. The absorption energy ranges for 2D and
bulk ices are in the ultraviolet spectra (>3.2 eV) and visible
spectra (between 2 and 3.2 eV), respectively. Generally, in
bulk materials the presence of a large number of atoms and
the merging of many adjacent energy levels result in the
well-known energy conduction and valance bands. In 2D
materials, due to the smaller number of atoms, the number
of energy levels decreases, giving the narrower energy bands.
As a result, the energy band gap will increase (the difference
between valance band and conduction band). Also, the larger
band gap in 2D ice will cause a shift of absorption spectrum
toward lower wavelength (larger energies). In other words,
there is redshift in the peaks of εi of bulk ices in comparison
to those of 2D ices [50].
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We believe that our findings not only provide a theoret-
ical background for understanding the different aspects of
dielectric properties of confined water, but also give insights
into the light absorption mechanism and corresponding ab-
sorption energy range of confined water which might be
necessary for further experimental characterizations of 2D
ices.
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